WO2013091293A1 - 人nlk基因相关的用途及其相关药物 - Google Patents

人nlk基因相关的用途及其相关药物 Download PDF

Info

Publication number
WO2013091293A1
WO2013091293A1 PCT/CN2012/070537 CN2012070537W WO2013091293A1 WO 2013091293 A1 WO2013091293 A1 WO 2013091293A1 CN 2012070537 W CN2012070537 W CN 2012070537W WO 2013091293 A1 WO2013091293 A1 WO 2013091293A1
Authority
WO
WIPO (PCT)
Prior art keywords
nlk
gene
nlk gene
fragment
molecule
Prior art date
Application number
PCT/CN2012/070537
Other languages
English (en)
French (fr)
Inventor
韩海雄
朱向莹
孙琴
顾雪峰
谢胜华
李杨
金杨晟
瞿红花
曹跃琼
Original Assignee
上海吉凯基因化学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海吉凯基因化学技术有限公司 filed Critical 上海吉凯基因化学技术有限公司
Priority to US14/367,926 priority Critical patent/US9334502B2/en
Publication of WO2013091293A1 publication Critical patent/WO2013091293A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/027Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a retrovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/11Protein-serine/threonine kinases (2.7.11)

Definitions

  • the present invention relates to the field of biotechnology, and more particularly to the use of human NLK genes and related drugs. Background technique
  • Nemo-like kinase located in the nucleus, is a serine-threonine kinase that is conserved in the proline-mediated protein kinase superfamily and was originally thought to be polarized with the eye cells of Drosophila. Veriy KW, Benzer S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the Nemo gene. Cell. 1994; 78: 125-36. Verheyen EM, Mirkovic I, MacLean SJ, Langmann C, Andrews BC, MacKinnon C. The tissue polarity gene Nemo carries out multiple roles in patterning during Drosophila development. Mech Dev. 2001 ; 101 : 119-32.
  • NLK can regulate and phosphorylate transcription factors and participate in cell apoptosis through a variety of signaling pathways (Brott BK, Pinsky BA, Erikson RL. Nik is a murine protein kinase related to Erk/MAP kinases). Proc Natl Acad Sci US A. 1998; 95: 963-8. Mirkovic I, Charish K, Gorski SM, McKnight K, Verheyen EM. Drosophila Nemo is an essential gene involved in the regulation of programmed cell death Mech Dev. 2002; 119: 9-20. ).
  • Wnt signaling pathways include: extracellular factors (Wnt), transmembrane receptors (Frizzled, Fz), cytoplasmic proteins (Dsh, ⁇ -catenin/APC/Axin complexes, etc.) and nuclear transcription factors (TCF/LEF) It is closely related to the occurrence and development of various tumors (Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311-20.).
  • NLK is a negative regulator of the Wnt/p-catenin signaling pathway, which phosphorylates TCF/LEF and inhibits the transcriptional activity of the ⁇ -catenin/TCF complex.
  • c-myb proto-oncogene expression c-Myb protein acts as a transcription factor to regulate the transcription of a variety of downstream genes, affecting the proliferation and apoptosis of hematopoietic stem cells.
  • Wnt-1 induces NLK direct binding and phosphorylation of multiple sites of c-Myb protein by transforming growth factor beta-activating kinase TAK1, followed by ubiquitination and protease-dependent degradation, which may cause cell cycle G1 arrest.
  • a-Myb another member of the Myb family
  • phosphorylation and inhibition of its binding to the DNA binding region Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S, Kokura K, Kurahashi T, Ichikawa-Iwata E, Kim Y, Matsumoto K. Ishii S. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Dev. 2004; 18: 816-29.).
  • the study found that the TAK1-NLK pathway phosphorylates the transcription factor FOX01, which affects apoptosis, stress, DNA damage/repair, and tumorigenesis, and promotes the shift of FOX01 from the nucleus to the cytoplasm, while inhibiting Transcriptional Function of FOX01 (Kim S, Kim Y, Lee J, Chung J. Regulation ofFOXOl by TAK1 -Nemo-like kinase pathway. J Biol Chem. 2010; 285: 8122-9.).
  • NLK can also participate in the apoptotic process by phosphorylating the C-terminal region of the transcriptional coactivator CBP/P300 and affecting the transcriptional activities of transcription factors such as NF-B, AP-1, Smad, etc.
  • transcription factors such as NF-B, AP-1, Smad, etc.
  • NLK is considered to be a tumor suppressor gene in the Wnt/p-catenin signaling pathway of colon cancer.
  • Wild-type NLK is induced to express in colorectal cancer, inhibits cell growth by phosphorylating TCF/LEF, and promotes p53-independent apoptosis, but does not affect cell cycle (Yasuda J, Tsuchiya A, Yamada T, Sakamoto M, Sekiya T, Hirohashi S.
  • Nemo-like kinase induces apoptosis in DLD-1 human colon cancer cells.
  • NKL negatively regulates the androgen receptor signaling pathway.
  • Overexpression of NLK significantly induced apoptosis in prostate cancer cells positive for androgen receptor expression.
  • Further studies have found that NLK inhibits the transcriptional activity of androgen receptors on target genes by forming complexes with androgen receptors, and inhibits androgen receptor mRNA expression at the transcriptional level (Emami KH, Brown LG, Pitts) TE, Sun X, Vessella RL, Corey E. Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Prostate. 2009; 69: 1481-92.).
  • NLK may play different biological functions in the development of different tumors.
  • RNAi RA interference
  • dsR A short double-stranded RNA
  • dsR A double-stranded RNA
  • It can efficiently and specifically block the expression of specific genes in the body, leading to its degradation, causing the silencing of specific genes in the organism, causing the cells to exhibit a certain phenotypic deletion. It is a commonly used research gene in recent years. Functional, laboratory techniques for finding treatments for diseases. Studies have shown that double-stranded RNAs of 21-23 nt in length are capable of causing RNAi at the transcriptional and post-transcriptional levels (Tuschl T, Zamore PD, Sharp PA, Bartel DP.
  • RNAi double-stranded RNA directs the ATP-dependent cleavage Of mRNA at 21 to 23 nucleotide intervals.
  • Cell 2000; 101 : 25-33. o Although cancer patients undergo chemotherapy, radiotherapy and comprehensive treatment, the five-year survival rate is still very high. Low, such as the intervention of genes involved in tumor pathogenesis and progression, will open up new avenues for the treatment of tumors.
  • RNAi has become an effective strategy for gene therapy of tumors. RNAi technology can inhibit the expression of proto-oncogenes, mutant tumor suppressor genes, cell cycle-related genes, anti-apoptosis-related genes, etc. (Uprichard, Susan L. The therapeutic potential of RA interference. FEBS Letters 2005; 579 : 5996-6007. ).
  • the present invention selects a lung cancer, breast cancer and prostate cancer cell model, and uses RNAi as a means to study the role of NLK in the development and progression of lung cancer, breast cancer and prostate cancer. Summary of the invention
  • the object of the present invention is to disclose therapeutic methods and drugs related to the human NLK (Nemo-like kinase) gene.
  • NLK Nemo-like kinase
  • the role of the NLK gene in tumorigenesis and development is studied by means of RA interference, and a method for inhibiting or reducing tumor cell growth, proliferation, differentiation and/or survival is disclosed, the method comprising: A tumor molecule is administered with a molecule capable of specifically inhibiting transcription or translation of the NLK gene, or capable of specifically inhibiting the expression or activity of the NLK protein, thereby inhibiting growth, proliferation, differentiation and/or survival of tumor cells.
  • the tumor cells are selected from tumor cells whose growth is associated with expression or activity of the NLK protein.
  • any of lung cancer cells, liver cancer cells, and breast cancer cells are selected from tumor cells whose growth is associated with expression or activity of the NLK protein.
  • the molecule is administered in an amount sufficient to reduce transcription or translation of the NLK gene, or a dose sufficient to reduce the expression or activity of the NLK protein.
  • the expression of the NLK gene is reduced by at least 50%, 80%, 90%, 95% or 99%.
  • the molecule includes: a nucleic acid, a carbohydrate, a lipid, a small molecule, a polypeptide or a peptide.
  • the nucleic acid comprises: an antisense oligonucleotide, a double-stranded RNA (dsRNA), a ribozyme, a small interfering RNA (ERI) prepared by endonuclease I I or a short hairpin RNA (shRNA).
  • dsRNA double-stranded RNA
  • ribozyme a small interfering RNA (ERI) prepared by endonuclease I I I or a short hairpin RNA (shRNA).
  • the double strand ⁇ , ribozyme, esiRNA or shRNA contains the promoter sequence of the NLK gene or the information sequence of the NLK gene.
  • the double-stranded RNA is a small interfering RNA (siRNA).
  • the small interfering RNA comprises a sense strand and an antisense strand, the sense strand comprising a nucleotide sequence substantially identical to 15-27 consecutive nucleotides in the NLK gene, and the sense strand and the antisense strand are co-formed ⁇ Dimer.
  • the small molecule interference ⁇ specifically binds to the mRNA fragment encoded by the target sequence and specifically silences the expression of the human NLK gene.
  • the sense strand of the small interference R A is substantially identical to the target sequence in the NLK gene, and the target sequence in the NLK gene contains any one of SEQ ID NOs: 1-39.
  • the target sequence in the NLK gene is when the small interfering RNA specifically silences the expression of the NLK gene,
  • the small interfering RNA interferes with a fragment of the NLK gene corresponding to the complementary mRNA fragment of the RNA.
  • the shRNA can be expressed by a vector, such as by cloning a DNA fragment which can transcribe the shRNA into a lentiviral vector.
  • the NLK gene is derived from a human.
  • a second aspect of the invention discloses an isolated molecule that reduces expression of an NLK gene in a tumor cell, the molecule being:
  • a double-stranded R A comprising a nucleotide sequence capable of hybridizing to the NLK gene under stringent conditions
  • shRNA which contains a nucleotide sequence capable of hybridizing to the NLK gene under stringent conditions
  • lentiviral vector which is a lentiviral vector containing a gene fragment encoding the shRNA described in 2), which can express the shRNA.
  • the double-stranded RNA comprises a first strand and a second strand, the first strand being substantially identical to 15-27 consecutive nucleotides in the NLK gene, and the second strand is substantially complementary to the first strand.
  • the first strand is substantially identical to 19-23 consecutive nucleotides in the NLK gene; more preferably, the first strand is substantially 19, 20 or 21 consecutive nucleotides in the NLK gene. the same.
  • the double-stranded R A is a small interference R A .
  • the shRNA comprises a sense RA fragment and an antisense RA fragment, the sense RA fragment being substantially identical to 15-27 consecutive nucleotides in the NLK gene, and the antisense RA fragment is substantially complementary to the sense RA fragment, and The sense RA fragment and the antisense RA fragment are separated by a stem loop fragment.
  • the shRNA can become a small interference R A and thereby specifically silence the expression of the endogenous NLK gene in the tumor cells.
  • the sense RA fragment is substantially identical to 19-23 contiguous nucleotides in the NLK gene; more preferably, the sense RA fragment is substantially 19, 20 or 21 contiguous nucleotides in the NLK gene. the same.
  • the sequence of the stem-loop fragment of the shRNA can be selected from any of the following: UUCAAGAGA, AUG, CCC, UUCG, CCACC, CTCGAG, AAGCUU and B CCAC ACC.
  • the first strand of the double-stranded RNA or the sense RNA fragment of the shRNA is substantially identical to the target sequence in the NLK gene.
  • the target sequence in the NLK gene comprises any one of SEQ ID NOs: 1-39.
  • the NLK gene is derived from a human.
  • the sequence of the shRNA comprises SEQ ID NO:40.
  • the NLK gene-interfering lentiviral vector can be obtained by cloning a DNA fragment encoding the shR A into a lentiviral vector.
  • the NLK gene-interfering lentiviral vector can be infected with infectious virus particles by virus, infecting tumor cells, and then transcribed out of the shRNA.
  • the NLK gene-interfering lentiviral vector further comprises a promoter sequence and/or a nucleotide sequence encoding a marker detectable in the tumor cell.
  • the label that can be detected is green fluorescent protein (GFP).
  • the lentiviral vector may be selected from any one of the following: pLK0.1-puro, pLK0.1-CMV-tGFP, pLKO.1 -puro-CMV-tGFP pLK0.1-CMV-Neo pLK0.1-Neo , pLKO.1 -Neo-CMV-tGFP pLKO.1 -puro-CMV-TagCFP, pLKO.1 -puro-CMV-TagYFP, pLKO.l -puro-CMV-TagRFP, pLKO.1 -puro-CMV-TagFP635, pLKO.l -puro-UbC-TurboGFP, pLKO.l -puro-UbC-TagFP635, pLKO-puro-IPTG- 1 xLacO pLKO-puro-IPTG-3xLacO pLPl, pLP2, pLP/VSV-
  • the isolated molecule can be used to prepare a medicament for preventing or treating a tumor.
  • the tumor is selected from any one of lung cancer, breast cancer and prostate cancer.
  • a safe and effective amount of double-stranded R A or shRNA is administered to the mammal.
  • specific doses should also consider factors such as the route of administration, the health of the patient, etc., which are within the skill of the skilled physician.
  • an isolated target oligonucleotide fragment is disclosed, which is a target oligonucleotide fragment of the isolated molecule which reduces expression of NLK gene in a tumor cell, the oligonucleotide sequence comprising Sequence from any of SEQ ID N0 1-39.
  • the target oligonucleotide fragment can be used to screen for a tumor therapeutic drug or formulation.
  • the target oligonucleotide fragment can be used as a target to screen a drug or a preparation to find a drug which can inhibit or promote the expression of the human NLK gene as a tumor treatment candidate.
  • small molecule interference R A is obtained by screening, and it is used as a drug having an effect of inhibiting tumor cell proliferation.
  • the target oligonucleotide fragment can also be used as an object of action such as an antibody drug, a small molecule drug or the like.
  • a NLK gene-interfering lentivirus which comprises a nucleotide fragment capable of being transcribed into a shRNA in a tumor cell after cloning into a lentiviral vector, in a lentiviral packaging plasmid, a cell line With the help of, it is packaged by virus.
  • the lentivirus can infect tumor cells and produce the small molecule that specifically silences the NLK gene to interfere with RA, thereby inhibiting the proliferation of tumor cells.
  • the NLK gene interferes with lentiviruses and can be used to prepare drugs for preventing or treating tumors.
  • the tumor is selected from any one of lung cancer, breast cancer and prostate cancer.
  • a pharmaceutical composition for preventing or treating a tumor comprising the isolated molecule capable of reducing the expression of the NLK gene or the NLK gene-interfering lentivirus is disclosed.
  • the pharmaceutical composition also contains a pharmaceutically acceptable carrier or excipient.
  • the active ingredient is usually mixed with excipients, or diluted with excipients, or enclosed in a vehicle which may be in the form of a capsule or sachet.
  • a vehicle which may be in the form of a capsule or sachet.
  • the excipient serves as a diluent, it can be a solid, semi-solid or liquid material as a vehicle for the excipient, carrier or active ingredient.
  • the composition may be in the form of a tablet, a pill, a powder, a solution, a syrup, a sterile injectable solution or the like.
  • excipients examples include: lactose, glucose, sucrose, sorbitol, mannitol, starch, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, and the like.
  • the preparation may also include a wetting agent, an emulsifier, a preservative (e.g., methyl and propyl hydroxybenzoate), a sweetener, and the like.
  • a method of preventing or treating a tumor in a subject comprising administering an effective amount of the pharmaceutical composition to a subject.
  • the tumor can be selected from any of lung cancer, breast cancer, and prostate cancer.
  • the object using the method is a person.
  • kits for reducing expression of an NLK gene in a tumor cell comprising: the isolated molecule present in a container or the NLK gene interfering with a lentivirus.
  • the present invention designed 39 R Ai target sequences targeting the human NLK gene, and constructed the corresponding NLK RNAi vector, wherein the RNAi vector pGCSIL-GFP-siNLK encoding the sequence of SEQ ID NO 20 can significantly down-regulate the NLK gene at mRNA level and protein level. expression.
  • RNAi vector pGCSIL-GFP-siNLK encoding the sequence of SEQ ID NO 20 can significantly down-regulate the NLK gene at mRNA level and protein level. expression.
  • lentivirus (Lv) as a gene manipulation tool carrying RNAi vector pGCSIL-GFP-siNLK can efficiently introduce RNAi sequences targeting NLK gene into human lung cancer H1299 cells, breast cancer MCF-7 cells and prostate cancer PC -3 cells, which reduce the expression level of the NLK gene, significantly inhibit the proliferation of the above tumor cells. Therefore, lentiviral-mediated NLK gene silencing is a potential clinical non-surgical treatment for malignant tumors.
  • the isolated molecule or NLK gene interfering lentivirus which can reduce the expression of NLK gene in tumor cells can specifically inhibit the expression of human NLK gene, especially lentivirus, can efficiently infect target cells and efficiently inhibit target cells.
  • the expression of the NLK gene which in turn inhibits the growth of tumor cells, is of great significance in the treatment of tumors.
  • Figure 1 shows the pGCSIL-GFP plasmid DNA map.
  • Figure 2 shows that Lv-siNLK lentivirus infects human lung cancer H1299 cells, breast cancer MCF-7 cells and prostate cancer PC-3 cells for 5 days, and the expression level of NLK mRNA is significantly decreased.
  • Figure 3 shows that Lv-siNLK lentivirus infects human lung cancer H1299 cells for 5 days, causing inhibition of cell proliferation.
  • Figure 4 shows that Lv-siNLK lentivirus infects human breast cancer MCF-7 cells for 5 days, causing inhibition of cell proliferation.
  • Figure 5 shows that Lv-siNLK lentivirus infects human prostate cancer PC-3 cells for 5 days, causing inhibition of cell proliferation.
  • a is breast cancer
  • b, c, d are lung cancer
  • the inventors found that the down-regulation of human NLK gene expression by R Ai method can effectively inhibit the proliferation of tumor cells, indicating that NLK gene is a proto-oncogene and can be used as a target for tumor therapy.
  • the inventors further synthesized and tested a variety of siRNAs targeting the NLK gene, and screened for siRNA which can effectively inhibit the expression of NLK and inhibit the proliferation and growth of human lung cancer H1299 cells, breast cancer MCF-7 cells and prostate cancer PC-3 cells.
  • the present invention has been completed on this basis.
  • the present invention provides a series of small interfering R A (siRNA) sequences that interfere with the human NLK gene, and constructs a lentivirus that specifically silences the expression of the NLK gene.
  • small interference R A and RNAi lentivirus designed for the human NLK gene stably and specifically down-regulate the expression of the NLK gene and effectively inhibit the proliferation of human tumor cells.
  • the present invention shows that the NLK gene can promote tumor cell growth and is expected to be a target for early diagnosis and treatment of tumors.
  • silencing the expression of the NLK gene by RNAi can be an effective means of inhibiting tumor development.
  • the present invention screens for a human NLK gene RNAi lentivirus by: obtaining a human NLK gene coding region sequence from Genbank, predicting an siRNA site, designing an effective siRNA sequence targeting the NLK gene, and synthesizing a target sequence of Oligo DNA , annealed to form double-stranded DNA, ligated into a short hairpin RA lentiviral plasmid by ⁇ Age mEcoR / restriction endonuclease-cleaved lentiviral vector; the selected short hairpin RNA lentiviral plasmid and the lentiviral packaging required for screening
  • Auxiliary vector Packing Mix, Sigma-aldrich
  • Recombinant lentiviral particles The lentiviral particles in the cell culture supernatant were collected, purified and concentrated to obtain a lentivirus (Lv-siNLK) which was pure and stably expressed NLK
  • the present invention provides 39 effective targets that interfere with the NLK gene (specifically, as shown in SEQ ID NOs 1-39), and a lentivirus that specifically interferes with the human NLK gene is constructed.
  • the present invention also discloses an RNAi lentivirus directed against the human NLK gene, and preparation and use thereof.
  • NLK gene is a proto-oncogene that promotes tumor cell proliferation and has important biological functions in tumorigenesis and development.
  • NLK gene can be a target for tumor therapy, lentiviral-mediated NLK gene-specific silencing. Can be used as a new means of cancer treatment.
  • the NLK (NM_016231) gene information was retrieved from Genbank; the effective siR A target for the NLK gene was designed using Genechem, the design software of Shanghai Jikai Gene Chemical Technology Co., Ltd. In the coding sequence (CDS) region of the NLK gene, a 19-21 base sequence was obtained starting every other base. Table 1 lists 39 effective siRNA target sequences for the NLK gene.
  • siRNA target Synthesize single-stranded DNA Oligo sequence, annealed to form double-stranded DNA Oligo with I and EcoR I cleavage sites at both ends (Table 2); / WoB EcoR I restriction endonuclease was applied to pGCSIL-GFP vector (supplied by Shanghai Jikai Gene Chemical Technology Co., Ltd., Fig. 1), linearized, and the restriction fragment was identified by agarose gel electrophoresis.
  • the pGCSIL-GFP plasmid was digested by I and EcoR I restriction enzymes to linearize the reaction system.
  • Table 3 shows the reaction conditions: 37 ° C,
  • the vector DNA and the purified double-stranded DNA Oligo were ligated in a suitable buffer system by T4 DNA ligase, and the reaction system is shown in Table 4. Reaction conditions: 16 ° C, 12 ho
  • Fresh E. coli competent cells prepared by transforming the ligation product into calcium chloride (Refining Operational Reference: Molecular Cloning, Experimental Guide, Second Edition, pp. 55-56). Dip the surface of the clonal clone of the transformed product, dissolve it in ⁇ ⁇ medium, mix and take ⁇ as a template; design a universal PCR primer upstream and downstream of the RNAi sequence in the lentiviral vector (upstream bow I) The sequence ⁇ lj : 5 '-CCTATTTCCCATGATTCCTTCATA-3 ' ; the lower word bow I ⁇ U : 5'-GTAATACGGTTATCCACG-3' ), PCR amplification experiment, the reaction system is shown in Table 5, the cycle conditions are shown in Table 6. Shown.
  • the PCR amplification products were identified by agarose gel electrophoresis.
  • the clones identified as positive were sequenced and aligned.
  • the correct clones were constructed to contain NLK-siR A-20 (SEQ ID NO 20 in Table 1).
  • the sequence of the R Ai vector designated pGCSIL-GFP-siNLK.
  • the pGCSIL-GFP-siScr negative control plasmid was constructed.
  • the RNAi negative control siR A target sequence was 5 '-TTCTCCG AACGTGTC ACGT-3 ', which was aligned with GenBank and not homologous to any sequence of the human genome.
  • the double-stranded DNA Oligo sequence containing the sticky end of Age / 7E CO R / restriction site was synthesized for Scr ( scramble ) siRNA target (Table 7 ), and the remaining construction methods and identification were carried out. The method and conditions were the same as pGCSIL-GFP-siNLK.
  • RNAi plasmid pGCSIL-GFP-siNLK was extracted using Qiagen's plasmid extraction kit to prepare a 100 ng/ ⁇ stock solution. Twenty-four hours before transfection, 293T cells in logarithmic growth phase were digested with trypsin, adjusted to a cell density of 1.5 ⁇ 10 5 cells/ml in DMEM complete medium containing 10% fetal bovine serum, and seeded in 6-well plates, 37 V. , 5% C0 2 incubator culture. It can be used for transfection when the cell density reaches 70%-80%. 2 h before transfection, aspirate the original medium and add 1.5 ml Fresh complete medium.
  • PVM Packing Mix
  • the cell supernatant was collected, and the lentivirus was purified and concentrated by Centricon Plus-20 centrifugal ultrafiltration unit (Millipore).
  • the procedure was as follows: (1) 4 V, 4000 g centrifugation for 10 min to remove cell debris; (2) 0.45 ⁇ filter The supernatant is centrifuged in a 40 ml ultracentrifuge tube; (3) centrifuged at 4000 g for 10-15 min to the desired volume of virus concentration; (4) After centrifugation, separate the filter cup from the filtrate collection cup below , the filter cup is inverted on the sample collection cup, and the centrifugal force is not more than 1000 g after centrifugation for 2 min;
  • RNAi lentivirus Lv-siNLK concentrate.
  • the titer of the slow virus concentrate was measured and stored at -80 degrees after dispensing.
  • a negative control RNAi lentivirus (Lv-siScr) was also prepared, and the packaging and purification method was the same as that of Lv-siNLK lentivirus, and the pGCSIL-GFP-siNLcr vector was replaced with the pGCSIL-GFP-siScr vector alone.
  • Example 2 Detection of silencing efficiency of NLK gene by real-time fluorescence quantitative RT-PCR
  • Primer sequence of NLK gene The upstream arch is 5'-ATCATCAGCACTCGCATCATC-3', and the downstream primer is 5'-GACCAGACAACACCAAAGGC-3'.
  • the housekeeping gene GAPDH was used as an internal reference.
  • the reaction procedure was: pre-denaturation at 95 °C for 15 s; then each step was denatured at 95 °C for 5 s; annealing was extended at 60 °C for 30 s; a total of 45 cycles were performed.
  • the absorbance value is read each time during the extension phase.
  • MOI infecting complex number
  • the complete medium was resuspended into a cell suspension (2 x 10 4 /ml), and a 96-well plate was seeded at a cell density of about 2000 cells/well. 5 replicate wells per group, 100 ⁇ l per well. After laying the plate, it was cultured in a 37 ° C, 5% CO 2 incubator. From the second day after plating, the plates were inspected once a day using a Cellomics ArrayScan VTI High Content Screening Analyzer (Thermo Scientific), and the plates were continuously inspected for 5 days. By adjusting the input parameters of the Cellomics instrument, the number of cells with green fluorescence in each scanning plate is accurately calculated, and the data is statistically plotted to plot cell proliferation.
  • Tissue sample Human breast cancer, tissue sample of lung cancer
  • NLK antibody purchased from Sigma
  • the tissue chip was removed and the tissue chip was baked in a 60 ° C incubator for 30 minutes.
  • Human breast cancer MCF-7 cells in the logarithmic growth phase were trypsinized to prepare a cell suspension (cell number: 5 ⁇ 10 4 /ml), seeded in a 6-well plate, and cultured until the cell fusion degree reached about 30%. According to the multiplicity of infection (MOI: 20), an appropriate amount of virus was added, and the medium was changed after 24 hours of culture. After the infection time reached 5 days, the experimental group and the control group cells in the logarithmic growth phase were collected. The complete medium was resuspended into a cell suspension. The cell suspension (2 X 10 6 cells/mouse) was injected into the right axilla of 5-6 week old female BALB/c nude mice with a disposable syringe.
  • MOI multiplicity of infection
  • the experimental group was injected with MCF-7 cells infected with Lv-siNLK lentivirus, and the control group was injected with MCF-7 cells infected with Lv-siScr lentivirus, 6 nude mice in each group. After injection The nude mice were exposed to the naked eye (one week), and then the volume of the tumor block (Fig. 7a) and weight (Fig. 7b) were measured using a NightOWL ll 983 illuminating imaging system (Berthold Technologies). The results showed that the tumorigenic ability of tumor cells in the experimental group was much lower than that in the control group. Based on the results of this experiment, it is believed that Lv- S1 NLK can inhibit the proliferation of tumor cells in vivo.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了NLK基因的用途及其相关药物。还提供了NLK基因在肿瘤治疗、肿瘤诊断及药物制备中的用途。进一步构建了可降低肿瘤细胞中NLK基因表达的分离的分子、含有该分离的分子的细胞及NLK基因干扰慢病毒。可降低肿瘤细胞中NLK基因表达的分离的分子或者NLK基因干扰慢病毒能够特异性抑制人NLK基因的表达,尤其是慢病毒,能够高效侵染靶细胞,高效率地抑制靶细胞中NLK基因的表达,进而抑制肿瘤细胞的生长,促进肿瘤细胞凋亡,能够用于肿瘤治疗。

Description

人 NLK基因相关的用途及其相关药物
技术领域
本发明涉及生物技术领域, 更具体地涉及人 NLK基因相关的用途及其相关药物。 背景技术
Nemo样激酶 (Nemo-like kinase, NLK) 定位于细胞核, 是一种属于脯氨酸介导的蛋白 激酶超家族中保守的丝氨酸-苏氨酸激酶, 最初认为与果蝇的眼细胞的极化及脊椎动物多种 发育过禾呈有关 ( Choi KW, Benzer S. Rotation of photoreceptor clusters in the developing Drosophila eye requires the Nemo gene. Cell. 1994; 78: 125-36. Verheyen EM, Mirkovic I, MacLean SJ, Langmann C, Andrews BC, MacKinnon C. The tissue polarity gene Nemo carries out multiple roles in patterning during Drosophila development. Mech Dev. 2001 ; 101 : 119-32. )。 近年来的研究认为 NLK可调节、 磷酸化转录因子, 并通过多种信号途径参与细胞的凋亡过 禾呈 ( Brott BK, Pinsky BA, Erikson RL. Nik is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc Natl Acad Sci U S A. 1998; 95: 963-8. Mirkovic I, Charish K, Gorski SM, McKnight K, Verheyen EM. Drosophila Nemo is an essential gene involved in the regulation of programmed cell death. Mech Dev. 2002; 119: 9-20. )。
Wnt信号传导通路包括: 细胞外因子 (Wnt)、 跨膜受体 (Frizzled, Fz)、 胞质蛋白 (Dsh, β -catenin/APC/Axin复合体等)及核内转录因子 (TCF/LEF),与多种肿瘤的发生发展密切相关 ( Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311-20. )。 NLK是 Wnt/p-catenin信号通路的负调节因子, 可使 TCF/LEF磷酸化, 抑制 β -catenin/TCF 复合体的转录活性。 c-myb原癌基因表达物 c-Myb蛋白作为转录因子可调控下游多种基因 转录, 影响造血干细胞的增殖与凋亡。 Wnt-1 通过转化生长因子 β激活性激酶 TAK1 诱导 NLK直接结合并磷酸化 c-Myb蛋白多个位点, 后续发生遍在蛋白化及蛋白酶依赖的降解, 可能造成细胞周期 G1期的阻滞, 然而对 Myb家族另一成员 a-Myb的调控则主要表现为磷 酸化并抑制其与 DNA结合区结合而发挥作用 (Kanei-Ishii C, Ninomiya-Tsuji J, Tanikawa J, Nomura T, Ishitani T, Kishida S, Kokura K, Kurahashi T, Ichikawa-Iwata E, Kim Y, Matsumoto K. Ishii S. Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes Dev. 2004; 18: 816-29.)。 另夕卜, 研究发现, TAK1-NLK通路可磷酸 化具有影响细胞凋亡、应激、 DNA损伤 /修复、肿瘤发生的转录因子 FOX01 ,并促使 FOX01 从胞核至胞质的移位, 而抑制 FOX01的转录功能(Kim S, Kim Y, Lee J, Chung J. Regulation ofFOXOl by TAK1 -Nemo-like kinase pathway. J Biol Chem. 2010; 285: 8122-9.)。 进一步研究 发现, NLK还可通过磷酸化转录共激活因子 CBP/P300的 C-末端区域而影响转录因子如 NF- B、 AP-1、 Smad等的转录活性的方式参与细胞凋亡过程 (Yasuda J, Yokoo H, Yamada T, Kitabayashi I, Sekiya T, Ichikawa H. Nemo-like kinase suppresses a wide range of transcription factors, including nuclear factor-kappaB. Cancer Sci. 2004; 95: 52-7. Shi Y, Ye K, Wu H, Sun Y, Shi H, Huo K. Human SMAD4 is phosphorylated at Thr9 and Serl38 by interacting with NLK. Mol Cell Biochem. 2010; 333: 293-8.)。
关于 NLK在肿瘤中的研究已有在结直肠癌、前列腺癌和肝癌中的报道。 NLK被认为是 结肠癌 Wnt/p-catenin信号通路的抑癌基因。野生型的 NLK在结直肠癌中被诱导表达, 通过 磷酸化 TCF/LEF抑制细胞生长,促进 p53非依赖的细胞凋亡,但不影响细胞周期(Yasuda J, Tsuchiya A, Yamada T, Sakamoto M, Sekiya T, Hirohashi S. Nemo-like kinase induces apoptosis in DLD-1 human colon cancer cells. Biochem Biophys Res Commun 2003; 308: 227-33. )。 在前 列腺癌中, NKL负调节雄性激素受体信号转导途径。 NLK过表达可显著诱导雄性激素受体 阳性表达的前列腺癌细胞发生细胞凋亡。 进一步的研究发现, NLK能够通过与雄激素受体 形成复合物的方式抑制雄激素受体对靶基因的转录活性, 且在转录水平抑制雄激素受体 mRNA的表达(Emami KH, Brown LG, Pitts TE, Sun X, Vessella RL, Corey E. Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Prostate. 2009; 69: 1481-92.)。而在人肝癌细胞系中,敲除 NLK的表达可以抑制细胞生长, 同时发现, G1-S 期细胞增加, 细胞周期相关蛋白 cyclin Dl、 CDK2的表达也明显降低, 说明 NLK在肝癌形 成中可能具有通过作用 cyclin Dl、 CDK2而发挥促有丝分裂的作用 (Jung KH, Kim JK, Noh JH, Eun JW, Bae HJ, Xie HJ, Ahn YM, Park WS, Lee JY, Nam SW. Targeted disruption of Nemo-like kinase inhibits tumor cell growth by simultaneous suppression of cyclin Dl and CDK2 in human hepatocellular carcinoma. J Cell Biochem. 2010; 110: 687-96.)。 综上, NLK在不同肿 瘤的发生发展中可能发挥不同的生物学功能。
R A干扰 (RNA interference, RNAi) 即用核苷酸组成的短的双链 RNA (dsR A)进行 转录后基因沉默。 它可高效、 特异地阻断体内特定基因的表达, 导致其降解, 从而引起生 物体内特异基因的沉默, 使细胞表现出某种基因表型的缺失, 是近年来新兴的一种常用的 研究基因功能、 寻找疾病治疗方法的实验室技术。 研究表明, 长度为 21-23 nt的双链 RNA 能够在转录和转录后水平特异性的引起 RNAi (Tuschl T, Zamore PD, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101 : 25-33. ) o 肿瘤患者虽经化疗、 放疗和综合治疗, 但五年生存率仍很 低, 如能对肿瘤发病和进展有关的基因进行干预, 将能为肿瘤的治疗开辟新途径。 近年来, RNAi已成为肿瘤的基因治疗的有效策略。 利用 RNAi技术可以抑制原癌基因、 突变的抑癌 基因、细胞周期相关基因、抗凋亡相关基因等的表达来抑制肿瘤进程 (Uprichard, Susan L. The therapeutic potential of R A interference. FEBS Letters 2005; 579: 5996-6007. )。
为了深入研究 NLK在肿瘤发生中的调节功能, 本发明选取肺癌、 乳腺癌和前列腺癌细 胞模型, 以 RNAi为手段研究 NLK在肺癌、 乳腺癌和前列腺癌发生和发展中的作用。 发明内容
本发明的目的在于公开与人 NLK (Nemo-like kinase) 基因相关的治疗方法及药物。 本发明第一方面, 以 R A干扰为手段,研究了 NLK基因在肿瘤发生和发展中的作用, 公开了一种抑制或降低肿瘤细胞生长、 增殖、 分化和 /或存活的方法, 该方法包括: 向肿瘤 细胞施用一种能够特异性抑制 NLK基因的转录或翻译, 或能够特异性抑制 NLK蛋白的表达 或活性的分子, 以此来抑制肿瘤细胞的生长、 增殖、 分化和 /或存活。
所述肿瘤细胞选自其生长与 NLK蛋白的表达或活性相关的肿瘤细胞。 如肺癌细胞、 肝 癌细胞和乳腺癌细胞之任一。
所述抑制或降低肿瘤细胞生长、 增殖、 分化和 /或存活的方法中, 所述分子的施用量为 足够降低 NLK基因的转录或翻译, 或者足够降低 NLK蛋白的表达或活性的剂量。 以使 NLK 基因的表达至少被降低 50%、 80%、 90%、 95%或 99%。
所述分子包括: 核酸、 碳水化合物、 脂类、 小分子、 多肽或肽。
所述核酸包括: 反义寡核苷酸、 双链 RNA ( dsRNA) 、 核酶、 核糖核酸内切酶 I I I制备 的小干扰 RNA ( esiRNA) 或者短发夹 RNA ( shRNA) 。
所述双链■、 核酶、 esiRNA或者 shRNA含有 NLK基因的启动子序列或 NLK基因的信 息序列。
进一步的, 所述双链 RNA为小干扰 RNA ( siRNA) 。 所述小干扰 RNA包含正义链和反义 链, 所述正义链含有与 NLK基因中 15-27个连续的核苷酸基本相同的核苷酸序列, 且所述 正义链和反义链共同形成■二聚体。 所述小分子干扰■能特异性结合靶序列所编码的 mRNA片段, 并特异性沉默人 NLK基因的表达。
进一步的, 所述小干扰 R A的正义链与 NLK基因中的靶序列基本相同, 所述 NLK基 因中的靶序列含有 SEQ ID NO : 1-39中之任一序列。
所述 NLK基因中的靶序列即为所述小分子干扰 RNA特异性沉默 NLK基因表达时, 与所 述的小分子干扰 RNA互补结合的 mRNA片段所对应的 NLK基因中的片段。
所述 shRNA可经载体表达, 如将可转录该的 shRNA的 DNA片段克隆入慢病毒载体后表 达。
较佳的, 所述 NLK基因来源于人。
本发明第二方面公开了一种降低肿瘤细胞中 NLK基因表达的分离的分子,所述分子为:
1 ) 双链 R A, 所述双链 R A中含有能够在严紧条件下与 NLK基因杂交的核苷酸序 列, 或者
2) shRNA, 所述 shRNA中含有能够在严紧条件下与 NLK基因杂交的核苷酸序列, 或 者
3) 干扰慢病毒载体, 为含有编码 2)中所述 shRNA的基因片段的慢病毒载体, 能表达 所述 shRNA。
所述双链 RNA包含第一链和第二链, 所述第一链与 NLK基因中 15-27个连续的核苷 酸基本相同, 而所述第二链与第一链基本互补。 较佳的, 所述第一链与 NLK基因中 19-23 个连续的核苷酸基本相同; 更佳的, 所述第一链与 NLK基因中 19、 20或者 21个连续的核 苷酸基本相同。
进一步的, 所述双链 R A为小干扰 R A。
所述 shRNA包含正义 R A片段和反义 R A片段,所述正义 R A片段与 NLK基因中 15-27个连续的核苷酸基本相同, 而所述反义 R A片段与正义 R A片段基本互补,且所述 正义 R A片段和反义 R A片段中间由茎环片段分隔。所述 shRNA经酶切后可成为小干扰 R A进而起到特异性沉默肿瘤细胞中内源 NLK基因的表达的作用。较佳的,所述正义 R A 片段与 NLK基因中 19-23个连续的核苷酸基本相同; 更佳的, 所述正义 R A片段与 NLK 基因中 19、 20或者 21个连续的核苷酸基本相同。
所述 shRNA的茎环片段的序列可选自以下任一: UUCAAGAGA、 AUG、 CCC、 UUCG、 CCACC、 CTCGAG、 AAGCUU禾 B CCAC ACC。
所述双链 RNA的第一链或所述 shRNA的正义 RNA片段与 NLK基因中的靶序列基本 相同。
较佳的, 所述 NLK基因中的靶序列含有 SEQ ID NO: l-39中之任一序列。
较佳的, 所述 NLK基因来源于人。
如本发明的实施例列举的, 所述 shRNA的序列含有 SEQ ID NO: 40。 所述 NLK基因干扰慢病毒载体可由将编码所述 shR A的 DNA片段克隆入慢病毒载体 后获得。
所述 NLK基因干扰慢病毒载体可经过病毒包装成为有感染力的病毒颗粒后,感染肿 瘤细胞, 并进而转录出所述 shRNA。
所述 NLK基因干扰慢病毒载体还含有启动子序列和 /或编码肿瘤细胞中可被检测的标 记物的核苷酸序列。 所述可被检测的标记物如绿色荧光蛋白 (GFP) 。
进一步的, 所述慢病毒载体可选自以下任一: pLK0.1-puro、 pLK0.1-CMV-tGFP、 pLKO.1 -puro-CMV-tGFP pLK0.1-CMV-Neo pLK0.1-Neo、 pLKO.1 -Neo-CMV-tGFP pLKO.1 -puro-CMV-TagCFP、 pLKO.1 -puro-CMV-TagYFP、 pLKO.l -puro-CMV-TagRFP、 pLKO.1 -puro-CMV-TagFP635、 pLKO.l -puro-UbC-TurboGFP、 pLKO.l -puro-UbC-TagFP635、 pLKO-puro-IPTG- 1 xLacO pLKO-puro-IPTG-3xLacO pLPl、 pLP2、 pLP/VSV-G、 pENTR/U6 pLenti6/BLOCK-iT-DEST pLenti6-GW/U6-laminshrna pcDNAl .2/V5-GW/lacZ
pLenti6.2/N-Lumio/V5-DEST、 pGCSIL-GFP和 Lenti6.2/N-Lumio/V5-GW/lacZ。
所述分离的分子可用于制备预防或治疗肿瘤的药物。 进一步的, 所述肿瘤选自肺癌、 乳腺癌和前列腺癌之任一。
当用作治疗肿瘤的药物或制剂时, 是将安全有效量的双链 R A或 shRNA施用于哺乳 动物。 当然, 具体剂量还应考虑给药途径、 病人健康状况等因素, 这些都是熟练医师技能 范围之内的。
本发明第三方面, 公开了一种分离的靶标寡核苷酸片段, 为所述降低肿瘤细胞中 NLK 基因表达的分离的分子的靶标寡核苷酸片段, 所述寡核苷酸序列含有选自 SEQ ID N0 1-39 之任一的序列。
所述靶标寡核苷酸片段可应用于筛选肿瘤治疗药物或制剂。
具体的, 可将所述靶标寡核苷酸片段作为作用对象对药物或制剂进行筛选, 以找到可 以抑制或促进人 NLK基因表达的药物作为肿瘤治疗备选药物。 如筛选获得小分子干扰 R A, 将之用作具有抑制肿瘤细胞增殖作用的药物。 诸如抗体药物, 小分子药物等也可所 述靶标寡核苷酸片段作为作用对象。
本发明第四方面, 公开了一种 NLK基因干扰慢病毒, 为将能够在肿瘤细胞中经转录成 为所述 shRNA的核苷酸片段克隆入慢病毒载体后, 在慢病毒包装质粒、 细胞系的辅助下, 经过病毒包装而成。 该慢病毒可感染肿瘤细胞并产生特异性沉默 NLK基因的所述小分子干 扰 R A, 从而抑制肿瘤细胞的增殖。 所述 NLK基因干扰慢病毒可用于制备预防或治疗肿瘤的药物。 进一步的, 所述肿瘤选 自肺癌、 乳腺癌和前列腺癌之任一。
本发明第五方面, 公开了一种用于预防或治疗肿瘤的药物组合物, 所述药物组合物中 含有所述的能够降低 NLK基因表达的分离的分子或 NLK基因干扰慢病毒。
所述药物组合物中还含有药学上可接受的载体或赋形剂。
在制备这些组合物时, 通常将活性成分与赋形剂混合, 或用赋形剂稀释, 或包在可以胶 囊或药囊形式存在的载体中。 当赋形剂起稀释剂作用时, 它可以是固体、 半固体或液体材 料作为赋形剂、 载体或活性成分的介质。 因此, 组合物可以是片剂、 丸剂、 粉剂、 溶液剂、 糖浆剂、 灭菌注射溶液等。 合适的赋形剂的例子包括:乳糖、 葡萄糖、 蔗糖、 山梨醇、 甘露 醇、 淀粉、 微晶纤维素、 聚乙烯吡咯烷酮、 纤维素、 水、 等。 制剂还可包括:湿润剂、 乳化 剂、 防腐剂 (如羟基苯甲酸甲酯和丙酯)、 甜味剂等。
本发明第六方面, 公开了一种预防或治疗对象体内肿瘤的方法, 包括将有效剂量的所 述的药物组合物施用于对象中。
所述肿瘤可选自肺癌、 乳腺癌和前列腺癌之任一。
采用该方法, 所述肿瘤的生长、 增殖、 复发和 /或转移被抑制。 进一步的, 所述肿瘤的 生长、增殖、 复发和 /或转移的至少 10%、 20%、 30%、 40%、 50%、 60%、 70%、 80%、 90%、 95%或 99%的部分被抑制。
进一步的, 采用该方法的对象为人。
本发明第七方面, 公开了一种用于降低肿瘤细胞中的 NLK基因表达的试剂盒, 所述试 剂盒包括: 存在于容器中的所述分离的分子或所述的 NLK基因干扰慢病毒。
本发明设计了针对人 NLK基因的 39个 R Ai靶点序列, 构建相应的 NLK RNAi载体, 其中编码序列 SEQ ID NO 20的 RNAi载体 pGCSIL-GFP-siNLK能够显著下调 NLK基因在 mRNA水平和蛋白水平的表达。 使用慢病毒 (lentivirus, 简写为 Lv) 作为基因操作工具携 带 RNAi载体 pGCSIL-GFP-siNLK能够靶向地将针对 NLK基因的 RNAi序列高效导入人肺 癌 H1299细胞、 乳腺癌 MCF-7细胞和前列腺癌 PC-3细胞, 降低 NLK基因的表达水平, 显 著抑制上述肿瘤细胞的增殖。 因此慢病毒介导的 NLK基因沉默是恶性肿瘤潜在的临床非手 术治疗方式。
本发明提供的可降低肿瘤细胞中 NLK基因表达的分离的分子或者 NLK基因干扰慢病 毒能够特异性抑制人 NLK基因的表达, 尤其是慢病毒, 能够高效侵染靶细胞, 高效率地抑 制靶细胞中 NLK基因的表达, 进而抑制肿瘤细胞的生长, 在肿瘤治疗中具有重要意义。 附图说明
图 1表示 pGCSIL-GFP质粒 DNA图谱。
图 2表示 Lv-siNLK慢病毒侵染人肺癌 H1299细胞、 乳腺癌 MCF-7细胞和前列腺癌 PC-3 细胞 5天后, NLK mRNA的表达水平显著降低。
图 3表示 Lv-siNLK慢病毒侵染人肺癌 H1299细胞 5天后, 引起细胞增殖抑制。
图 4表示 Lv-siNLK慢病毒侵染人乳腺癌 MCF-7细胞 5天后, 引起细胞增殖抑制。 图 5表示 Lv-siNLK慢病毒侵染人前列腺癌 PC-3细胞 5天后, 引起细胞增殖抑制。
图 6使用 NLK抗体在肿瘤组织样本上的免疫组化检测结果
a为乳腺癌, b、 c、 d为肺癌
图 7 浸染 Lv-s iNLK慢病毒的肿瘤细胞在体内的成瘤能力检测结果
a瘤体体积 b 瘤体大小
具体实施方式
发明人发现,采用 R Ai方法下调人 NLK基因的表达后可有效地抑制肿瘤细胞的增殖, 表明 NLK基因是原癌基因, 可作为肿瘤治疗的靶点。 发明人进一步合成和测试了多种针对 NLK基因的 siRNA, 筛选出了可有效抑制 NLK的表达进而抑制人肺癌 H1299细胞、 乳腺 癌 MCF-7细胞和前列腺癌 PC-3细胞增殖和生长的 siRNA, 在此基础上完成了本发明。
本发明提供了一系列干扰人 NLK基因的小干扰 R A ( siRNA)序列, 构建了可特异性 沉默 NLK基因表达的慢病毒。 本发明研究发现, 针对人 NLK基因设计的小干扰 R A及 RNAi慢病毒, 稳定并特异地下调 NLK基因的表达, 并有效地抑制人肿瘤细胞的增殖。 本 发明表明 NLK基因可促进肿瘤细胞生长, 有望成为肿瘤早期诊断和治疗的靶点。 而且, 通 过 RNAi方式沉默 NLK基因的表达, 可作为抑制肿瘤发展的有效手段。
本发明的设计思路为:
本发明通过如下方法来筛选获得一种人 NLK基因 RNAi慢病毒: 从 Genbank中调取人 NLK基因编码区序列, 预测 siRNA位点, 设计针对 NLK基因的有效的 siRNA序列, 合成靶序 列的 Oligo DNA, 退火形成双链 DNA, ^Age mEcoR /限制性内切酶酶切的慢病毒载体连接 产生短发卡 R A慢病毒质粒; 将筛选得到的有效的短发卡 RNA慢病毒质粒与慢病毒包装所 需的辅助载体 (Packing Mix, Sigma-aldrich公司) 共转染 293T细胞, 包装表达 NLK基因的 重组慢病毒颗粒。 收集细胞培养上清中的慢病毒颗粒, 纯化浓縮, 即制得纯净、 稳定表达 NLK siR A的慢病毒 (Lv-siNLK)。
基于上述方法, 本发明提供了 39个干扰 NLK基因的有效靶点 (具体如 SEQ ID NO 1-39 所示), 构建了特异干扰人 NLK基因的慢病毒。
同时本发明还公开一种针对人 NLK基因的 RNAi慢病毒及其制备与应用。
本研究发现, 利用慢病毒介导的 RNAi方法, 在降低 NLK基因在肿瘤细胞中的表达后, 可以有效抑制肿瘤细胞的增殖和生长。 本研究表明, NLK基因是一个原癌基因, 可促进肿 瘤细胞增殖, 在肿瘤发生和发展中具有重要的生物学功能, NLK基因可以为肿瘤治疗的靶 标, 慢病毒介导的 NLK基因特异性沉默可作为肿瘤治疗的一种新手段。
下面结合实施例进一步阐述本发明。 应理解, 实施例仅用于说明本发明, 而非限制本 发明的范围。 实施例中未注明具体条件的实验方法及未说明配方的试剂均为按照常规条件, 如 [美] SambrookJ等著; 黄培堂等译。 分子克隆试验指南, 第三版。 北京: 科学出版社 2002中所述的条件或者制造商建议的条件进行或配置。
实施例 1: 针对人 NLK基因 RNAi慢病毒的制备
1. 构建针对人 NLK基因的 RNAi慢病毒质粒
从 Genbank调取 NLK (NM_016231 )基因信息; 利用上海吉凯基因化学技术有限公司 的设计软件 Genechem设计针对 NLK基因的有效的 siR A靶点。 在 NLK基因的编码序列 ( CDS ) 区域内, 每隔一个碱基起始获得 19-21个碱基的序列, 表 1列出了其中 39条针对 NLK基因的有效 siRNA靶点序列。
表 1 靶向于人 NLK基因的 siRNA靶点序列
Figure imgf000010_0001
14 GCTCAGATCATGTCAAAGTTT 38.10%
15 TATCTCCATTCAGCTGGCATT 42.86%
16 GCAACTGTGTTCTAAAGATTT 33.33%
17 AACTGTGTTCTAAAGATTTGT 28.57%
18 CAGGAAGTTGTTACTCAGTAT 38.10%
19 AGGAAGTTGTTACTCAGTATT 33.33%
20 GCAGCCGTCATTACAGCAA 52.63%
21 TGCAGAACTACTAGGACGAAG 47.62%
22 AGAACTACTAGGACGAAGAAT 38.10%
23 GAACTACTAGGACGAAGAATA 38.10%
24 AACTACTAGGACGAAGAATAT 33.33%
25 CACACCATCACTGGAAGCAAT 47.62%
26 TGAAGGCGCTAAGGCACATAT 47.62%
27 GAAGGCGCTAAGGCACATATA 47.62%
28 AACAGCCATCTCTTCCTGTAC 47.62%
29 CAGGCTACACATGAAGCTGTT 47.62%
30 AAGCTGTTCATCTCCTTTGCA 42.86%
31 CTTTGCAGGATGTTGGTCTTT 42.86%
32 TGCAGGATGTTGGTCTTTGAT 42.86%
33 GACTTTGAGCCTGTCACCAAT 47.62%
34 GAGCCTGTCACCAATCCCAAA 52.38%
35 AAGAGCTTTATTAGTTCCACT 33.33%
36 GAGCTTTATTAGTTCCACTGT 38.10%
37 CTTTATTAGTTCCACTGTTGC 38.10%
38 GTGGGTAGAGAGAATGAGTTT 42.86%
39 GTGTGTGTTATGGACAATTAA 33.33% 针对 siRNA靶点 (以 SEQ ID NO 20为例) 合成单链 DNA Oligo序列, 退火形成两端 含 I和 EcoR I酶切位点粘端的双链 DNA Oligo (表 2 ); 以 Age /禾 B EcoR I限制性内切酶 作用于 pGCSIL-GFP载体 (上海吉凯基因化学技术有限公司提供, 图 1 ), 使其线性化, 琼 脂糖凝胶电泳鉴定酶切片段。
表 2 两端含 Age I和 EcoR I酶切位点粘端的双链 DNA Oligo
Figure imgf000011_0001
通过 I和 EcoR I限制性内切酶将 pGCSIL-GFP质粒酶切,使其线性化,反应体系如 表 3所示, 反应条件: 37°C,
表 3 pGCSIL-GFP质粒酶切反应体系
Figure imgf000012_0001
通过 T4 DNA连接酶将载体 DNA和纯化好的双链 DNA Oligo在适当的缓冲体系中连 接, 反应体系如表 4所示, 反应条件: 16°C, 12 ho
表 4 连接反应体系
Figure imgf000012_0002
将连接产物转化氯化钙制备的新鲜的大肠杆菌感受态细胞 (转化操作参考: 分子克隆 实验指南第二版 55-56 页)。在连接转化产物长出菌克隆表面沾一下,溶于 ΙΟ μΙ Ι^Β培养基, 混匀取 Ι μΐ作为模板; 在以慢病毒载体中 RNAi序列的上下游, 设计通用 PCR 引物 (上游 弓 I 物 序 歹 lj : 5 '-CCTATTTCCCATGATTCCTTCATA-3 ' ; 下 字 弓 I 物 序 歹 U : 5'-GTAATACGGTTATCCACGCG-3' ), 进行 PCR扩增实验, 反应体系如表 5所示, 循环条 件如表 6所示。
表 5 PCR反应体系
Figure imgf000012_0003
上游引物 0.4
下游引物 0.4
Taq聚合酶 0.2
模板 1
ddH20 15.2
Total 20
表 6 PCR反应 ί盾环条件
1 Cycle 30 Cycles 1 Cycle
94 °C 94 °C 55 。C 72 。C 72 。C
30 s 30 s 30 s 30 s 6 min
PCR扩增产物以琼脂糖凝胶电泳鉴定, 鉴定为阳性的克隆进行测序和比对分析, 比对 正确的克隆即为构建成功的含有 NLK-siR A-20 (表 1中 SEQ ID NO 20 ) 序列的 R Ai载 体, 命名为 pGCSIL-GFP-siNLK。
构建 pGCSIL-GFP-siScr 阴性对照质粒, RNAi 阴性对照 siR A 靶序列为 5 ' -TTCTCCG AACGTGTC ACGT-3 ' , 经在 GenBank比对, 不与人基因组任一段序列同源。 构建 pGCSIL-GFP-siScr阴性对照质粒时, 针对 Scr ( scramble) siRNA靶点合成两端含 Age / 7ECOR /酶切位点粘端的双链 DNA Oligo序列 (表 7 ) ,其余构建方法、 鉴定方法及条件 均同 pGCSIL-GFP-siNLK。
表 7 两端含 Age I和 EcoR I酶切位点粘端的双链 DNA Oligo
Figure imgf000013_0001
2. 包装针对人 NLK基因的 RNAi慢病毒 (Lv-siNLK)
以 Qiagen公司的质粒抽提试剂盒提取 RNAi质粒 pGCSIL-GFP-siNLK的 DNA, 配制成 100 ng/μΐ储存液。 转染前 24 h, 用胰蛋白酶消化对数生长期的 293T细胞, 以含 10%胎牛血清的 DMEM完全培养基调整细胞密度为 1.5X 105 细胞 /ml, 接种于 6孔板, 37 V, 5% C02 培养箱 内培养。 待细胞密度达 70%-80%时即可用于转染。 转染前 2 h, 吸出原有培养基, 加入 1.5 ml 新鲜的完全培养基。 按照 Sigma-aldrich公司的 MISSION Lentiviral Packaging Mix试剂盒的说 明, 向一灭菌离心管中加入 Packing Mix (PVM) 20 μΐ, ΡΕΙ 12 μΐ, 无血清 DMEM培养基 400 μ1, 取 20 μΐ 上述抽提的质粒 DNA, 加至上述 PVM/PEI/DMEM混合液。将上述转染混和物在 室温下孵育 15 min, 转移至 293T细胞的培养基中, 37 V, 5% C02 培养箱内培养 16 h。 弃 去含有转染混和物的培养介质, PBS溶液洗涤, 加入完全培养基 2 ml, 继续培养 48 h。 收集 细胞上清液, Centricon Plus-20离心超滤装置(Millipore)纯化和浓縮慢病毒, 步骤如下: (1 ) 4 V , 4000 g 离心 10 min, 除去细胞碎片; (2) 0.45 μηι滤器过滤上清液于 40 ml超速离心管 中; (3 ) 4000 g离心, 10-15 min, 至需要的病毒浓縮体积; (4)离心结束后, 将过滤杯和下 面的滤过液收集杯分开, 将过滤杯倒扣在样品收集杯上, 离心 2 min离心力不超过 1000 g;
( 5 )把离心杯从样品收集杯上移开, 样品收集杯中的即为慢病毒 Lv-siNLK浓縮液。 测定慢 病毒浓縮液的滴度, 分装后于 -80度保存。 同时制备阴性对照 RNAi慢病毒 (Lv-siScr), 包装 和纯化方法同 Lv-siNLK慢病毒, 仅以 pGCSIL-GFP-siScr载体代替 pGCSIL-GFP-siNLK载体。 实施例 2: 实时荧光定量 RT-PCR法检测 NLK基因的沉默效率
处于对数生长期的人肺癌 H1299细胞、乳腺癌 MCF-7细胞和前列腺癌 PC-3细胞进行胰酶 消化,制成细胞悬液(细胞数约为 5x l04/ml)接种于 6孔板中,培养至细胞融合度达到约 30%。 根据侵染复数(MOI)值, 加入适宜量的病毒(H1299的 MOI=10, PC-3和 MCF-7 MOI=20), 培养 24 h后更换培养基, 待侵染时间达到 5天后, 收集细胞。根据 Invitrogen公司的 Trizol操作 说明书, 抽提总 R A。 根据 Promega公司的 M-MLV操作说明书, 将 R A逆转录获得 cDNA, 反应体系见表 7, 反应条件: 42°C反应 l h, 然后在 70°C水浴锅中水浴 10 min, 使逆转录酶失 活。
表 7 逆转录反应体系
Figure imgf000014_0001
NLK基因的引物序列: 上游弓 I物为 5'-ATCATCAGCACTCGCATCATC-3', 下游引物为 5'-GACCAGACAACACCAAAGGC-3'。 以管家基因 GAPDH为内参, 引物序列: 上游引物为 5'-TGACTTCAACAGCGACACCCA-3' , T¾l¾ l J¾5'-CACCCTGTTGCTGTAGCCAAA-3O 采用 TP800型 Real time PCR仪 ( TAKARA) 进行定量检测, 反应体系见表 8。 反应程序为: 预变性 95 °C, 15 s; 之后每一步变性 95 °C, 5 s; 退火延伸 60°C, 30 s; 共进行 45个循环。 每 次在延伸阶段读取吸光值。
表 8 Real-time PCR反应体系
Figure imgf000015_0001
PCR结束后, 95 °C变性 l min, 然后冷却至 55 °C, 使 DNA双链充分结合。 从 55 °C开始到 95 °C, 每一步增加 0.5 °C, 保持 4 s, 同时读取吸光值, 制作熔解曲线。 采用 2-ΔΔΩ分析法计算 侵染了 NLK mR A的表达丰度。 与侵染对照慢病毒 (Lv-siScr) 的细胞比较, 实验组中人肺 癌 H1299细胞、 乳腺癌 MCF-7细胞和前列腺 PC-3细胞的 NLK mR A表达水平分别下降了 50.8%、 83.4%和 82.1% (图 2)。 实施例 3 : 检测侵染 Lv-siNLK慢病毒的肿瘤细胞的增殖能力
处于对数生长期的人肺癌 H1299细胞、 乳腺癌 MCF-7细胞和人前列腺癌 PC-3细胞进 行胰酶消化, 制成细胞悬液 (细胞数约为 5x l04/ml) 接种于 6孔板中, 培养至细胞融合度 达到约 30%。 根据侵染复数 (MOI) 值, 加入适宜量的病毒 (H1299 的 MOI=10, MCF-7 的 MOI=20, PC-3的 MOI=20), 培养 24 h后更换培养基, 待侵染时间达到 5天后, 收集处 于对数生长期的各实验组细胞。 完全培养基重悬成细胞悬液 (2x l04/ml), 以细胞密度约为 2000个 /孔, 接种 96孔板。 每组 5个复孔, 每孔 100 μ1。 铺好板后, 置 37°C、 5%C02培养 箱培养。从铺板后第二天开始,每天用 Cellomics ArrayScan VTI 高内涵筛选分析仪(Thermo Scientific) 检测读板一次, 连续检测读板 5天。 通过调整 Cellomics仪的输入参数, 准确地 计算出每次扫描孔板中的带绿色荧光的细胞的数量, 对数据进行统计绘图, 绘出细胞增殖 曲线 (结果如图 3-图 5所示)。 结果表明, Lv-siNLK慢病毒侵染的人肺癌 H1299细胞和乳 腺癌 MCF-7细胞和人前列腺癌 PC-3细胞在体外培养 5天后,活力细胞数分别下降了, 84.4%、 91.0%和 88.5%, 表明 NLK基因沉默导致肿瘤细胞增殖能力被抑制。
实施例 4 肿瘤细胞中 NLK基因过表达的试验
组织样本: 人乳腺癌, 肺癌的组织样本
NLK抗体: 购自 Sigma公司
试验方法:
取出组织芯片, 将组织芯片在 60°C恒温箱中烘烤 30分钟。 然后对组织芯片脱蜡, 脱蜡过 程为: 二甲苯 15分钟, 二甲苯: 乙醇 =1 :1混液中, 无水乙醇中, 95%乙醇中, 85%乙醇中, 75%乙醇中, 蒸馏水中依次浸泡 10分钟; 然后用蒸馏水或 PBS配置新鲜的 3%¾02, 室温 封闭 10分钟; 抗原修复在微波炉里高火加热 0.01M柠檬酸钠缓冲溶液 (pH6.0) 至沸腾后 将组织芯片放入, 低火维持 20分钟; 自然冷却至室温后, 置入蒸馏水中浸泡 10分钟; 10% 血清(TBS配制)封闭 30分钟; 吸弃血清, 勿洗加入 NLK抗体(1 : 100稀释)孵育过夜; TBS洗 2遍, 每次 5分钟; 加入 HRP标记的羊抗兔二抗, 室温孵育 60分钟; TBS洗 4遍, 每次 5分钟; 加入 DAB染色, 直到显浅黄色为止, 放入蒸馏水中终止反应; 用苏木浸 30 秒, 清水漂洗 7-8遍; 脱水封片, 于 75%乙醇, 85%乙醇, 95%乙醇, 无水乙醇, 二甲苯: 乙醇 =1 :1混液, 二甲苯中, 依次浸置 5分钟; 取出后, 滴加 30ul中性树胶, 用盖玻片封片, 晾干, 观察结果, 拍照。 (结果如图 6)
结果表明:
使用 NLK抗体对不同肿瘤组织进行免疫组化表达检测, 结果发现, 在人乳腺癌, 肺癌的组 织样本中, 都能发现 nlk基因编码蛋白的高表达。 图中深灰色代表表达阳性。基于此实验结 果, 认为可通过检测组织细胞 nlk基因的表达来辅助诊断癌症。 实施例 5: 浸染 Lv-siNLK慢病毒的肿瘤细胞在体内的成瘤能力
处于对数生长期的人乳腺癌 MCF-7 细胞进行胰酶消化, 制成细胞悬液 (细胞数约为 5xl04/ml) 接种于 6孔板中, 培养至细胞融合度达到约 30%。 根据侵染复数 (MOI: 20), 加入适宜量的病毒, 培养 24 h后更换培养基, 待侵染时间达到 5天后, 收集处于对数生长 期的实验组和对照组细胞。 完全培养基重悬成细胞悬液。 用一次性注射器将细胞悬液 (2 X 106cells/鼠) 注射到 5-6周龄雌性 BALB/c裸鼠右侧腋窝。 实验组注射感染 Lv-siNLK慢病毒 的 MCF-7细胞, 对照组注射感染 Lv-siScr慢病毒的 MCF-7细胞, 每组 6只裸鼠。注射后伺 养裸鼠至肉眼可见瘤体 (一周), 然后用 NightOWL ll 983 发光成像系统 ( Berthold Technologies) 测量瘤块的体积 (如图 7a) 和重量 (如图 7b)。 结果表明: 实验组的肿瘤细 胞体内成瘤能力远低于对照组。 基于此实验结果, 认为 Lv-S1NLK可以在体内抑制肿瘤细胞 的增殖。

Claims

权利要求书
1. 一种抑制或降低肿瘤细胞生长、 增殖、 分化和 /或存活的方法, 该方法包括: 向肿瘤细 胞施用一种能够特异性抑制 NLK基因的转录或翻译, 或能够特异性抑制 NLK蛋白的表 达或活性的分子, 以此来抑制肿瘤细胞的生长、 增殖、 分化和 /或存活。
2. 如权利要求 1所述的方法, 其特征在于, 所述分子包括: 核酸、 碳水化合物、 脂类、 小分子、 多肽或肽。
3. 如权利要求 2所述的方法, 其特征在于, 所述核酸包括: 反义寡核苷酸、 双链 RNA、 核 酶、 esiRNA或者 shRNA。
4. 如权利要求 3所述的方法, 其特征在于, 所述双链 RNA、 核酶、 esiRNA或者 shRNA含 有 NLK基因的启动子序列或 NLK基因的信息序列。
5. 如权利要求 4所述的方法, 其特征在于, 所述双链 RNA为小干扰 RNA。
6. 如权利要求 5所述的方法, 其特征在于, 所述小干扰 RNA包含正义链和反义链, 所述 正义链含有与 NLK基因中 15-27个连续的核苷酸基本相同的核苷酸序列, 且所述正义 链和反义链共同形成■二聚体。
7. 如权利要求 6所述的方法, 其特征在于, 所述小干扰 RNA的正义链与 NLK基因中的 靶序列基本相同, 所述 NLK基因中的靶序列含有 SEQ ID NO : 1-39中之任一序列。
8. 如权利要求 1所述的方法, 其特征在于, 所述 NLK基因来源于人。
9. 如权利要求 1所述的方法, 其特征在于, 所述肿瘤细胞选自其生长与 NLK蛋白的表达 或活性相关的肿瘤细胞。
10.如权利要求 9所述的方法, 其特征在于, 所述肿瘤细胞选自肺癌、 乳腺癌和前列腺癌 细胞之任一。
11.如权利要求 1所述的方法, 其特征在于, 所述分子的施用量为足够降低 NLK基因的转 录或翻译, 或者足够降低 NLK蛋白的表达或活性的剂量。
12.如权利要求 11中所述的方法,其特征在于,所述 NLK基因的表达至少被降低 50%、 80%、
90%、 95%或 99%。
13.一种降低肿瘤细胞中 NLK基因表达的分离的分子, 所述分子为:
a) 双链 RNA, 所述双链 RNA中含有能够在严紧条件下与 NLK基因杂交的核 苷酸序列; 或者
b) shRNA, 所述 shRNA中含有能够在严紧条件下与 NLK基因杂交的核苷酸 序列; 或者 c) 干扰慢病毒载体, 为含有编码 b)中所述 shRNA的基因片段的慢病毒载体, 能表达所述 shRNA。
如权利要求 13所述的分子, 其特征在于:
所述双链 RNA包含第一链和第二链, 且所述第一链与 NLK基因中 15-27个连 续的核苷酸基本相同, 而所述第二链与第一链基本互补;
所述 shRNA包含正义 RNA片段和反义 RNA片段,所述正义 RNA片段与 NLK 基因中 15-27个连续的核苷酸基本相同,而所述反义 RNA片段与正义 RNA片段基 本互补,且所述正义 RNA片段和反义 RNA片段中间由茎环片段分隔。
如权利要求 14所述的分子, 其特征在于, 所述 NLK基因来源于人。
如权利要求 14所述的分子, 其特征在于, 所述茎环片段的序列选自以下任一: UUCAAGAGA、 AUG、 CCC、 UUCG、 CCACC、 CTCGAG、 AAGCUU禾 B CCACACC。 如权利要求 14所述的分子, 其特征在于, 所述所述双链 RNA的第一链或所述 shRNA 的正义 RNA片段与 NLK基因中的靶序列基本相同, 所述 NLK基因中的靶序列含有 SEQ ID ΝΟ:1-39中之任一的序列。
如权利要求 14所述的分子, 其特征在于, 所述 shRNA的序列含有 SEQ ID NO: 40。 如权利要求 14所述的分子,其特征在于,所述慢病毒载体选自以下任一: pLKO.l-puro, pLK0.1-CMV-tGFP pLKO.1 -puro-CMV-tGFP pLK0.1-CMV-Neo pLK0.1-Neo pLKO.1 -Neo-CMV-tGFP、 pLKO.1 -puro-CMV-TagCFP、 pLKO.1 -puro-CMV-TagYFP、 pLKO.1 -puro-CMV-TagRFP、 pLKO.1 -puro-CMV-TagFP635、
pLKO.1 -puro-UbC-TurboGFP、 pLKO.1 -puro-UbC-TagFP635、 pLKO-puro-IPTG- lxLacO、 pLKO-puro-IPTG-3xLacO pLPl、 pLP2、 pLP/VSV-G pENTR/U6、
pLenti6/BLOCK-iT-DEST、 pLenti6-GW/U6-laminshrna pcDNA 1.2/V5-GW/lacZ pLenti6.2/N-Lumio/V5-DEST pGCSIL-GFP和 Lenti6.2/N-Lumio/V5-GW/lacZ。
一种分离的权利要求 13所述的分子的靶标寡核苷酸片段, 所述寡核苷酸片段包含 NLK 基因的片段, 全长 NLK基因的核苷酸片段除外。
如权利要求 20所述的分离的寡核苷酸片段,其特征在于,所述寡核苷酸序列与全长 NLK 基因的核苷酸序列中至少 10个、 15个、 20个、 25个、 30个、 35个、 40个、 45个或 50个连续的核苷酸基本相同。
如权利要求 20所述的分离的寡核苷酸片段, 其特征在于, 所述寡核苷酸序列含有选自 SEQ ID NO 1-39之任一的序列。 一种 NLK基因干扰慢病毒, 为将任一权利要求 13-19所述的分子中的所述干扰慢病毒 载体克隆入慢病毒载体后, 在慢病毒包装质粒、 细胞系的辅助下, 经过病毒包装而 成。
一种用于预防或治疗肿瘤的药物组合物, 所述药物组合物含有:
( 1 ) 任一权利要求 13-19所述的分子, 或者
( 2) 权利要求 23所述的 NLK基因干扰慢病毒。
—种预防或治疗对象体内肿瘤的方法, 所述方法包括: 将有效剂量的如权利要求 24所 述的药物组合物施用于对象中。
如权利要求 25所述的方法, 其特征在于, 所述肿瘤选自肺癌、 乳腺癌和前列腺癌之任 如权利要求 25所述的方法, 其特征在于, 所述肿瘤的生长、 增殖、 复发和 /或转移被 抑制。
如权利要求 25所述的方法, 其特征在于, 所述对象为人。
—种用于降低肿瘤细胞中的 NLK基因表达的试剂盒, 其特征在于, 所述试剂盒选自以 下方案中的任一种:
( 1 ) 包括: 存在于容器中的, 根据权利要求 13-19中任一所述的分子, 或者
( 2) 包括: 存在于容器中的, 根据权利要求 23所述的 NLK基因干扰慢病毒。
PCT/CN2012/070537 2011-12-23 2012-01-18 人nlk基因相关的用途及其相关药物 WO2013091293A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/367,926 US9334502B2 (en) 2011-12-23 2012-01-18 Use of human NLK gene and associated drugs thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110440594.4A CN103173529B (zh) 2011-12-23 2011-12-23 人nlk基因相关的用途及其相关药物
CN201110440594.4 2011-12-23

Publications (1)

Publication Number Publication Date
WO2013091293A1 true WO2013091293A1 (zh) 2013-06-27

Family

ID=48633716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070537 WO2013091293A1 (zh) 2011-12-23 2012-01-18 人nlk基因相关的用途及其相关药物

Country Status (3)

Country Link
US (1) US9334502B2 (zh)
CN (1) CN103173529B (zh)
WO (1) WO2013091293A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791566A (zh) * 2019-10-29 2020-02-14 徐州市中心医院 人shcbp1基因的用途及相关产品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104225618B (zh) * 2013-06-09 2017-05-03 上海吉凯基因化学技术有限公司 人nlk基因和egfr基因治疗肿瘤的用途及其相关药物
CN104774928B (zh) * 2015-03-18 2018-07-24 上海吉凯基因化学技术有限公司 人rrs1基因的应用以及抑制剂
CN114214362B (zh) * 2021-07-12 2022-11-15 湖南中医药大学第一附属医院((中医临床研究所)) Ehbp1l1基因抑制剂作为人乳腺癌治疗药物的应用
KR20230168532A (ko) 2022-06-07 2023-12-14 재단법인 경북자동차임베디드연구원 자급자족 식물재배 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026075A2 (en) * 2006-08-31 2008-03-06 Vereniging Het Nederlands Kanker Instituut Treatment of intracellular bacterial infections with a protein kinase inhibitor or an as160 polypeptide activator
CN101437822A (zh) * 2006-05-11 2009-05-20 Irm责任有限公司 作为蛋白激酶抑制剂的化合物和组合物
CN101489547A (zh) * 2006-05-11 2009-07-22 科森生物科学公司 大环激酶抑制剂
WO2011118994A2 (ko) * 2010-03-25 2011-09-29 가톨릭대학교 산학협력단 간암 진단 마커 및 치료제로서의 엔엘케이

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315570B1 (ko) * 2010-03-25 2013-10-08 가톨릭대학교 산학협력단 간암 진단 마커 및 치료제로서의 nlk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101437822A (zh) * 2006-05-11 2009-05-20 Irm责任有限公司 作为蛋白激酶抑制剂的化合物和组合物
CN101489547A (zh) * 2006-05-11 2009-07-22 科森生物科学公司 大环激酶抑制剂
WO2008026075A2 (en) * 2006-08-31 2008-03-06 Vereniging Het Nederlands Kanker Instituut Treatment of intracellular bacterial infections with a protein kinase inhibitor or an as160 polypeptide activator
WO2011118994A2 (ko) * 2010-03-25 2011-09-29 가톨릭대학교 산학협력단 간암 진단 마커 및 치료제로서의 엔엘케이

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOI, KWANG-WOOK ET AL.: "Rotation of photoreceptor clusters in the developing drosophil eye requires the nemo gene.", CELL, vol. 78, no. 1, 15 July 1994 (1994-07-15), pages 125 - 136 *
DONG, SUWEI.: "NLK-shRNA inhibits tumor cell growth in H1299 lung adenocarcinoma cell line.", CHINESE MASTER'S THESES FULL-TEXT DATABASE MEDICINE AND HEALTH SCIENCES, 15 September 2011 (2011-09-15) *
LIU, HONGQIANG ET AL.: "Development in neuroleukin research.", CHINESE NEW DRUGS JOURNAL, vol. 9, no. 10, 30 October 2000 (2000-10-30), pages 673 - 676 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791566A (zh) * 2019-10-29 2020-02-14 徐州市中心医院 人shcbp1基因的用途及相关产品
CN110791566B (zh) * 2019-10-29 2023-06-27 徐州市中心医院 人shcbp1基因的用途及相关产品

Also Published As

Publication number Publication date
US20150005370A1 (en) 2015-01-01
CN103173529B (zh) 2015-04-29
US9334502B2 (en) 2016-05-10
CN103173529A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
Bruno et al. Che-1 promotes tumor cell survival by sustaining mutant p53 transcription and inhibiting DNA damage response activation
JP7392954B2 (ja) トリプルネガティブ乳癌の治療方法
KR20100077160A (ko) 근육 및 심장 강화제의 타겟으로서 trim72의 용도
WO2013091293A1 (zh) 人nlk基因相关的用途及其相关药物
US20200326343A1 (en) Gene and its expression product promoting the occurrence and development of cancer and application
CN102433383B (zh) 人stim1基因的用途及其相关药物
CN109288855B (zh) 试剂在制备药物中的用途、干涉片段、抑制肝癌肿瘤干细胞自我更新方法和治疗肝癌药物
CN105586391B (zh) 人gtpbp4基因的用途及其相关药物
US9434949B2 (en) Uses of the human ZFX gene and drugs associated with same
JP5611953B2 (ja) 癌の処置における治療標的としてのチロシンキナーゼ受容体tyro3
Ye et al. The research progress of the interactions between miRNA and Wnt/beta-catenin signaling pathway in breast cancer of human and mice
CN103468785B (zh) 人sema4c基因的用途及其相关药物
CN103656674B (zh) 人eIF5B基因的用途及其相关药物
Xu et al. ApoM suppresses kidney renal clear cell carcinoma growth and metastasis via the Hippo-YAP signaling pathway
CN113491772B (zh) P4hb抑制剂在治疗或预防肿瘤恶病质中的用途
CN110904104B (zh) 人hist1h2bk基因的用途及相关产品
WO2014066498A1 (en) Treatment of metastatic breast cancer
Ren et al. PAPAS promotes differentiation of mammary epithelial cells and suppresses breast carcinogenesis
CN112725436A (zh) 一种人circMKLN1基因的用途及相关产品
CN110684845A (zh) 人ptp4a3基因的用途及其相关药物
CN105803053B (zh) 人rbm17基因的用途及其相关药物
CN110643705A (zh) 人dgkz基因的用途及其相关药物
CN111020036A (zh) 人circ-STXBP5L的用途及相关产品
CN106267208B (zh) Rps15a基因的用途及其相关药物
CN105803056B (zh) 人iars2基因的用途及其相关药物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14367926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860923

Country of ref document: EP

Kind code of ref document: A1