WO2013091439A1 - 一种捕集电站烟气中二氧化碳的方法及其设备 - Google Patents

一种捕集电站烟气中二氧化碳的方法及其设备 Download PDF

Info

Publication number
WO2013091439A1
WO2013091439A1 PCT/CN2012/083575 CN2012083575W WO2013091439A1 WO 2013091439 A1 WO2013091439 A1 WO 2013091439A1 CN 2012083575 W CN2012083575 W CN 2012083575W WO 2013091439 A1 WO2013091439 A1 WO 2013091439A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
flue gas
carbon dioxide
pipe
Prior art date
Application number
PCT/CN2012/083575
Other languages
English (en)
French (fr)
Inventor
王志龙
张岩丰
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112014015304A priority Critical patent/BR112014015304A2/pt
Priority to RU2015101990/05A priority patent/RU2600348C2/ru
Priority to AP2014007785A priority patent/AP2014007785A0/xx
Priority to CA2859841A priority patent/CA2859841A1/en
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Priority to DK12859719.2T priority patent/DK2796183T3/en
Priority to SG11201403509SA priority patent/SG11201403509SA/en
Priority to KR1020147018985A priority patent/KR101545604B1/ko
Priority to EP12859719.2A priority patent/EP2796183B1/en
Priority to JP2014547682A priority patent/JP5945333B2/ja
Priority to AU2012357358A priority patent/AU2012357358B2/en
Priority to MX2014007608A priority patent/MX359692B/es
Publication of WO2013091439A1 publication Critical patent/WO2013091439A1/zh
Priority to US14/311,379 priority patent/US9669354B2/en
Priority to ZA2014/05332A priority patent/ZA201405332B/en
Priority to US15/593,294 priority patent/US10155194B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20473Cyclic amines containing an imidazole-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the technical field of carbon dioxide emission reduction and resource utilization in a power plant boiler flue gas, and specifically relates to a method and a device for capturing carbon dioxide in a power station flue gas.
  • C0 2 capture methods There are many C0 2 capture methods.
  • the industrial application is more chemical absorption.
  • the principle is that C0 2 in the flue gas reacts with the chemical solvent and is absorbed.
  • the chemical solvent that absorbs C0 2 reaches equilibrium and becomes rich.
  • the rich liquid enters the regeneration tower to release the C0 2 gas and becomes the lean liquid.
  • the lean liquid then circulates and absorbs the C0 2 in the flue gas, so that the absorption solution is circulated in the absorption tower and the regeneration tower, and the C0 2 in the flue gas It was separated and purified and captured.
  • the chemical absorption method for absorbing CO 2 with an alcohol amine solution is the most widely used, mainly including MEA, MDEA and mixed organic amines.
  • the object of the present invention is to provide a method and a device for capturing carbon dioxide in flue gas of a power station with high efficiency and low energy consumption, and the method has the characteristics of high collection efficiency, low energy consumption and simple process flow.
  • a method for efficiently capturing carbon dioxide in a power plant flue gas with high efficiency and low energy consumption characterized in that it comprises the following steps:
  • the molar ratio of the organic amine to the ionic liquid is (1 to 1.1): 1, the organic amine, the ionic liquid and water are mixed to obtain a composite absorbent aqueous solution, wherein the concentration of the composite absorbent aqueous solution is 20 to 40% by weight. ;
  • An aqueous solution of a composite absorbent composed of an organic amine and an ionic liquid is used as a CO 2 absorbent, and the aqueous solution of the composite absorbent is uniformly sprayed into the flue gas of the power plant boiler after the conventional dust removal and desulfurization treatment, so that the upward moving smoke and the downward movement Sprayed
  • the composite absorbent aqueous solution is sufficiently reversely contacted, and the co 2 gas in the flue gas is absorbed by the gas-liquid two-phase chemical reaction with the composite absorbent, and the mechanism of the composite absorbent absorbing C0 2 is as follows; (A-organic amine; B - ionic liquid; the following reaction formula does not represent the actual reaction process, which includes physical adsorption and chemical absorption);
  • Liquid gas ratio control in 5 ⁇ 25L / m 3 range, C0 2 in the flue gas and the absorbent composite aqueous reaction temperature may be preferably in the range of 40 ⁇ 55 ° C, reaction pressure of 0. 01 ⁇ 10atm;
  • compound The aqueous solution of the absorbent can be fully and completely reacted with CO 2 in the flue gas at a suitable temperature and pressure to form a liquid rich in A ⁇ C0 2 and B ⁇ C0 2 ;
  • the separated mixed liquid rich in A ⁇ C0 2 and B ⁇ C0 2 is subjected to heat exchange, and a part of C0 2 gas dissolved or adsorbed by the aqueous solution of the composite absorbent in the mixed liquid rich in A ⁇ C0 2 and B ⁇ C0 2 is Evaporation, heat exchange to obtain a mixed liquid rich in A ⁇ (: 0 2 and B ⁇ C0 2 ;
  • step 5 cooling the high-concentration C0 2 gas separated in step 3) to cause condensation of hot water vapor contained therein;
  • Step 5) The high-concentration C0 2 gas cooled and treated is subjected to gas-liquid separation treatment to remove the condensed water therein to obtain C0 2 gas with a purity of 99% (high purity (: 0 2 gas);
  • the high-purity CO 2 gas obtained in the step 6) is further dried (drying temperature is 110 ° C, time is 0. l ⁇ 5 min), and then compressed and condensed to be liquid, and made into a high-concentration industrial grade. Liquid carbon dioxide finished product.
  • the ionic liquid may be any one of a conventional ionic liquid, a functionalized ionic liquid, a polymeric ionic liquid, or a mixture of any two or more (including two), and any two or more (including two). When mixing, it is an arbitrary ratio.
  • the conventional ionic liquid contains any one of an imidazolium salt, a pyrrole salt, a pyridinium salt, an ammonium salt, and a sulfonate ionic liquid, or a mixture of two or more kinds (including two kinds), and any two or more thereof (including Two kinds) When mixing, it is an arbitrary ratio.
  • the functionalized ionic liquid is an ionic liquid that introduces an amino group.
  • the conventional ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium difluoride Any one or a mixture of two or more kinds (including two kinds) of methanesulfonimide salt, 1-hexyl-3-methylimidazolium hexafluorophosphate, or the like, and when two or more kinds (including two kinds) are mixed For any ratio.
  • the introduced amino ionic liquid is any one of 1-(1-aminopropyl)-3-methylimidazolium bromide, 1-(3propylamino)-3-butylimidazolium tetrafluoroborate, and the like. Any kind of mixture of two or more kinds (including two kinds), and any two or more types (including two types) may be any ratio.
  • the polymeric ionic liquid is poly-1_(4-styryl)-3-methylimidazolium tetrafluoroborate, poly-1_(4-styryl)-3-methylimidazolium hexafluorophosphate, poly 1 - (4-styryl)-3-methylimidazolium benzylsulfonimide salt, poly-1_(4-styryl)-3-methylimidazolium trifluoromethanesulfonimide salt and poly 1_ ( Any one or a mixture of two or more (including two kinds) of 4-styryl)-3-methylimidazolium tetrafluoroborate, and any combination of two or more (including two) ratio.
  • the organic amine is any one of an alcohol amine such as ethanolamine (methanol) or hydrazine-methyldiethanolamine (MDEA), or a mixture of two or more kinds (including two kinds), and any two or more kinds thereof. (including two kinds) When mixing, it is an arbitrary ratio.
  • an alcohol amine such as ethanolamine (methanol) or hydrazine-methyldiethanolamine (MDEA), or a mixture of two or more kinds (including two kinds), and any two or more kinds thereof. (including two kinds)
  • MDEA hydrazine-methyldiethanolamine
  • the heating analysis process is performed at a temperature of 80 to 110 ° C and a pressure of 0.01 to 10 atm, and the analysis time is 1 to 5 min, and A ⁇ C0 2 is rapidly decomposed first, that is, A ⁇ C0 2 is decomposed and generated.
  • A, and release C0 2 , B ⁇ C0 2 is not easy to release C0 2 under this condition ; since A will easily absorb the absorption in solution B: 0 2 in C 2 2 to generate A - C0 2 , then A - C0 2 continue to decompose to release C0 2 .
  • the cooling treatment is performed by cooling the separated high-concentration CO 2 gas to an optimum temperature range of 20 to 35 ° C, and the cooling time is 1 to 5 min. In this way, most of the water vapor can be condensed out and then returned to the analytical column for recycling.
  • An apparatus for efficiently and low-energy capture of carbon dioxide in a power plant flue gas by the above method comprising an absorption tower 1, a sloping plate clarification tank 7, a regeneration tower 22, a gas-liquid separator 19, a dryer 18, a compressor 17, and condensation
  • the rich liquid at the bottom of the absorption tower 1 is stratified from the inflow swash plate clarification tank 7, and the gas outlet of the gas-liquid separator 19 is sequentially connected in series with the dryer 18, the compressor 17, the condenser 16, and the liquid carbon dioxide storage tank 15.
  • the bottom outlet of the swash plate clarifier 7 is connected to the first medium (mixed condensate) input port of the second heat exchanger 23 through a pipe (for the first temperature rise), and the pipe is provided with a rich
  • the liquid pump 8 the supernatant overflow port of the swash plate clarifier 7 is connected to the input port of the circulating absorbent tank 10 through a pipe; the outlet of the circulating absorbent tank 10 is sprayed through the pipe and the absorption tower 1
  • the spray pipe of the layer 2 is connected, the pipe is provided with an absorption liquid circulation pump 9;
  • the first medium (mixed condensate) output port of the second heat exchanger 23 is connected to the first medium (mixed condensate) input port of the first heat exchanger 21 through a pipe (for the second temperature rise), the first change
  • the first medium (mixed condensate) output port of the heat exchanger 21 communicates with the inlet of the upper portion of the regeneration tower 22 through a pipe, and the gas discharge port at the top of the second heat exchanger 23 passes through the pipe and the first heat exchanger 21 and the cooler 20
  • the connected pipes are connected to each other, and the gas outlet at the upper portion of the regeneration tower 22 communicates with the second medium (gas, heating first medium) input port of the first heat exchanger 21 through the pipe, and the second heat exchanger 21 is second.
  • the medium output port is connected to the input port of the cooler 20 through a pipe, and the output port of the cooler 20 is connected to the inlet of the gas-liquid separator 19 through a pipe;
  • the liquid outlet in the lower portion of the regeneration tower 22 is connected to the second medium input port of the second heat exchanger 23 through a pipe, the pipe a poor liquid pump 13 is disposed on the road, and a second medium output port of the second heat exchanger 23 is connected to an input port of the circulating absorbent tank 10 through a pipe, and the pipe is provided with a filter 24; the gas-liquid separator
  • the condensate overflow port of 19 is connected to the input port of the circulating absorbent tank 10 through a pipe;
  • the solution tank 12 for storing the aqueous solution of the composite absorbent is connected to the input port of the circulating absorbent tank 10 through a pipe.
  • a solution pump 11 is provided on the pipe.
  • the absorption tower 1 is a pneumatic bubble column, and a sieve plate 5 is arranged in the absorption tower 1 between the flue gas inlet 6 at the lower portion of the absorption tower 1 and the flue gas outlet 27 at the top of the absorption tower 1 from bottom to top.
  • the pneumatic bubbling layer 4, the packing layer 3 and the demisting device 26, the spray tower 2 is further provided with a spray layer 2, and the spray layer 2 is provided with 2 to 4 spray pipes, each of which is provided with a spray pipe a plurality of nozzles (sprinklers) 25, the ratio of the circular through-hole area of the sieve plate 5 to the plate area is 30 to 40%, and the demisting device 26 is composed of upper and lower two layers of demisting filters and is located at the upper and lower sides.
  • the cleaning spray component is formed between the layer demisting filters.
  • the internal transfer promotes decomposition and can rapidly regenerate and release carbon dioxide gas. This method has the characteristics of high collection efficiency.
  • the aqueous solution of the composite absorbent easily aggregates with each other to form a different liquid layer with water, and the liquid layer of the product containing carbon dioxide is separated and returned to the regeneration tower for regeneration, thereby reducing the amount of the aqueous solution entering the interior of the regeneration tower, thereby greatly reducing the amount of liquid.
  • the second heat exchanger (lean-rich liquid heat exchanger) part of the gas dissolved or adsorbed by the composite absorbent in the rich liquid is heated and evaporated by the lean liquid, which reduces the quality of the heated rich liquid entering the regeneration tower. , thereby reducing energy consumption; at the same time, the low-temperature rich liquid from the absorption tower is heated twice by the high-temperature lean liquid at the bottom of the regeneration tower and the high-temperature carbon dioxide gas at the top to increase the temperature of the rich liquid, further reducing the system energy consumption; The heat exchange of the rich liquid cools down, reducing the cooling water consumption of the subsequent cooler and reducing the energy consumption again.
  • the method has simple process flow, simple equipment structure, low investment and operation cost.
  • the invention overcomes the disadvantages of severe corrosion of the organic amine method, high energy consumption for regeneration, and almost no vapor pressure by using the ionic liquid, thereby reducing the disadvantages of easy loss of the simple organic amine as an absorbent.
  • Figure 1 is a schematic view showing the structure of the apparatus of the present invention.
  • a method for capturing carbon dioxide in flue gas of a power station with high efficiency and low energy consumption comprising the following steps:
  • molar ratio of amine to the organic ionic liquid is 1.01: 1, the organic amines, mixed ionic liquid and water to obtain an aqueous solution of an absorbent composite, wherein the concentration of the complex aqueous absorption of 20wt%;
  • the ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate in a conventional ionic liquid;
  • the organic amine is ethanolamine (MEA);
  • An aqueous solution of a composite absorbent composed of an organic amine and an ionic liquid is used as a CO 2 absorbent, and the aqueous solution of the composite absorbent is uniformly sprayed into the flue gas of the power plant boiler after the conventional dust removal and desulfurization treatment, so that the upward moving smoke and the downward movement
  • the sprayed composite absorbent aqueous solution is sufficiently reversely contacted, and the CO 2 gas in the flue gas is chemically reacted with the composite absorbent to be absorbed by the gas-liquid two-phase chemical reaction;
  • the control liquid-gas ratio is 20L/m 3 (liquid refers to the composite absorbent aqueous solution, the gas refers to the flue gas), and the reaction temperature of the flue gas (the combination of 0 2 and the composite absorbent aqueous solution is 50 ° C, and the inlet pressure of the absorption tower is 1. 2atm ; thus, the aqueous composite absorbent solution can react fully and completely with CO 2 in the flue gas at a suitable temperature and pressure to form a liquid rich in A ⁇ (: 0 2 and B ⁇ C0 2 , A is Organic amine; B is a functionalized ionic liquid;
  • a ⁇ C0 2 is rapidly decomposed first, that is, A ⁇ C0 2 decomposes to generate eight, and releases C0 2 , B * (: 0 2 is not easy to release C0 2 under this condition ; since A will easily absorb in solution B ⁇ C0 2 in C0 2 generates A ⁇ C0 2 , then A ⁇ C0 2 continues to decompose to release C0 2; regeneration to obtain a high concentration of CO 2 gas and a composite absorbent aqueous solution;
  • step 5 The high-concentration C0 2 gas separated in step 3) is cooled to coagulate the hot water vapor contained therein; the cooling treatment is to cool the separated high-concentration CO 2 gas to 30 ° C ( The cooling time is L 5min) ; in this way, most of the water vapor can be condensed out and then returned to the analytical tower for recycling;
  • Step 5) The high concentration of the cooling treatment (: 0 2 gas passes through the gas-liquid separator, gas-liquid separation treatment, and the condensed water vapor is separated to obtain C0 2 gas having a purity higher than 99%;
  • step 6) The high purity obtained in step 6) (: 0 2 gas is further dried (drying temperature is 110 ° C, time is 2 min), and then subjected to compressor compression and heat exchange condensation treatment to 20 ° C, 72 atm, which becomes Liquid C0 2 can be used to produce high-concentration industrial grade liquid carbon dioxide products. , measured by experiment:
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • an apparatus for efficiently capturing carbon dioxide in a power plant flue gas with high efficiency and low energy consumption comprising an absorption tower 1, a sloping plate clarification tank 7, a second heat exchanger 23, and a first heat exchanger 21 , regeneration tower 22, gas-liquid separator 19, dryer 18, compressor 17 and condenser 16;
  • the absorption tower 1 is a pneumatic bubble column, the upper part of the absorption tower 1 is a packing layer, the middle part is a pneumatic bubbling layer, the lower layer is a sieve plate; the regeneration tower 22 is a sieve plate tower;
  • the spray tower 2 is further provided with a spray layer 2, and the spray layer 2 is provided with a total of 2 to 4 spray pipes (three in Fig.
  • each nozzle has a plurality of nozzles (sprinklers) 25 (the specific number is determined according to the flow rate, generally each spray pipe) 2-20 nozzles are provided), the ratio of the circular through hole area of the sieve plate 5 to the plate area is 30 to 40%, and the demisting device 26 is composed of upper and lower two layers of demisting filters and upper and lower layers.
  • the cleaning spray component between the demisting filters is configured to completely remove the composite absorbent droplets entrained in the flue gas;
  • the rich liquid outlet at the bottom of the absorption tower 1 is connected to the input port of the swash plate clarification tank 7 through a pipe, and the rich liquid at the bottom of the absorption tower 1 is stratified from the inflow swash plate clarification tank 7, and the supernatant in the swash plate clarification tank 7 is stratified.
  • the underflow in the swash plate clarification tank 7 is mainly a product mixed condensate
  • the bottom outlet of the swash plate clarifier 7 passes through the pipe and the first medium of the second heat exchanger 23 ( Mixed condensate liquid)
  • the input port is connected to each other (for the first temperature rise), the pipeline is provided with a rich liquid pump 8, and the supernatant overflow port of the swash plate clarifier 7 is passed through the pipeline and the circulating absorbent tank 10
  • the inlet port is connected to the outlet; the outlet of the circulating absorbent tank 10 is connected to the spray pipe of the spray layer 2 in the absorption tower 1 through a pipe, and the pipe is provided with an absorption liquid circulation pump 9;
  • the first medium (mixed condensate) output port of the second heat exchanger 23 is connected to the first medium (mixed condensate) input port of the first heat exchanger 21 through a pipe (for the second temperature rise), the first change
  • the first medium (mixed condensate) output port of the heat exchanger 21 communicates with the inlet of the upper portion of the regeneration tower 22 through a pipe, and the gas discharge port at the top of the second heat exchanger 23 passes through the pipe and the first heat exchanger 21 and the cooler 20
  • the connected pipes are connected to each other, and the gas outlet at the upper portion of the regeneration tower 22 communicates with the second medium (gas, heating first medium) input port of the first heat exchanger 21 through the pipe, and the second heat exchanger 21 is second.
  • the medium output port is connected to the input port of the cooler 20 through a pipe, and the output port of the cooler 20 is connected to the inlet of the gas-liquid separator 19 through a pipe;
  • the reboiler 14 associated with the regeneration tower 22 is disposed outside the bottom of the regeneration tower, and the outlet of the reboiler 14 is connected to the bottom reservoir of the regeneration tower through a pipeline, and the inlet of the reboiler 14 passes through the pipeline and the bottom of the regeneration tower.
  • the liquid storage tank is connected; the regeneration tower ,
  • the liquid outlet of the lower portion of the 22 is connected to the second medium inlet of the second heat exchanger 23 through a pipe, the pipe is provided with a lean liquid pump 13, and the second medium output port of the second heat exchanger 23 is passed through the pipe and the circulation
  • the input port of the absorbing liquid tank 10 is connected, and the pipe is provided with a filter 24;
  • the gas outlet of the gas-liquid separator 19 is sequentially connected in series with the dryer 18, the compressor 17, the condenser 16, and the liquid carbon dioxide storage tank 15; the condensate overflow port of the gas-liquid separator 19 passes through the pipeline and the circulating absorption liquid tank
  • the input ports of 10 are connected;
  • the solution tank 12 for storing the aqueous solution of the composite absorbent is connected to the input port of the circulating absorbent tank 10 through a pipe, and the pipe is provided with a solution pump 11 (the supplementary aqueous solution of the composite absorbent and water are added to the solution tank) 12).
  • a sieve plate for uniformly distributing the flue gas and contacting the gas and liquid is disposed above the flue gas inlet of the lower portion of the absorption tower, and the ratio of the pore area to the plate area of the sieve plate is 30 to 40%.
  • the airflow distribution is more uniform, effectively eliminating the dead angle of the flue gas flow, and facilitating the full contact between the flue gas and the absorbent solution; on the other hand, under the interaction of multiple sets of spray pipes
  • the spray coverage of the cross section of the absorption tower can reach 300% or more, and the carbon dioxide in the flue gas can be sufficiently contacted with the absorption liquid to be fully and completely reacted and absorbed.
  • the lean-rich liquid heat exchanger is arranged, and the rich liquid outlet at the bottom of the swash plate clarification tank is connected to the upper inlet of the regeneration tower through the rich liquid pump, the second (poor and rich liquid) heat exchanger, and the regeneration tower lean liquid
  • the outlet is connected to the upper inlet of the circulating absorbent tank through a lean pump and a second (lean-rich) heat exchanger.
  • the flue gas inlet 6 at the lower part of the absorption tower 1 enters the absorption tower 1, and the air flow distribution through the sieve plate 5, the pneumatic bubbling layer 4, and the packing layer 3 rise.
  • the aqueous solution of the composite absorbent is sprayed downward through the spray layer 2, and the ratio of the control liquid to gas is in the range of 5 to 25 L/m 3 , and the reaction temperature of the CO 2 in the flue gas and the aqueous solution of the composite absorbent may preferably be 40 to 40. 01 ⁇ 10atm ⁇ The reaction pressure is 0. 01 ⁇ 10atm.
  • the CO 2 gas in the flue gas is sufficiently in reverse contact with the aqueous solution of the composite absorbent at the filler layer 3 and the pneumatic bubble layer 4, and C0 2 is chemically absorbed or adsorbed into the solution.
  • the defogging device 26 disposed at the top of the absorption tower 1 removes the absorbent droplets, the clean flue gas is directly discharged into the atmosphere, and the absorption of C0 2 is generated.
  • the rich liquid falls into the bottom of the absorption tower 1, and is condensed and stratified from the inflow swash plate clarification tank 7, the supernatant liquid is a solution containing a small amount of composite absorbent, and the bottom stream is mainly composed of agglomerated composite absorbent product slurry.
  • the bottom flow of the tank is transported by the rich liquid pump 8 through the tube of the second heat exchanger (lean rich liquid heat exchanger) 23 for one temperature rise, the second heat is raised in the first heat exchanger 21, and then sent from the upper portion of the regeneration tower 22 the column-rich liquid through a second heat exchanger (heat exchanger liquid wealth) 23 after heating, partially dissolved or adsorbed C0 2 gas is released.
  • the second heat exchanger lean rich liquid heat exchanger
  • the absorbed or adsorbed C0 2 rich liquid is sprayed to the regeneration tower 22, passes through each sieve plate in turn, and the product of the composite absorbent is applied.
  • the liter of steam is heated and decomposed, co 2 is released, and the decomposed composite absorbent product slurry falls into the bottom of the column, and is heated to 80 to 110 ° C through the bottom reboiler 14 to further analyze the high concentration of C0 2 gas.
  • the composite absorbent product is completely resolved.
  • the resolved (: 0 2 gas flows out from the upper gas outlet of the regeneration tower 22 along with a large amount of water vapor, enters the first heat exchanger 21, and is rich after being heated by the second heat exchanger (lean rich liquid heat exchanger) 23
  • the liquid is heated again, and after the heat exchange, the gas is mixed with the gas released by the second heat exchanger (the rich and the thin liquid heat exchanger) 23, and then enters the cooler 20, where the C0 2 gas stream is cooled to 25 to 35 ° C.
  • Most of the water vapor is condensed out.
  • the composite absorbent solution generated by the decomposition of the regeneration tower 22 is lifted by the lean liquid pump 13 and then introduced into the second heat exchanger (lean rich liquid heat exchanger). The heat of the tube is released and cooled, and then enters the filter 24 to remove the flue gas.
  • the dissolved heavy metal or the reaction-generated impurities, the pure composite absorbent solution is processed from the high level into the circulating absorbent tank 10, the supplementary composite absorbent and the process water are added to the solution storage tank 12, and the solution storage tank 12 is passed.
  • the solution pump 11 is replenished to the circulating absorbent tank 10.
  • the circulating absorption liquid is transported to the spray layer 2 in the absorption tower through the absorption liquid circulation pump for spray absorption.
  • a method for capturing carbon dioxide in flue gas of a power station with high efficiency and low energy consumption comprising the following steps:
  • the functionalized ionic liquid is an ionic liquid to which an amino group is introduced, and the functionalized ionic liquid is ⁇ - ⁇ -aminopropyl)-3-methylimidazolium bromide;
  • the organic amine is ⁇ -methyldiethanolamine (MDEA);
  • An aqueous solution of a composite absorbent composed of an organic amine and an ionic liquid is used as a CO 2 absorbent, and the aqueous solution of the composite absorbent is uniformly sprayed into the flue gas of the power plant boiler after the conventional dust removal and desulfurization treatment, so that the upward moving smoke and the downward movement
  • the sprayed composite absorbent aqueous solution is sufficiently reversely contacted, and the CO 2 gas in the flue gas is chemically reacted with the composite absorbent to be absorbed by the gas-liquid two-phase chemical reaction;
  • the control liquid-gas ratio is 20L/m 3 (liquid refers to the composite absorbent aqueous solution, the gas refers to the flue gas), and the reaction temperature of the flue gas (the combination of 0 2 and the composite absorbent aqueous solution is 50 ° C, and the inlet pressure of the absorption tower is 1. 2atm ; thus, the aqueous composite absorbent solution can react fully and completely with CO 2 in the flue gas at a suitable temperature and pressure to form a liquid rich in A ⁇ (: 0 2 and B ⁇ C0 2 , A is Organic amine; B is a functionalized ionic liquid;
  • a ⁇ C0 2 is rapidly decomposed first, that is, A ⁇ C0 2 decomposes to generate eight, and releases C0 2 , B * (: 0 2 is not easy to release C0 2 under this condition ; since A will easily absorb in solution B ⁇ C0 2 in C0 2 generates A ⁇ C0 2 , then A ⁇ C0 2 continues to decompose to release C0 2; regeneration to obtain a high concentration of CO 2 gas and a composite absorbent aqueous solution;
  • step 5 The high-concentration C0 2 gas separated in step 3) is cooled to coagulate the hot water vapor contained therein; the cooling treatment is performed to cool the separated high concentration (: 0 2 gas to 30 °) C (cooling time is L 5min) ; in this way, most of the water vapor can be condensed out and then returned to the analytical tower for recycling;
  • Step 5) The high concentration of the cooling treatment (: 0 2 gas passes through the gas-liquid separator, gas-liquid separation treatment, and the condensed water vapor is separated to obtain C0 2 gas having a purity higher than 99%;
  • the high-purity CO 2 gas obtained in the step 6) is further dried (drying temperature is 110 ° C, time is 2 min), and then subjected to compressor compression and heat exchange condensation treatment to 20 ° C, 72 atm, which becomes liquid C0. 2 , can be made into high-concentration industrial grade liquid carbon dioxide products.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 46 X 10 7 kJ / h , 30.5% reduction in energy consumption.
  • a method for capturing carbon dioxide in flue gas of a power station with high efficiency and low energy consumption comprising the following steps:
  • the ionic liquid is a polymeric ionic liquid, and the polymeric ionic liquid is poly 1_(4-styryl)-3-methylimidazole tetrafluoroborate;
  • the organic amines are ethanolamine (MEA) and N-methyldiethanolamine (MDEA), ethanolamine (MEA) and N-methyldiethanolamine (MDEA) each occupy 1/2;
  • An aqueous solution of a composite absorbent composed of an organic amine and an ionic liquid is used as a CO 2 absorbent, and the aqueous solution of the composite absorbent is uniformly sprayed into the flue gas of the power plant boiler after the conventional dust removal and desulfurization treatment, so that the upward moving smoke and the downward movement
  • the sprayed composite absorbent aqueous solution is sufficiently reversely contacted, and the CO 2 gas in the flue gas is chemically reacted with the composite absorbent to be absorbed by the gas-liquid two-phase chemical reaction;
  • control liquid-gas ratio is 20L / m 3 (liquid refers to composite absorbent aqueous solution, gas refers to flue gas), in the flue gas (: 0 2 and the composite absorbent aqueous solution reaction temperature is 50 ° C range, absorption tower inlet pressure 1.
  • the aqueous solution of the composite absorbent can be fully and completely reacted with CO 2 in the flue gas at a suitable temperature and pressure to form a liquid rich in A ⁇ (: 0 2 and B ⁇ C0 2 , A Is an organic amine; B is a functionalized ionic liquid;
  • a ⁇ C0 2 is rapidly decomposed first, that is, A ⁇ C0 2 decomposes to generate eight, and releases C0 2 , B * (: 0 2 is not easy to release C0 2 under this condition ; since A will easily absorb in solution B ⁇ C0 2 in C0 2 generates A ⁇ C0 2 , then A ⁇ C0 2 continues to decompose to release C0 2; regeneration to obtain a high concentration of CO 2 gas and a composite absorbent aqueous solution;
  • step 5 The high-concentration C0 2 gas separated in step 3) is cooled to coagulate the hot water vapor contained therein; the cooling treatment is to cool the separated high-concentration CO 2 gas to 30 ° C ( The cooling time is L 5min) ; in this way, most of the water vapor can be condensed out and then returned to the analytical tower for recycling;
  • step 5) in step 5) a high concentration of cooling process (: 02 through the gas-liquid separator, gas-liquid separation process, the separated condensed water vapor, C0 2 gas to obtain a purity higher than 99%;
  • step 6) The high purity obtained in step 6) (: 0 2 gas is further dried (drying temperature is 110 ° C, time is 2 min), and then subjected to compressor compression and heat exchange condensation treatment to 20 ° C, 72 atm, which becomes Liquid C0 2 can be used to produce high-concentration industrial grade liquid carbon dioxide products.
  • the absorption gas inlet C0 2 content of the absorption tower is 12%, the absorption tower outlet flue gas C0 2 content is 0.6%, the carbon dioxide absorption efficiency is 95%; the conventional MEA absorption C0 2 regeneration energy consumption is 2. 1 X 10 7 kJ/h, The energy consumption was reduced by 1.49 X 10 7 kJ/h, and the energy consumption was reduced by 29.1%.
  • Example 2 It is basically the same as Example 1, except that the molar ratio of organic amine to ionic liquid is 1:1, and the organic amine, ionic liquid and water are mixed to obtain a composite absorbent aqueous solution, wherein the concentration of the composite absorbent aqueous solution is 30wt%.
  • step 1) the control liquid-gas ratio is 5 L/m 3
  • the reaction temperature of C0 2 in the flue gas and the aqueous solution of the composite absorbent is 40 ° C
  • the reaction pressure is 0. 01atm o
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • step 1) the control liquid-gas ratio is 25 L/m 3 , and the reaction temperature in the flue gas (: 0 2 and the composite absorbent aqueous solution is 55 ° C, and the reaction pressure is 10atm.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • the heating analysis process is performed under the conditions of temperature 80 to V and pressure O. Olatm, and the analysis time is lmin.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 2 It is basically the same as Example 1, except that in the above step 3), the heating analysis process is analyzed at a temperature of 110 V and a pressure of 10 atm, and the analysis time is 5 min.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 9 It is basically the same as Example 1, except that in the above step 5), the cooling treatment is performed by cooling the separated high concentration (0 2 gas to 20 ° C, and the cooling time is 1 min.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 2 Basically the same as Example 1, except that in the above step 5), the cooling treatment was carried out by cooling the separated high concentration (: 0 2 gas to 35 ° C, and the cooling time was 5 min.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • step 7 the drying temperature is 110 ° C, the time is 0. lmin. Tested by experiment:
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • step 7 the drying temperature is 110 ° C and the time is 5 min. Tested by experiment:
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 2 It is basically the same as Example 1, except that the ionic liquid is 1-butyl-3-methylimidazolium hexafluorophosphate in a conventional ionic liquid.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 2 It is basically the same as Example 1, except that the ionic liquid is 1-hexyl-3-methylimidazolium bistrifluoromethanesulfonimide salt in a conventional ionic liquid.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 2 It is basically the same as Example 1, except that the ionic liquid is 1-hexyl-3-methylimidazolium hexafluorophosphate in a conventional ionic liquid.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • the ionic liquid is 1-butyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium trifluorophosphate in a conventional ionic liquid.
  • Methanesulfonimide salt and 1-hexyl-3-methylimidazolium hexafluorophosphate are each used in an amount of 1/3.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • the ionic liquid is a conventional ionic liquid and a functionalized ionic liquid, each of which accounts for 1/2;
  • the traditional ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate; the functionalized ionic liquid is iota- ⁇ -aminopropyl , benzyl)-3-methylimidazolium bromide.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • the ionic liquid is a conventional ionic liquid, a functionalized ionic liquid and a polymeric ionic liquid, each of which accounts for 1/3;
  • the conventional ionic liquid is 1-butyl-3-methylimidazolium tetrafluoroborate; the functionalized ionic liquid is iota- ⁇ -aminopropyl)-3-methylimidazolium bromide; The liquid is poly 1_(4-styryl)-3-methylimidazolium tetrafluoroborate.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 52 X 10 7 kJ / h , 27.6% reduction in energy consumption.
  • Example 2 It is basically the same as in Example 2 except that the functionalized ionic liquid is 1-(3propylamino)-3-butylimidazole tetrafluoroborate.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 46 X 10 7 kJ / h , 30.5% reduction in energy consumption.
  • the functionalized ionic liquid is i- ⁇ -aminopropyl)-3-methylimidazolium bromide and 1-(3propylamino)-3-butylimidazole Tetrafluoroborate, the amount of each accounted for 1/2.
  • MEA conventional C0 2 absorption of energy regeneration 2. 1 X 10 7 kJ / h , measured experimentally reproducing this energy consumption 1. 46 X 10 7 kJ / h , 30.5% reduction in energy consumption.
  • Example 21 It is basically the same as Example 3 except that the polymerized ionic liquid is poly-1-(4-styryl)-3-methylimidazolium hexafluorophosphate.
  • the absorption gas inlet C0 2 content of the absorption tower is 12%, the absorption tower outlet flue gas C0 2 content is 0.6%, the carbon dioxide absorption efficiency is 95%; the conventional MEA absorption C0 2 regeneration energy consumption is 2. 1 X 10 7 kJ/h, The energy consumption was reduced by 1.49 X 10 7 kJ/h, and the energy consumption was reduced by 29.1%.
  • Example 3 It is basically the same as Example 3 except that the polymerized ionic liquid is poly-1-(4-styryl)-3-methylimidazolium benzalsulfonimide salt.
  • the absorption gas inlet C0 2 content of the absorption tower is 12%, the absorption tower outlet flue gas C0 2 content is 0.6%, the carbon dioxide absorption efficiency is 95%; the conventional MEA absorption C0 2 regeneration energy consumption is 2. 1 X 10 7 kJ/h, The energy consumption was reduced by 1.49 X 10 7 kJ/h, and the energy consumption was reduced by 29.1%.
  • polymerized ionic liquid is poly-1_(4-styryl)-3-methylimidazolium trifluoromethanesulfonimide salt and poly-1-(4-styrene).
  • Base -3-methylimidazolium tetrafluoroborate, each in an amount of 1/2.
  • the absorption gas inlet C0 2 content of the absorption tower is 12%, the absorption tower outlet flue gas C0 2 content is 0.6%, the carbon dioxide absorption efficiency is 95%; the conventional MEA absorption C0 2 regeneration energy consumption is 2. 1 X 10 7 kJ/h, The energy consumption was reduced by 1.49 X 10 7 kJ/h, and the energy consumption was reduced by 29.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种捕集电站烟气中二氧化碳的方法及其设备。该方法包括如下步骤:1)以有机胺和功能化离子液体组成的复合吸收剂水溶液作为CO2吸收剂;2)经过静止澄清形成不同液体层;3)将分离出来富含A·CO2和B·CO2的液体进行加热解析处理,再生获得高浓度CO2气体和复合吸收剂水溶液;4)将步骤3)所得复合吸收剂水溶液继续循环使用;5)对高浓度CO2气体进行冷却处理,使其中含有的热水蒸汽产生凝结;6)对步骤5)冷却处理的高浓度CO2气体进行气液分离处理,获得纯度≥99%的CO2气体;7)高纯度CO2气体变成液态,制成高浓度工业级液态二氧化碳成品。该方法具有捕集效率高、能耗低、工艺流程简单的特点。

Description

一种捕集电站烟气中二氧化碳的方法及其设备 技术领域
本发明涉及电站锅炉烟气中二氧化碳的减排及资源化利用技术领域, 具体地指一种捕集 电站烟气中二氧化碳的方法及其设备。
背景技术
进入二十一世纪, 人类所面临的最大挑战之一为大量排放的温室气体所造成的 "温室效 应", 由此引起全球变暖、 气候变化以及对生态、 经济、 社会等方面产生综合影响的全球性的 环境问题。 二氧化碳是有机物质及石化燃料燃烧的主要产物, 同时也被认为是造成温室效应 及全球变暖的主要成分之一, 约占温室气体的 2/3。 目前, 全球每年的二氧化碳排放量, 2010 年升至 306亿吨, 我国已成为二氧化碳排放第一大国, 而且排放量还在不断增加。
2009年 11月, 我国对世界庄严承诺: 到 2020年单位国内生产总值二氧化碳排放比 2005 年下降 40 %〜45 %。 而电站烟气是 C02长期稳定集中的排放源,是 C02减排的重中之重, 开发 电站烟气 C02减排新技术与装置,使我国经济发展免受碳排放指标的影响,其社会效益和经济 效益巨大。
C02捕集方法有多种, 工业应用较多的是化学吸收法, 其原理是烟气中的 C02与化学溶剂 发生反应而被吸收, 吸收 C02达到平衡的化学溶剂变成富液, 富液进入再生塔加热分解放出 C02气体而变为贫液, 贫液再去循环吸收烟气中的 C02, 如此通过吸收溶液在吸收塔和再生塔 中循环运行, 烟气中的 C02得到分离提纯被捕集下来。 目前用醇胺溶液吸收 C02的化学吸收法 应用最广, 主要有 MEA、 MDEA及混合有机胺等吸收剂。 实际工程已经证明, 在化工领域应用 近二十年的醇胺溶液吸收法, 虽然吸收速度快、 吸收能力强, 但用在电站烟气时, 普遍存在 下列缺陷: (1 ) 醇胺氧化降解起泡影响设备长期稳定运行, 溶液损耗也较大; (2 ) 设备腐蚀 严重; (3 ) MEA的浓度通常在 20%以下, 吸收 C02的量有限, 再生能耗高; 以上原因造成采用 醇胺溶液回收二氧化碳的成本很高。
发明内容
本发明的目的在于提供一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备, 该方 法具有捕集效率高、 能耗低、 工艺流程简单的特点。
为实现上述目的, 本发明所采取的技术方案是: 一种高效低能耗捕集电站烟气中二氧化 碳的方法, 其特征在于它包括如下步骤:
1 )按有机胺与离子液体的摩尔比为 (1〜1. 1 ) : 1, 将有机胺、 离子液体和水混合, 得到 复合吸收剂水溶液, 其中复合吸收剂水溶液的浓度为 20〜40wt%;
以有机胺和离子液体组成的复合吸收剂水溶液作为 C02吸收剂,将复合吸收剂水溶液均匀 喷射到经过常规除尘和脱硫处理后的电站锅炉尾部烟气中, 使向上运动的烟气与向下喷射的 , 复合吸收剂水溶液充分逆向接触,烟气中的 co2气体与复合吸收剂发生气液两相化学反应而被 吸收, 复合吸收剂吸收 C02的机理如下所示; (A—有机胺; B—离子液体; 下面反应式并不代 表实际的反应过程, 其中包含物理吸附和化学吸收);
A+C02 — · C02
B+C02 →B · C02
控制液气比在 5〜25L/m3的范围, 烟气中 C02与复合吸收剂水溶液的反应温度可优选在 40〜55°C的范围, 反应压力为 0. 01〜10atm; 这样, 复合吸收剂水溶液可以在合适的温度和 压力下与烟气中的 C02发生充分完全的反应, 生成富含 A · C02和 B · C02的液体;
2 ) 吸收了(:02的富含八* (:02和8 * (:02的两种物质, 通过自身的凝聚, 经过静止澄清形成 不同液体层; 富含 * (:02和8 * (:02的液体处于下层, 复合吸收剂水溶液处于上层, 然后将下 层溶液分离出来, 得到富含 A · C02和 B · C02的混合液体;
分离出来的富含 A · C02和 B · C02的混合液体经过换热, 富含 A · C02和 B · C02的混合液体 中被复合吸收剂水溶液溶解或吸附的部分 C02气体就蒸发出来, 得到换热出来富含 A · (:02和 B · C02的混合液体;
3 )将换热出来富含 A · (:02和 B · C02的混合液体进行加热解析处理, 化学吸收的 C02被解 析出来, 再生获得高浓度 C02气体和复合吸收剂水溶液; 其化学反应机理为:
A · C02→A+C02
A+B · C02—► A · C02 +B—► A+B + C02
4) 将步骤 3 ) 所得复合吸收剂水溶液送回至步骤 1 ) 中, 作为 (:02吸收剂继续循环使用;
5 ) 对步骤 3 ) 所分离出的高浓度 C02气体进行冷却处理, 使其中含有的热水蒸汽产生凝 结;
6 ) 对步骤 5 ) 冷却处理的高浓度 C02气体进行气液分离处理, 脱除其中的凝结水份, 获 得纯度 99%的 C02气体 (高纯度 (:02气体);
7 )将步骤 6 )所得高纯度 C02气体进一步干燥(干燥温度为 110°C, 时间为 0. l〜5min), 再经过压缩和冷凝处理, 将其变成液态, 制成高浓度工业级液态二氧化碳成品。
在上述步骤 1 ) 中, 离子液体可为传统离子液体、 功能化离子液体、 聚合离子液体中的 任意一种或任意二种以上 (含二种) 的混合, 任意二种以上 (含二种) 混合时为任意配比。
传统离子液体包含咪唑盐类、 吡咯盐类、 吡啶盐类、 铵盐类、 磺酸盐类离子液体中的任 意一种或任意二种以上 (含二种) 的混合, 任意二种以上 (含二种) 混合时为任意配比。
所述的功能化离子液体为引入氨基的离子液体。
所述的传统离子液体为 1-丁基 -3-甲基咪唑四氟硼酸盐、1-丁基 -3-甲基咪唑六氟磷酸盐、 1-己基 -3-甲基咪唑双三氟甲磺酰亚胺盐、 1-己基 -3-甲基咪唑六氟磷酸盐等中的任意一种或 任意二种以上 (含二种) 的混合, 任意二种以上 (含二种) 混合时为任意配比。 , 所述的引入氨基离子液体为 1- (1-氨基丙基) -3-甲基咪唑溴盐、 1- (3丙胺基 ) -3-丁基咪 唑四氟硼酸盐等中的任意一种或任意二种以上 (含二种) 的混合, 任意二种以上 (含二种) 混合时为任意配比。
所述的聚合离子液体为聚 1_ (4-苯乙烯基) -3-甲基咪唑四氟硼酸盐、 聚 1_ (4-苯乙烯 基) -3-甲基咪唑六氟磷酸盐、 聚 1- (4-苯乙烯基) -3-甲基咪唑邻苯甲磺酰亚胺盐、 聚 1_ (4- 苯乙烯基) -3-甲基咪唑三氟甲磺酰亚胺盐和聚 1_ (4-苯乙烯基) -3-甲基咪唑四氟硼酸盐等中 的任意一种或任意二种以上 (含二种) 的混合, 任意二种以上(含二种)混合时为任意配比。
在上述步骤 1 ) 中, 有机胺为乙醇胺 (ΜΕΑ)、 Ν-甲基二乙醇胺 (MDEA)等醇胺类中的任意 一种或任意二种以上 (含二种) 的混合, 任意二种以上 (含二种) 混合时为任意配比。
在上述步骤 3 ) 中, 加热解析处理是在温度 80〜110°C、 压力 0. 01〜10atm下解析, 解析 时间为 l〜5min, A · C02首先迅速分解, 即 A · C02分解生成 A, 并释放出 C02, B · C02在此条 件下不易释放出 C02;由于 A在溶液中将很容易夺取吸收 B :02中的 C02生成 A -C02,接着 A -C02 继续分解释放出 C02
在上述步骤 5 )中,进行冷却处理是将所分离出的高浓度 C02气体冷却处理至 20〜35°C的 最佳温度范围, 冷却时间为 l〜5min。 这样, 可以使其中绝大部分的水蒸汽凝结出来, 然后 返回解析塔循环利用。
实现上述方法的一种高效低能耗捕集电站烟气中二氧化碳的设备, 它包括吸收塔 1、 斜 板澄清池 7、 再生塔 22、 气液分离器 19、 干燥器 18、 压缩机 17和冷凝器 16; 吸收塔 1底部 的富液自流入斜板澄清池 7进行分层, 气液分离器 19的气体出口依次与干燥器 18、 压缩机 17、 冷凝器 16和液态二氧化碳储存槽 15串连连接;
其特征在于- 斜板澄清池 7的底流出口通过管道与第二换热器 23的第一介质(混合凝聚液)输入口相 连通 (进行第一次升温), 所述的管道上设有富液泵 8, 斜板澄清池 7的上清液溢流口通过管 道与循环吸收液储箱 10的输入口相连通; 循环吸收液储箱 10的输出口通过管道与吸收塔 1 内的喷淋层 2的喷淋管相连通, 所述管道上设有吸收液循环泵 9;
第二换热器 23的第一介质 (混合凝聚液) 输出口通过管道与第一换热器 21的第一介质 (混合凝聚液)输入口相连通(进行第二次升温), 第一换热器 21的第一介质(混合凝聚液) 输出口通过管道与再生塔 22上部的进口相连通, 第二换热器 23顶部的气体释放口通过管道 与第一换热器 21和冷却器 20之间相连的管道相连通,再生塔 22上部的气体出口通过管道与 第一换热器 21的第二介质 (气体, 加热第一介质) 输入口相连通, 第一换热器 21的第二介 质输出口通过管道与冷却器 20的输入口相连通, 冷却器 20的输出口通过管道与气液分离器 19的进口相连;
再生塔 22下部的液体出口通过管道与第二换热器 23的第二介质输入口相连通, 所述管 , 道上设有贫液泵 13, 第二换热器 23的第二介质输出口通过管道与循环吸收液储箱 10的输入 口相连通, 所述管道上设有过滤器 24; 气液分离器 19的凝结液溢流口通过管道与循环吸收 液储箱 10的输入口相连通; 用于储存复合吸收剂水溶液的溶液储箱 12通过管道与循环吸收 液储箱 10的输入口相连通, 所述管道上设有溶液泵 11。
所述的吸收塔 1为气动鼓泡塔, 在吸收塔 1下部的烟气进口 6和吸收塔 1顶部的烟气出 口 27之间的吸收塔 1内自下而上依次设置有筛板 5、气动鼓泡层 4、填料层 3和除雾装置 26, 吸收塔 1内还设有喷淋层 2, 喷淋层 2共设置有 2〜4根喷淋管, 每根喷淋管上设有多个喷嘴 (喷淋头) 25, 筛板 5的圆形通孔面积与板面积之比率为 30〜40%, 除雾装置 26由上、 下二 层除雾滤网和位于上、 下二层除雾滤网之间的清洗喷淋部件构成。
本发明具有以下突出效果:
1、采用有机胺和离子液体组成的复合吸收剂水溶液, 二氧化碳的脱除效率比有机胺法高 10%; 两种物质都吸收或吸附二氧化碳, 单位体积内吸附或吸收的二氧化碳, 且通过再生塔内 部的传递促分解作用, 可以快速将二氧化碳气体全部再生释放; 该方法具有捕集效率高的特 点。
2、 并且此复合吸收剂水溶液生成物易相互凝聚, 与水形成不同液体层, 饱含二氧化碳的 的生成物液体层部分被分离出来进入再生塔再生, 减少了水溶液进入再生塔内部, 从而大量 减少了系统能耗;
3、 经第二换热器(贫富液换热器)后, 富液中被复合吸收剂溶解或吸附的部分气体就被 贫液加热蒸发出来, 减少了进入再生塔中加热富液的质量, 从而减少能耗; 同时从吸收塔出 来的低温富液经再生塔底部的高温贫液、 顶部的高温二氧化碳气体两次加热, 提高富液的温 度, 进一步的减少系统能耗; 顶部高温二氧化碳气体经富液的换热降温, 减少了其后的冷却 器的冷却水耗, 再次减少能耗。
4、 该方法工艺流程简单, 其设备结构简单、 投资及运行成本低。 本发明克服了有机胺法 设备腐蚀严重、 再生能耗高、 利用离子液体几乎没有蒸汽压的优点减少了单纯有机胺作为吸 收剂的易损耗等缺点。
附图说明
图 1为本发明设备的结构示意图。
图中: 1- 吸收塔, 2- 喷淋层, 3-填料层, 4-气动鼓泡层, 5-筛板, 6-烟气进口, 7-斜 板澄清池, 8-富液泵, 9-吸收液循环泵, 10-循环吸收液储箱, 11-溶液泵, 12-溶液储箱, 13- 贫液泵, 14-再沸器, 15-液态二氧化碳储存槽, 16-冷凝器, 17-压缩机, 18-干燥器, 19-气 液分离器, 20-冷却器, 21-第一换热器, 22-再生塔, 23-第二换热器 (贫富液换热器), 24- 过滤器, 25-喷嘴, 26-除雾装置, 27-烟气出口。
具体实施方式 , 为了更好地理解本发明, 下面结合附图和实施例进一步阐明本发明的内容, 但本发明的内容 不仅仅局限于下面的实施例。
实施例 1 :
一种高效低能耗捕集电站烟气中二氧化碳的方法, 它包括如下步骤:
1 ) 按有机胺与离子液体的摩尔比为 1. 01 : 1, 将有机胺、 离子液体和水混合, 得到复合 吸收剂水溶液, 其中复合吸收剂水溶液的浓度为 20wt%;
所述的离子液体为传统离子液体中的 1-丁基 -3-甲基咪唑四氟硼酸盐;
所述的有机胺为乙醇胺 (MEA);
以有机胺和离子液体组成的复合吸收剂水溶液作为 C02吸收剂,将复合吸收剂水溶液均匀 喷射到经过常规除尘和脱硫处理后的电站锅炉尾部烟气中, 使向上运动的烟气与向下喷射的 复合吸收剂水溶液充分逆向接触,烟气中的 C02气体与复合吸收剂发生气液两相化学反应而被 吸收;
控制液气比为 20L/m3 (液指复合吸收剂水溶液, 气指烟气), 烟气中(:02与复合吸收剂水 溶液的反应温度为 50°C的范围, 吸收塔入口压力为 1. 2atm; 这样, 复合吸收剂水溶液可以在 合适的温度和压力下与烟气中的 C02发生充分完全的反应, 生成富含 A · (:02和 B · C02的液体, A为有机胺; B为功能化离子液体;
2 ) 吸收了(:02的富含八* (:02和8 * (:02的两种物质, 通过自身的凝聚, 经过静止澄清形成 不同液体层; 富含 * (:02和8 * (:02的液体处于下层, 复合吸收剂水溶液处于上层, 然后将下 层溶液分离出来;
3 ) 将分离出来富含 A · (:02和 B · C02的液体进行加热解析处理, 行加热解析处理是在温 度 100°C、 再生塔出口压力 0. 3atm下 (加热时间为 2min), A · C02首先迅速分解, 即 A · C02 分解生成八, 并释放出 C02, B * (:02在此条件下不易释放出 C02 ; 由于 A在溶液中将很容易夺取 吸收 B · C02中的 C02生成 A · C02, 接着 A · C02继续分解释放出 C02; 再生获得高浓度 C02气体 和复合吸收剂水溶液;
4) 将步骤 3 ) 所得复合吸收剂水溶液送回至步骤 1 ) 中, 作为 (:02吸收剂继续循环使用;
5 ) 对步骤 3 ) 所分离出的高浓度 C02气体进行冷却处理, 使其中含有的热水蒸汽产生凝 结; 进行冷却处理是将所分离出的高浓度 C02气体冷却处理至 30°C (冷却时间为 L 5min); 这 样, 可以使其中绝大部分的水蒸汽凝结出来, 然后返回解析塔循环利用;
6 ) 对步骤 5 ) 冷却处理的高浓度(:02气体经过气液分离器, 进行气液分离处理, 将凝结 的水蒸汽分离出去, 获得纯度高于 99%的 C02气体;
7 )将步骤 6 )所得高纯度 (:02气体进一步干燥(干燥温度为 110°C, 时间为 2min), 再经 过压缩机压缩和换热冷凝处理至 20°C、 72atm, 将其变成液态 C02, 即可制成高浓度工业级液 态二氧化碳成品。 , 经实验测得:
吸收塔入口烟气 C02含量 12% (体积, 以下相同), 吸收塔出口烟气 C02含量 0. 7% (体积, 以下相同), 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
如图 1所示, 实现上述方法的一种高效低能耗捕集电站烟气中二氧化碳的设备, 它包括 吸收塔 1、 斜板澄清池 7、 第二换热器 23、 第一换热器 21、 再生塔 22、 气液分离器 19、 干燥 器 18、 压缩机 17和冷凝器 16;
吸收塔 1为气动鼓泡塔, 吸收塔 1的上部为填料层、 中部为气动鼓泡层、 下层为筛板; 再生塔 22为筛板塔;
在吸收塔 1下部的烟气进口 6和吸收塔 1顶部的烟气出口 27之间的吸收塔 1内自下而上 依次设置有筛板 5、 气动鼓泡层 4、 填料层 3和除雾装置 26, 吸收塔 1内还设有喷淋层 2, 喷 淋层 2共设置有 2〜4根喷淋管(图 1中为 3根, 第一根位于筛板 5的上方, 第二根位于气动 鼓泡层 4 的上方, 第三根位于填料层 3 的上方), 每根喷淋管上设有多个喷嘴 (喷淋头) 25 (具体数量根据流量确定, 一般每根喷淋管上设 2-20个喷嘴), 筛板 5的圆形通孔面积与板 面积之比率为 30〜40%, 除雾装置 26由上、 下二层除雾滤网和位于上、 下二层除雾滤网之间 的清洗喷淋部件构成, 以完全清除烟气中夹带的复合吸收剂液滴;
吸收塔 1底部的富液出口通过管道与斜板澄清池 7的输入口相连通, 吸收塔 1底部的富 液自流入斜板澄清池 7进行分层, 在斜板澄清池 7内上清液 (为复合吸收剂水溶液) 为主, 在斜板澄清池 7内的底流以生成物混合凝聚液为主, 斜板澄清池 7的底流出口通过管道与第 二换热器 23的第一介质 (混合凝聚液) 输入口相连通 (进行第一次升温), 所述的管道上设 有富液泵 8, 斜板澄清池 7的上清液溢流口通过管道与循环吸收液储箱 10的输入口相连通; 循环吸收液储箱 10的输出口通过管道与吸收塔 1内的喷淋层 2的喷淋管相连通,所述管道上 设有吸收液循环泵 9;
第二换热器 23的第一介质 (混合凝聚液) 输出口通过管道与第一换热器 21的第一介质 (混合凝聚液)输入口相连通(进行第二次升温), 第一换热器 21的第一介质(混合凝聚液) 输出口通过管道与再生塔 22上部的进口相连通, 第二换热器 23顶部的气体释放口通过管道 与第一换热器 21和冷却器 20之间相连的管道相连通,再生塔 22上部的气体出口通过管道与 第一换热器 21的第二介质 (气体, 加热第一介质) 输入口相连通, 第一换热器 21的第二介 质输出口通过管道与冷却器 20的输入口相连通, 冷却器 20的输出口通过管道与气液分离器 19的进口相连;
与再生塔 22配套的再沸器 14设置在再生塔的底部外侧,再沸器 14的输出口通过管道与 再生塔底部储液槽相连通, 再沸器 14的输入口通过管道与再生塔底部储液槽相连通; 再生塔 ,
22下部的液体出口通过管道与第二换热器 23的第二介质输入口相连通, 所述管道上设有贫 液泵 13, 第二换热器 23的第二介质输出口通过管道与循环吸收液储箱 10的输入口相连通, 所述管道上设有过滤器 24;
气液分离器 19的气体出口依次与干燥器 18、压缩机 17、冷凝器 16和液态二氧化碳储存 槽 15串连连接;气液分离器 19的凝结液溢流口通过管道与循环吸收液储箱 10的输入口相连 通;
用于储存复合吸收剂水溶液的溶液储箱 12通过管道与循环吸收液储箱 10的输入口相连 通, 所述管道上设有溶液泵 11 (补充的复合吸收剂水溶液和水加入到溶液储箱 12)。
以上各部分设备均为化工领域常用设备, 其具体结构不再赘述。
上述吸收塔下部的烟气进口上方设置有促使烟气均匀分布和气液接触的筛板, 筛板的孔 面积与板面积之比率为 30〜40%。 这样, 一方面烟气向上通过筛板后, 气流分布更加均匀, 有效消除了烟气流死角, 有利于烟气与吸收剂溶液充分接触; 另一方面在多组喷淋管的交互 喷射作用下, 对吸收塔截面的喷淋覆盖率能达到 300%以上, 使烟气中的二氧化碳与吸收液充 分接触, 能够充分完全地发生反应而被吸收。
设置贫富液换热器, 斜板澄清池的底部富液出口通过富液泵、 第二 (贫富液) 换热器、 第一换热器与再生塔的上部进口相连, 再生塔贫液出口通过贫液泵、 第二 (贫富液) 换热器 与循环吸收液储箱上部进液口相连。 这样, 可以充分利用再生塔贫液和再生塔出口烟气的余 热, 给进入再生塔的富液预热, 同时将再生塔下部出来的贫液和上部出来的烟气降温, 实现 热交换的良性循环, 节省热能资源。
工作原理如下:
电站锅炉尾部烟气经过常规除尘和脱硫处理后, 由吸收塔 1下部的烟气进口 6进入吸收 塔 1中, 经筛板 5的气流分布、 气动鼓泡层 4、 填料层 3上行。 与此同时, 复合吸收剂水溶 液通过喷淋层 2向下喷出, 控制液气比在 5〜25L/m3的范围, 烟气中 C02与复合吸收剂水溶液 的反应温度可优选在 40〜55°C的范围, 反应压力为 0. 01〜10atm。此时, 烟气中的 C02气体与 复合吸收剂水溶液在填料层 3和气动鼓泡层 4处充分逆向接触, C02被化学吸收或吸附到溶液 里。
被去除大部分 (:02的烟气继续向上流动, 经过布置在吸收塔 1顶部的除雾装置 26脱除吸 收剂雾滴后, 清洁烟气直接排入大气。而吸收 C02后生成的富液落入吸收塔 1的底部, 自流入 斜板澄清池 7进行凝聚分层, 上清液为含少量复合吸收剂的溶液, 底流以凝聚的复合吸收剂 生成物浆液为主。 斜板澄清池底流通过富液泵 8输送经第二换热器 (贫富液换热器) 23的管 程进行一次升温、 第一换热器 21中二次升温, 然后从再生塔 22的上部进口送入塔内。 富液 在经过第二换热器 (贫富液换热器) 23加热后, 部分溶解或吸附 C02气体被释放出来。
被吸收或吸附 C02富液被喷洒到再生塔 22, 依次通过各筛板, 复合吸收剂的生成物被上 , 升的蒸汽加热分解, co2被释放出来, 分解不全的复合吸收剂生成物浆液落入塔底, 经过塔 底再沸器 14加热至 80〜110°C, 进一步解析出高浓度 C02气体, 同时使复合吸收剂生成物完 全解析。
解析出的 (:02气体随同大量水蒸汽由再生塔 22的上部气体出口流出,进入第一换热器 21, 对经第二换热器(贫富液换热器) 23加热后的富液再次加热,换热后气体与经第二换热器(贫 富液换热器) 23加热释放出的气体混合后进入冷却器 20, 在此 C02气流被冷却至 25〜35°C, 其中的大部分水蒸汽被凝结出来。
再生塔 22分解产生的复合吸收剂溶液, 通过贫液泵 13提升后进入第二换热器 (贫富液 换热器) 23的管程放出热量被冷却后, 进入过滤器 24, 去除烟气中溶解的重金属或反应产生 的杂质, 处理纯净的复合吸收剂溶液从高位自流进循环吸收液储箱 10中, 补充的复合吸收剂 和工艺水加入到溶液储箱 12, 溶液储箱 12通过溶液泵 11补充到与循环吸收液储箱 10。循环 吸收液通过吸收液循环泵输送到吸收塔内喷淋层 2进行喷淋吸收。
经过冷却器 20处理后的高浓度 (:02气体, 进入气液分离器 19中, 通过离心作用将 (:02气 体中夹带的凝结液完全分离出来, 获得纯度高于 99%的 C02气体。所分离出的凝结液从气液分 离器 19的凝结液出口自流进入循环吸收液储箱 10中,循环使用。所分离出的高纯度 (:02气体 则送入干燥器 18, 经干燥处理后送至压缩机 17, 经压缩处理后, 再进入冷凝器 16, 冷凝成 液态, 制成高浓度工业级液体二氧化碳成品, 最后送入液态二氧化碳储存槽 15中保存。
实施例 2:
一种高效低能耗捕集电站烟气中二氧化碳的方法, 它包括如下步骤:
1 )按有机胺与功能化离子液体的摩尔比为 1. 1 : 1,将有机胺、功能化离子液体和水混合, 得到复合吸收剂水溶液, 其中复合吸收剂水溶液的浓度为 40wt%;
所述的功能化离子液体为引入氨基的离子液体, 所述的功能化离子液体为 ι-α-氨基丙 基) -3-甲基咪唑溴盐;
所述的有机胺为 Ν-甲基二乙醇胺 (MDEA);
以有机胺和离子液体组成的复合吸收剂水溶液作为 C02吸收剂,将复合吸收剂水溶液均匀 喷射到经过常规除尘和脱硫处理后的电站锅炉尾部烟气中, 使向上运动的烟气与向下喷射的 复合吸收剂水溶液充分逆向接触,烟气中的 C02气体与复合吸收剂发生气液两相化学反应而被 吸收;
控制液气比为 20L/m3 (液指复合吸收剂水溶液, 气指烟气), 烟气中(:02与复合吸收剂水 溶液的反应温度为 50°C的范围, 吸收塔入口压力为 1. 2atm; 这样, 复合吸收剂水溶液可以在 合适的温度和压力下与烟气中的 C02发生充分完全的反应, 生成富含 A · (:02和 B · C02的液体, A为有机胺; B为功能化离子液体;
2 ) 吸收了(:02的富含八* (:02和8 * (:02的两种物质, 通过自身的凝聚, 经过静止澄清形成 , 不同液体层; 富含 * (:02和8 * (:02的液体处于下层, 复合吸收剂水溶液处于上层, 然后将下 层溶液分离出来;
3 ) 将分离出来富含 A · (:02和 B · C02的液体进行加热解析处理, 行加热解析处理是在温 度 100°C、 再生塔出口压力 0. 3atm下 (加热时间为 2min), A · C02首先迅速分解, 即 A · C02 分解生成八, 并释放出 C02, B * (:02在此条件下不易释放出 C02 ; 由于 A在溶液中将很容易夺取 吸收 B · C02中的 C02生成 A · C02, 接着 A · C02继续分解释放出 C02; 再生获得高浓度 C02气体 和复合吸收剂水溶液;
4) 将步骤 3 ) 所得复合吸收剂水溶液送回至步骤 1 ) 中, 作为 (:02吸收剂继续循环使用;
5 ) 对步骤 3 ) 所分离出的高浓度 C02气体进行冷却处理, 使其中含有的热水蒸汽产生凝 结; 进行冷却处理是将所分离出的高浓度 (:02气体冷却处理至 30°C (冷却时间为 L 5min); 这 样, 可以使其中绝大部分的水蒸汽凝结出来, 然后返回解析塔循环利用;
6 ) 对步骤 5 ) 冷却处理的高浓度(:02气体经过气液分离器, 进行气液分离处理, 将凝结 的水蒸汽分离出去, 获得纯度高于 99%的 C02气体;
7 )将步骤 6 )所得高纯度 C02气体进一步干燥(干燥温度为 110°C, 时间为 2min), 再经 过压缩机压缩和换热冷凝处理至 20°C、 72atm, 将其变成液态 C02, 即可制成高浓度工业级液 态二氧化碳成品。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 4%, 二氧化碳吸收效率达到 96. 7%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 46 X 107kJ/h, 能 耗降低 30. 5%。
实施例 3:
一种高效低能耗捕集电站烟气中二氧化碳的方法, 它包括如下步骤:
1 ) 按有机胺与离子液体的摩尔比为 1. 05 : 1, 将有机胺、 离子液体和水混合, 得到复合 吸收剂水溶液, 其中复合吸收剂水溶液的浓度为 40wt%;
所述的离子液体为聚合离子液体, 所述的聚合离子液体为聚 1_ (4-苯乙烯基) -3-甲基咪 唑四氟硼酸盐;
所述的有机胺为乙醇胺 (MEA)和 N-甲基二乙醇胺(MDEA), 乙醇胺 (MEA)和 N-甲基二乙 醇胺 (MDEA)的质量各占 1/2;
以有机胺和离子液体组成的复合吸收剂水溶液作为 C02吸收剂,将复合吸收剂水溶液均匀 喷射到经过常规除尘和脱硫处理后的电站锅炉尾部烟气中, 使向上运动的烟气与向下喷射的 复合吸收剂水溶液充分逆向接触,烟气中的 C02气体与复合吸收剂发生气液两相化学反应而被 吸收; , 控制液气比为 20L/m3 (液指复合吸收剂水溶液, 气指烟气), 烟气中(:02与复合吸收剂水 溶液的反应温度为 50°C的范围, 吸收塔入口压力为 1. 2atm; 这样, 复合吸收剂水溶液可以在 合适的温度和压力下与烟气中的 C02发生充分完全的反应, 生成富含 A · (:02和 B · C02的液体, A为有机胺; B为功能化离子液体;
2 ) 吸收了(:02的富含八* (:02和8 * (:02的两种物质, 通过自身的凝聚, 经过静止澄清形成 不同液体层; 富含 * (:02和8 * (:02的液体处于下层, 复合吸收剂水溶液处于上层, 然后将下 层溶液分离出来;
3 ) 将分离出来富含 A · (:02和 B · C02的液体进行加热解析处理, 行加热解析处理是在温 度 100°C、 再生塔出口压力 0. 3atm下 (加热时间为 2min), A · C02首先迅速分解, 即 A · C02 分解生成八, 并释放出 C02, B * (:02在此条件下不易释放出 C02 ; 由于 A在溶液中将很容易夺取 吸收 B · C02中的 C02生成 A · C02, 接着 A · C02继续分解释放出 C02; 再生获得高浓度 C02气体 和复合吸收剂水溶液;
4) 将步骤 3 ) 所得复合吸收剂水溶液送回至步骤 1 ) 中, 作为 (:02吸收剂继续循环使用;
5 ) 对步骤 3 ) 所分离出的高浓度 C02气体进行冷却处理, 使其中含有的热水蒸汽产生凝 结; 进行冷却处理是将所分离出的高浓度 C02气体冷却处理至 30°C (冷却时间为 L 5min); 这 样, 可以使其中绝大部分的水蒸汽凝结出来, 然后返回解析塔循环利用;
6 ) 对步骤 5 ) 冷却处理的高浓度(:02气体经过气液分离器, 进行气液分离处理, 将凝结 的水蒸汽分离出去, 获得纯度高于 99%的 C02气体;
7 )将步骤 6 )所得高纯度 (:02气体进一步干燥(干燥温度为 110°C, 时间为 2min), 再经 过压缩机压缩和换热冷凝处理至 20°C、 72atm, 将其变成液态 C02, 即可制成高浓度工业级液 态二氧化碳成品。
经实验测得:
吸收塔入口烟气 C02含量 12%,吸收塔出口烟气 C02含量 0. 6%,二氧化碳吸收效率达到 95%; 传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 49 X 107kJ/h, 能 耗降低 29. 1%。
实施例 4:
与实施例 1基本相同, 不同之处在于: 按有机胺与离子液体的摩尔比为 1 : 1, 将有机胺、 离子液体和水混合, 得到复合吸收剂水溶液, 其中复合吸收剂水溶液的浓度为 30wt%。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。 , 实施例 5:
与实施例 1基本相同, 不同之处在于: 步骤 1)中, 控制液气比为 5L/m3, 烟气中 C02与复 合吸收剂水溶液的反应温度为 40°C, 反应压力为 0. 01atmo
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 6:
与实施例 1基本相同, 不同之处在于: 步骤 1)中, 控制液气比为 25L/m3, 烟气中(:02与 复合吸收剂水溶液的反应温度为 55°C, 反应压力为 10atm。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 7:
与实施例 1基本相同, 不同之处在于: 在上述步骤 3 ) 中, 加热解析处理是在温度 80〜 V、 压力 O. Olatm下解析, 解析时间为 lmin。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 8:
与实施例 1基本相同, 不同之处在于: 在上述步骤 3 ) 中, 加热解析处理是在温度 110 V、 压力 lOatm下解析, 解析时间为 5min。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 9: , 与实施例 1基本相同, 不同之处在于: 在上述步骤 5 ) 中, 进行冷却处理是将所分离出 的高浓度(:02气体冷却处理至 20°C的, 冷却时间为 lmin。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 10:
与实施例 1基本相同, 不同之处在于: 在上述步骤 5 ) 中, 进行冷却处理是将所分离出 的高浓度(:02气体冷却处理至 35°C, 冷却时间为 5min。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 11 :
与实施例 1基本相同, 不同之处在于: 步骤 7)中, 干燥温度为 110°C, 时间为 0. lmin。 经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 12:
与实施例 1基本相同, 不同之处在于: 步骤 7)中, 干燥温度为 110°C, 时间为 5min。 经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 13:
与实施例 1基本相同, 不同之处在于: 所述的离子液体为传统离子液体中的 1-丁基 -3- 甲基咪唑六氟磷酸盐。
经实验测得: , 吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 14:
与实施例 1基本相同, 不同之处在于: 所述的离子液体为传统离子液体中的 1-己基 -3- 甲基咪唑双三氟甲磺酰亚胺盐。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 15:
与实施例 1基本相同, 不同之处在于: 所述的离子液体为传统离子液体中的 1-己基 -3- 甲基咪唑六氟磷酸盐。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 16:
与实施例 1基本相同, 不同之处在于: 所述的离子液体为传统离子液体中的 1-丁基 -3- 甲基咪唑六氟磷酸盐、 1-己基 -3-甲基咪唑双三氟甲磺酰亚胺盐和 1-己基 -3-甲基咪唑六氟磷 酸盐, 用量各占 1/3。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 17:
与实施例 1基本相同, 不同之处在于: 所述的离子液体为传统离子液体和功能化离子液 体, 用量各占 1/2;
传统离子液体为 1-丁基 -3-甲基咪唑四氟硼酸盐;所述的功能化离子液体为 ι-α-氨基丙 , 基) -3-甲基咪唑溴盐。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 18:
与实施例 1基本相同, 不同之处在于: 所述的离子液体为传统离子液体、 功能化离子液 体和聚合离子液体, 用量各占 1/3;
传统离子液体为 1-丁基 -3-甲基咪唑四氟硼酸盐;所述的功能化离子液体为 ι-α-氨基丙 基) -3-甲基咪唑溴盐; 所述的聚合离子液体为聚 1_ (4-苯乙烯基) -3-甲基咪唑四氟硼酸盐。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 7%, 二氧化碳吸收效率达到 94. 2%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 52 X 107kJ/h, 能 耗降低 27. 6%。
实施例 19:
与实施例 2基本相同, 不同之处在于: 所述的功能化离子液体为 1- (3丙胺基 ) -3-丁基咪 唑四氟硼酸盐。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 4%, 二氧化碳吸收效率达到 96. 7%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 46 X 107kJ/h, 能 耗降低 30. 5%。
实施例 20:
与实施例 2基本相同, 不同之处在于: 所述的功能化离子液体为 ι-α-氨基丙基) -3-甲 基咪唑溴盐和 1- (3丙胺基 ) -3-丁基咪唑四氟硼酸盐, 用量各占 1/2。
经实验测得:
吸收塔入口烟气 C02含量 12%, 吸收塔出口烟气 C02含量 0. 4%, 二氧化碳吸收效率达到 96. 7%;
传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 46 X 107kJ/h, 能 耗降低 30. 5%。
实施例 21 : , 与实施例 3基本相同, 不同之处在于: 所述的聚合离子液体为聚 1_ (4-苯乙烯基) -3-甲 基咪唑六氟磷酸盐。
经实验测得:
吸收塔入口烟气 C02含量 12%,吸收塔出口烟气 C02含量 0. 6%,二氧化碳吸收效率达到 95%; 传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 49 X 107kJ/h, 能 耗降低 29. 1%。
实施例 22:
与实施例 3基本相同, 不同之处在于: 所述的聚合离子液体为聚 1_ (4-苯乙烯基) -3-甲 基咪唑邻苯甲磺酰亚胺盐。
经实验测得:
吸收塔入口烟气 C02含量 12%,吸收塔出口烟气 C02含量 0. 6%,二氧化碳吸收效率达到 95%; 传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 49 X 107kJ/h, 能 耗降低 29. 1%。
实施例 23:
与实施例 3基本相同, 不同之处在于: 所述的聚合离子液体为聚 1_ (4-苯乙烯基) -3-甲 基咪唑三氟甲磺酰亚胺盐和聚 1_ (4-苯乙烯基) -3-甲基咪唑四氟硼酸盐, 用量各占 1/2。
经实验测得:
吸收塔入口烟气 C02含量 12%,吸收塔出口烟气 C02含量 0. 6%,二氧化碳吸收效率达到 95%; 传统 MEA吸收 C02再生能耗为 2. 1 X 107kJ/h, 本实验测得再生能耗为 1. 49 X 107kJ/h, 能 耗降低 29. 1%。

Claims

WO 2013/091439 +π l l ¾ + _n、 PCT/CN2012/083575 权 利 要 求 书
1. 一种高效低能耗捕集电站烟气中二氧化碳的方法, 其特征在于它包括如下步骤:
1 )按有机胺与离子液体的摩尔比为 (1〜1. 1 ) : 1, 将有机胺、 离子液体和水混合, 得到 复合吸收剂水溶液, 其中复合吸收剂水溶液的浓度为 20〜40wt%;
以有机胺和离子液体组成的复合吸收剂水溶液作为 C02吸收剂,将复合吸收剂水溶液均勾 喷射到经过常规除尘和脱硫处理后的电站锅炉尾部烟气中, 使向上运动的烟气与向下喷射的 复合吸收剂水溶液充分逆向接触,烟气中的 C02气体与复合吸收剂发生气液两相化学反应而被 吸收;
控制液气比在 5〜25L/m3的范围, 烟气中 C02与复合吸收剂水溶液的反应温度在 40〜55 °〇的范围, 反应压力为 0. 01〜10atm; 生成富含 A · C02和 B · C02的液体, 其中 A为有机胺、 B 为离子液体;
2 )富含 A 02和 B :02的液体通过自身的凝聚,经过静止澄清形成不同液体层;富含 A :02 和 B · C02的液体处于下层, 复合吸收剂水溶液处于上层, 然后将下层溶液分离出来, 得到富 含 A · C02禾 Π B · C02的混合液体;
分离出来的富含 A · (:02和 B · C02的混合液体经过换热, 富含 A · (:02和 B · C02的混合液体 中被复合吸收剂水溶液溶解或吸附的部分 C02气体就蒸发出来, 得到换热出来富含 A · (:02和 B · C02的混合液体;
3 )将换热出来富含 A · (:02和 B · C02的混合液体进行加热解析处理, 化学吸收的 C02被解 析出来, 再生获得高浓度 C02气体和复合吸收剂水溶液;
4) 将步骤 3 ) 所得复合吸收剂水溶液送回至步骤 1 ) 中, 作为 (:02吸收剂继续循环使用;
5 ) 对步骤 3 ) 所分离出的高浓度 C02气体进行冷却处理, 使其中含有的热水蒸汽产生凝 结;
6 ) 对步骤 5 ) 冷却处理的高浓度 C02气体进行气液分离处理, 脱除其中的凝结水份, 获 得纯度 99%的 C02气体;
7 )将步骤 6 )所得纯度 99%的 C02气体进一步干燥, 再经过压缩和冷凝处理, 将其变成 液态, 制成高浓度工业级液态二氧化碳成品。
2. 根据权利要求 1所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 步骤 1 ) 中, 离子液体为传统离子液体、 功能化离子液体、 聚合离子液体中的任意一种或任 意二种以上的混合, 任意二种以上混合时为任意配比。
3. 根据权利要求 2所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 传统离子液体包含咪唑盐类、 吡咯盐类、 吡啶盐类、 铵盐类、 磺酸盐类离子液体中的任意一 种或任意二种以上的混合, 任意二种以上混合时为任意配比。
4. 根据权利要求 2所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 所述的功能化离子液体为引入氨基的离子液体。 WO 2013/091439 +π ll ¾ + _n、 PCT/CN2012/083575
权 利 要 求 书
5. 根据权利要求 2或 3所述的一种高效低能耗捕集电站烟气中二氧化碳的方法, 其特征 在于: 所述的传统离子液体为 1-丁基 -3-甲基咪唑四氟硼酸盐、 1-丁基 -3-甲基咪唑六氟磷酸 盐、 1-己基 -3-甲基咪唑双三氟甲磺酰亚胺盐、 1-己基 -3-甲基咪唑六氟磷酸盐等中的任意一 种或任意二种以上的混合, 任意二种以上混合时为任意配比。
6. 根据权利要求 4所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 所述的引入氨基离子液体为 1-(1-氨基丙基) -3-甲基咪唑溴盐、 1- (3丙胺基 )-3-丁基咪唑四 氟硼酸盐等中的任意一种或任意二种以上的混合, 任意二种以上混合时为任意配比。
7. 根据权利要求 2所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 所述的聚合离子液体为聚 1_(4-苯乙烯基) -3-甲基咪唑四氟硼酸盐、 聚 1_(4-苯乙烯基) -3- 甲基咪唑六氟磷酸盐、 聚 1_(4-苯乙烯基) -3-甲基咪唑邻苯甲磺酰亚胺盐、 聚 1_(4-苯乙烯 基) -3-甲基咪唑三氟甲磺酰亚胺盐和聚 1_(4-苯乙烯基) -3-甲基咪唑四氟硼酸盐等中的任意 一种或任意二种以上的混合, 任意二种以上混合时为任意配比。
8. 根据权利要求 1所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 步骤 1) 中, 有机胺为乙醇胺、 Ν-甲基二乙醇胺中的任意一种或任意二种的混合, 任意二种 混合时为任意配比。
9. 根据权利要求 1所述的一种高效低能耗捕集电站烟气中二氧化碳的方法,其特征在于: 步骤 3) 中, 加热解析处理是在温度 80〜110°C、 压力 0.01〜10atm下解析, 解析时间为 1〜 5min。
10. 根据权利要求 1所述的一种高效低能耗捕集电站烟气中二氧化碳的方法, 其特征在 于: 步骤 5)中, 进行冷却处理是将所分离出的高浓度 C02气体冷却处理至 20〜35°C的温度范 围, 冷却时间为 l〜5min。
11. 实现权利要求 1所述的方法的一种高效低能耗捕集电站烟气中二氧化碳的设备, 它 包括吸收塔 (1)、 斜板澄清池 (7)、 再生塔 (22)、 气液分离器 (19)、 干燥器 (18)、 压缩机
(17)和冷凝器 (16); 吸收塔 (1)底部的富液自流入斜板澄清池 (7)进行分层, 气液分离 器 (19) 的气体出口依次与干燥器 (18)、 压缩机 (17)、 冷凝器 (16) 和液态二氧化碳储存 槽 (15) 串连连接;
其特征在于:
斜板澄清池 (7) 的底流出口通过管道与第二换热器(23) 的第一介质输入口相连通, 所 述的管道上设有富液泵(8),斜板澄清池(7)的上清液溢流口通过管道与循环吸收液储箱(10) 的输入口相连通; 循环吸收液储箱 (10) 的输出口通过管道与吸收塔 (1) 内的喷淋层 (2) 的喷淋管相连通, 所述管道上设有吸收液循环泵 (9);
第二换热器 (23) 的第一介质输出口通过管道与第一换热器 (21) 的第一介质输入口相 连通, 第一换热器 (21) 的第一介质输出口通过管道与再生塔 (22) 上部的进口相连通, 第 WO 2013/091439 +π l l ¾ + _n、 PCT/CN2012/083575
权 利 要 求 书 二换热器 (23 ) 顶部的气体释放口通过管道与第一换热器 (21 ) 和冷却器 (20 ) 之间相连的 管道相连通, 再生塔 (22) 上部的气体出口通过管道与第一换热器 (21 ) 的第二介质输入口 相连通, 第一换热器 (21 ) 的第二介质输出口通过管道与冷却器 (20 ) 的输入口相连通, 冷 却器 (20) 的输出口通过管道与气液分离器 (19) 的进口相连;
再生塔 (22) 下部的液体出口通过管道与第二换热器 (23) 的第二介质输入口相连通, 所述管道上设有贫液泵(13), 第二换热器(23) 的第二介质输出口通过管道与循环吸收液储 箱 (10) 的输入口相连通, 所述管道上设有过滤器 (24); 气液分离器 (19) 的凝结液溢流口 通过管道与循环吸收液储箱 (10) 的输入口相连通; 用于储存复合吸收剂水溶液的溶液储箱 ( 12) 通过管道与循环吸收液储箱 (10) 的输入口相连通, 所述管道上设有溶液泵 (11 )。
12. 根据权利要求 11所述的一种高效低能耗捕集电站烟气中二氧化碳的设备, 其特征在 于: 所述的吸收塔 (1 ) 为气动鼓泡塔, 在吸收塔 (1 ) 下部的烟气进口 (6) 和吸收塔 (1 ) 顶部的烟气出口 (27)之间的吸收塔(1 ) 内自下而上依次设置有筛板(5)、气动鼓泡层(4)、 填料层 (3)和除雾装置 (26), 吸收塔(1 ) 内还设有喷淋层 (2), 喷淋层 (2)共设置有 2〜 4 根喷淋管, 每根喷淋管上设有多个喷嘴 (25), 筛板 (5) 的圆形通孔面积与板面积之比率 为 30〜40%, 除雾装置 (26) 由上、 下二层除雾滤网和位于上、 下二层除雾滤网之间的清洗 喷淋部件构成。
PCT/CN2012/083575 2011-12-23 2012-10-26 一种捕集电站烟气中二氧化碳的方法及其设备 WO2013091439A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
SG11201403509SA SG11201403509SA (en) 2011-12-23 2012-10-26 Method for capturing carbon dioxide in power station flue gas and device therefor
AP2014007785A AP2014007785A0 (en) 2011-12-23 2012-10-26 Method for capturing carbon dioxide in power station flue gas and device therefor
CA2859841A CA2859841A1 (en) 2011-12-23 2012-10-26 Method for capturing carbon dioxide in power station flue gas and device therefor
EP12859719.2A EP2796183B1 (en) 2011-12-23 2012-10-26 Method for capturing carbon dioxide in power station flue gas and device therefor
DK12859719.2T DK2796183T3 (en) 2011-12-23 2012-10-26 Process for the collection of carbon dioxide in flue gas in a power plant and apparatus therefor
RU2015101990/05A RU2600348C2 (ru) 2011-12-23 2012-10-26 Способ улавливания углекислого газа из дымового газа электростанции и установка для его осуществления
KR1020147018985A KR101545604B1 (ko) 2011-12-23 2012-10-26 발전소 연도 가스의 이산화탄소 포집 방법 및 그 장치
BR112014015304A BR112014015304A2 (pt) 2011-12-23 2012-10-26 método para capturar dióxido de carbono em uma central elétrica de gás de combustão e um dispositivo para o mesmo
JP2014547682A JP5945333B2 (ja) 2011-12-23 2012-10-26 発電所排煙の二酸化炭素回収方法および装置
AU2012357358A AU2012357358B2 (en) 2011-12-23 2012-10-26 Method for capturing carbon dioxide in power station flue gas and device therefor
MX2014007608A MX359692B (es) 2011-12-23 2012-10-26 Método para capturar dióxido de carbono en gas de combustión de estación de energía y dispositivo para ello.
US14/311,379 US9669354B2 (en) 2011-12-23 2014-06-23 Method and apparatus for collecting carbon dioxide from flue gas
ZA2014/05332A ZA201405332B (en) 2011-12-23 2014-07-21 Method for capturing carbon dioxide in power station flue gas and device therefor
US15/593,294 US10155194B2 (en) 2011-12-23 2017-05-11 Method and apparatus for collecting carbon dioxide from flue gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110437154.3A CN102553396B (zh) 2011-12-23 2011-12-23 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN201110437154.3 2011-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/311,379 Continuation-In-Part US9669354B2 (en) 2011-12-23 2014-06-23 Method and apparatus for collecting carbon dioxide from flue gas

Publications (1)

Publication Number Publication Date
WO2013091439A1 true WO2013091439A1 (zh) 2013-06-27

Family

ID=46400804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083575 WO2013091439A1 (zh) 2011-12-23 2012-10-26 一种捕集电站烟气中二氧化碳的方法及其设备

Country Status (16)

Country Link
US (2) US9669354B2 (zh)
EP (1) EP2796183B1 (zh)
JP (1) JP5945333B2 (zh)
KR (1) KR101545604B1 (zh)
CN (1) CN102553396B (zh)
AP (1) AP2014007785A0 (zh)
AU (1) AU2012357358B2 (zh)
BR (1) BR112014015304A2 (zh)
CA (1) CA2859841A1 (zh)
DK (1) DK2796183T3 (zh)
MX (1) MX359692B (zh)
MY (1) MY170461A (zh)
RU (1) RU2600348C2 (zh)
SG (1) SG11201403509SA (zh)
WO (1) WO2013091439A1 (zh)
ZA (1) ZA201405332B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854465A (zh) * 2018-07-11 2018-11-23 北京化工大学 胺基离子液体和乙醇胺混合在微通道内吸收二氧化碳的方法
CN110314500A (zh) * 2019-06-21 2019-10-11 光大绿色环保管理(深圳)有限公司 一种湿法脱酸的设备及方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA023639B1 (ru) * 2010-07-02 2016-06-30 Юнион Инджиниринг А/С Выделение диоксида углерода из процесса брожения при высоком давлении
CN102553396B (zh) * 2011-12-23 2014-06-04 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN104031708A (zh) * 2013-03-06 2014-09-10 中国石油天然气股份有限公司 一种用于高含硫天然气脱硫的离子液体配方溶液
JP6216150B2 (ja) * 2013-05-09 2017-10-18 株式会社東芝 二酸化炭素回収システムおよびその運転方法
CN104624024B (zh) * 2013-11-08 2017-09-01 中国石油天然气股份有限公司 一种复配型活性添加剂及其应用
CN103894160B (zh) * 2014-04-17 2015-11-18 上海锅炉厂有限公司 一种二氧化碳固体吸收剂及其制备方法
CN104535723B (zh) * 2014-12-25 2017-02-22 华能国际电力股份有限公司 一种变工况稠浆型二氧化碳捕集工艺测试系统
CN104587907A (zh) * 2015-01-09 2015-05-06 北京石油化工学院 二氧化碳捕集转化一体化的装置和方法
CN105016340A (zh) * 2015-06-05 2015-11-04 浙江工业大学 一种促进co2电活化的方法
CN104998518A (zh) * 2015-07-29 2015-10-28 广东电网有限责任公司电力科学研究院 低能耗且吸收剂可萃取再生的co2捕集方法及系统
CN105903310A (zh) * 2016-06-02 2016-08-31 广东电网有限责任公司电力科学研究院 Co2捕集系统及其再生塔用加热系统
CN107774063A (zh) * 2016-08-31 2018-03-09 杜富德 可再生循环液体式空气净化装置及净化方法
CN106731493B (zh) * 2016-12-01 2019-05-07 浙江大学 一种用于烟气二氧化碳捕集的方形填料塔
KR102029193B1 (ko) 2017-10-30 2019-11-08 두산중공업 주식회사 액화 천연 가스의 냉열을 이용한 이산화탄소 포집 장치 및 발전 시스템
CN109813054B (zh) 2017-11-22 2021-03-30 斗山重工业建设有限公司 利用液化天然气的冷能的二氧化碳捕集装置及发电系统
KR102038684B1 (ko) 2017-11-22 2019-10-30 두산중공업 주식회사 액화 천연 가스의 냉열을 이용한 이산화탄소 포집 장치 및 발전 시스템
KR101997355B1 (ko) 2017-11-22 2019-07-05 두산중공업 주식회사 액화 천연 가스의 냉열을 이용한 이산화탄소 포집 장치
CN108246025B (zh) * 2018-04-02 2020-10-02 沈阳工业大学 利用复配溶液耦合雾化降尘同时吸收二氧化碳的方法
CN108434938A (zh) * 2018-04-10 2018-08-24 南昌大学 一种具有双活性组分的co2化学吸收剂
CN108404612A (zh) * 2018-04-25 2018-08-17 青岛海山减碳环保科技有限公司 一种富液多级换热型二氧化碳捕集系统及工艺
US11071929B2 (en) * 2018-06-19 2021-07-27 Ingersoll-Rand Industrial U.S., Inc. Gas-water separation system and methods
CN109453620B (zh) * 2018-11-27 2021-01-01 中国科学院力学研究所 一种碳捕集与余热回收耦合装置
CN109663512A (zh) * 2018-12-13 2019-04-23 石河子大学 离子液体@中空多面体填充的混合基质膜及制备方法和应用
CN110124466B (zh) * 2019-05-16 2021-09-07 北京化工大学苏州(相城)研究院 复配离子液体同时脱除气相中水和二氧化碳的方法及系统
CN112387072A (zh) * 2019-08-16 2021-02-23 国家能源投资集团有限责任公司 吸收法捕集co2的方法和系统
CN110624363B (zh) * 2019-09-12 2022-03-25 中国石油化工股份有限公司 一种醇胺法捕集烟气中二氧化碳的加压再生方法
JP7402031B2 (ja) * 2019-12-09 2023-12-20 株式会社東芝 二酸化炭素回収システム及びその運転方法
US11478747B2 (en) * 2020-02-17 2022-10-25 University Of Wyoming Ultrafast catalytic CO2 capture catalyzed by a novel ultrasound-treated ionic liquid
CN111760456A (zh) * 2020-06-30 2020-10-13 双盾环境科技有限公司 一种脱除二氧化硫的有机胺脱硫剂溶液净化除盐除杂工艺
CN111826212A (zh) * 2020-07-01 2020-10-27 中煤玮坤(北京)节能环保科技有限公司 一种用于高炉煤气精脱硫的二氧化碳捕捉系统及方法
CN115193219B (zh) * 2021-04-08 2024-04-05 中国科学院物理研究所 用于吸收co2气体的溶液及co2的吸收、释放方法
CN113813766A (zh) * 2021-08-20 2021-12-21 华中科技大学 一种二氧化碳的无水相变吸收剂及其吸收和再生方法
CN113499671A (zh) * 2021-08-25 2021-10-15 北京美斯顿科技开发有限公司 分层减碳系统
RU2771380C1 (ru) * 2021-09-05 2022-05-04 Сергей Станиславович Беднаржевский Устройство для утилизации углекислого газа
CN115999321A (zh) * 2021-10-22 2023-04-25 中石化南京化工研究院有限公司 二氧化碳吸收液以及从燃料气中捕集二氧化碳的方法和装置
JPWO2023085001A1 (zh) * 2021-11-12 2023-05-19
CN114383902A (zh) * 2021-11-26 2022-04-22 国家能源集团新能源技术研究院有限公司 塔器气体取样装置和塔器
CN114452776A (zh) * 2022-01-10 2022-05-10 武汉科技大学 一种基于铁矿石烧结烟气中co2分离的方法
CN117138553A (zh) * 2022-05-24 2023-12-01 四川大学 一种二氧化碳等温吸收捕集技术
CN115028329B (zh) * 2022-07-11 2023-08-11 沈阳理工大学 一种污泥烟气热催化分解分离干化综合利用方法及系统
CN115121083B (zh) * 2022-07-13 2024-03-01 中国科学院过程工程研究所 一种羰化中间体生产过程中含氨尾气净化分离的装置及方法
CN115487649A (zh) * 2022-08-31 2022-12-20 西安热工研究院有限公司 一种燃煤发电机组耦合蒸汽喷射器的碳捕集系统及方法
CN116020239B (zh) * 2022-09-07 2024-06-14 清华大学 一种分相可控烟气碳捕集系统及烟气碳捕集方法
CN115430167B (zh) * 2022-11-07 2023-01-13 山东金宜善新材料有限公司 含溴废液处理装置
CN116272259B (zh) * 2023-03-28 2024-02-13 四川精事达科技有限公司 一种适用于低压气体的脱硫脱碳溶剂及其应用
CN117504587B (zh) * 2024-01-08 2024-04-05 北京哈泰克工程技术有限公司 一种二氧化碳捕集装置及捕集方法
CN118179195B (zh) * 2024-04-07 2024-08-23 中国矿业大学 一种适用于co2捕集的冷凝分离系统及工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177267A (zh) * 2007-10-31 2008-05-14 武汉凯迪电力环保有限公司 利用电站烟气制取食品级二氧化碳的方法及其系统
CN101423214A (zh) * 2008-11-20 2009-05-06 武汉凯迪电力环保有限公司 氨法捕集电站烟气中二氧化碳的方法及其设备
CN101804292A (zh) * 2010-03-25 2010-08-18 南京大学 专用于co2气体吸收分离的由功能化离子液体活化的mdea配方溶液
WO2011080838A1 (ja) * 2009-12-28 2011-07-07 バブコック日立株式会社 二酸化炭素の吸収液および回収方法
CN102553396A (zh) * 2011-12-23 2012-07-11 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN202387354U (zh) * 2011-12-23 2012-08-22 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU982757A1 (ru) * 1981-02-13 1982-12-23 Украинский Государственный Институт По Проектированию Предприятий Пищевой Промышленности Установка дл получени диоксида углерода из дымовых газов
US7208605B2 (en) * 2002-04-05 2007-04-24 University Of South Alabama Functionalized ionic liquids, and methods of use thereof
US20050129598A1 (en) * 2003-12-16 2005-06-16 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
FR2877858B1 (fr) * 2004-11-12 2007-01-12 Inst Francais Du Petrole Procede de desacidification d'un gaz avec une solution absorbante a regeneration fractionnee
FR2881361B1 (fr) * 2005-01-28 2007-05-11 Inst Francais Du Petrole Procede de decarbonisation d'une fumee de combustion avec extraction du solvant contenu dans la fume purifiee
FR2895273B1 (fr) * 2005-12-22 2008-08-08 Inst Francais Du Petrole Procede de desacidification d'un gaz avec une solution absorbante a regeneration fractionnee avec controle de la teneur en eau de la solution
US7718151B1 (en) * 2006-04-07 2010-05-18 Liang Hu Methods and systems for deacidizing gaseous mixtures
CA2718386A1 (en) * 2008-03-13 2009-09-17 Shell Internationale Research Maatschappij B.V. Process for removal of carbon dioxide from a gas
MX2010012733A (es) * 2008-05-21 2011-05-23 Univ Colorado Liquidos ionicos y metodos para usar los mismos.
US20110014100A1 (en) * 2008-05-21 2011-01-20 Bara Jason E Carbon Sequestration Using Ionic Liquids
FR2934172B1 (fr) * 2008-07-28 2011-10-28 Inst Francais Du Petrole Solution absorbante a base de n,n,n'n'-tetramethylhexane -1,6-diamine et procede d'elimination de composes acides d'un effluent gazeux
DE102009000543A1 (de) * 2009-02-02 2010-08-12 Evonik Degussa Gmbh Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmischungen
CN101700454A (zh) * 2009-11-25 2010-05-05 南京大学 一种绿色二氧化碳吸收剂
CN102000486B (zh) * 2010-10-18 2012-11-21 武汉凯迪电力股份有限公司 活性碳酸钠捕集烟气中二氧化碳的方法及其设备
CN102133499A (zh) * 2011-03-03 2011-07-27 杨东 一种烟气中酸性气体捕集系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177267A (zh) * 2007-10-31 2008-05-14 武汉凯迪电力环保有限公司 利用电站烟气制取食品级二氧化碳的方法及其系统
CN101423214A (zh) * 2008-11-20 2009-05-06 武汉凯迪电力环保有限公司 氨法捕集电站烟气中二氧化碳的方法及其设备
WO2011080838A1 (ja) * 2009-12-28 2011-07-07 バブコック日立株式会社 二酸化炭素の吸収液および回収方法
CN101804292A (zh) * 2010-03-25 2010-08-18 南京大学 专用于co2气体吸收分离的由功能化离子液体活化的mdea配方溶液
CN102553396A (zh) * 2011-12-23 2012-07-11 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的方法及其设备
CN202387354U (zh) * 2011-12-23 2012-08-22 武汉凯迪工程技术研究总院有限公司 一种高效低能耗捕集电站烟气中二氧化碳的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796183A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108854465A (zh) * 2018-07-11 2018-11-23 北京化工大学 胺基离子液体和乙醇胺混合在微通道内吸收二氧化碳的方法
CN108854465B (zh) * 2018-07-11 2021-04-02 北京化工大学 胺基离子液体和乙醇胺混合在微通道内吸收二氧化碳的方法
CN110314500A (zh) * 2019-06-21 2019-10-11 光大绿色环保管理(深圳)有限公司 一种湿法脱酸的设备及方法
CN110314500B (zh) * 2019-06-21 2024-05-10 光大绿色环保管理(深圳)有限公司 一种湿法脱酸的设备及方法

Also Published As

Publication number Publication date
EP2796183A4 (en) 2015-10-28
RU2015101990A (ru) 2016-08-10
KR101545604B1 (ko) 2015-08-19
EP2796183A1 (en) 2014-10-29
EP2796183B1 (en) 2018-07-04
US20140301929A1 (en) 2014-10-09
JP2015507526A (ja) 2015-03-12
SG11201403509SA (en) 2014-09-26
AP2014007785A0 (en) 2014-07-31
DK2796183T3 (en) 2018-10-08
RU2600348C2 (ru) 2016-10-20
MX359692B (es) 2018-10-08
US9669354B2 (en) 2017-06-06
US10155194B2 (en) 2018-12-18
MX2014007608A (es) 2015-05-15
CN102553396B (zh) 2014-06-04
US20170274319A1 (en) 2017-09-28
JP5945333B2 (ja) 2016-07-05
ZA201405332B (en) 2015-10-28
AU2012357358A1 (en) 2014-07-17
CN102553396A (zh) 2012-07-11
AU2012357358B2 (en) 2016-05-26
KR20140109426A (ko) 2014-09-15
MY170461A (en) 2019-08-02
BR112014015304A2 (pt) 2017-07-04
CA2859841A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2013091439A1 (zh) 一种捕集电站烟气中二氧化碳的方法及其设备
CA2814022C (en) Method and apparatus for capturing carbon dioxide in flue gas with activated sodium carbonate
RU2378040C2 (ru) Тщательная очистка газообразных продуктов сгорания, включая удаление co2
CN102218261B (zh) 氨水细喷雾捕集烟气中二氧化碳的方法及其设备
CN112387071A (zh) Co2捕集方法和装置
CN109126392B (zh) 一种采用离子液体进行烟气中co2捕集的装置及工艺
CN202387354U (zh) 一种高效低能耗捕集电站烟气中二氧化碳的设备
CN101423214A (zh) 氨法捕集电站烟气中二氧化碳的方法及其设备
CN114159954A (zh) 一种相变溶剂耦合膜分离烟气co2的系统和方法
CN113842748A (zh) 非水相高沸点离子液体-哌嗪混合型co2吸收剂及其制备方法、应用
CN114405235A (zh) 节能型二氧化碳捕集系统及其捕集方法
AU2021214918A1 (en) Methods and systems for reducing the concentration of amine in wash liquid used in industrial processing
CN116651148A (zh) 一种低温自萃取再生的功能化离子液体co2吸收剂及其应用
CN118001889A (zh) 一种吸收烟气中so2的离子液体及使用装置与方法
CN116808784A (zh) 二氧化碳捕捉剂及其制备方法和二氧化碳的捕捉方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014547682

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2859841

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/007608

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147018985

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012859719

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012357358

Country of ref document: AU

Date of ref document: 20121026

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015304

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015101990

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112014015304

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140620