WO2013089081A1 - Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material - Google Patents

Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material Download PDF

Info

Publication number
WO2013089081A1
WO2013089081A1 PCT/JP2012/082019 JP2012082019W WO2013089081A1 WO 2013089081 A1 WO2013089081 A1 WO 2013089081A1 JP 2012082019 W JP2012082019 W JP 2012082019W WO 2013089081 A1 WO2013089081 A1 WO 2013089081A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially stretched
nylon film
stretched nylon
packaging material
Prior art date
Application number
PCT/JP2012/082019
Other languages
French (fr)
Japanese (ja)
Inventor
真男 高重
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Publication of WO2013089081A1 publication Critical patent/WO2013089081A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a biaxially stretched nylon film, a method for producing a biaxially stretched nylon film, and a laminate packaging material.
  • Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. . And it is considered that the laminate packaging material including this ONy film is used as a packaging material for cold molding which is superior in safety and flexibility in shape and can be made thinner and lighter than hot molding. (For example, Patent Document 1).
  • an object of the present invention is to provide a biaxially stretched nylon film having a high degree of drawability in cold forming, a method for producing a biaxially stretched nylon film, and a laminate packaging material.
  • cold molding refers to molding performed in a room temperature environment. Such cold forming is preferably performed by using a cold forming machine used for forming aluminum foil or the like, and pressing the sheet material with a male die against a female die and pressing at high speed. Plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
  • the biaxially stretched nylon film of the present invention is characterized in that the in-plane birefringence ⁇ (delta) n is 0.005 or more and 0.009 or less.
  • the birefringence ⁇ n is preferably 0.006 or more and 0.007 or less.
  • the biaxially stretched nylon film of the present invention is preferably used for cold forming.
  • the laminate packaging material of the present invention includes the biaxially stretched nylon film.
  • the MD and TD stretch ratios are each 2.8 times or more, and the difference obtained by subtracting the MD stretch ratio from the TD stretch ratio is The method is characterized by comprising a biaxial stretching step of stretching the raw film under the condition of 0.3 times or more and 0.8 times or less.
  • the method for producing a biaxially stretched nylon film of the present invention it is preferable to further include a heat setting step of heat-setting the film after the biaxial stretching step by performing a heat treatment at a temperature of 190 ° C. or higher and 215 ° C. or lower.
  • the biaxial stretching process is performed biaxially by a tubular biaxial stretching method.
  • the laminate packaging material of the present invention includes a biaxially stretched nylon film obtained by the method for producing a biaxially stretched nylon film.
  • the laminate packaging material of the present invention is preferably for cold molding.
  • the present invention it is possible to provide a biaxially stretched nylon film having a high degree of drawability in cold molding, a method for producing a biaxially stretched nylon film, and a laminate packaging material.
  • the biaxially stretched nylon film of the present invention has a high degree of drawability, and can prevent the occurrence of pinholes. Therefore, the laminate packaging material including this is a packaging material that can withstand long-term use.
  • the laminate packaging material is particularly suitable as a battery packaging material for smartphones and electric vehicles, which has been increasing in recent years.
  • the biaxially stretched nylon film of the present invention has good stretch moldability and excellent film thickness accuracy.
  • the biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
  • nylon resin nylon-6, nylon-8, nylon-11, nylon-12, nylon 6,6, nylon 6,10, nylon 6,12, etc.
  • Nylon-6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
  • the chemical formula of Ny6 is shown in the following formula (1).
  • the number average molecular weight of the raw material nylon resin is preferably 16000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
  • the birefringence ⁇ n in the film plane needs to be 0.005 or more and 0.009 or less.
  • birefringence ⁇ n of the ONy film is generally a difference (n MD ⁇ n TD ) obtained by subtracting the refractive index n TD in the TD direction from the refractive index n MD in the MD direction. If the birefringence ⁇ n is less than 0.005, the drawability of the resulting film will be insufficient. On the other hand, if the birefringence ⁇ n exceeds 0.009, the drawability of the resulting film will be insufficient.
  • the birefringence ⁇ n is more preferably 0.006 or more and 0.007 or less from the viewpoint of drawability.
  • the birefringence ⁇ n is a value obtained by subtracting the minimum refractive index value from the maximum refractive index value after evaluating the in-plane orientation using KOBRA-WR manufactured by Oji Scientific Instruments. As sought.
  • the laminate packaging material of the present embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film.
  • the other laminate substrate include an aluminum layer and a film including the aluminum layer.
  • a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming.
  • the laminate packaging material of the present embodiment since the above-described ONy film has excellent moldability, it is possible to suppress breakage of the aluminum layer during cold overhang molding or deep drawing molding, Generation of pinholes in the packaging material can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
  • the total thickness of the ONy film and other laminate base material is preferably 200 ⁇ m or less.
  • the total thickness exceeds 200 ⁇ m, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
  • the thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the ONy film is less than 5 ⁇ m, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient.
  • the thickness of the ONy film exceeds 50 ⁇ m, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
  • an aluminum foil made of a soft material of pure aluminum or an aluminum-iron alloy can be used as the aluminum layer used in the laminate packaging material of this embodiment.
  • the aluminum foil is preferably subjected to a pretreatment such as an undercoat treatment with a silane coupling agent or a titanium coupling agent or a corona discharge treatment from the viewpoint of improving the laminating performance.
  • the thickness of such an aluminum layer is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the aluminum layer is less than 20 ⁇ m, the aluminum layer is easily broken during cold forming of the laminate packaging material, and even when it is not broken, pinholes are easily generated. For this reason, there exists a possibility that oxygen, a water
  • the thickness of the aluminum layer exceeds 100 ⁇ m, neither the improvement effect of breakage during cold forming nor the effect of preventing pinhole generation is particularly improved, and only the total thickness of the packaging material is preferably increased. Absent.
  • the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching.
  • a first heat treatment device 20 that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set.
  • a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
  • the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
  • the tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air.
  • the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
  • the first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2.
  • the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
  • the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
  • the second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
  • the tension controller 50 includes guide rolls 51 ⁇ / b> A and 51 ⁇ / b> B and a tension roll 52.
  • the winding device 60 includes a guide roll 61 and a winding roll 62.
  • the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92.
  • the tubular molten resin is cooled by a water cooling ring 93.
  • the raw film 1 is formed by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93.
  • the cooled original film 1 is folded by the stabilizer 94.
  • the folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
  • the raw film 1 is also formed into a tube shape.
  • the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11.
  • the introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12.
  • the film 2 after being bubble-stretched is folded by the guide plate 13.
  • the folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
  • the draw ratios in the MD direction and the TD direction are each preferably 2.8 times or more.
  • the draw ratio is less than 2.8 times, the impact strength tends to be lowered and problems in practicality tend to occur.
  • the difference (TD ⁇ MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.3 times or more and 0.8 times or less, and more preferably 0.4 times or more and 0.8 times or less. It is more preferable that it is 0.5 times or more and 0.8 times or less.
  • the value of TD-MD is less than the lower limit, the birefringence of the resulting film tends to be too low, the drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to decrease.
  • the value of TD-MD is 0.1 times or less, the stretch moldability tends to be inferior and the film thickness accuracy tends to decrease.
  • the value of TD-MD exceeds the above upper limit, the birefringence of the resulting film tends to be too high, or the drawability of the resulting film tends to be insufficient, and the stretch moldability decreases. There is.
  • the film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21.
  • the film 2 is preheated at a low temperature or lower and sent to the next separation step.
  • the heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
  • the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B.
  • film 2A, 2B is isolate
  • the incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
  • These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step.
  • these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
  • the overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
  • the heat treatment temperature in the second heat treatment (heat setting) is preferably 190 ° C. or higher and 215 ° C. or lower, and the relaxation rate is preferably 15% or lower.
  • the film shrinkage rate and shrinkage force increase and the risk of delamination tends to increase.
  • the upper limit is exceeded, the bowing phenomenon during heat setting increases, The distortion tends to increase, the density becomes too high, the crystallinity becomes too high, and the film tends to be difficult to deform or the drawability tends to be inferior. Further, a strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
  • the film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
  • the tubular method is adopted as the biaxial stretching method, but a tenter method may be used.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
  • the biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14.
  • the magnification during this stretching was 3.0 times in the MD direction and 3.5 times in the TD direction.
  • First heat treatment step and second heat treatment step Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
  • Windding process Next, as shown in FIG.
  • the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
  • a biaxially stretched nylon film was produced.
  • the thickness of the obtained biaxially stretched nylon film was 15 ⁇ m.
  • the birefringence and thickness accuracy of the obtained biaxially stretched nylon film were measured.
  • the obtained results are shown in Table 1. (Production of laminate packaging material)
  • the obtained biaxially stretched nylon film was used as a front substrate film, a 40 ⁇ m thick aluminum foil, and a 60 ⁇ m thick CPP film was used as a sealant film to dry laminate them to obtain a laminate packaging material.
  • the laminated packaging material after dry lamination was aged at 40 ° C. for 3 days.
  • the drawability of the obtained laminate packaging material was evaluated.
  • the obtained results are shown in Table 1.
  • Examples 1-2 to 1-6, Comparative Examples 1-1 to 1-5 A biaxially stretched nylon film and a laminate packaging material were produced in the same manner as in Example 1-1 except that the conditions were changed according to the production conditions (thickness, draw ratio, and heat setting temperature) shown in Table 1. The birefringence and thickness accuracy of the obtained biaxially stretched nylon film were measured. The obtained results are shown in Table 1. Further, the drawability of the obtained laminate packaging material was evaluated. The obtained results are shown in Table 1.
  • Thickness accuracy was evaluated on the basis of the following evaluation criteria by measuring the thickness every 1 cm in the width direction of the obtained film and measuring the thickness accuracy (%). In addition, the definition of thickness accuracy was as follows. ⁇ (Maximum film thickness-minimum film thickness) / 2 / average film thickness ⁇ ⁇ 100% A: The thickness accuracy is 2% or less. B: Thickness accuracy is more than 2% and 3.5% or less.
  • the drawability is determined by first cutting a laminate packaging material to produce a 120 ⁇ 80 mm strip and using a 33 ⁇ 55 mm rectangular mold as 0.1 MPa. Each of the 10 samples was cold-molded (drawn one-step molding) by changing the molding depth from 0.5 mm to 0.5 mm. The molding depth at which no pinhole was generated in the aluminum foil in any of the 10 samples was defined as the limit molding depth, and the molding depth was shown as an evaluation value. In addition, confirmation of the pinhole confirmed the transmitted light visually.
  • C The limit molding depth is 5 mm or more and less than 6 mm.
  • D The limit molding depth is less than 5 mm.
  • the biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14.
  • the magnification during this stretching was 3.0 times in the MD direction and 3.5 times in the TD direction.
  • First heat treatment step and second heat treatment step Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
  • Windding process Next, as shown in FIG.
  • the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
  • a biaxially stretched nylon film was produced.
  • the thickness of the obtained biaxially stretched nylon film was 15 ⁇ m. While evaluating the stretch moldability of the obtained biaxially stretched nylon film, the thickness accuracy was measured. The obtained results are shown in Table 2. (Production of laminate packaging material)
  • the obtained biaxially stretched nylon film was used as a front substrate film, a 40 ⁇ m thick aluminum foil, and a 60 ⁇ m thick CPP film was used as a sealant film to dry laminate them to obtain a laminate packaging material.
  • the laminated packaging material after dry lamination was aged at 40 ° C. for 3 days. The drawability of the obtained laminate packaging material was evaluated. And comprehensive evaluation of the manufacturing method was performed based on said evaluation result. The obtained results are shown in Table 2.
  • Examples 2-2 to 2-7, Comparative Examples 2-1 to 2-5 A biaxially stretched nylon film and a laminate packaging material were produced in the same manner as in Example 2-1, except that the conditions were changed according to the production conditions (thickness, draw ratio, and heat setting temperature) shown in Table 2. While evaluating the stretch moldability of the obtained biaxially stretched nylon film, the thickness accuracy was measured. The obtained results are shown in Table 2. Further, the drawability of the obtained laminate packaging material was evaluated. And comprehensive evaluation of the manufacturing method was performed based on said evaluation result. The obtained results are shown in Table 2.
  • the biaxially stretched nylon film of the present invention can be suitably used as a packaging material in the industrial field (such as a lithium battery packaging material), the pharmaceutical field (such as a PTP packaging material), a refill packaging material for liquid detergents, and a food packaging field. it can.
  • the laminate packaging material of the present invention can be used for cold molding packaging materials and the like.

Abstract

This biaxially oriented nylon film is characterized in that the birefringence ∆n of the film after biaxial orientation and heat setting is from 0.005 to 0.009.

Description

二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材Biaxially stretched nylon film, method for producing biaxially stretched nylon film, and laminate packaging material
 本発明は、二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材に関する。 The present invention relates to a biaxially stretched nylon film, a method for producing a biaxially stretched nylon film, and a laminate packaging material.
 二軸延伸ナイロンフィルム(以後、ONyフィルムとも言う)は、強度、耐衝撃性、耐ピンホール性などに優れるため、重量物包装や水物包装など大きな強度負荷が掛かる用途に多く用いられている。
 そして、このONyフィルムを含むラミネート包材を、熱間成型に比して、安全性や形状自由度に優れ、薄肉化や軽量化が図れる冷間成型用の包装材料として用いることが検討されている(例えば、特許文献1)。
Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. .
And it is considered that the laminate packaging material including this ONy film is used as a packaging material for cold molding which is superior in safety and flexibility in shape and can be made thinner and lighter than hot molding. (For example, Patent Document 1).
特開2008-44209号公報JP 2008-44209 A
 冷間成型用の包装材料は、電池などの大容量化に伴い、内容量が多いものを深絞り成型する場合が多くなっており、更なる絞り成型性の向上が要求されるようになっている。しかしながら、特許文献1に記載のような二軸延伸ナイロンフィルムを含むラミネート包材においては、通常の深絞り成型では問題にはならないものの、上記のように内容量が多いものを絞り成型する場合には、ピンホールが発生するという問題があった。
 そこで、本発明は、冷間成型における高度の絞り成型性を有する二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材を提供することを目的とする。
As packaging capacity for cold molding, as the capacity of batteries, etc. is increased, deep-draw molding is often performed for products with a large internal capacity, and further improvements in draw-molding are now required. Yes. However, in a laminate packaging material including a biaxially stretched nylon film as described in Patent Document 1, there is no problem in ordinary deep drawing molding, but when drawing a material having a large internal capacity as described above. Had the problem of generating pinholes.
Therefore, an object of the present invention is to provide a biaxially stretched nylon film having a high degree of drawability in cold forming, a method for producing a biaxially stretched nylon film, and a laminate packaging material.
 本発明において、冷間成型とは、常温環境下で行う成型をいう。かかる冷間成型はアルミニウム箔などの成型に用いられる冷間成型機を用いて、シート材料を雌金型に対して雄金型で押し込み、高速でプレスすることが好ましく、かかる冷間成型によると、加熱することなく型付け、曲げ、剪断、絞りなどの塑性変形を生じさせることができる。 In the present invention, cold molding refers to molding performed in a room temperature environment. Such cold forming is preferably performed by using a cold forming machine used for forming aluminum foil or the like, and pressing the sheet material with a male die against a female die and pressing at high speed. Plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
 前記課題を解決すべく、鋭意研究した結果、本発明者は、フィルムの配向と絞り成型性との間には相関があることを見出した。本発明は、このような知見に基づいて完成されたものである。
 すなわち、本発明の二軸延伸ナイロンフィルムは、当該フィルム面内の複屈折△(デルタ)nが、0.005以上0.009以下であることを特徴とするものである。
As a result of intensive studies to solve the above problems, the present inventors have found that there is a correlation between the orientation of the film and the drawability. The present invention has been completed based on such findings.
That is, the biaxially stretched nylon film of the present invention is characterized in that the in-plane birefringence Δ (delta) n is 0.005 or more and 0.009 or less.
 本発明の二軸延伸ナイロンフィルムにおいては、前記複屈折△nが、0.006以上0.007以下であることが好ましい。
 本発明の二軸延伸ナイロンフィルムは、冷間成型用であることが好ましい。
 本発明のラミネート包材は、前記二軸延伸ナイロンフィルムを含むことを特徴とするものである。
 本発明の二軸延伸ナイロンフィルムの製造方法は、MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であり、かつ、TD方向の延伸倍率からMD方向の延伸倍率を減じた差が、0.3倍以上0.8倍以下である条件で、原反フィルムを延伸する二軸延伸工程を備えることを特徴とする方法である。
In the biaxially stretched nylon film of the present invention, the birefringence Δn is preferably 0.006 or more and 0.007 or less.
The biaxially stretched nylon film of the present invention is preferably used for cold forming.
The laminate packaging material of the present invention includes the biaxially stretched nylon film.
In the method for producing a biaxially stretched nylon film of the present invention, the MD and TD stretch ratios are each 2.8 times or more, and the difference obtained by subtracting the MD stretch ratio from the TD stretch ratio is The method is characterized by comprising a biaxial stretching step of stretching the raw film under the condition of 0.3 times or more and 0.8 times or less.
 本発明の二軸延伸ナイロンフィルムの製造方法においては、前記二軸延伸工程後のフィルムに、温度190℃以上215℃以下の熱処理を施して熱固定する熱固定工程を、さらに備えることが好ましい。
 本発明の二軸延伸ナイロンフィルムの製造方法においては、前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸することが好ましい。
In the method for producing a biaxially stretched nylon film of the present invention, it is preferable to further include a heat setting step of heat-setting the film after the biaxial stretching step by performing a heat treatment at a temperature of 190 ° C. or higher and 215 ° C. or lower.
In the method for producing a biaxially stretched nylon film of the present invention, it is preferable that the biaxial stretching process is performed biaxially by a tubular biaxial stretching method.
 本発明のラミネート包材は、前記二軸延伸ナイロンフィルムの製造方法で得られた二軸延伸ナイロンフィルムを含むことを特徴とするものである。
 本発明のラミネート包材は、冷間成型用であることが好ましい。
The laminate packaging material of the present invention includes a biaxially stretched nylon film obtained by the method for producing a biaxially stretched nylon film.
The laminate packaging material of the present invention is preferably for cold molding.
 本発明によれば、冷間成型における高度の絞り成型性を有する二軸延伸ナイロンフィルム、二軸延伸ナイロンフィルムの製造方法およびラミネート包材を提供することができる。
 そして、本発明の二軸延伸ナイロンフィルムは、高度の絞り成型性を有しており、ピンホールの発生を防止したものが得られる。そのため、これを含むラミネート包材は、長時間の使用に耐える包材となる。また、このラミネート包材は、近年増加している、スマートフォンや電気自動車向け電池用包材として特に適している。さらに、本発明の二軸延伸ナイロンフィルムは、延伸成形性も良好で、フィルム厚み精度が優れている。
According to the present invention, it is possible to provide a biaxially stretched nylon film having a high degree of drawability in cold molding, a method for producing a biaxially stretched nylon film, and a laminate packaging material.
And the biaxially stretched nylon film of the present invention has a high degree of drawability, and can prevent the occurrence of pinholes. Therefore, the laminate packaging material including this is a packaging material that can withstand long-term use. The laminate packaging material is particularly suitable as a battery packaging material for smartphones and electric vehicles, which has been increasing in recent years. Furthermore, the biaxially stretched nylon film of the present invention has good stretch moldability and excellent film thickness accuracy.
本発明の二軸延伸ナイロンフィルムを製造する装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus which manufactures the biaxially stretched nylon film of this invention.
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [二軸延伸ナイロンフィルムの構成]
 本実施形態の二軸延伸ナイロンフィルム(ONyフィルム)は、ナイロン樹脂を原料とする原反フィルムを二軸延伸し、所定の温度で熱固定して形成したものである。
 原料であるナイロン樹脂としては、ナイロン-6、ナイロン-8、ナイロン-11、ナイロン-12、ナイロン6,6、ナイロン6,10、ナイロン6,12などを使用することができる。物性や溶融特性、取り扱いやすさの点からはナイロン-6(以後、Ny6ともいう)を用いることが好ましい。
 ここで、前記Ny6の化学式を下記式(1)に示す。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[Configuration of biaxially stretched nylon film]
The biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
As the raw material nylon resin, nylon-6, nylon-8, nylon-11, nylon-12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used. Nylon-6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
Here, the chemical formula of Ny6 is shown in the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 原料であるナイロン樹脂の数平均分子量は、16000以上30000以下であることが好ましく、22000以上24000以下であることがより好ましい。 The number average molecular weight of the raw material nylon resin is preferably 16000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
 本実施形態においては、フィルム面内の複屈折△nが、0.005以上0.009以下であることが必要である。ここで、一般にONyフィルムの複屈折△nは、MD方向の屈折率nMDからTD方向の屈折率nTDを減じた差(nMD-nTD)である。複屈折△nが0.005未満では、得られるフィルムの絞り成型性が不十分となり、他方、複屈折△nが0.009を超えると、得られるフィルムの絞り成型性が不十分となる。また、この複屈折△nは、絞り成型性の観点から、0.006以上0.007以下であることがより好ましい。
 ここで、複屈折△nは、王子計測機器製KOBRA-WRを使用して、フィルム面内の配向評価を実施し、最大屈折率値から最小屈折率値を差し引いた値を複屈折値△nとして求めた。
In the present embodiment, the birefringence Δn in the film plane needs to be 0.005 or more and 0.009 or less. Here, birefringence Δn of the ONy film is generally a difference (n MD −n TD ) obtained by subtracting the refractive index n TD in the TD direction from the refractive index n MD in the MD direction. If the birefringence Δn is less than 0.005, the drawability of the resulting film will be insufficient. On the other hand, if the birefringence Δn exceeds 0.009, the drawability of the resulting film will be insufficient. The birefringence Δn is more preferably 0.006 or more and 0.007 or less from the viewpoint of drawability.
Here, the birefringence Δn is a value obtained by subtracting the minimum refractive index value from the maximum refractive index value after evaluating the in-plane orientation using KOBRA-WR manufactured by Oji Scientific Instruments. As sought.
 [ラミネート包材の構成]
 本実施形態のラミネート包材は、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム層やアルミニウム層を含むフィルムなどが挙げられる。
 一般に、アルミニウム層を含むラミネート包材は、冷間成型の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成型に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた成型性を有するため、冷間での張出し成型や深絞り成型などの際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成型品が得られる。
[Composition of laminate packaging material]
The laminate packaging material of the present embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, examples of the other laminate substrate include an aluminum layer and a film including the aluminum layer.
In general, a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming. In this regard, according to the laminate packaging material of the present embodiment, since the above-described ONy film has excellent moldability, it is possible to suppress breakage of the aluminum layer during cold overhang molding or deep drawing molding, Generation of pinholes in the packaging material can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
 本実施形態のラミネート包材は、ONyフィルムと他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超えると、冷間成型によるコーナー部の成型が困難となり、シャープな形状の成型品が得られにくい傾向がある。 In the laminate packaging material of the present embodiment, the total thickness of the ONy film and other laminate base material is preferably 200 μm or less. When the total thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
 本実施形態のラミネート包材におけるONyフィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。ここで、ONyフィルムの厚さが5μm未満では、ラミネート包材の耐衝撃性が低くなり、冷間成型性が不十分となる傾向にある。一方、ONyフィルムの厚さが50μmを超えると、ラミネート包材の耐衝撃性の更なる向上効果が得られにくくなり、包材総厚が増加するばかりで好ましくない。 The thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm or less. Here, if the thickness of the ONy film is less than 5 μm, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient. On the other hand, when the thickness of the ONy film exceeds 50 μm, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
 本実施形態のラミネート包材に使用するアルミニウム層としては、純アルミニウムまたはアルミニウム-鉄系合金の軟質材からなるアルミ箔を使用することができる。この場合、アルミニウム箔には、ラミネート性能を向上する観点から、シランカップリング剤やチタンカップリング剤などによるアンダーコート処理、あるいはコロナ放電処理などの前処理を施すことが好ましい。
 このようなアルミニウム層の厚さは20μm以上100μm以下であることが好ましい。これにより、成型品の形状を良好に保持することが可能となり、また、酸素や水分などが包材中を透過することを防止できる。
 なお、アルミニウム層の厚さが20μm未満である場合、ラミネート包材の冷間成型時にアルミニウム層の破断が生じ易く、また、破断しない場合でもピンホールなどが発生しやすくなる。このため、包材中を酸素や水分などが透過してしまうおそれがある。一方、アルミニウム層の厚さが100μmを超える場合、冷間成型時の破断の改善効果もピンホール発生防止効果も特に改善されるわけではなく、単に包材総厚が厚くなるだけであるため好ましくない。
As the aluminum layer used in the laminate packaging material of this embodiment, an aluminum foil made of a soft material of pure aluminum or an aluminum-iron alloy can be used. In this case, the aluminum foil is preferably subjected to a pretreatment such as an undercoat treatment with a silane coupling agent or a titanium coupling agent or a corona discharge treatment from the viewpoint of improving the laminating performance.
The thickness of such an aluminum layer is preferably 20 μm or more and 100 μm or less. Thereby, it becomes possible to hold | maintain the shape of a molded article favorably, and it can prevent that oxygen, a water | moisture content, etc. permeate | transmit the inside of a packaging material.
In addition, when the thickness of the aluminum layer is less than 20 μm, the aluminum layer is easily broken during cold forming of the laminate packaging material, and even when it is not broken, pinholes are easily generated. For this reason, there exists a possibility that oxygen, a water | moisture content, etc. may permeate | transmit the packaging material. On the other hand, when the thickness of the aluminum layer exceeds 100 μm, neither the improvement effect of breakage during cold forming nor the effect of preventing pinhole generation is particularly improved, and only the total thickness of the packaging material is preferably increased. Absent.
 [二軸延伸ナイロンフィルムの製造装置]
 次に、本実施形態の二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
 先ず、本実施形態の二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
 フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60とを備えている。
[Biaxially stretched nylon film manufacturing equipment]
Next, a method for producing the biaxially stretched nylon film of the present embodiment will be described based on the drawings.
First, an apparatus for producing the biaxially stretched nylon film of this embodiment will be described with an example.
As shown in FIG. 1, the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching. A first heat treatment device 20 (preheating furnace) that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set. And a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
 原反製造装置90は、図1に示すように、押出機91と、サーキュラーダイス92と、水冷リング93と、安定板94と、ピンチロール95とを備えている。
 チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
 第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
 分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A~34Cとを備えている。また、トリミング装置32は、ブレード321を有している。
As shown in FIG. 1, the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
The tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air. As shown in FIG. 1, the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
The first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2. As shown in FIG. 1, the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
As shown in FIG. 1, the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
 第二熱処理装置40は、図1に示すように、テンター41と、加熱炉42とを備えている。
 張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
 巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。
The second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
As shown in FIG. 1, the tension controller 50 includes guide rolls 51 </ b> A and 51 </ b> B and a tension roll 52.
As shown in FIG. 1, the winding device 60 includes a guide roll 61 and a winding roll 62.
 [二軸延伸ナイロンフィルムの製造方法]
 次に、このフィルム製造装置100を用いて二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。
[Production method of biaxially stretched nylon film]
Next, each process which manufactures a biaxially-stretched nylon film using this film manufacturing apparatus 100 is demonstrated in detail.
 (原反フィルム製造工程)
 原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成形される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。
(Raw film production process)
As shown in FIG. 1, the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92. The tubular molten resin is cooled by a water cooling ring 93. The raw film 1 is formed by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93. The cooled original film 1 is folded by the stabilizer 94. The folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
 本実施形態では、二軸延伸がチューブラー方式であるので、結果的に原反フィルム1もチューブ状に成形される。 In the present embodiment, since the biaxial stretching is a tubular system, as a result, the raw film 1 is also formed into a tube shape.
 (二軸延伸工程)
 原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。
(Biaxial stretching process)
As shown in FIG. 1, the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11. The introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12. Thereafter, the film 2 after being bubble-stretched is folded by the guide plate 13. The folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
 この際、MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であることが好ましい。延伸倍率が2.8倍未満である場合、衝撃強度が低下して実用性に問題が生ずる傾向にある。
 また、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD-MD)が、0.3倍以上0.8倍以下であることが好ましく、0.4倍以上0.8倍以下であることがより好ましく、0.5倍以上0.8倍以下であることが更により好ましい。TD-MDの値が前記下限未満では、得られるフィルムの複屈折が低くなりすぎる傾向、得られるフィルムの絞り成型性が不十分となる傾向、また、フィルムの厚み精度が低下する傾向にある。また、特に、TD-MDの値が0.1倍以下の場合には、延伸成形性が劣るとともに、フィルムの厚み精度が低下する傾向にある。一方、TD-MDの値が前記上限を超えると、得られるフィルムの複屈折が高くなりすぎる傾向や、得られるフィルムの絞り成型性が不十分となる傾向にあり、また、延伸成形性が低下するにある。
At this time, the draw ratios in the MD direction and the TD direction are each preferably 2.8 times or more. When the draw ratio is less than 2.8 times, the impact strength tends to be lowered and problems in practicality tend to occur.
Further, the difference (TD−MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.3 times or more and 0.8 times or less, and more preferably 0.4 times or more and 0.8 times or less. It is more preferable that it is 0.5 times or more and 0.8 times or less. If the value of TD-MD is less than the lower limit, the birefringence of the resulting film tends to be too low, the drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to decrease. In particular, when the value of TD-MD is 0.1 times or less, the stretch moldability tends to be inferior and the film thickness accuracy tends to decrease. On the other hand, if the value of TD-MD exceeds the above upper limit, the birefringence of the resulting film tends to be too high, or the drawability of the resulting film tends to be insufficient, and the stretch moldability decreases. There is.
 (第一熱処理工程)
 二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
 この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
 この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。
(First heat treatment process)
The film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21. The film 2 is preheated at a low temperature or lower and sent to the next separation step.
The heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
By this first heat treatment step, the crystallinity of the film 2 is increased, and the slipping property between the overlapping films is improved.
 (分離工程)
 ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
 これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。
(Separation process)
As shown in FIG. 1, the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B. And film 2A, 2B is isolate | separated, interposing air between film 2A, 2B by a pair of separation roll 33A, 33B located up and down apart. The incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step. In addition, these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
 (第二熱処理工程(熱固定工程))
 重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
 この第二熱処理(熱固定)における熱処理温度は、190℃以上215℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。熱処理温度が前記下限未満では、フィルム収縮率、収縮力が大きくなり、デラミが発生する危険性が高まる傾向にあり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増す傾向にあり、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる傾向や絞り成型性が劣るようになる傾向にあり好ましくない。
 また、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。
(Second heat treatment process (heat setting process))
The overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
The heat treatment temperature in the second heat treatment (heat setting) is preferably 190 ° C. or higher and 215 ° C. or lower, and the relaxation rate is preferably 15% or lower. If the heat treatment temperature is less than the lower limit, the film shrinkage rate and shrinkage force increase and the risk of delamination tends to increase.On the other hand, if the upper limit is exceeded, the bowing phenomenon during heat setting increases, The distortion tends to increase, the density becomes too high, the crystallinity becomes too high, and the film tends to be difficult to deform or the drawability tends to be inferior.
Further, a strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
 (巻取工程)
 第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。
 以上の説明した本実施形態の二軸延伸ナイロンフィルムの製造方法により、高度の絞り成型性を有しており、ピンホールの発生を抑制した二軸延伸ナイロンフィルムが得られる。
(Winding process)
The film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
By the method for producing a biaxially stretched nylon film of the present embodiment described above, a biaxially stretched nylon film having a high degree of drawability and suppressing the generation of pinholes can be obtained.
 [実施形態の変形]
 なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。本発明は前記した各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。
[Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the object and effect. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. In addition, the specific structure and shape in carrying out the present invention may be used as other structures and shapes within the scope of achieving the object and effect of the present invention. The present invention is not limited to the above-described embodiments, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.
 例えば、本実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式であってもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。 For example, in this embodiment, the tubular method is adopted as the biaxial stretching method, but a tenter method may be used. Furthermore, the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
 次に、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 下記実施例において、各例における特性(フィルムの複屈折および厚み精度、並びにラミネート包材の絞り成型性)を以下のような方法で評価した。
(i)複屈折
 王子計測機器製KOBRA-WRを使用して、40mm角のフィルム片を用いて、フィルム面内の配向評価を実施し、最大屈折率値から最小屈折率値を差し引いた値を複屈折△nとして求めた。
(ii)厚み精度
 得られたフィルムの幅方向に1cmごとに厚みを測定し、下記式で厚み精度(%)を求めた。
 ((フィルム最大厚み-フィルム最小厚み)/2/フィルム平均厚み)×100%
(iii)絞り成型性
 ラミネート包材を裁断して、120×80mmの短冊片を作製してサンプルとした。33×55mmの矩形状の金型を用い、0.1MPaの面圧で押えて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)した。そして、アルミニウム箔にピンホールが10枚のサンプルのいずれにも発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。
なおピンホールの確認は透過光を目視で確認した。
A:限界成型深さが7mm以上である。
B:限界成型深さが6mm以上7mmである。
C:限界成型深さが5mm以上6mm未満である。
D:限界成型深さが5mm未満である。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.
In the following examples, the properties (film birefringence and thickness accuracy, and drawability of the laminate packaging material) in each example were evaluated by the following methods.
(i) Birefringence Using KOBRA-WR manufactured by Oji Scientific Instruments, the orientation in the film plane was evaluated using a 40 mm square film piece, and the value obtained by subtracting the minimum refractive index value from the maximum refractive index value was calculated. It calculated | required as birefringence (DELTA) n.
(Ii) Thickness accuracy The thickness was measured every 1 cm in the width direction of the obtained film, and the thickness accuracy (%) was determined by the following formula.
((Film maximum thickness−film minimum thickness) / 2 / film average thickness) × 100%
(Iii) Drawing moldability The laminate packaging material was cut to prepare a 120 × 80 mm strip piece as a sample. Using a 33 x 55 mm rectangular mold, press it with a surface pressure of 0.1 MPa, change the molding depth from 0.5 mm to 0.5 mm, and cold mold each 10 samples. (One-stage pull-in molding). The molding depth at which no pinhole was generated in any of the 10 samples in the aluminum foil was taken as the limit molding depth, and the molding depth was shown as an evaluation value.
The pinhole was confirmed by visually checking the transmitted light.
A: The limit molding depth is 7 mm or more.
B: The limit molding depth is 6 mm or more and 7 mm.
C: The limit molding depth is 5 mm or more and less than 6 mm.
D: The limit molding depth is less than 5 mm.
[実施例1-1]
(原反フィルム製造工程)
 図1に示すように、Ny6ペレットを押出機91中で、270℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
 Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
 次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.5倍とした。
(第一熱処理工程および第二熱処理工程)
 次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度210℃にて熱処理を施し、熱固定した。
(巻取工程)
 次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
 得られた二軸延伸ナイロンフィルムの複屈折および厚み精度を測定した。得られた結果を表1に示す。
(ラミネート包材の作製)
 得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μのアルミニウム箔、厚さ60μmCPPフィルムをシーラントフィルムとして、両者をドライラミネートすることによりラミネート包材を得た。また、ドライラミネート後のラミネート包材は、40℃で3日間エージングを行った。
 得られたラミネート包材の絞り成型性を評価した。得られた結果を表1に示す。
[Example 1-1]
(Raw film production process)
As shown in FIG. 1, after Ny6 pellets were melt-kneaded at 270 ° C. in an extruder 91, the melt was extruded as a tubular film from a circular die 92, and then rapidly cooled with water (15 ° C.). Film 1 was produced.
What was used as Ny6 is Ube Industries, Ltd. nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5].
(Biaxial stretching process)
Next, as shown in FIG. 1, the raw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while a gas is being pressed into the film 1, and blown to the stretching start point to form bubbles. The biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14. The magnification during this stretching was 3.0 times in the MD direction and 3.5 times in the TD direction.
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
(Winding process)
Next, as shown in FIG. 1, the film 3 heat-set in the second heat treatment step is wound as two films 3 </ b> A and 3 </ b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50. A biaxially stretched nylon film was produced. The thickness of the obtained biaxially stretched nylon film was 15 μm.
The birefringence and thickness accuracy of the obtained biaxially stretched nylon film were measured. The obtained results are shown in Table 1.
(Production of laminate packaging material)
The obtained biaxially stretched nylon film was used as a front substrate film, a 40 μm thick aluminum foil, and a 60 μm thick CPP film was used as a sealant film to dry laminate them to obtain a laminate packaging material. The laminated packaging material after dry lamination was aged at 40 ° C. for 3 days.
The drawability of the obtained laminate packaging material was evaluated. The obtained results are shown in Table 1.
[実施例1-2~1-6、比較例1-1~1-5]
 表1に示す製造条件(厚み、延伸倍率および熱固定温度)に従って各条件を変更した以外は実施例1-1と同様にして、二軸延伸ナイロンフィルムおよびラミネート包材を製造した。
 得られた二軸延伸ナイロンフィルムの複屈折および厚み精度を測定した。得られた結果を表1に示す。また、得られたラミネート包材の絞り成型性を評価した。得られた結果を表1に示す。
[Examples 1-2 to 1-6, Comparative Examples 1-1 to 1-5]
A biaxially stretched nylon film and a laminate packaging material were produced in the same manner as in Example 1-1 except that the conditions were changed according to the production conditions (thickness, draw ratio, and heat setting temperature) shown in Table 1.
The birefringence and thickness accuracy of the obtained biaxially stretched nylon film were measured. The obtained results are shown in Table 1. Further, the drawability of the obtained laminate packaging material was evaluated. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果からも明らかなように、二軸延伸ナイロンフィルムの複屈折△nが、0.005以上0.009以下である場合(実施例1-1~1-6)には、冷間成型における高度の絞り成型性を有することが確認された。また、これらの二軸延伸ナイロンフィルムは、延伸成形性も良好で、フィルム厚み精度が優れていることが確認された。
 一方で、二軸延伸ナイロンフィルムの複屈折△nが、0.004以下である場合(比較例1-1~1-4)には、この二軸延伸ナイロンフィルムを用いて得られるラミネート包材の絞り成型性が不十分であった。また、二軸延伸ナイロンフィルムの複屈折△nが、0.01である場合(比較例1-5)には、この二軸延伸ナイロンフィルムを用いて得られるラミネート包材の絞り成型性が不十分であった。
As is clear from the results shown in Table 1, when the birefringence Δn of the biaxially stretched nylon film is 0.005 or more and 0.009 or less (Examples 1-1 to 1-6), It was confirmed to have a high degree of drawability in the inter-molding. In addition, these biaxially stretched nylon films were confirmed to have good stretch moldability and excellent film thickness accuracy.
On the other hand, when the birefringence Δn of the biaxially stretched nylon film is 0.004 or less (Comparative Examples 1-1 to 1-4), a laminate packaging material obtained using this biaxially stretched nylon film The drawability of was insufficient. Further, when the birefringence Δn of the biaxially stretched nylon film is 0.01 (Comparative Example 1-5), the drawability of the laminate packaging material obtained using this biaxially stretched nylon film is poor. It was enough.
 次に、下記実施例において、各例における特性(フィルムの延伸成形性および厚み精度、並びにラミネート包材の絞り成型性)を以下のような方法で評価した。
(i)延伸成形性
 延伸成型性は、フィルム製膜中に連続してフィルム折径幅を計測し、その変動率によって下記評価基準に基づいて評価した。
 なお、バブル破袋折径変動率の定義は、下記の通りとした。
{(フィルム最大折径-フィルム最小折径)/2/フィルム平均折径}×100%
A:フィルム折径変動率が1.0%未満であるもの
B:フィルム折径変動率が1.0%以上2.0%以下であるもの
C:フィルム折径変動率が2.0%を越えるもの
(ii)厚み精度
 厚み精度は、得られたフィルムの幅方向に1cmごとに厚みを測定し、その厚み精度(%)によって下記評価基準に基づいて評価した。
 なお、厚み精度の定義は、下記の通りとした。
{(フィルム最大厚み-フィルム最小厚み)/2/フィルム平均厚み}×100%
A:厚み精度が2%以下である。
B:厚み精度が2%超3.5%以下である。
C:厚み精度が3.5%超4.5%未満である。
D:厚み精度が4.5%以上である。
(iii)絞り成型性
 絞り成型性は、まず、ラミネート包材を裁断して、120×80mmの短冊片を作製してサンプルとし、33×55mmの矩形状の金型を用いて、0.1MPaの面圧で押さえて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)を行った。そして、10枚のサンプルのいずれにもアルミニウム箔にピンホールが発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。
 なお、ピンホールの確認は透過光を目視で確認した。
A:限界成型深さが7mm以上である。
B:限界成型深さが6mm以上7mmである。
C:限界成型深さが5mm以上6mm未満である。
D:限界成型深さが5mm未満である。
Next, in the following examples, the characteristics (stretch formability and thickness accuracy of the film, and the drawability of the laminate packaging material) in each example were evaluated by the following methods.
(I) Stretch moldability The stretch moldability was evaluated based on the following evaluation criteria by measuring the film folding width continuously during film formation.
In addition, the definition of bubble rupture folding diameter fluctuation rate was as follows.
{(Maximum fold diameter of film−Minimum fold diameter of film) / 2 / Average fold diameter of film} × 100%
A: Film folding diameter fluctuation rate is less than 1.0% B: Film folding diameter fluctuation rate is 1.0% or more and 2.0% or less C: Film folding diameter fluctuation rate is 2.0% Thing accuracy (ii) Thickness accuracy Thickness accuracy was evaluated on the basis of the following evaluation criteria by measuring the thickness every 1 cm in the width direction of the obtained film and measuring the thickness accuracy (%).
In addition, the definition of thickness accuracy was as follows.
{(Maximum film thickness-minimum film thickness) / 2 / average film thickness} × 100%
A: The thickness accuracy is 2% or less.
B: Thickness accuracy is more than 2% and 3.5% or less.
C: Thickness accuracy is more than 3.5% and less than 4.5%.
D: Thickness accuracy is 4.5% or more.
(Iii) Drawability The drawability is determined by first cutting a laminate packaging material to produce a 120 × 80 mm strip and using a 33 × 55 mm rectangular mold as 0.1 MPa. Each of the 10 samples was cold-molded (drawn one-step molding) by changing the molding depth from 0.5 mm to 0.5 mm. The molding depth at which no pinhole was generated in the aluminum foil in any of the 10 samples was defined as the limit molding depth, and the molding depth was shown as an evaluation value.
In addition, confirmation of the pinhole confirmed the transmitted light visually.
A: The limit molding depth is 7 mm or more.
B: The limit molding depth is 6 mm or more and 7 mm.
C: The limit molding depth is 5 mm or more and less than 6 mm.
D: The limit molding depth is less than 5 mm.
[実施例2-1]
(原反フィルム製造工程)
 図1に示すように、Ny6ペレットを押出機91中で、270℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
 Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン 1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
 次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.5倍とした。
(第一熱処理工程および第二熱処理工程)
 次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度210℃にて熱処理を施し、熱固定した。
(巻取工程)
 次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
 得られた二軸延伸ナイロンフィルムの延伸成形性を評価するとともに、厚み精度を測定した。得られた結果を表2に示す。
(ラミネート包材の作製)
 得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μのアルミニウム箔、厚さ60μmCPPフィルムをシーラントフィルムとして、両者をドライラミネートすることによりラミネート包材を得た。また、ドライラミネート後のラミネート包材は、40℃で3日間エージングを行った。
 得られたラミネート包材の絞り成型性を評価した。そして、上記の評価結果を踏まえて製造方法の総合評価を行った。得られた結果を表2に示す。
[Example 2-1]
(Raw film production process)
As shown in FIG. 1, after Ny6 pellets were melt-kneaded at 270 ° C. in an extruder 91, the melt was extruded as a tubular film from a circular die 92, and then rapidly cooled with water (15 ° C.). Film 1 was produced.
What was used as Ny6 is Ube Industries, Ltd. nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5].
(Biaxial stretching process)
Next, as shown in FIG. 1, the raw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while a gas is being pressed into the film 1, and blown to the stretching start point to form bubbles. The biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14. The magnification during this stretching was 3.0 times in the MD direction and 3.5 times in the TD direction.
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment apparatus 20, and then passed through the separation apparatus 30 and then heat treated at a temperature of 210 ° C. by the second heat treatment apparatus 40. And heat fixed.
(Winding process)
Next, as shown in FIG. 1, the film 3 heat-set in the second heat treatment step is wound as two films 3 </ b> A and 3 </ b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50. A biaxially stretched nylon film was produced. The thickness of the obtained biaxially stretched nylon film was 15 μm.
While evaluating the stretch moldability of the obtained biaxially stretched nylon film, the thickness accuracy was measured. The obtained results are shown in Table 2.
(Production of laminate packaging material)
The obtained biaxially stretched nylon film was used as a front substrate film, a 40 μm thick aluminum foil, and a 60 μm thick CPP film was used as a sealant film to dry laminate them to obtain a laminate packaging material. The laminated packaging material after dry lamination was aged at 40 ° C. for 3 days.
The drawability of the obtained laminate packaging material was evaluated. And comprehensive evaluation of the manufacturing method was performed based on said evaluation result. The obtained results are shown in Table 2.
[実施例2-2~2-7、比較例2-1~2-5]
 表2に示す製造条件(厚み、延伸倍率および熱固定温度)に従って各条件を変更した以外は実施例2-1と同様にして、二軸延伸ナイロンフィルムおよびラミネート包材を製造した。
 得られた二軸延伸ナイロンフィルムの延伸成形性を評価するとともに、厚み精度を測定した。得られた結果を表2に示す。また、得られたラミネート包材の絞り成型性を評価した。そして、上記の評価結果を踏まえて製造方法の総合評価を行った。得られた結果を表2に示す。
[Examples 2-2 to 2-7, Comparative Examples 2-1 to 2-5]
A biaxially stretched nylon film and a laminate packaging material were produced in the same manner as in Example 2-1, except that the conditions were changed according to the production conditions (thickness, draw ratio, and heat setting temperature) shown in Table 2.
While evaluating the stretch moldability of the obtained biaxially stretched nylon film, the thickness accuracy was measured. The obtained results are shown in Table 2. Further, the drawability of the obtained laminate packaging material was evaluated. And comprehensive evaluation of the manufacturing method was performed based on said evaluation result. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示す結果からも明らかなように、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD-MD)が0.3倍以上0.8倍以下である場合(実施例2-1~2-7)には、得られる二軸延伸ナイロンフィルムが冷間成型における高度の絞り成型性を有することが確認された。また、このような場合、延伸成形性も良好で、フィルム厚み精度も優れていることが確認された。
 一方で、TD-MDの値が0.25倍以下である場合(比較例2-1~2-4)には、この二軸延伸ナイロンフィルムを用いて得られるラミネート包材の絞り成型性が不十分であった。特に、TD-MDの値が0.1倍以下である場合(比較例2-1~2-2)には、延伸成形性が悪く、フィルム厚み精度も低下した。また、TD-MDの値が0.9倍である場合(比較例2-5)には、延伸成形性が悪く、また、得られる二軸延伸ナイロンフィルムを用いて得られるラミネート包材の絞り成型性が不十分であった。
As is clear from the results shown in Table 2, when the difference (TD-MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is 0.3 to 0.8 (Example 2) In -1 to 2-7), it was confirmed that the obtained biaxially stretched nylon film has a high degree of drawability in cold forming. In such a case, it was confirmed that the stretch moldability was also good and the film thickness accuracy was excellent.
On the other hand, when the value of TD-MD is 0.25 times or less (Comparative Examples 2-1 to 2-4), the drawability of the laminate packaging material obtained using this biaxially stretched nylon film is low. It was insufficient. In particular, when the value of TD-MD was 0.1 times or less (Comparative Examples 2-1 and 2-2), the stretch moldability was poor and the film thickness accuracy was also lowered. Further, when the value of TD-MD is 0.9 times (Comparative Example 2-5), the stretch moldability is poor, and the drawing of the laminate packaging material obtained using the obtained biaxially stretched nylon film Moldability was insufficient.
 本発明の二軸延伸ナイロンフィルムは、工業用分野(リチウム電池用包材など)、医薬分野(PTP包材など)、液体洗剤用詰め替え包材、食品包装分野の包装材料として好適に用いることができる。本発明のラミネート包材は、冷間成型用包材などに利用することができる。 The biaxially stretched nylon film of the present invention can be suitably used as a packaging material in the industrial field (such as a lithium battery packaging material), the pharmaceutical field (such as a PTP packaging material), a refill packaging material for liquid detergents, and a food packaging field. it can. The laminate packaging material of the present invention can be used for cold molding packaging materials and the like.
  1…原反フィルム
  2,2A,2B…基材フィルム
  3,3A,3B…二軸延伸ナイロンフィルム
DESCRIPTION OF SYMBOLS 1 ... Raw film 2, 2A, 2B ... Base film 3, 3A, 3B ... Biaxially stretched nylon film

Claims (9)

  1.  二軸延伸ナイロンフィルムであって、
     当該フィルム面内の複屈折△nが、0.005以上0.009以下である
     ことを特徴とする二軸延伸ナイロンフィルム。
    A biaxially stretched nylon film,
    Birefringence (DELTA) n in the said film surface is 0.005 or more and 0.009 or less. The biaxially stretched nylon film characterized by the above-mentioned.
  2.  請求項1に記載の二軸延伸ナイロンフィルムにおいて、
     前記複屈折△nが、0.006以上0.007以下である
     ことを特徴とする二軸延伸ナイロンフィルム。
    In the biaxially stretched nylon film according to claim 1,
    The birefringence Δn is 0.006 or more and 0.007 or less.
  3.  請求項1または請求項2に記載の二軸延伸ナイロンフィルムにおいて、
     冷間成型用である
     ことを特徴とする二軸延伸ナイロンフィルム。
    In the biaxially stretched nylon film according to claim 1 or 2,
    A biaxially stretched nylon film characterized by being for cold forming.
  4.  二軸延伸ナイロンフィルムの製造方法であって、
     MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であり、かつ、TD方向の延伸倍率からMD方向の延伸倍率を減じた差が、0.3倍以上0.8倍以下である条件で、原反フィルムを延伸する二軸延伸工程を備える
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
    A method for producing a biaxially stretched nylon film,
    Conditions in which the stretching ratio in the MD direction and the TD direction is 2.8 times or more and the difference obtained by subtracting the stretching ratio in the MD direction from the stretching ratio in the TD direction is 0.3 times or more and 0.8 times or less. A process for producing a biaxially stretched nylon film, comprising a biaxial stretching process for stretching a raw film.
  5.  請求項4に記載の二軸延伸ナイロンフィルムの製造方法において、
     前記二軸延伸工程後のフィルムに、温度190℃以上215℃以下の熱処理を施して熱固定する熱固定工程を、さらに備える
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
    In the manufacturing method of the biaxially stretched nylon film of Claim 4,
    A method for producing a biaxially stretched nylon film, further comprising a heat setting step of heat-setting the film after the biaxial stretching step by performing a heat treatment at a temperature of 190 ° C. or higher and 215 ° C. or lower.
  6.  請求項4または請求項5に記載の二軸延伸ナイロンフィルムの製造方法において、
     前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸する
     ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
    In the manufacturing method of the biaxially stretched nylon film of Claim 4 or Claim 5,
    In the biaxial stretching step, biaxial stretching is performed by a tubular biaxial stretching method. A method for producing a biaxially stretched nylon film.
  7.  請求項1から請求項3のいずれか一項に記載の二軸延伸ナイロンフィルムを含むことを特徴とするラミネート包材。 A laminate packaging material comprising the biaxially stretched nylon film according to any one of claims 1 to 3.
  8.  請求項4から請求項6のいずれか一項に記載の二軸延伸ナイロンフィルムの製造方法で得られた二軸延伸ナイロンフィルムを含むことを特徴とするラミネート包材。 A laminate packaging material comprising the biaxially stretched nylon film obtained by the method for producing a biaxially stretched nylon film according to any one of claims 4 to 6.
  9.  請求項8に記載のラミネート包材において、
     冷間成型用である
     ことを特徴とするラミネート包材。
    The laminate packaging material according to claim 8,
    Laminate packaging material characterized by being for cold forming.
PCT/JP2012/082019 2011-12-13 2012-12-11 Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material WO2013089081A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-272394 2011-12-13
JP2011272394 2011-12-13
JP2011274866 2011-12-15
JP2011-274866 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013089081A1 true WO2013089081A1 (en) 2013-06-20

Family

ID=48612528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082019 WO2013089081A1 (en) 2011-12-13 2012-12-11 Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material

Country Status (3)

Country Link
JP (1) JPWO2013089081A1 (en)
TW (1) TW201325874A (en)
WO (1) WO2013089081A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208710A1 (en) * 2013-06-28 2014-12-31 ユニチカ株式会社 Laminated article and method for manufacturing same
JP2015107586A (en) * 2013-12-04 2015-06-11 出光ユニテック株式会社 Oriented nylon film, multilayer film, package material, battery, and production method of oriented nylon film
WO2017217452A1 (en) * 2016-06-15 2017-12-21 ユニチカ株式会社 Polyamide laminate film and production method for same
WO2017217436A1 (en) * 2016-06-15 2017-12-21 ユニチカ株式会社 Polyamide film, laminate and container using polyamide film, and production method for polyamide film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428144A (en) * 2015-03-18 2017-12-01 旭硝子株式会社 Layered product, bag body and lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337665A (en) * 1995-04-11 1996-12-24 Toray Ind Inc Film made from aromatic polyamide or aromatic polyimide
JPH0929835A (en) * 1995-07-19 1997-02-04 Toray Ind Inc Base film for tab
JP2004277598A (en) * 2003-03-17 2004-10-07 Asahi Kasei Fibers Corp High-ductility resin molded product
JP2008045015A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film
JP2010131810A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched multilayered polyamide resin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337665A (en) * 1995-04-11 1996-12-24 Toray Ind Inc Film made from aromatic polyamide or aromatic polyimide
JPH0929835A (en) * 1995-07-19 1997-02-04 Toray Ind Inc Base film for tab
JP2004277598A (en) * 2003-03-17 2004-10-07 Asahi Kasei Fibers Corp High-ductility resin molded product
JP2008045015A (en) * 2006-08-14 2008-02-28 Idemitsu Unitech Co Ltd Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film
JP2010131810A (en) * 2008-12-03 2010-06-17 Toyobo Co Ltd Biaxially stretched multilayered polyamide resin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208710A1 (en) * 2013-06-28 2014-12-31 ユニチカ株式会社 Laminated article and method for manufacturing same
JPWO2014208710A1 (en) * 2013-06-28 2017-02-23 ユニチカ株式会社 Laminated body and method for producing the same
JP2015107586A (en) * 2013-12-04 2015-06-11 出光ユニテック株式会社 Oriented nylon film, multilayer film, package material, battery, and production method of oriented nylon film
WO2017217452A1 (en) * 2016-06-15 2017-12-21 ユニチカ株式会社 Polyamide laminate film and production method for same
WO2017217436A1 (en) * 2016-06-15 2017-12-21 ユニチカ株式会社 Polyamide film, laminate and container using polyamide film, and production method for polyamide film
JP6290519B1 (en) * 2016-06-15 2018-03-07 ユニチカ株式会社 Polyamide-based laminated film and method for producing the same
JP6321896B1 (en) * 2016-06-15 2018-05-09 ユニチカ株式会社 Polyamide film, laminate and container using the same, and method for producing the same

Also Published As

Publication number Publication date
JPWO2013089081A1 (en) 2015-04-27
TW201325874A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP6218582B2 (en) Method for producing stretched nylon film, method for producing multilayer film, method for producing packaging material, and method for producing battery
JP2015107583A (en) Multilayer film, package material, and battery
WO2013011909A1 (en) Biaxially stretched nylon film for cold molding, laminate film, and molded body
JP2008044209A (en) Biaxially stretched nylon film, laminated packaging material and forming method of biaxially stretched nylon film
WO2013089081A1 (en) Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
JP2015107581A (en) Multilayer film, multilayer film package material, draw-molded article, and battery
WO2014103785A1 (en) Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film
JP2015107585A (en) Multilayer film, multilayer film package material, draw molded article, and battery
WO2013141135A1 (en) Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film
WO2013137395A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
JP2014054797A (en) Biaxially oriented nylon film, laminate film, laminate packaging material, and production method of biaxially oriented nylon film
JP2015051525A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2015051527A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2014141963A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
WO2014141966A1 (en) Biaxially stretched nylon coating film, laminate packaging material, and molded body
WO2013137153A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
JP2015107582A (en) Multilayer film, multilayer film package material, draw-molded article, and pharmaceutical packaging material
JP2015051528A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2014021425A1 (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film
JP2015107584A (en) Multilayer film, multilayer film package material, and draw-molded article
JP2015051526A (en) Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2014046473A (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, and method for producing biaxially-oriented nylon film
JP2014037076A (en) Biaxially stretched nylon film, laminated film, laminated packaging material and forming method of biaxially stretched nylon film
JP2015052033A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
WO2014021418A1 (en) Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857617

Country of ref document: EP

Kind code of ref document: A1