WO2013089162A1 - 薄型電子機器の冷却構造及びそれを用いた電子装置 - Google Patents
薄型電子機器の冷却構造及びそれを用いた電子装置 Download PDFInfo
- Publication number
- WO2013089162A1 WO2013089162A1 PCT/JP2012/082264 JP2012082264W WO2013089162A1 WO 2013089162 A1 WO2013089162 A1 WO 2013089162A1 JP 2012082264 W JP2012082264 W JP 2012082264W WO 2013089162 A1 WO2013089162 A1 WO 2013089162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electronic device
- condensing
- thin
- cooling structure
- thin electronic
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/208—Liquid cooling with phase change
- H05K7/20809—Liquid cooling with phase change within server blades for removing heat from heat source
Definitions
- the present invention relates to a cooling structure for a thin electronic device such as a blade server, and more particularly, to a cooling structure for a thin electronic device that employs a boiling cooling system that transports and dissipates heat by a phase change cycle of refrigerant vaporization and condensation, and the cooling structure thereof.
- the present invention relates to the electronic device used.
- a blade server is known as an example of such a thin electronic device.
- the blade server is a server computer in a form in which electronic components such as a central processing unit (CPU), a memory, and a hard disk are mounted on a substrate that can be inserted and removed.
- a plurality of blade servers are mounted in the same casing, and are operated and managed as one electronic device (server device).
- the blade server since an electronic component such as a CPU mounted on the blade server is a heat generating element, it is necessary to provide a cooling structure.
- a cooling structure using a boiling cooling (thermosyphon) system that transports and dissipates heat using a phase change cycle of refrigerant vaporization and condensation and reflux by gravity is known. Yes.
- the boiling cooling system since the refrigerant moves as a gas-liquid two-phase flow, the heat transport capability can be improved.
- An example of a server device that employs such a boiling cooling system and uses a blade server is described in Patent Document 1.
- the server device described in Patent Document 1 includes a plurality of server modules and one or a plurality of fan modules.
- the server module has a housing that houses a mother board on which an electronic component such as a chip set including a CPU, a memory, and a semiconductor element is placed, and a part of a boiling type cooling device that cools the heat generated by the CPU.
- the fan accommodated in the unit of a fan module is set as the structure which ventilates an inside through opening of a server module housing
- the boiling cooling device for a server device described in Patent Document 1 connects an evaporator placed in a server module housing, a condenser placed outside the server module housing, and an evaporator and a condenser. And a plurality of pipes.
- the evaporator is a box that holds the refrigerant in an internal space in a sealed manner, and is thermally connected to the CPU on one outer plane of the box, and a heat sink is attached to the opposite outer plane.
- the condenser is disposed in the fan module unit, and the ventilation path of the fan module is constituted by the heat radiation member attached to the pipe and the mother board.
- the shape of the condenser is substantially the same as that of the fan module. Furthermore, a condenser is inserted from an opening provided in an electronic board (middle plane) that electrically connects modules such as a server module and a fan module, and is connected to the fan module.
- an electronic board (middle plane) that electrically connects modules such as a server module and a fan module, and is connected to the fan module.
- the area of the opening is small, the pressure loss when the ventilation passes through the opening increases. As a result, there is a problem that the fan needs to be used at a high rotational speed in order to obtain an air volume necessary for cooling, and the driving power of the fan increases.
- the object of the present invention is the above-mentioned problem, in the cooling structure for thin electronic devices, if the sufficient cooling performance is obtained with the electronic device mounted, the power consumption of the electronic device will increase.
- An object of the present invention is to provide a cooling structure for a thin electronic device that solves the problem and an electronic device using the same.
- the thin electronic device cooling structure includes a thin flat plate container having an opening, a substrate that is housed in the thin flat plate container, on which the heating element is mounted, is thermally connected to the heating element, and stores the refrigerant.
- the condensing part is provided with a condensing plate part extending in the vertical direction on the inner surface of the condensing substrate of the condensing container constituting the condensing part.
- An electronic device using a thin electronic device cooling structure includes a thin electronic device cooling structure and an electronic device housing that houses a plurality of thin electronic devices.
- a flat plate container having a portion, a substrate on which the heating element is mounted, a vaporizer that is thermally connected to the heating element and stores the refrigerant, and a vapor phase refrigerant vaporized in the evaporation unit
- the opening part is arrange
- the cooling structure for a thin electronic device of the present invention it is possible to obtain a cooling structure for a thin electronic device that has sufficient cooling performance when mounted on the electronic device and can reduce power consumption of the electronic device.
- FIG. 1 is a perspective view showing a configuration of a cooling structure for a thin electronic device according to a first embodiment of the present invention.
- FIG. 2A is a front view showing a configuration of a cooling structure for a thin electronic device according to the first embodiment of the present invention.
- FIG. 2B is a top view showing the configuration of the cooling structure of the thin electronic device according to the first embodiment of the present invention.
- FIG. 3 is a perspective view schematically showing a configuration of an electronic device using a cooling structure for a thin electronic device according to a second embodiment of the present invention.
- FIG. 4 is a perspective view schematically showing a configuration when a plurality of thin electronic devices are mounted, which is an electronic device using a cooling structure for a thin electronic device according to a second embodiment of the present invention.
- FIG. 5 is a front sectional view in the vicinity of a condensing part of an electronic device using the cooling structure for a thin electronic device according to the second embodiment of the present invention.
- FIG. 6 is a side cross-sectional view in the vicinity of a condensing part of an electronic device using the cooling structure for a thin electronic device according to the second embodiment of the present invention.
- FIG. 7 is a perspective view schematically showing the configuration of an electronic device using a cooling structure for a thin electronic device according to the third embodiment of the present invention.
- FIG. 8 is a front cross-sectional view in the vicinity of a heat radiating portion of an electronic device using a thin electronic device cooling structure according to a third embodiment of the present invention.
- FIG. 9 is a side cross-sectional view in the vicinity of a heat radiating portion of an electronic device using the thin electronic device cooling structure according to the third embodiment of the present invention.
- FIG. 10 is a front cross-sectional view in the vicinity of another heat radiating portion of an electronic device using the cooling structure for a thin electronic device according to the third embodiment of the present invention.
- FIG. 1 is a perspective view showing a configuration of a cooling structure 100 for a thin electronic device according to a first embodiment of the present invention.
- 2A and 2B are diagrams showing a configuration of the cooling structure 100 of the thin electronic device, FIG. 2A is a front view, and FIG. 2B is a top view.
- the thin electronic device cooling structure 100 is housed in a thin flat plate container 110, and includes a substrate 120 on which a heating element 500 is mounted, and a cooling structure.
- the cooling structure is thermally connected to the heating element 500, and stores an evaporating unit 130 that stores the refrigerant, a condensing unit 140 that condenses and liquefies the gas-phase refrigerant vaporized by the evaporating unit 130, and a heat-condensing unit 130 and a condensing unit. And a pipe 150 connecting the section 140.
- 2A is a front view of a part of the thin flat plate container 110 seen through
- FIG. 2B is a top view.
- the thin flat plate container 110 includes an opening 112, and at least a part of the condensing unit 140 is disposed outside the thin flat plate container 110 through the opening 112. As shown in FIG.
- the condensing unit 140 includes a condensing plate unit 144 extending in the vertical direction on the inner surface of the condensing substrate 142 of the condensing container constituting the condensing unit 140.
- substrate 142 is comprised so that it may connect with the thermal radiation part 160 thermally.
- the refrigerant for example, a low-boiling point refrigerant such as hydrofluorocarbon or hydrofluoroether which is an insulating and inert material can be used.
- the material which comprises the evaporation part 130 and the condensation part 140 can use the metal excellent in the heat conductivity, for example, aluminum, copper, etc.
- a resin tube such as rubber with a metal attached to the inner surface can be used.
- the heat dissipating part 160 is configured using a metal having excellent heat conductivity, such as aluminum or copper, and can be formed into a fin shape composed of a plurality of thin plates as shown in FIG. Next, the operation of the thin electronic device cooling structure 100 according to the present embodiment will be described in detail.
- the cooling structure 100 of the thin electronic device is used by disposing a heating element 500 such as a central processing unit (CPU) below the evaporation unit 130 and thermally connecting to the evaporation unit 130.
- a heating element 500 such as a central processing unit (CPU) below the evaporation unit 130 and thermally connecting to the evaporation unit 130.
- the amount of heat from the heating element 500 is transmitted to the refrigerant through the evaporation container of the evaporator 130, and the refrigerant is vaporized.
- the refrigerant vapor evaporated in the evaporation unit 130 flows into the condensing unit 140 through the pipe 150.
- the refrigerant vapor dissipates heat in the condensing unit 140 and is condensed and liquefied.
- the cooling structure 100 of the thin electronic device has a configuration using a boiling cooling system in which heat is transported and radiated by a refrigerant vaporization and condensation cycle.
- at least a part of the condensing unit 140 is disposed outside the thin flat plate container 110 through the opening 112 of the thin flat plate container 110.
- at least a part of the condensing unit 140 can be disposed in a ventilation path by a cooling fan included in an electronic device to which the thin flat plate container 110 is mounted.
- the heat generated in the heating element 500 such as a CPU can be drawn out from the opening 112 of the thin flat plate container 110 by the phase change of the refrigerant, and can be transported by heat to the air flow path near the cooling fan. It becomes possible. As a result, the heat release of the refrigerant vapor in the condensing unit 140 is promoted, and the cooling efficiency of the cooling structure 100 of the thin electronic device can be improved.
- the condensing unit 140 includes a condensing plate unit 144 extending in the vertical direction on the inner surface of the condensing substrate 142 of the condensing container constituting the condensing unit 140.
- the condensation substrate 142 is configured to be thermally connected to the heat radiating unit 160. Thereby, improvement of the heat exchange capability between the refrigerant
- FIG. 3 is a perspective view schematically showing a configuration of an electronic device 1000 using a cooling structure for a thin electronic device according to the second embodiment of the present invention.
- An electronic device 1000 using a thin electronic device cooling structure includes a thin electronic device cooling structure 100 and an electronic device housing 600 that houses a plurality of thin electronic devices.
- a blade server 200 is used as a thin electronic device, and the blade server 200 includes a cooling structure 100 for the thin electronic device.
- the cooling structure 100 of the thin electronic device is the same as that in the first embodiment.
- the thin electronic device 110 is housed in the thin flat plate container 110 and the thin flat plate container 110, and generates heat.
- a substrate 120 on which the body 500 is mounted and a cooling structure are included.
- the cooling structure is thermally connected to the heating element 500, and stores an evaporating unit 130 that stores the refrigerant, a condensing unit 140 that condenses and liquefies the gas-phase refrigerant vaporized by the evaporating unit 130, and a heat-condensing unit 130 and a condensing unit. And a pipe 150 connecting the section 140.
- the thin flat plate container 110 includes an opening 112, and at least a part of the condensing unit 140 is disposed outside the thin flat plate container 110 through the opening 112.
- the condensing unit 140 includes a condensing plate unit 144 extending in the vertical direction on the inner surface of the condensing substrate 142 of the condensing container constituting the condensing unit 140. And the condensation board
- substrate 142 is comprised so that it may connect with the thermal radiation part 160 thermally.
- the heat radiating unit 160 is disposed on the outer surface side of the condensing substrate 142 and is fixed to the condensing unit 140. Note that the operation of the cooling structure 100 for thin electronic devices is the same as that of the first embodiment, and a description thereof will be omitted.
- the electronic device housing 600 includes a blower 620 provided with a cooling fan 610.
- the electronic apparatus housing 600 includes a middle plane 630 that is an electronic board that electrically connects the blade server 200, and the middle plane 630 is provided with a plurality of signal or power supply connectors 640.
- the blade server 200 includes an electronic component such as a memory on the substrate 120 in addition to the CPU as the heating element 500.
- a plurality of blade servers 200 are connected to the connector 640 on the middle plane 630 according to the processing capability required for the electronic device 1000 using the cooling structure of the thin electronic device.
- FIG. 4 shows a case where two blade servers 200 are accommodated in the electronic device casing 600.
- An area other than the area where the middle plane 630 of the electronic apparatus housing 600 is formed serves as a ventilation path for cooling the blade server 200, and a fan box including a cooling fan 610 is connected thereto.
- This fan box functions as a blower 620 that is an air duct (air flow path) for flowing cooling air to the blade server 200.
- a heating element 500 such as a CPU is thermally connected to the evaporation unit 130, and the evaporation unit 130 is connected to the condensing unit 140 by a pipe 150.
- the condensing unit 140 and, for example, the fin-shaped heat radiating unit 160 is disposed inside the air blowing unit 620.
- the air blowing unit 620 By adopting such a configuration, it is possible to collect heat from a CPU or the like having a large calorific value and heat transport it to a blower 620 (air duct) having a large flow rate and flow velocity of cooling air.
- the cooling efficiency of the CPU can be improved, and the driving power of the cooling fan 610 provided in the electronic device can be reduced. That is, according to the electronic apparatus 1000 using the thin electronic device cooling structure according to the present embodiment, sufficient cooling performance can be obtained with the thin electronic device mounted, and power consumption can be reduced.
- FIG. 5 is a front sectional view in the vicinity of the condensing unit 140 according to the present embodiment
- FIG. 6 is a side sectional view.
- the condensing unit 140 includes a fin-like condensing plate portion 144 extending in the vertical direction on the inner surface of the condensing substrate 142 of the condensing container constituting the condensing unit 140.
- a heat radiating portion 160 is disposed on the outer surface side of the condensation substrate 142 in a thermally connected manner.
- the heat radiating portion 160 includes a heat radiating plate portion 162 composed of a plurality of heat radiating plates (fins). In this embodiment, the extending direction of the heat radiating plate portion 162 is substantially perpendicular to the vertical direction as shown in FIG.
- the CPU having a large calorific value is a blower 620 (air flow path) that is a high flow velocity region outside the thin flat plate container 110. ) Can be cooled. That is, it is not necessary to cool the CPU having a large calorific value on the substrate 120 accommodated in the thin flat plate container 110.
- FIG. 7 is a perspective view schematically showing a configuration of an electronic device 2000 using the cooling structure for a thin electronic device according to the third embodiment of the present invention.
- An electronic device 2000 using a thin electronic device cooling structure includes a thin electronic device cooling structure 300 and an electronic device casing 700 that houses a plurality of thin electronic devices.
- FIG. 7 shows a case where two blade servers 400 are installed.
- the electronic device 2000 using the thin electronic device cooling structure according to the present embodiment is different from the second embodiment in that the heat radiating unit 760 is disposed in the electronic device casing 700. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
- FIG. 8 is a front sectional view in the vicinity of the heat radiating portion 760 of the electronic device 2000 using the cooling structure of the thin electronic device according to the present embodiment
- FIG. 9 is a side sectional view. As shown in FIGS.
- the heat dissipating unit 760 is disposed in the air blowing unit 720 of the electronic device casing 700.
- the heat dissipating part 760 includes a heat dissipating plate part 762 composed of a plurality of heat dissipating plates (fins), and the extending direction of the heat dissipating plate part 762 can be configured to be substantially perpendicular to the vertical direction as shown in FIG. .
- the air blowing unit 720 includes a cooling fan 710 and functions as a fan box.
- the cooling structure 300 of the thin electronic device does not include a heat radiating unit, and only the condensing unit 340 is connected to the thin flat plate container 310 using the insertion / extraction mechanism 370.
- the insertion / extraction mechanism 370 presses the condensation part 340 in a direction substantially perpendicular to the insertion / extraction direction (arrow A in FIG. 7) so that the condensation part 340 is thermally connected to the heat radiating plate part 762.
- the insertion / extraction mechanism 370 can be configured using an elastic member such as a spring.
- a thermal interface material 770 (Thermal Interface Material: TIM) such as a heat radiating sheet is interposed between the condensing part 340 and the heat radiating plate part 762, so that a more stable and efficient thermal connection can be achieved. .
- the condensing unit 340 can move in accordance with the insertion / extraction by the insertion / extraction mechanism 370 while being connected to the evaporation unit 330.
- the heat radiating unit 760 is disposed in the air blowing unit 720 of the electronic device casing 700. Therefore, when hot-plugging the blade server 400, only the condensing unit 340 needs to pass through the ventilation opening 764 as shown in FIG.
- the ventilation opening 764 is an area other than the area where the middle plane 730 of the electronic apparatus housing 700 is formed.
- the length in the vertical direction (heat radiation surface length) of the heat radiation surface on which the heat radiation plate portion 762 is formed can be increased. That is, as shown in FIG. 8, the heat radiation surface length, which is the length in the vertical direction of the heat radiation portion 760, is larger than the opening diameter, which is the length in the vertical direction of the opening portion 312 of the thin flat plate container 310. be able to.
- the driving power of the cooling fan 710 can be further reduced.
- the condensing unit 340 may be separated from the opening 312 of the thin flat plate container 310 and disposed outside the thin flat plate container 310.
- this separated distance length L in FIG. 8 is a run-up section in which the cooling air flows, the cooling air flows along a path indicated by an arrow in FIG. Therefore, an increase in pressure loss due to an increase in the vertical length of the heat radiating portion 760 can be suppressed.
- the separated distance (L) is desirably a length corresponding to an increase in the heat radiation part 760.
- the cooling air can flow along the path indicated by the arrow in FIG. 10 by providing a distance (length L in FIG. 10) that is a running section of the cooling air.
- This realizes a counter-current heat exchanger in which the refrigerant descending along the condensing plate portion 344 of the condensing unit 340 and the cooling air flow in parallel, and the high-temperature fluid and the low-temperature fluid flow in opposite directions to exchange heat. To do.
- Cooling structure of thin electronic device 110 310 Thin flat plate container 112, 312 Opening 120 Substrate 130, 330 Evaporating part 140, 340 Condensing part 142 Condensing substrate 144, 344 Condensing plate part 150, 350 Piping 160, 760 Heat radiating part 162, 762 Radiating plate part 200, 400 Blade server 370 Insertion / extraction mechanism 500 Heat generating element 600, 700 Electronic device casing 610, 710 Cooling fan 620, 720 Air blowing part 630, 730 Middle plane 640 Connector 764 Air blowing opening part 770 Thermal interface material 1000 , 2000 Electronic device using thin electronic device cooling structure
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
薄型電子機器の冷却構造においては、電子装置に装着した状態で充分な冷却性能を得ようとすると、電子装置の消費電力が増大してしまうため、本発明の薄型電子機器の冷却構造は、開口部を備えた薄型平板容器と、薄型平板容器に収容され、発熱体が搭載される基板と、発熱体と熱的に接続され、冷媒を貯蔵する蒸発部と、蒸発部で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部と、蒸発部と凝縮部を接続する配管、とを有し、凝縮部の少なくとも一部が、開口部を介して薄型平板容器の外部に配置され、凝縮部は、凝縮部を構成する凝縮容器の凝縮基板の内面上に、鉛直方向に延伸した凝縮板部を備え、凝縮基板は、放熱部と熱的に接続する。
Description
本発明は、ブレードサーバなどの薄型電子機器の冷却構造に関し、特に、冷媒の気化と凝縮の相変化サイクルによって熱の輸送・放熱を行う沸騰冷却方式を採用した薄型電子機器の冷却構造及びそれを用いた電子装置に関する。
近年、コンピュータのような電子機器においては処理性能の向上や高い信頼性を確保するため、複数の電子機器を一つの筐体に収容し、一括して管理することとした電子装置が開発されている。このような電子装置では、限られたスペースにできるだけ多くの電子機器を設置するため、個々の電子機器は薄型化する必要がある。このような薄型電子機器の一例としてブレードサーバが知られている。ブレードサーバとは、中央処理装置(Central Processing Unit:CPU)やメモリ、ハードディスクなどの電子部品を挿抜可能な基板に搭載した形態のサーバコンピュータである。そして複数のブレードサーバが同一の筐体に搭載され、一つの電子装置(サーバ装置)として運用、管理される。
ブレードサーバでは、搭載されたCPUなどの電子部品が発熱素子であるため、冷却構造を備える必要がある。高効率な冷却構造の一つとして、冷媒の気化と凝縮の相変化サイクルと重力による還流を使用して熱の輸送・放熱を行う沸騰冷却(サーモサイフォン)方式を用いた冷却構造が知られている。沸騰冷却方式においては、冷媒が気液二相流として移動するため、熱輸送能力を向上させることができる。
このような沸騰冷却方式を採用し、ブレードサーバを用いたサーバ装置の一例が特許文献1に記載されている。特許文献1に記載されたサーバ装置は、複数個のサーバモジュールと、一つ又は複数個のファンモジュールを搭載している。サーバモジュールは、CPUとメモリと半導体素子によるチップセット等の電子部品とを載置したマザーボードと、CPUの発熱を冷却する沸騰型冷却装置の一部とを収容する筐体を有する。そして、ファンモジュールのユニット内に収納されたファンが、サーバモジュール筐体の開口を通じて内部を送風する構成としている。
特許文献1に記載されたサーバ装置の沸騰型冷却装置は、サーバモジュール筐体内に載置された蒸発器と、サーバモジュール筐体外に載置された凝縮器と、蒸発器と凝縮器とを接続する複数の配管とから構成される。蒸発器は、内部空間に冷媒を密閉して保有する箱体であって、箱体の一方の外平面においてCPUと熱的に接続され、対向する他側の外平面にヒートシンクが付設されている。一方、凝縮器はファンモジュールユニット内に配置され、配管に付設した放熱部材とマザーボードとによって、ファンモジュールの通風流路を構成している。このような構成とすることにより、形状の限定されるブレードサーバにおいても、CPUの発熱状態の増加するサーバモジュールの冷却が可能となる、としている。
特開2010−122887号公報(段落「0014」~「0032」、図3)
ブレードサーバでは、搭載されたCPUなどの電子部品が発熱素子であるため、冷却構造を備える必要がある。高効率な冷却構造の一つとして、冷媒の気化と凝縮の相変化サイクルと重力による還流を使用して熱の輸送・放熱を行う沸騰冷却(サーモサイフォン)方式を用いた冷却構造が知られている。沸騰冷却方式においては、冷媒が気液二相流として移動するため、熱輸送能力を向上させることができる。
このような沸騰冷却方式を採用し、ブレードサーバを用いたサーバ装置の一例が特許文献1に記載されている。特許文献1に記載されたサーバ装置は、複数個のサーバモジュールと、一つ又は複数個のファンモジュールを搭載している。サーバモジュールは、CPUとメモリと半導体素子によるチップセット等の電子部品とを載置したマザーボードと、CPUの発熱を冷却する沸騰型冷却装置の一部とを収容する筐体を有する。そして、ファンモジュールのユニット内に収納されたファンが、サーバモジュール筐体の開口を通じて内部を送風する構成としている。
特許文献1に記載されたサーバ装置の沸騰型冷却装置は、サーバモジュール筐体内に載置された蒸発器と、サーバモジュール筐体外に載置された凝縮器と、蒸発器と凝縮器とを接続する複数の配管とから構成される。蒸発器は、内部空間に冷媒を密閉して保有する箱体であって、箱体の一方の外平面においてCPUと熱的に接続され、対向する他側の外平面にヒートシンクが付設されている。一方、凝縮器はファンモジュールユニット内に配置され、配管に付設した放熱部材とマザーボードとによって、ファンモジュールの通風流路を構成している。このような構成とすることにより、形状の限定されるブレードサーバにおいても、CPUの発熱状態の増加するサーバモジュールの冷却が可能となる、としている。
上述した特許文献1に記載されたサーバ装置においては、凝縮器の形状をファンモジュールと略同一としている。さらに、サーバモジュールやファンモジュール等のモジュールを電気的に接続する電子基板(ミドルプレーン)に設けられた開口部から凝縮器を挿入し、ファンモジュールと継合する構成としている。しかし、開口部(通風開口部)の面積は小さいため、通風が開口部を通過する際の圧損が大きくなる。その結果、冷却に必要な風量を得るためにファンを高回転数で使用する必要があり、ファンの駆動電力が増大してしまう、という問題があった。
このように、関連する薄型電子機器の冷却構造においては、電子装置に装着した状態で充分な冷却性能を得ようとすると、電子装置の消費電力が増大してしまう、という問題があった。
本発明の目的は、上述した課題である、薄型電子機器の冷却構造においては、電子装置に装着した状態で充分な冷却性能を得ようとすると、電子装置の消費電力が増大してしまう、という課題を解決する薄型電子機器の冷却構造及びそれを用いた電子装置を提供することにある。
このように、関連する薄型電子機器の冷却構造においては、電子装置に装着した状態で充分な冷却性能を得ようとすると、電子装置の消費電力が増大してしまう、という問題があった。
本発明の目的は、上述した課題である、薄型電子機器の冷却構造においては、電子装置に装着した状態で充分な冷却性能を得ようとすると、電子装置の消費電力が増大してしまう、という課題を解決する薄型電子機器の冷却構造及びそれを用いた電子装置を提供することにある。
本発明の薄型電子機器の冷却構造は、開口部を備えた薄型平板容器と、薄型平板容器に収容され、発熱体が搭載される基板と、発熱体と熱的に接続され、冷媒を貯蔵する蒸発部と、蒸発部で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部と、蒸発部と凝縮部を接続する配管、とを有し、凝縮部の少なくとも一部が、開口部を介して薄型平板容器の外部に配置され、凝縮部は、凝縮部を構成する凝縮容器の凝縮基板の内面上に、鉛直方向に延伸した凝縮板部を備え、凝縮基板は、放熱部と熱的に接続する。
本発明の薄型電子機器の冷却構造を用いた電子装置は、薄型電子機器の冷却構造と、複数の薄型電子機器を収容する電子装置筐体とを有し、薄型電子機器の冷却構造は、開口部を備えた薄型平板容器と、薄型平板容器に収容され、発熱体が搭載される基板と、発熱体と熱的に接続され、冷媒を貯蔵する蒸発部と、蒸発部で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部と、蒸発部と凝縮部を接続する配管、とを有し、凝縮部の少なくとも一部が、開口部を介して薄型平板容器の外部に配置され、凝縮部は、凝縮部を構成する凝縮容器の凝縮基板の内面上に、鉛直方向に延伸した凝縮板部を備え、凝縮基板は、放熱部と熱的に接続し、電子装置筐体は、冷却ファンを備えた送風部を有し、開口部は、送風部に対向して配置している。
本発明の薄型電子機器の冷却構造を用いた電子装置は、薄型電子機器の冷却構造と、複数の薄型電子機器を収容する電子装置筐体とを有し、薄型電子機器の冷却構造は、開口部を備えた薄型平板容器と、薄型平板容器に収容され、発熱体が搭載される基板と、発熱体と熱的に接続され、冷媒を貯蔵する蒸発部と、蒸発部で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部と、蒸発部と凝縮部を接続する配管、とを有し、凝縮部の少なくとも一部が、開口部を介して薄型平板容器の外部に配置され、凝縮部は、凝縮部を構成する凝縮容器の凝縮基板の内面上に、鉛直方向に延伸した凝縮板部を備え、凝縮基板は、放熱部と熱的に接続し、電子装置筐体は、冷却ファンを備えた送風部を有し、開口部は、送風部に対向して配置している。
本発明の薄型電子機器の冷却構造によれば、電子装置に装着した状態で充分な冷却性能を有し、しかも電子装置の消費電力を低減することができる薄型電子機器の冷却構造が得られる。
図1は本発明の第1の実施形態に係る薄型電子機器の冷却構造の構成を示す透視斜視図である。
図2Aは本発明の第1の実施形態に係る薄型電子機器の冷却構造の構成を示す正面図である。
図2Bは本発明の第1の実施形態に係る薄型電子機器の冷却構造の構成を示す上面図である。
図3は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の構成を模式的に示す透視斜視図である。
図4は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置であって、複数の薄型電子機器が装着される場合の構成を模式的に示す透視斜視図である。
図5は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の凝縮部近傍における正面断面図である。
図6は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の凝縮部近傍における側面断面図である。
図7は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の構成を模式的に示す透視斜視図である。
図8は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の放熱部近傍における正面断面図である。
図9は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の放熱部近傍における側面断面図である。
図10は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の別の放熱部近傍における正面断面図である。
図2Aは本発明の第1の実施形態に係る薄型電子機器の冷却構造の構成を示す正面図である。
図2Bは本発明の第1の実施形態に係る薄型電子機器の冷却構造の構成を示す上面図である。
図3は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の構成を模式的に示す透視斜視図である。
図4は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置であって、複数の薄型電子機器が装着される場合の構成を模式的に示す透視斜視図である。
図5は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の凝縮部近傍における正面断面図である。
図6は本発明の第2の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の凝縮部近傍における側面断面図である。
図7は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の構成を模式的に示す透視斜視図である。
図8は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の放熱部近傍における正面断面図である。
図9は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の放熱部近傍における側面断面図である。
図10は本発明の第3の実施形態に係る薄型電子機器の冷却構造を用いた電子装置の別の放熱部近傍における正面断面図である。
以下に、図面を参照しながら、本発明の実施形態について説明する。
〔第1の実施形態〕
図1は、本発明の第1の実施形態に係る薄型電子機器の冷却構造100の構成を示す透視斜視図である。また図2A、2Bは、薄型電子機器の冷却構造100の構成を示す図であり、図2Aは正面図、図2Bは上面図である。薄型電子機器の冷却構造100は、薄型平板容器110に収容され、発熱体500が搭載される基板120と、冷却構造を有する。冷却構造は、発熱体500と熱的に接続され、冷媒を貯蔵する蒸発部130と、蒸発部130で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部140と、蒸発部130と凝縮部140を接続する配管150とを含む。なお、図2Aは薄型平板容器110の一部を透視した正面図、図2Bは上面図をそれぞれ示している。
薄型平板容器110は開口部112を備え、凝縮部140の少なくとも一部が開口部112を介して薄型平板容器110の外部に配置される。凝縮部140は図2Bに示すように、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に、鉛直方向に延伸した凝縮板部144を備える。そして、凝縮基板142は放熱部160と熱的に接続するように構成されている。
冷媒に低沸点の材料を用い、蒸発部130に冷媒を注入した後に真空排気することにより、蒸発部130の内部は常に冷媒の飽和蒸気圧に維持することができる。冷媒としては例えば、絶縁性を有し不活性な材料であるハイドロフロロカーボンやハイドロフロロエーテルなどの低沸点冷媒を用いることができる。また、蒸発部130および凝縮部140を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。配管150には例えば、内面に金属を付着させたゴム等の樹脂製チューブを用いることができる。放熱部160は、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いて構成され、図1に示すように複数の薄板からなるフィン状とすることができる。
次に、本実施形態による薄型電子機器の冷却構造100の動作について詳細に説明する。薄型電子機器の冷却構造100は、蒸発部130の下部に例えば中央処理装置(Central Processing Unit:CPU)などの発熱体500を配置し、蒸発部130と熱的に接続して使用する。発熱体500からの熱量が蒸発部130の蒸発容器を介して冷媒に伝達され、冷媒が気化する。このとき、発熱体からの熱量は気化熱として冷媒に奪われるため、発熱体の温度上昇が抑制される。
蒸発部130において気化した冷媒蒸気は、配管150を通って凝縮部140に流入する。冷媒蒸気は凝縮部140内で放熱し、凝縮液化する。このように、薄型電子機器の冷却構造100は冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた構成である。
ここで、凝縮部140の少なくとも一部は、薄型平板容器110の開口部112を介して薄型平板容器110の外部に配置される。このとき、凝縮部140の少なくとも一部を、薄型平板容器110が装着される電子装置が備える冷却ファンによる送風経路内に配置することができる。この構成により、CPUなどの発熱体500で発生した熱を、冷媒の相変化によって薄型平板容器110の開口部112から外部に引き出し、冷却ファン近傍の送風(エアー)流路まで熱輸送することが可能となる。その結果、凝縮部140内での冷媒蒸気の放熱が促進され、薄型電子機器の冷却構造100の冷却効率を向上することができる。
また、凝縮部140は図2Bに示すように、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に、鉛直方向に延伸した凝縮板部144を備える。この構成により、凝縮部140内の冷媒蒸気が凝縮容器と接する面積が増大するため、放熱が促進される。また、凝縮液化した冷媒は凝縮板部144に沿って重力により下降するため、冷媒の循環も促進される。したがって、毛細管力によって内部の動作冷媒を循環するウイック式ヒートパイプと比較し、熱輸送能力を向上させることができる。さらに、凝縮基板142は放熱部160と熱的に接続するように構成されている。これにより、凝縮部140内部の冷媒と外部の空気間との熱交換能力の向上を図ることができる。
このように、本実施形態の薄型電子機器の冷却構造100によれば、CPUなどの発熱体500の冷却効率を増大することができるので、電子装置が備える冷却ファンの駆動電力を削減することが可能となる。すなわち、薄型電子機器の冷却構造100によれば、電子装置に装着した状態で充分な冷却性能を有し、しかも電子装置の消費電力を低減することができる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態による薄型電子機器の冷却構造を用いた電子装置1000の構成を模式的に示す透視斜視図である。また、図4は、複数の薄型電子機器が装着される場合における、薄型電子機器の冷却構造を用いた電子装置1000の構成を模式的に示す透視斜視図である。薄型電子機器の冷却構造を用いた電子装置1000は、薄型電子機器の冷却構造100と、複数の薄型電子機器を収容する電子装置筐体600とを有する。本実施形態では、薄型電子機器としてブレードサーバ200を用い、ブレードサーバ200が薄型電子機器の冷却構造100を備える場合について説明する。
薄型電子機器の冷却構造100は第1の実施形態におけるものと同様であり、図1、図2A、2Bも用いて説明したように、薄型平板容器110と、薄型平板容器110に収容され、発熱体500が搭載される基板120と、冷却構造を有する。冷却構造は、発熱体500と熱的に接続され、冷媒を貯蔵する蒸発部130と、蒸発部130で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部140と、蒸発部130と凝縮部140を接続する配管150とを含む。
薄型平板容器110は開口部112を備え、凝縮部140の少なくとも一部が開口部112を介して薄型平板容器110の外部に配置される。凝縮部140は、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に、鉛直方向に延伸した凝縮板部144を備える。そして、凝縮基板142は放熱部160と熱的に接続するように構成されている。本実施形態では、放熱部160は凝縮基板142の外面側に配置され、凝縮部140に固定された構成とした。なお、薄型電子機器の冷却構造100の動作は第1の実施形態と同様であるので、説明を省略する。
電子装置筐体600は、冷却ファン610を備えた送風部620を有する。そして、薄型平板容器110の開口部112が送風部620に対向して配置している。また、電子装置筐体600は、ブレードサーバ200を電気的に接続する電子基板であるミドルプレーン630を備え、ミドルプレーン630には複数の信号用または給電用のコネクタ640が設けられている。
ブレードサーバ200は発熱体500としてのCPUの他にメモリなどの電子部品を基板120に備えている。薄型電子機器の冷却構造を用いた電子装置1000に必要とされる処理能力に応じて、複数のブレードサーバ200がミドルプレーン630上のコネクタ640に接続される。図4は、2台のブレードサーバ200が電子装置筐体600に収容される場合を示す。ブレードサーバ200の台数を増減する際には、電源をオン状態としたままでブレードサーバ200を交換する活線挿抜が可能である。
電子装置筐体600のミドルプレーン630が形成されている領域以外の領域は、ブレードサーバ200を冷却するための送風経路となり、冷却ファン610を備えたファンボックスが接続される。このファンボックスはブレードサーバ200に冷却風を流すエアーダクト(エアー流路)である送風部620として機能する。
本実施形態による薄型電子機器の冷却構造100においては、CPUなどの発熱体500が蒸発部130と熱的に接続され、蒸発部130は配管150によって凝縮部140と接続されている。そして、凝縮部140と例えばフィン状の放熱部160の少なくとも一部が送風部620の内部に配置されている。このような構成とすることによって、発熱量の大きなCPUなどの熱を集熱し、冷却風の流量および流速が大きな送風部620(エアーダクト)まで熱輸送することが可能となる。その結果、CPUの冷却効率を向上させることができ、電子装置が備える冷却ファン610の駆動電力を削減することが可能となる。すなわち、本実施形態による薄型電子機器の冷却構造を用いた電子装置1000によれば、薄型電子機器を装着した状態で充分な冷却性能が得られ、しかも消費電力を低減することができる。
次に、本実施形態による薄型電子機器の冷却構造を用いた電子装置1000の凝縮部140の構成について、さらに詳細に説明する。図5は本実施形態による凝縮部140近傍における正面断面図、図6は側面断面図である。
図5、図6に示すように、凝縮部140は、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に鉛直方向に延伸したフィン状の凝縮板部144を備える。この構成により、凝縮部140内の冷媒蒸気が凝縮容器と接する面積が増大するため、放熱が促進される。また、凝縮液化した冷媒は凝縮板部144に沿って重力により下降するため、冷媒の循環も促進され、沸騰冷却方式(熱サイフォン式)による相変化冷却となる。したがって、毛細管力によって内部の動作冷媒を循環するウイック式ヒートパイプと比較し、熱輸送能力を向上させることができる。
さらに、凝縮基板142の外面側には放熱部160が熱的に接続して配置されている。放熱部160は複数の放熱板(フィン)からなる放熱板部162を備える。放熱板部162の延伸方向は、本実施形態では図5に示すように鉛直方向に対して略垂直である構成とした。これにより、冷媒と冷却風が直交流で熱交換を行う直交流型熱交換器が実現するため、凝縮容器内部の冷媒と冷却風との間の熱交換能力が向上する。また、ブレードサーバ200内のCPU以外の電子部品を冷却するための送風経路(エアフロー)を確保することが可能となる。
このように、本実施形態の薄型電子機器の冷却構造を用いた電子装置1000によれば、発熱量の大きなCPUは、薄型平板容器110の外部の高流速領域である送風部620(エアー流路)内で冷却することが可能となる。つまり、発熱量の大きなCPUを薄型平板容器110に収容された基板120上で冷却する必要がなくなる。そのため、ブレードサーバ200内に確保する風量を削減することができる。また、これまでCPUの冷却に使用していた風量を他の電子部品の冷却に使用することが可能となる。以上より、冷却ファン610の風量を減らすことができるので、冷却ファン610の駆動電力を削減することが可能となる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。図7は、本発明の第3の実施形態による薄型電子機器の冷却構造を用いた電子装置2000の構成を模式的に示す透視斜視図である。薄型電子機器の冷却構造を用いた電子装置2000は、薄型電子機器の冷却構造300と、複数の薄型電子機器を収容する電子装置筐体700とを有する。本実施形態では、薄型電子機器としてブレードサーバ400を用い、ブレードサーバ400が薄型電子機器の冷却構造300を備える場合について説明する。なお、図7では2台のブレードサーバ400が装着される場合を示す。
本実施形態による薄型電子機器の冷却構造を用いた電子装置2000においては、放熱部760が電子装置筐体700に配置されている点で第2の実施形態と異なる。その他の構成は第2の実施形態と同様であるので、その説明は省略する。
図8は、本実施形態による薄型電子機器の冷却構造を用いた電子装置2000の放熱部760近傍における正面断面図、図9は側面断面図である。図8、図9に示すように、放熱部760は電子装置筐体700の送風部720に配置される。放熱部760は複数の放熱板(フィン)からなる放熱板部762を備え、放熱板部762の延伸方向は、図8に示すように鉛直方向に対して略垂直である構成とすることができる。また、送風部720は冷却ファン710を備え、ファンボックスとしても機能する。
一方、薄型電子機器の冷却構造300は放熱部を備えず、凝縮部340だけが挿抜機構370を用いて薄型平板容器310に接続される。そして、挿抜機構370は凝縮部340が放熱板部762と熱的に接続するように、凝縮部340を挿抜方向に略垂直な方向(図7中の矢印A)に押圧する。挿抜機構370はバネなどの弾性部材を用いて構成することができる。このとき、凝縮部340と放熱板部762との間に放熱シートなどの熱界面材料770(Thermal Interface Material:TIM)を介在させることによって、より安定で効率的な熱的接続を図ることができる。なお、薄型電子機器の冷却構造300の蒸発部330と凝縮部340を接続する配管350には、弾性を有し柔軟な配置が可能なゴム製のチューブ等を用いることができる。そのため、凝縮部340は蒸発部330と接続された状態のままで、挿抜機構370による挿抜にあわせて移動することが可能である。
上述したように、本実施形態では、電子装置筐体700の送風部720に放熱部760を配置する構成とした。そのため、ブレードサーバ400を活線挿抜する際には、図7に示すように凝縮部340だけが送風開口部764を通過すればよいことになる。ここで送風開口部764とは、電子装置筐体700のミドルプレーン730が形成されている領域以外の領域である。その結果、放熱板部762が形成された放熱面の鉛直方向の長さ(放熱面長さ)を増大させることができる。つまり、図8に示すように、放熱部760の鉛直方向の長さである放熱面長さが、薄型平板容器310の開口部312の鉛直方向の長さである開口径よりも大きい構成とすることができる。以上より、本実施形態の薄型電子機器の冷却構造を用いた電子装置2000によれば、冷却ファン710の駆動電力をさらに削減することが可能となる。すなわち、薄型電子機器を装着した状態で充分な冷却性能が得られ、しかも消費電力をさらに低減することができる。
なお、図8に示すように、凝縮部340が薄型平板容器310の開口部312から離間して、薄型平板容器310の外部に配置された構成としてもよい。この場合、この離間した距離(図8中の長さL)が、冷却風が回り込む助走区間となるため、冷却風は図8中の矢印で示す経路を流動する。したがって、放熱部760の鉛直方向の長さを増大させたことによる圧損の増加を抑制することができる。ここで、離間した距離(L)は、放熱部760の増加した分の長さとすることが望ましい。
また、図10に示すように、放熱板部762の延伸方向が鉛直方向に対して略平行である構成とすることができる。これは、冷却風の助走区間となる離間した距離(図10中の長さL)を設けることによって、冷却風が図10中の矢印で示す経路を流動することが可能となるからである。これにより、凝縮部340の凝縮板部344に沿って降下する冷媒と冷却風とが平行に流れ、高温流体と低温流体とが反対方向に流れて熱交換を行う向流型熱交換器が実現する。そのため、凝縮容器内部の冷媒と冷却風との間の熱交換能力がさらに向上し、冷却ファン710の風量を減らすことができる。その結果、冷却ファン710の駆動電力をさらに削減することが可能となる。
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
この出願は、2011年12月13日に出願された日本出願特願2011−272450を基礎とする優先権を主張し、その開示の全てをここに取り込む。
〔第1の実施形態〕
図1は、本発明の第1の実施形態に係る薄型電子機器の冷却構造100の構成を示す透視斜視図である。また図2A、2Bは、薄型電子機器の冷却構造100の構成を示す図であり、図2Aは正面図、図2Bは上面図である。薄型電子機器の冷却構造100は、薄型平板容器110に収容され、発熱体500が搭載される基板120と、冷却構造を有する。冷却構造は、発熱体500と熱的に接続され、冷媒を貯蔵する蒸発部130と、蒸発部130で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部140と、蒸発部130と凝縮部140を接続する配管150とを含む。なお、図2Aは薄型平板容器110の一部を透視した正面図、図2Bは上面図をそれぞれ示している。
薄型平板容器110は開口部112を備え、凝縮部140の少なくとも一部が開口部112を介して薄型平板容器110の外部に配置される。凝縮部140は図2Bに示すように、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に、鉛直方向に延伸した凝縮板部144を備える。そして、凝縮基板142は放熱部160と熱的に接続するように構成されている。
冷媒に低沸点の材料を用い、蒸発部130に冷媒を注入した後に真空排気することにより、蒸発部130の内部は常に冷媒の飽和蒸気圧に維持することができる。冷媒としては例えば、絶縁性を有し不活性な材料であるハイドロフロロカーボンやハイドロフロロエーテルなどの低沸点冷媒を用いることができる。また、蒸発部130および凝縮部140を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。配管150には例えば、内面に金属を付着させたゴム等の樹脂製チューブを用いることができる。放熱部160は、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いて構成され、図1に示すように複数の薄板からなるフィン状とすることができる。
次に、本実施形態による薄型電子機器の冷却構造100の動作について詳細に説明する。薄型電子機器の冷却構造100は、蒸発部130の下部に例えば中央処理装置(Central Processing Unit:CPU)などの発熱体500を配置し、蒸発部130と熱的に接続して使用する。発熱体500からの熱量が蒸発部130の蒸発容器を介して冷媒に伝達され、冷媒が気化する。このとき、発熱体からの熱量は気化熱として冷媒に奪われるため、発熱体の温度上昇が抑制される。
蒸発部130において気化した冷媒蒸気は、配管150を通って凝縮部140に流入する。冷媒蒸気は凝縮部140内で放熱し、凝縮液化する。このように、薄型電子機器の冷却構造100は冷媒の気化と凝縮のサイクルによって熱の輸送・放熱を行う沸騰冷却方式を用いた構成である。
ここで、凝縮部140の少なくとも一部は、薄型平板容器110の開口部112を介して薄型平板容器110の外部に配置される。このとき、凝縮部140の少なくとも一部を、薄型平板容器110が装着される電子装置が備える冷却ファンによる送風経路内に配置することができる。この構成により、CPUなどの発熱体500で発生した熱を、冷媒の相変化によって薄型平板容器110の開口部112から外部に引き出し、冷却ファン近傍の送風(エアー)流路まで熱輸送することが可能となる。その結果、凝縮部140内での冷媒蒸気の放熱が促進され、薄型電子機器の冷却構造100の冷却効率を向上することができる。
また、凝縮部140は図2Bに示すように、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に、鉛直方向に延伸した凝縮板部144を備える。この構成により、凝縮部140内の冷媒蒸気が凝縮容器と接する面積が増大するため、放熱が促進される。また、凝縮液化した冷媒は凝縮板部144に沿って重力により下降するため、冷媒の循環も促進される。したがって、毛細管力によって内部の動作冷媒を循環するウイック式ヒートパイプと比較し、熱輸送能力を向上させることができる。さらに、凝縮基板142は放熱部160と熱的に接続するように構成されている。これにより、凝縮部140内部の冷媒と外部の空気間との熱交換能力の向上を図ることができる。
このように、本実施形態の薄型電子機器の冷却構造100によれば、CPUなどの発熱体500の冷却効率を増大することができるので、電子装置が備える冷却ファンの駆動電力を削減することが可能となる。すなわち、薄型電子機器の冷却構造100によれば、電子装置に装着した状態で充分な冷却性能を有し、しかも電子装置の消費電力を低減することができる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態による薄型電子機器の冷却構造を用いた電子装置1000の構成を模式的に示す透視斜視図である。また、図4は、複数の薄型電子機器が装着される場合における、薄型電子機器の冷却構造を用いた電子装置1000の構成を模式的に示す透視斜視図である。薄型電子機器の冷却構造を用いた電子装置1000は、薄型電子機器の冷却構造100と、複数の薄型電子機器を収容する電子装置筐体600とを有する。本実施形態では、薄型電子機器としてブレードサーバ200を用い、ブレードサーバ200が薄型電子機器の冷却構造100を備える場合について説明する。
薄型電子機器の冷却構造100は第1の実施形態におけるものと同様であり、図1、図2A、2Bも用いて説明したように、薄型平板容器110と、薄型平板容器110に収容され、発熱体500が搭載される基板120と、冷却構造を有する。冷却構造は、発熱体500と熱的に接続され、冷媒を貯蔵する蒸発部130と、蒸発部130で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部140と、蒸発部130と凝縮部140を接続する配管150とを含む。
薄型平板容器110は開口部112を備え、凝縮部140の少なくとも一部が開口部112を介して薄型平板容器110の外部に配置される。凝縮部140は、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に、鉛直方向に延伸した凝縮板部144を備える。そして、凝縮基板142は放熱部160と熱的に接続するように構成されている。本実施形態では、放熱部160は凝縮基板142の外面側に配置され、凝縮部140に固定された構成とした。なお、薄型電子機器の冷却構造100の動作は第1の実施形態と同様であるので、説明を省略する。
電子装置筐体600は、冷却ファン610を備えた送風部620を有する。そして、薄型平板容器110の開口部112が送風部620に対向して配置している。また、電子装置筐体600は、ブレードサーバ200を電気的に接続する電子基板であるミドルプレーン630を備え、ミドルプレーン630には複数の信号用または給電用のコネクタ640が設けられている。
ブレードサーバ200は発熱体500としてのCPUの他にメモリなどの電子部品を基板120に備えている。薄型電子機器の冷却構造を用いた電子装置1000に必要とされる処理能力に応じて、複数のブレードサーバ200がミドルプレーン630上のコネクタ640に接続される。図4は、2台のブレードサーバ200が電子装置筐体600に収容される場合を示す。ブレードサーバ200の台数を増減する際には、電源をオン状態としたままでブレードサーバ200を交換する活線挿抜が可能である。
電子装置筐体600のミドルプレーン630が形成されている領域以外の領域は、ブレードサーバ200を冷却するための送風経路となり、冷却ファン610を備えたファンボックスが接続される。このファンボックスはブレードサーバ200に冷却風を流すエアーダクト(エアー流路)である送風部620として機能する。
本実施形態による薄型電子機器の冷却構造100においては、CPUなどの発熱体500が蒸発部130と熱的に接続され、蒸発部130は配管150によって凝縮部140と接続されている。そして、凝縮部140と例えばフィン状の放熱部160の少なくとも一部が送風部620の内部に配置されている。このような構成とすることによって、発熱量の大きなCPUなどの熱を集熱し、冷却風の流量および流速が大きな送風部620(エアーダクト)まで熱輸送することが可能となる。その結果、CPUの冷却効率を向上させることができ、電子装置が備える冷却ファン610の駆動電力を削減することが可能となる。すなわち、本実施形態による薄型電子機器の冷却構造を用いた電子装置1000によれば、薄型電子機器を装着した状態で充分な冷却性能が得られ、しかも消費電力を低減することができる。
次に、本実施形態による薄型電子機器の冷却構造を用いた電子装置1000の凝縮部140の構成について、さらに詳細に説明する。図5は本実施形態による凝縮部140近傍における正面断面図、図6は側面断面図である。
図5、図6に示すように、凝縮部140は、凝縮部140を構成する凝縮容器の凝縮基板142の内面上に鉛直方向に延伸したフィン状の凝縮板部144を備える。この構成により、凝縮部140内の冷媒蒸気が凝縮容器と接する面積が増大するため、放熱が促進される。また、凝縮液化した冷媒は凝縮板部144に沿って重力により下降するため、冷媒の循環も促進され、沸騰冷却方式(熱サイフォン式)による相変化冷却となる。したがって、毛細管力によって内部の動作冷媒を循環するウイック式ヒートパイプと比較し、熱輸送能力を向上させることができる。
さらに、凝縮基板142の外面側には放熱部160が熱的に接続して配置されている。放熱部160は複数の放熱板(フィン)からなる放熱板部162を備える。放熱板部162の延伸方向は、本実施形態では図5に示すように鉛直方向に対して略垂直である構成とした。これにより、冷媒と冷却風が直交流で熱交換を行う直交流型熱交換器が実現するため、凝縮容器内部の冷媒と冷却風との間の熱交換能力が向上する。また、ブレードサーバ200内のCPU以外の電子部品を冷却するための送風経路(エアフロー)を確保することが可能となる。
このように、本実施形態の薄型電子機器の冷却構造を用いた電子装置1000によれば、発熱量の大きなCPUは、薄型平板容器110の外部の高流速領域である送風部620(エアー流路)内で冷却することが可能となる。つまり、発熱量の大きなCPUを薄型平板容器110に収容された基板120上で冷却する必要がなくなる。そのため、ブレードサーバ200内に確保する風量を削減することができる。また、これまでCPUの冷却に使用していた風量を他の電子部品の冷却に使用することが可能となる。以上より、冷却ファン610の風量を減らすことができるので、冷却ファン610の駆動電力を削減することが可能となる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。図7は、本発明の第3の実施形態による薄型電子機器の冷却構造を用いた電子装置2000の構成を模式的に示す透視斜視図である。薄型電子機器の冷却構造を用いた電子装置2000は、薄型電子機器の冷却構造300と、複数の薄型電子機器を収容する電子装置筐体700とを有する。本実施形態では、薄型電子機器としてブレードサーバ400を用い、ブレードサーバ400が薄型電子機器の冷却構造300を備える場合について説明する。なお、図7では2台のブレードサーバ400が装着される場合を示す。
本実施形態による薄型電子機器の冷却構造を用いた電子装置2000においては、放熱部760が電子装置筐体700に配置されている点で第2の実施形態と異なる。その他の構成は第2の実施形態と同様であるので、その説明は省略する。
図8は、本実施形態による薄型電子機器の冷却構造を用いた電子装置2000の放熱部760近傍における正面断面図、図9は側面断面図である。図8、図9に示すように、放熱部760は電子装置筐体700の送風部720に配置される。放熱部760は複数の放熱板(フィン)からなる放熱板部762を備え、放熱板部762の延伸方向は、図8に示すように鉛直方向に対して略垂直である構成とすることができる。また、送風部720は冷却ファン710を備え、ファンボックスとしても機能する。
一方、薄型電子機器の冷却構造300は放熱部を備えず、凝縮部340だけが挿抜機構370を用いて薄型平板容器310に接続される。そして、挿抜機構370は凝縮部340が放熱板部762と熱的に接続するように、凝縮部340を挿抜方向に略垂直な方向(図7中の矢印A)に押圧する。挿抜機構370はバネなどの弾性部材を用いて構成することができる。このとき、凝縮部340と放熱板部762との間に放熱シートなどの熱界面材料770(Thermal Interface Material:TIM)を介在させることによって、より安定で効率的な熱的接続を図ることができる。なお、薄型電子機器の冷却構造300の蒸発部330と凝縮部340を接続する配管350には、弾性を有し柔軟な配置が可能なゴム製のチューブ等を用いることができる。そのため、凝縮部340は蒸発部330と接続された状態のままで、挿抜機構370による挿抜にあわせて移動することが可能である。
上述したように、本実施形態では、電子装置筐体700の送風部720に放熱部760を配置する構成とした。そのため、ブレードサーバ400を活線挿抜する際には、図7に示すように凝縮部340だけが送風開口部764を通過すればよいことになる。ここで送風開口部764とは、電子装置筐体700のミドルプレーン730が形成されている領域以外の領域である。その結果、放熱板部762が形成された放熱面の鉛直方向の長さ(放熱面長さ)を増大させることができる。つまり、図8に示すように、放熱部760の鉛直方向の長さである放熱面長さが、薄型平板容器310の開口部312の鉛直方向の長さである開口径よりも大きい構成とすることができる。以上より、本実施形態の薄型電子機器の冷却構造を用いた電子装置2000によれば、冷却ファン710の駆動電力をさらに削減することが可能となる。すなわち、薄型電子機器を装着した状態で充分な冷却性能が得られ、しかも消費電力をさらに低減することができる。
なお、図8に示すように、凝縮部340が薄型平板容器310の開口部312から離間して、薄型平板容器310の外部に配置された構成としてもよい。この場合、この離間した距離(図8中の長さL)が、冷却風が回り込む助走区間となるため、冷却風は図8中の矢印で示す経路を流動する。したがって、放熱部760の鉛直方向の長さを増大させたことによる圧損の増加を抑制することができる。ここで、離間した距離(L)は、放熱部760の増加した分の長さとすることが望ましい。
また、図10に示すように、放熱板部762の延伸方向が鉛直方向に対して略平行である構成とすることができる。これは、冷却風の助走区間となる離間した距離(図10中の長さL)を設けることによって、冷却風が図10中の矢印で示す経路を流動することが可能となるからである。これにより、凝縮部340の凝縮板部344に沿って降下する冷媒と冷却風とが平行に流れ、高温流体と低温流体とが反対方向に流れて熱交換を行う向流型熱交換器が実現する。そのため、凝縮容器内部の冷媒と冷却風との間の熱交換能力がさらに向上し、冷却ファン710の風量を減らすことができる。その結果、冷却ファン710の駆動電力をさらに削減することが可能となる。
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
この出願は、2011年12月13日に出願された日本出願特願2011−272450を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100、300 薄型電子機器の冷却構造
110、310 薄型平板容器
112、312 開口部
120 基板
130、330 蒸発部
140、340 凝縮部
142 凝縮基板
144、344 凝縮板部
150、350 配管
160、760 放熱部
162、762 放熱板部
200、400 ブレードサーバ
370 挿抜機構
500 発熱体
600、700 電子装置筐体
610、710 冷却ファン
620、720 送風部
630、730 ミドルプレーン
640 コネクタ
764 送風開口部
770 熱界面材料
1000、2000 薄型電子機器の冷却構造を用いた電子装置
110、310 薄型平板容器
112、312 開口部
120 基板
130、330 蒸発部
140、340 凝縮部
142 凝縮基板
144、344 凝縮板部
150、350 配管
160、760 放熱部
162、762 放熱板部
200、400 ブレードサーバ
370 挿抜機構
500 発熱体
600、700 電子装置筐体
610、710 冷却ファン
620、720 送風部
630、730 ミドルプレーン
640 コネクタ
764 送風開口部
770 熱界面材料
1000、2000 薄型電子機器の冷却構造を用いた電子装置
Claims (10)
- 開口部を備えた薄型平板容器と、
前記薄型平板容器に収容され、発熱体が搭載される基板と、
前記発熱体と熱的に接続され、冷媒を貯蔵する蒸発部と、
前記蒸発部で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部と、
前記蒸発部と前記凝縮部を接続する配管、とを有し、
前記凝縮部の少なくとも一部が、前記開口部を介して前記薄型平板容器の外部に配置され、
前記凝縮部は、前記凝縮部を構成する凝縮容器の凝縮基板の内面上に、鉛直方向に延伸した凝縮板部を備え、
前記凝縮基板は、放熱部と熱的に接続する
薄型電子機器の冷却構造。 - 請求項1に記載した薄型電子機器の冷却構造において、
前記放熱部は、前記凝縮基板の外面側に配置されている薄型電子機器の冷却構造。 - 請求項1に記載した薄型電子機器の冷却構造において、
前記放熱部は、前記薄型平板容器が装着される電子装置に配置されている薄型電子機器の冷却構造。 - 請求項3に記載した薄型電子機器の冷却構において、
前記放熱部は、鉛直方向の長さである放熱面長さが、前記開口部の鉛直方向の長さである開口径よりも大きい薄型電子機器の冷却構造。 - 請求項1から4のいずれか一項に記載した薄型電子機器の冷却構造において、
前記凝縮部は、前記開口部から離間して前記薄型平板容器の外部に配置されている薄型電子機器の冷却構造。 - 請求項1から5のいずれか一項に記載した薄型電子機器の冷却構造において、
前記放熱部は、複数の放熱板からなる放熱板部を備え、前記放熱板部の延伸方向が鉛直方向に対して略垂直である薄型電子機器の冷却構造。 - 請求項1から5のいずれか一項に記載した薄型電子機器の冷却構造において、
前記放熱部は、複数の放熱板からなる放熱板部を備え、前記放熱板部の延伸方向が鉛直方向に対して略平行である薄型電子機器の冷却構造。 - 薄型電子機器の冷却構造と、複数の前記薄型電子機器を収容する電子装置筐体とを有し、
前記薄型電子機器の冷却構造は、
開口部を備えた薄型平板容器と、
前記薄型平板容器に収容され、発熱体が搭載される基板と、
前記発熱体と熱的に接続され、冷媒を貯蔵する蒸発部と、
前記蒸発部で気化した気相冷媒を凝縮液化させて放熱を行う凝縮部と、
前記蒸発部と前記凝縮部を接続する配管、とを有し、
前記凝縮部の少なくとも一部が、前記開口部を介して前記薄型平板容器の外部に配置され、
前記凝縮部は、前記凝縮部を構成する凝縮容器の凝縮基板の内面上に、鉛直方向に延伸した凝縮板部を備え、
前記凝縮基板は、放熱部と熱的に接続し、
前記電子装置筐体は、冷却ファンを備えた送風部を有し、
前記開口部は、前記送風部に対向して配置している
薄型電子機器の冷却構造を用いた電子装置。 - 請求項8に記載した薄型電子機器の冷却構造を用いた電子装置において、
前記凝縮部の少なくとも一部が、前記送風部の内部に配置されている薄型電子機器の冷却構造を用いた電子装置。 - 請求項9に記載した薄型電子機器の冷却構造を用いた電子装置において、
前記放熱部は、前記送風部に配置されている薄型電子機器の冷却構造を用いた電子装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013549299A JP6164089B2 (ja) | 2011-12-13 | 2012-12-06 | 薄型電子機器の冷却構造及びそれを用いた電子装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011272450 | 2011-12-13 | ||
JP2011-272450 | 2011-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013089162A1 true WO2013089162A1 (ja) | 2013-06-20 |
Family
ID=48612605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082264 WO2013089162A1 (ja) | 2011-12-13 | 2012-12-06 | 薄型電子機器の冷却構造及びそれを用いた電子装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6164089B2 (ja) |
WO (1) | WO2013089162A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108966588A (zh) * | 2017-11-17 | 2018-12-07 | 邹昊雄 | 一种利用冷凝水散热的散热装置 |
WO2019071622A1 (zh) * | 2017-10-13 | 2019-04-18 | 邹昊雄 | 一种散热装置 |
US10897837B1 (en) | 2019-11-29 | 2021-01-19 | Ovh | Cooling arrangement for a server mountable in a server rack |
CN115209692A (zh) * | 2022-06-22 | 2022-10-18 | 超聚变数字技术有限公司 | 散热的电子设备和服务器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0467399U (ja) * | 1990-10-22 | 1992-06-15 | ||
JP2009088125A (ja) * | 2007-09-28 | 2009-04-23 | Panasonic Corp | 冷却装置およびそれを備えた電子機器 |
WO2011040129A1 (ja) * | 2009-09-29 | 2011-04-07 | 日本電気株式会社 | 電子機器装置の熱輸送構造 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4682859B2 (ja) * | 2006-02-06 | 2011-05-11 | 株式会社日立製作所 | 電子機器用の冷却システム |
JP4859823B2 (ja) * | 2007-12-14 | 2012-01-25 | 株式会社日立製作所 | 冷却装置およびそれを用いた電子機器 |
JP4812138B2 (ja) * | 2008-09-24 | 2011-11-09 | 株式会社日立製作所 | 冷却装置及びそれを備えた電子機器 |
JP4997215B2 (ja) * | 2008-11-19 | 2012-08-08 | 株式会社日立製作所 | サーバ装置 |
-
2012
- 2012-12-06 JP JP2013549299A patent/JP6164089B2/ja active Active
- 2012-12-06 WO PCT/JP2012/082264 patent/WO2013089162A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0467399U (ja) * | 1990-10-22 | 1992-06-15 | ||
JP2009088125A (ja) * | 2007-09-28 | 2009-04-23 | Panasonic Corp | 冷却装置およびそれを備えた電子機器 |
WO2011040129A1 (ja) * | 2009-09-29 | 2011-04-07 | 日本電気株式会社 | 電子機器装置の熱輸送構造 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019071622A1 (zh) * | 2017-10-13 | 2019-04-18 | 邹昊雄 | 一种散热装置 |
CN108966588A (zh) * | 2017-11-17 | 2018-12-07 | 邹昊雄 | 一种利用冷凝水散热的散热装置 |
US10897837B1 (en) | 2019-11-29 | 2021-01-19 | Ovh | Cooling arrangement for a server mountable in a server rack |
CN115209692A (zh) * | 2022-06-22 | 2022-10-18 | 超聚变数字技术有限公司 | 散热的电子设备和服务器 |
Also Published As
Publication number | Publication date |
---|---|
JP6164089B2 (ja) | 2017-07-19 |
JPWO2013089162A1 (ja) | 2015-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015675B2 (ja) | 冷却装置及びそれを用いた電子機器 | |
JP6085540B2 (ja) | 熱放散デバイス | |
US7304842B2 (en) | Apparatuses and methods for cooling electronic devices in computer systems | |
US7743818B2 (en) | Heat exchange module | |
JP4997215B2 (ja) | サーバ装置 | |
JP5644767B2 (ja) | 電子機器装置の熱輸送構造 | |
US7382047B2 (en) | Heat dissipation device | |
US7518861B2 (en) | Device cooling system | |
US20140318167A1 (en) | Evaporator, cooling device, and electronic apparatus | |
US7565925B2 (en) | Heat dissipation device | |
WO2013018667A1 (ja) | 冷却装置及びそれを用いた電子機器 | |
JP6269478B2 (ja) | 電子基板の冷却構造及びそれを用いた電子装置 | |
US7537046B2 (en) | Heat dissipation device with heat pipe | |
US20100032141A1 (en) | cooling system utilizing carbon nanotubes for cooling of electrical systems | |
US6608751B2 (en) | Electronic device | |
WO2015146110A1 (ja) | 相変化冷却器および相変化冷却方法 | |
JP6164089B2 (ja) | 薄型電子機器の冷却構造及びそれを用いた電子装置 | |
US20150103486A1 (en) | Phase Change Module and Electronic Device Mounted with Same | |
US20080314554A1 (en) | Heat dissipation device with a heat pipe | |
US20070095509A1 (en) | Heat dissipation having a heat pipe | |
WO2012161002A1 (ja) | 平板型冷却装置及びその使用方法 | |
CN214335673U (zh) | 一种笔记本电脑热管散热装置 | |
JP4360624B2 (ja) | 半導体素子冷却用ヒートシンク | |
EP2801781B1 (en) | Cooling device | |
US8783333B1 (en) | Cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12857514 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013549299 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12857514 Country of ref document: EP Kind code of ref document: A1 |