WO2014021418A1 - Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film - Google Patents

Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film Download PDF

Info

Publication number
WO2014021418A1
WO2014021418A1 PCT/JP2013/070870 JP2013070870W WO2014021418A1 WO 2014021418 A1 WO2014021418 A1 WO 2014021418A1 JP 2013070870 W JP2013070870 W JP 2013070870W WO 2014021418 A1 WO2014021418 A1 WO 2014021418A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
easily tearable
biaxially stretched
stretched nylon
nylon film
Prior art date
Application number
PCT/JP2013/070870
Other languages
French (fr)
Japanese (ja)
Inventor
真男 高重
Original Assignee
出光ユニテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光ユニテック株式会社 filed Critical 出光ユニテック株式会社
Priority to JP2014528218A priority Critical patent/JPWO2014021418A1/en
Publication of WO2014021418A1 publication Critical patent/WO2014021418A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially

Definitions

  • the present invention relates to an easily tearable biaxially stretched nylon film, an easily tearable laminate film, an easily tearable laminate packaging material, and a method for producing an easily tearable biaxially stretched nylon film.
  • L-LDPE linear low-density polyethylene
  • the present invention provides an easily tearable biaxially stretched nylon film, an easily tearable laminate film, an easily tearable laminate packaging material, and an easily tearable biaxially stretched nylon film having excellent tearability and high strength. It aims at providing the manufacturing method of.
  • the present invention provides the following easily tearable biaxially stretched nylon film, easily tearable laminate film, easily tearable laminate packaging material, and easy tearable biaxially stretched nylon film.
  • the easily tearable biaxially stretched nylon film of the present invention is easily tearable biaxially stretched nylon containing nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6) as raw materials.
  • the maximum refractive index value in the film plane is Nx
  • the minimum refractive index value in the film plane is Ny
  • the refractive index value in the thickness direction of the film Is Nz the plane orientation degree (P) satisfies the condition represented by the following mathematical formula (F1).
  • P (Nx + Ny) /2 ⁇ Nz ⁇ 0.040 (F1)
  • the plane refractive index ratio (Nx / Ny) of the film preferably satisfies the condition represented by the following mathematical formula (F2). 1.0 ⁇ (Nx / Ny) ⁇ 1.0045 (F2)
  • the impact strength is preferably 50000 J / m or more.
  • the Elmendorf tear strength is preferably 65 N / cm or less in both the MD direction and the TD direction.
  • the raw material preferably comprises 40% by mass or more and 85% by mass or less of the Ny6 and 15% by mass or more and 60% by mass or less of the MXD6.
  • the easily tearable laminate film of the present invention is characterized in that the easily tearable biaxially stretched nylon film is laminated.
  • the easily tearable laminate packaging material of the present invention is characterized by using the easily tearable laminate film.
  • the method for producing an easily tearable biaxially stretched nylon film of the present invention is a method for producing the easily tearable biaxially stretched nylon film, wherein the easily tearable biaxially stretched nylon film is produced from the raw material.
  • an easily tearable biaxially stretched nylon film, an easily tearable laminate film, an easily tearable laminate packaging material, and an easily tearable biaxially stretched nylon film have excellent tearability and high strength. Can be provided.
  • the raw material made of a mixed resin of Ny6 and MXD6 is preferably composed of 40% by mass to 85% by mass of Ny6 and 15% by mass to 60% by mass (the total of both is 100% by mass).
  • this raw material may include a heat history product formed by melt-kneading Ny6 and MXD6. It is preferable that the melting point of MXD6 in this heat history product is 233 ° C. or higher and 238 ° C. or lower. Moreover, it is preferable that content of a heat history goods is 5 mass% or more and 40 mass% or less on the raw material whole quantity basis.
  • the chemical formula of Ny6 is shown in the following formula (1)
  • the chemical formula of MXD6 is shown in the following formula (2).
  • the heat history product is a blended product of Ny6 and MXD6 and once passed through an extruder.
  • the melting point of MXD6 resin is 233 ° C. or higher and 238 ° C. or lower with a differential scanning calorimeter (DSC). The one held in the range is used.
  • the blending ratio of Ny6 and MXD6 in the virgin raw material is excellent in linear cut performance because Ny6 is 40% by mass to 85% by mass and MXD6 is 15% by mass to 60% by mass. .
  • the heat history product formed by melt-kneading Ny6 and MXD6 with respect to the whole raw material is contained in an amount of 5% by mass or more and 40% by mass or less, even if the ONy film is used under harsh conditions, the delamination is performed. It is hard to cause.
  • in-layer peeling refers to a phenomenon that causes peeling in an ONy film (nylon layer) when the ONy film is laminated with an appropriate sealant film and used under severe conditions.
  • the mechanism of delamination is not necessarily clear, but it is considered that Ny6 and MXD6 are oriented in layers in the ONy film, and delamination occurs at the interface.
  • the strength of the laminate film becomes unstable, and there is a risk of problems such as broken bags under severe use conditions when a bag is constructed.
  • Such severe use conditions can be reproduced by, for example, a test for measuring the laminate strength (peel strength) of the laminate film.
  • the melting point of MXD6 in the heat history product is preferably 233 ° C. or higher and 238 ° C. or lower, and more preferably 235 ° C. or higher and 237 ° C. or lower.
  • the melting point of MXD6 in the heat history product is less than 233 ° C., the linear cut property and impact strength of the easily tearable stretched film are lowered.
  • the melting point of MXD6 in the heat history product exceeds 238 ° C., the effect of preventing in-layer peeling is reduced.
  • the blending ratio of Ny6 and MXD6 in the heat history product is within this range, the linear cut property, impact strength, and the effect of preventing delamination in the layer are excellent.
  • the melting point of MXD6 in the heat history product is further lowered.
  • the melting point of MXD6 in the heat history product refers to a melting point measured in a state before being melt-kneaded with the virgin raw material.
  • the maximum refractive index value in the ONy film surface is Nx
  • the minimum refractive index value in the ONy film surface is Ny
  • the refractive index in the thickness direction of the ONy film is
  • the degree of plane orientation (P) satisfies the condition represented by the following formula (F1).
  • P (Nx + Ny) /2 ⁇ Nz ⁇ 0.04 (F1)
  • the degree of plane orientation (P) is less than 0.040, the strength of the obtained ONy film becomes insufficient, and the easy tear performance also decreases.
  • the plane orientation degree (P) is preferably 0.043 or more from the viewpoint of easy tearability and strength.
  • the planar refractive index ratio (Nx / Ny) of the ONy film satisfies the condition represented by the following mathematical formula (F2). 1.0 ⁇ (Nx / Ny) ⁇ 1.0045 (F2)
  • the plane refractive index ratio (Nx / Ny) is more preferably 1.0042 or less.
  • the components Nx, Ny, and Nz of the three-dimensional refractive index were obtained by measuring the refractive indexes of the films tilted at 0 ° and 45 ° using RETS-100 manufactured by Otsuka Electronics Co., Ltd. It can be calculated by analyzing the results.
  • the three-dimensional refractive index is a value at a measurement wavelength of 589 nm.
  • the impact strength (film impact) of the ONy film is preferably 50000 J / m or more, and more preferably 55000 J / m or more.
  • the impact strength can be measured as follows. That is, using a film impact tester manufactured by Toyo Seiki Co., Ltd., and punching the film at 23 ° C. by hitting a semicircular pendulum (1/2 inch in diameter) on a fixed ring-shaped ONy film Measure the impact strength (J / m) required for.
  • the Elmendorf tear strength is preferably 65 N / cm or less in both the MD direction and the TD direction, and both are 60 N / cm or less. More preferably.
  • the Elmendorf tear strength can be measured by a method based on the Elmendorf tear strength test (JIS K 7128).
  • the stretching temperature As means for bringing the characteristics of the ONy film (the degree of plane orientation (P), the plane refractive index ratio (Nx / Ny), the impact strength and the Elmendorf tear strength) into the above-described ranges, Examples include adjusting the stretching temperature, the stretching speed, and the heat setting temperature after stretching.
  • a draw ratio at the time of manufacture it can be suitably drawn, for example, from 2.8 times to 4.5 times, more preferably from 3.0 times to 4.0 times.
  • the stretching speed at the time of manufacture for example, at 1.0 sec -1 or more 20.0Sec -1 or less, more preferably adjusted in 1.5 sec -1 or more 15.0Sec -1 or less.
  • the heat setting temperature after stretching is, for example, 150 ° C. or higher and 218 ° C. or lower, more preferably 160 ° C. or higher and 215 ° C. or lower.
  • the easily tearable laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film.
  • other laminate base materials include an aluminum (Al) layer, a film including an aluminum layer, and a polypropylene (PP) -based or polyethylene (PE) -based seal layer (sealant layer).
  • the laminate film of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinyl chloride (PVC), polyvinylidene chloride resin (PVDC), polyvinyl chloride on at least one surface of the above ONy film.
  • a layer obtained by further laminating a layer (which may be a coating layer) such as a vinylidene copolymer resin, a lubricant, an antistatic agent, or a nitrified cotton amide resin may be used.
  • a layer which may be a coating layer
  • a layer such as a vinylidene copolymer resin, a lubricant, an antistatic agent, or a nitrified cotton amide resin
  • stacking aspect of the said laminate film ONy / Al / PP, PET / ONy / Al / CPP, transparent vapor deposition PET / ONy / CPP is mentioned, for example.
  • the easily tearable laminate packaging material of this embodiment is composed of the easily tearable laminate film. According to the easily tearable laminate packaging material of the present embodiment, since it is composed of the above easily tearable laminate film, a laminate packaging material having excellent tearability and high strength can be obtained.
  • the thickness of the ONy film in the easily tearable laminate packaging material of the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the ONy film is less than 5 ⁇ m, the impact resistance of the laminate packaging material tends to be low.
  • the thickness of the ONy film exceeds 50 ⁇ m, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
  • the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching.
  • a first heat treatment device 20 that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set.
  • a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
  • the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
  • the tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air.
  • the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
  • the first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2.
  • the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
  • the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
  • the second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
  • the tension controller 50 includes guide rolls 51 ⁇ / b> A and 51 ⁇ / b> B and a tension roll 52.
  • the winding device 60 includes a guide roll 61 and a winding roll 62.
  • the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92.
  • the tubular molten resin is cooled by a water cooling ring 93.
  • the raw film 1 is formed by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93.
  • the cooled original film 1 is folded by the stabilizer 94.
  • the folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
  • the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11.
  • the introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12.
  • the film 2 after being bubble-stretched is folded by the guide plate 13.
  • the folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
  • the film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21.
  • the film 2 is preheated at a low temperature or lower and sent to the next separation step.
  • the heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
  • the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B.
  • film 2A, 2B is isolate
  • the incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
  • These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step.
  • these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
  • the overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
  • the heat treatment temperature in the second heat treatment (heat setting) is preferably 160 ° C. or more and 215 ° C. or less, and the relaxation rate is preferably 15% or less.
  • the film shrinkage rate tends to increase and the risk of delamination tends to increase.
  • the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases and the distortion of the film increases.
  • the density tends to be too high, the crystallinity becomes too high, and the film tends to be difficult to deform.
  • a strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
  • the film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
  • the tubular method is adopted as the biaxial stretching method, but a tenter method may be used.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
  • Example 1 (Raw film production process) A dry blend product was prepared by mixing 70% by mass of Ny6 pellets and 30% by mass of MXD6 pellets. Then, as shown in FIG. 1, after this dry blend product was melt-kneaded in an extruder 91 at 275 ° C., the melt was extruded from a circular die 92 as a tubular film, and then rapidly cooled with water (15 ° C.). Thus, a raw film 1 was produced.
  • the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment device 20, and then passed through the separation device 30 and then heat treated at a temperature of 197 ° C. by the second heat treatment device 40. And heat fixed.
  • the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
  • An easily tearable biaxially stretched nylon film was produced.
  • the resulting easily tearable biaxially stretched nylon film had a thickness of 15 ⁇ m.
  • the three-dimensional refractive index, the degree of plane orientation, the plane refractive index ratio, the impact strength, and the Elmendorf tear strength of the obtained easily tearable biaxially stretched nylon film were measured.
  • the obtained results are shown in Table 1.
  • the obtained easily tearable biaxially stretched nylon film is used as a surface base film, a 7 ⁇ m thick aluminum foil is used as an intermediate base material, and a 60 ⁇ m thick CPP film is used as a sealant film to obtain a laminate film. It was.
  • the laminated film after dry lamination was aged at 40 ° C. for 3 days. The straight tearability, tear resistance, and impact strength of the easily tearable laminate film were evaluated. The obtained results are shown in Table 1.
  • Examples 2 to 3, Comparative Examples 1 to 3 As Examples 2 to 3 and Comparative Example 3, production conditions (stretch ratio, heat setting temperature) were appropriately adjusted by the production method shown in Example 1, and an easily tearable biaxially stretched nylon film and an easily tearable laminate film were obtained. Produced. The three-dimensional refractive index, the degree of plane orientation, the plane refractive index ratio, the impact strength, and the Elmendorf tear strength of the obtained easily tearable biaxially stretched nylon film were measured. The obtained results are shown in Table 1. Moreover, the straight cut property, tear resistance, and impact strength of the obtained easily tearable laminate film were evaluated. The obtained results are shown in Table 1.
  • Comparative Examples 1 and 2 a biaxially stretched nylon film obtained by the production method shown in Table 1 was obtained, and as in Example 1, the three-dimensional refractive index, the degree of plane orientation, the plane refractive index ratio, the impact Strength and Elmendorf tear strength were measured. The obtained results are shown in Table 1.
  • a laminate film was produced using the biaxially stretched nylon films of Comparative Examples 1 and 2, and the linear cut property, tear resistance and impact strength were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
  • the laminate film containing the easily tearable biaxially stretched nylon film of the present invention is, for example, a food packaging material such as retort food or confectionery, a pharmaceutical packaging material that is filled with liquid food or infusion, or a household product such as a liquid detergent refill. It can be suitably used as a packaging material for industrial and industrial packaging materials (laminate packaging material).

Abstract

 This easily-tearable biaxially-oriented nylon film is an easily-tearable biaxially-oriented nylon film containing nylon 6 (hereinafter "Ny6") and meta-xylene adipamide (hereinafter "MXD6") as starting materials, wherein if, among the three-dimensional refractive indices of said film, the maximum refractive index in the plane of said film is defined as Nx, the minimum refractive index within the plane of said film is defined as Ny, and the refractive index in the thickness direction of the film is defined as Nz, the degree of plane orientation (P) satisfies the condition represented by the following formula (F1). P = (Nx + Ny)/2-Nz ≧ 0.040 (F1)

Description

易裂性二軸延伸ナイロンフィルム、易裂性ラミネートフィルム、易裂性ラミネート包材および易裂性二軸延伸ナイロンフィルムの製造方法Easily tearable biaxially stretched nylon film, easily tearable laminate film, easily tearable laminate packaging material, and method for producing easily tearable biaxially stretched nylon film
 本発明は、易裂性二軸延伸ナイロンフィルム、易裂性ラミネートフィルム、易裂性ラミネート包材および易裂性二軸延伸ナイロンフィルムの製造方法に関する。 The present invention relates to an easily tearable biaxially stretched nylon film, an easily tearable laminate film, an easily tearable laminate packaging material, and a method for producing an easily tearable biaxially stretched nylon film.
 日本では、高齢化社会を迎えた事情も手伝い、高齢者や障害者が若年者や健常者とともに快適な社会生活を送れるようにするため、さまざまな分野でバリア(障害)となるものを取り除く「バリアフリー」の概念が脚光を浴び始めている。
 一方、食品、薬品などの包装袋のシール基材(シーラント)フィルムとしては、直鎖状低密度ポリエチレン(L-LDPE)などのフィルムが多用されている。しかし、このL-LDPEフィルムは、シール強度が優れているため安全であるが、引き裂き抵抗が大きいため使用時に切れ目に沿って真っ直ぐに切れず、開封しにくいという問題があった。
In Japan, helping with the aging society, helping elderly and people with disabilities to live a comfortable social life with young and healthy people, removes barriers (disabilities) in various fields. The concept of “barrier-free” is beginning to attract attention.
On the other hand, films such as linear low-density polyethylene (L-LDPE) are frequently used as a sealing substrate (sealant) film for packaging bags for foods, medicines and the like. However, this L-LDPE film is safe because it has excellent sealing strength, but has a problem that it is difficult to open because it has a high tear resistance and does not cut straight along the cut line during use.
 それ故、包装分野においても、「バリアフリー」への要請が非常に高まり、具体的には、各種食品用包材、医療用包材に関して、易開封性(易裂性)への要望が一層高まっている。
 そのため、包装袋を構成するフィルムに易裂性、特に直線カット性を付与するための検討がなされている。
 例えば、包装袋を構成するラミネートフィルムの表基材フィルムとして、ナイロン6(以後、Ny6ともいう)とメタキシリレンアジパミド(以後、MXD6ともいう)とのブレンド樹脂からなる易裂性二軸延伸ナイロンフィルムを用いることが知られている(特許文献1参照)。
Therefore, in the packaging field, the demand for “barrier-free” has been greatly increased. Specifically, for various food packaging materials and medical packaging materials, there is a further demand for easy opening (easy tearability). It is growing.
For this reason, studies have been made to impart easy tearing properties, particularly straight line cutting properties, to the film constituting the packaging bag.
For example, as a surface base film of a laminate film constituting a packaging bag, an easily tearable biaxially made of a blend resin of nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6) It is known to use a stretched nylon film (see Patent Document 1).
特開2007-39664号公報JP 2007-39664 A
 上記易裂性二軸延伸ナイロンフィルムは、包装を開封する際には、お年寄りや子供でも簡単に開封できる易裂性・直線カット性が望まれる。また、一方で、上記易裂性とは相反する性質である、高い強度を有する必要もある。
 しかしながら、特許文献1に記載の易裂性二軸延伸ナイロンフィルムにおいては、通常の使用時には問題にはならないものの、例えば、電子レンジでの加熱やお湯での湯煎のように、加熱処理する場合には、フィルムが厚くなり、切れ難くなることがあるという問題があった。
When the above-mentioned easily tearable biaxially stretched nylon film is opened, it is desired to have easy tearability and straight-line cutability that can be easily opened by the elderly and children. On the other hand, it is also necessary to have high strength, which is a property contrary to the easy tearability.
However, in the easily tearable biaxially stretched nylon film described in Patent Document 1, there is no problem during normal use. For example, when heat treatment is performed, such as heating in a microwave oven or hot water in a hot water bath. However, there was a problem that the film would be thick and difficult to cut.
 そこで、本発明は、優れた易裂性を有するとともに、高い強度を有する、易裂性二軸延伸ナイロンフィルム、易裂性ラミネートフィルム、易裂性ラミネート包材および易裂性二軸延伸ナイロンフィルムの製造方法を提供することを目的とする。 Therefore, the present invention provides an easily tearable biaxially stretched nylon film, an easily tearable laminate film, an easily tearable laminate packaging material, and an easily tearable biaxially stretched nylon film having excellent tearability and high strength. It aims at providing the manufacturing method of.
 前記課題を解決すべく、本発明は、以下のような易裂性二軸延伸ナイロンフィルム、易裂性ラミネートフィルム、易裂性ラミネート包材および易裂性二軸延伸ナイロンフィルムの製造方法を提供するものである。
 すなわち、本発明の易裂性二軸延伸ナイロンフィルムは、ナイロン6(以後、Ny6ともいう)とメタキシリレンアジパミド(以後、MXD6ともいう)とを原料として含む易裂性二軸延伸ナイロンフィルムであって、当該フィルムの三次元屈折率のうち、当該フィルム面内の最大屈折率値をNxとし、当該フィルム面内の最小屈折率値をNyとし、当該フィルムの厚み方向の屈折率値をNzとした場合に、面配向度(P)が下記数式(F1)で表される条件を満たすことを特徴とするものである。
P = (Nx+Ny)/2-Nz ≧ 0.040 ・・・(F1)
In order to solve the above-mentioned problems, the present invention provides the following easily tearable biaxially stretched nylon film, easily tearable laminate film, easily tearable laminate packaging material, and easy tearable biaxially stretched nylon film. To do.
That is, the easily tearable biaxially stretched nylon film of the present invention is easily tearable biaxially stretched nylon containing nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6) as raw materials. Of the three-dimensional refractive index of the film, the maximum refractive index value in the film plane is Nx, the minimum refractive index value in the film plane is Ny, and the refractive index value in the thickness direction of the film Is Nz, the plane orientation degree (P) satisfies the condition represented by the following mathematical formula (F1).
P = (Nx + Ny) /2−Nz≧0.040 (F1)
 本発明の易裂性二軸延伸ナイロンフィルムにおいては、当該フィルムの平面屈折率比(Nx/Ny)が下記数式(F2)で表される条件を満たすことが好ましい。
1.0 ≦ (Nx/Ny) ≦ 1.0045 ・・・(F2)
 本発明の易裂性二軸延伸ナイロンフィルムにおいては、衝撃強度が50000J/m以上であることが好ましい。
 本発明の易裂性二軸延伸ナイロンフィルムにおいては、エレメンドルフ引裂強度が、MD方向およびTD方向いずれも65N/cm以下であることが好ましい。
 本発明の易裂性二軸延伸ナイロンフィルムにおいては、前記原料は、40質量%以上85質量%以下の前記Ny6と、15質量%以上60質量%以下の前記MXD6とからなることが好ましい。
In the easily tearable biaxially stretched nylon film of the present invention, the plane refractive index ratio (Nx / Ny) of the film preferably satisfies the condition represented by the following mathematical formula (F2).
1.0 ≤ (Nx / Ny) ≤ 1.0045 (F2)
In the easily tearable biaxially stretched nylon film of the present invention, the impact strength is preferably 50000 J / m or more.
In the easily tearable biaxially stretched nylon film of the present invention, the Elmendorf tear strength is preferably 65 N / cm or less in both the MD direction and the TD direction.
In the easily tearable biaxially stretched nylon film of the present invention, the raw material preferably comprises 40% by mass or more and 85% by mass or less of the Ny6 and 15% by mass or more and 60% by mass or less of the MXD6.
 本発明の易裂性ラミネートフィルムは、前記易裂性二軸延伸ナイロンフィルムが積層されてなることを特徴とするものである。
 本発明の易裂性ラミネート包材は、前記易裂性ラミネートフィルムを用いたことを特徴とするものである。
 本発明の易裂性二軸延伸ナイロンフィルムの製造方法は、前記易裂性二軸延伸ナイロンフィルムを製造する易裂性二軸延伸ナイロンフィルムの製造方法であって、前記原料から原反フィルムを成形する原反フィルム製造工程と、チューブラー式二軸延伸法にて、前記原反フィルムを二軸延伸する二軸延伸工程と、前記二軸延伸工程後のフィルムに熱処理を施す熱処理工程と、を備えることを特徴とする方法である。
The easily tearable laminate film of the present invention is characterized in that the easily tearable biaxially stretched nylon film is laminated.
The easily tearable laminate packaging material of the present invention is characterized by using the easily tearable laminate film.
The method for producing an easily tearable biaxially stretched nylon film of the present invention is a method for producing the easily tearable biaxially stretched nylon film, wherein the easily tearable biaxially stretched nylon film is produced from the raw material. An original film production process to be molded, a biaxial stretching process for biaxially stretching the original film in a tubular biaxial stretching method, and a heat treatment process for heat-treating the film after the biaxial stretching process, It is a method characterized by providing.
 本発明によれば、優れた易裂性を有するとともに、高い強度を有する、易裂性二軸延伸ナイロンフィルム、易裂性ラミネートフィルム、易裂性ラミネート包材および易裂性二軸延伸ナイロンフィルムの製造方法を提供できる。 According to the present invention, an easily tearable biaxially stretched nylon film, an easily tearable laminate film, an easily tearable laminate packaging material, and an easily tearable biaxially stretched nylon film have excellent tearability and high strength. Can be provided.
本発明の易裂性二軸延伸ナイロンフィルムを製造する装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the apparatus which manufactures the easily tearable biaxially-stretched nylon film of this invention.
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 〔易裂性二軸延伸ナイロンフィルムの構成〕
 本実施形態の易裂性二軸延伸ナイロンフィルム(ONyフィルム)では、ナイロン6(以後、Ny6ともいう)とメタキシリレンアジパミド(以後、MXD6ともいう)との混合樹脂を原料として用いる。
Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[Composition of easy tearing biaxially stretched nylon film]
In the easily tearable biaxially stretched nylon film (ONy film) of this embodiment, a mixed resin of nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6) is used as a raw material.
 Ny6とMXD6との混合樹脂からなる原料は、40質量%以上85質量%以下のNy6、および15質量%以上60質量%以下(両者の合計は100質量%)のMXD6からなることが好ましい。また、この原料としては、バージン原料の他に、Ny6およびMXD6を溶融混練してなる熱履歴品とを含んでもよい。この熱履歴品におけるMXD6の融点が233℃以上238℃以下であることが好ましい。また、熱履歴品の含有量は、原料全量基準で5質量%以上40質量%以下であることが好ましい。
 ここで、Ny6の化学式を下記式(1)に示し、MXD6の化学式を下記式(2)に示す。
The raw material made of a mixed resin of Ny6 and MXD6 is preferably composed of 40% by mass to 85% by mass of Ny6 and 15% by mass to 60% by mass (the total of both is 100% by mass). In addition to the virgin raw material, this raw material may include a heat history product formed by melt-kneading Ny6 and MXD6. It is preferable that the melting point of MXD6 in this heat history product is 233 ° C. or higher and 238 ° C. or lower. Moreover, it is preferable that content of a heat history goods is 5 mass% or more and 40 mass% or less on the raw material whole quantity basis.
Here, the chemical formula of Ny6 is shown in the following formula (1), and the chemical formula of MXD6 is shown in the following formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記熱履歴品とは、Ny6とMXD6の配合品で、一度押出機を通過したものをいい、本発明については、示差走査熱量計(DSC)でMXD6樹脂の融点が233℃以上、238℃以下の範囲に保持されたものを用いる。 The heat history product is a blended product of Ny6 and MXD6 and once passed through an extruder. For the present invention, the melting point of MXD6 resin is 233 ° C. or higher and 238 ° C. or lower with a differential scanning calorimeter (DSC). The one held in the range is used.
 上述のような場合、バージン原料におけるNy6とMXD6の配合割合が、Ny6が40質量%以上85質量%以下で、MXD6が15質量%以上60質量%以下であるので、直線カット性に優れている。そして、原料全体に対して、Ny6およびMXD6を溶融混練してなる熱履歴品が5質量%以上40質量%以下含まれているので、ONyフィルムを過酷な条件下で使用しても層内剥離を起こしにくい。
 ここで、層内剥離とは、ONyフィルムを適当なシーラントフィルムとラミネートした後に過酷な条件で使用すると、ONyフィルム(ナイロン層)内で剥離を引き起こす現象をいう。層内剥離の機構は必ずしも明確ではないが、ONyフィルム内では、Ny6とMXD6が層状に配向しており、その界面で剥離が起こるものと考えられる。
 このような層内剥離が起こると、ラミネートフィルムの強度が不安定となり、袋を構成した場合に過酷な使用条件下では破袋等の問題を生ずるおそれがある。このような過酷な使用条件は、例えば、ラミネートフィルムのラミネート強度(剥離強度)を測定する試験により再現することができる。
In the case as described above, the blending ratio of Ny6 and MXD6 in the virgin raw material is excellent in linear cut performance because Ny6 is 40% by mass to 85% by mass and MXD6 is 15% by mass to 60% by mass. . And since the heat history product formed by melt-kneading Ny6 and MXD6 with respect to the whole raw material is contained in an amount of 5% by mass or more and 40% by mass or less, even if the ONy film is used under harsh conditions, the delamination is performed. It is hard to cause.
Here, in-layer peeling refers to a phenomenon that causes peeling in an ONy film (nylon layer) when the ONy film is laminated with an appropriate sealant film and used under severe conditions. The mechanism of delamination is not necessarily clear, but it is considered that Ny6 and MXD6 are oriented in layers in the ONy film, and delamination occurs at the interface.
When such delamination occurs, the strength of the laminate film becomes unstable, and there is a risk of problems such as broken bags under severe use conditions when a bag is constructed. Such severe use conditions can be reproduced by, for example, a test for measuring the laminate strength (peel strength) of the laminate film.
 また、熱履歴品におけるMXD6の融点は、233℃以上238℃以下であることが好ましく、235℃以上237℃以下であることがより好ましい。熱履歴品におけるMXD6の融点が233℃未満になると、易裂性延伸フィルムの直線カット性と衝撃強度が低下する。また、熱履歴品におけるMXD6の融点が238℃を超えると、層内剥離を防止する効果が低くなる。
 さらに、熱履歴品におけるNy6とMXD6の配合割合が、Ny6:MXD6=60質量%以上85質量%以下:15質量%以上40質量%以下(両者の合計は100質量%)であることが好ましい。熱履歴品におけるNy6とMXD6の配合割合が、この範囲内であると、直線カット性、衝撃強度および層内剥離防止効果により優れる。
 なお、熱履歴品が製造される過程で、混練時の温度や圧力が高いと熱履歴品中のMXD6の融点はより大きく下がる。
 ここで、熱履歴品におけるMXD6の融点とは、バージン原料と溶融混練される前の状態で測定された融点をいう。
The melting point of MXD6 in the heat history product is preferably 233 ° C. or higher and 238 ° C. or lower, and more preferably 235 ° C. or higher and 237 ° C. or lower. When the melting point of MXD6 in the heat history product is less than 233 ° C., the linear cut property and impact strength of the easily tearable stretched film are lowered. Moreover, when the melting point of MXD6 in the heat history product exceeds 238 ° C., the effect of preventing in-layer peeling is reduced.
Furthermore, the blending ratio of Ny6 and MXD6 in the heat history product is preferably Ny6: MXD6 = 60% by mass or more and 85% by mass or less: 15% by mass or more and 40% by mass or less (the total of both is 100% by mass). When the blending ratio of Ny6 and MXD6 in the heat history product is within this range, the linear cut property, impact strength, and the effect of preventing delamination in the layer are excellent.
In addition, when the temperature and pressure at the time of kneading are high in the process of manufacturing a heat history product, the melting point of MXD6 in the heat history product is further lowered.
Here, the melting point of MXD6 in the heat history product refers to a melting point measured in a state before being melt-kneaded with the virgin raw material.
 本実施形態においては、ONyフィルムの三次元屈折率のうち、ONyフィルム面内の最大屈折率値をNxとし、ONyフィルム面内の最小屈折率値をNyとし、ONyフィルムの厚み方向の屈折率値をNzとした場合に、面配向度(P)が下記数式(F1)で表される条件を満たすことが必要である。
P = (Nx+Ny)/2-Nz ≧ 0.04 ・・・(F1)
 面配向度(P)が0.040未満では、得られるONyフィルムの強度が不十分となり、易裂性能も低下する。また、面配向度(P)は、易裂性および強度の観点から、0.043以上であることが好ましい。
 また、本実施形態においては、ONyフィルムの平面屈折率比(Nx/Ny)が下記数式(F2)で表される条件を満たすことが好ましい。
1.0 ≦ (Nx/Ny) ≦ 1.0045 ・・・(F2)
 平面屈折率比(Nx/Ny)が前記範囲外の場合は、得られるフィルムの面内バランスが崩れるため、易裂性および強度のバランスが悪くなる傾向にある。また、上記の観点から、平面屈折率比(Nx/Ny)は、1.0042以下であることがより好ましい。
 ここで、三次元屈折率の各成分Nx、NyおよびNzは、大塚電子社製RETS-100を使用して、フィルムを0°のものと45°傾けたものの屈折率を測定し、得られた結果を解析することにより算出できる。なお、三次元屈折率は、測定波長589nmにおける値である。
In this embodiment, among the three-dimensional refractive indexes of the ONy film, the maximum refractive index value in the ONy film surface is Nx, the minimum refractive index value in the ONy film surface is Ny, and the refractive index in the thickness direction of the ONy film is When the value is Nz, it is necessary that the degree of plane orientation (P) satisfies the condition represented by the following formula (F1).
P = (Nx + Ny) /2−Nz≧0.04 (F1)
When the degree of plane orientation (P) is less than 0.040, the strength of the obtained ONy film becomes insufficient, and the easy tear performance also decreases. Further, the plane orientation degree (P) is preferably 0.043 or more from the viewpoint of easy tearability and strength.
In the present embodiment, it is preferable that the planar refractive index ratio (Nx / Ny) of the ONy film satisfies the condition represented by the following mathematical formula (F2).
1.0 ≤ (Nx / Ny) ≤ 1.0045 (F2)
When the plane refractive index ratio (Nx / Ny) is out of the above range, the in-plane balance of the resulting film is lost, so that the balance between easy tearing and strength tends to deteriorate. From the above viewpoint, the plane refractive index ratio (Nx / Ny) is more preferably 1.0042 or less.
Here, the components Nx, Ny, and Nz of the three-dimensional refractive index were obtained by measuring the refractive indexes of the films tilted at 0 ° and 45 ° using RETS-100 manufactured by Otsuka Electronics Co., Ltd. It can be calculated by analyzing the results. The three-dimensional refractive index is a value at a measurement wavelength of 589 nm.
 本実施形態においては、強度の観点から、ONyフィルムの衝撃強度(フィルムインパクト)が50000J/m以上であることが好ましく、55000J/m以上であることがより好ましい。
 ここで、衝撃強度は、次のようにして測定できる。すなわち、東洋精機(株)製のフィルム・インパクト・テスターを使用し、23℃において、固定されたリング状のONyフィルムに半円球状の振り子(直径1/2インチ)を打ち付けて、フィルムの打ち抜きに要した衝撃強度(J/m)を測定する。
 また、本実施形態においては、易裂性(引裂抵抗値)の観点から、エレメンドルフ引裂強度が、MD方向およびTD方向いずれも65N/cm以下であることが好ましく、いずれも60N/cm以下であることがより好ましい。
 ここで、エレメンドルフ引裂強度は、エレメンドルフ引裂強度試験(JIS K 7128)に準拠した方法で測定できる。
In the present embodiment, from the viewpoint of strength, the impact strength (film impact) of the ONy film is preferably 50000 J / m or more, and more preferably 55000 J / m or more.
Here, the impact strength can be measured as follows. That is, using a film impact tester manufactured by Toyo Seiki Co., Ltd., and punching the film at 23 ° C. by hitting a semicircular pendulum (1/2 inch in diameter) on a fixed ring-shaped ONy film Measure the impact strength (J / m) required for.
In this embodiment, from the viewpoint of easy tearability (tear resistance value), the Elmendorf tear strength is preferably 65 N / cm or less in both the MD direction and the TD direction, and both are 60 N / cm or less. More preferably.
Here, the Elmendorf tear strength can be measured by a method based on the Elmendorf tear strength test (JIS K 7128).
 なお、ONyフィルムの特性(面配向度(P)、平面屈折率比(Nx/Ny)、衝撃強度およびエレメンドルフ引裂強度)を上述した範囲にする手段としては、ONyフィルム製造時の延伸倍率や延伸温度、延伸速度、延伸後の熱固定温度を調整することなどが挙げられる。
 製造時の延伸倍率としては、例えば、2.8倍以上4.5倍以下、より好ましくは3.0倍以上4.0倍以下で好適に延伸できる。
 製造時の延伸速度としては、例えば、1.0sec-1以上20.0sec-1以下であり、より好ましくは1.5sec-1以上15.0sec-1以下で調整できる。
 さらに、延伸後の熱固定温度としては、例えば、150℃以上218℃以下であり、より好ましくは160℃以上215℃以下で調整できる。
In addition, as means for bringing the characteristics of the ONy film (the degree of plane orientation (P), the plane refractive index ratio (Nx / Ny), the impact strength and the Elmendorf tear strength) into the above-described ranges, Examples include adjusting the stretching temperature, the stretching speed, and the heat setting temperature after stretching.
As a draw ratio at the time of manufacture, it can be suitably drawn, for example, from 2.8 times to 4.5 times, more preferably from 3.0 times to 4.0 times.
The stretching speed at the time of manufacture, for example, at 1.0 sec -1 or more 20.0Sec -1 or less, more preferably adjusted in 1.5 sec -1 or more 15.0Sec -1 or less.
Furthermore, the heat setting temperature after stretching is, for example, 150 ° C. or higher and 218 ° C. or lower, more preferably 160 ° C. or higher and 215 ° C. or lower.
 〔易裂性ラミネートフィルムの構成〕
 本実施形態の易裂性ラミネートフィルムは、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム(Al)層やアルミニウム層を含むフィルムや、ポリプロピレン(PP)系やポリエチレン(PE)系のシール層(シーラント層)などが挙げられる。
 また、本実施形態のラミネートフィルムは、上記したONyフィルムの少なくとも一方の面にポリエチレンテレフタレート(PET)や、ポリエステル樹脂や、ポリ塩化ビニル(PVC)や、ポリ塩化ビニリデン樹脂(PVDC)や、ポリ塩化ビニリデン共重合体樹脂や、滑剤や、帯電防止剤や、硝化綿アミド樹脂などの層(コーティング層であってもよい)をさらに積層したものでもよい。
 このようなラミネート基材やコーティング層などが積層されることで、製造効率の向上や運搬効率の向上を図ることができるとともに、フィルムとしての付加価値を付けることができる。
 前記ラミネートフィルムの積層態様としては、例えば、ONy/Al/PP、PET/ONy/Al/CPP、透明蒸着PET/ONy/CPPが挙げられる。
[Composition of easily tearable laminate film]
The easily tearable laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, examples of other laminate base materials include an aluminum (Al) layer, a film including an aluminum layer, and a polypropylene (PP) -based or polyethylene (PE) -based seal layer (sealant layer).
In addition, the laminate film of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinyl chloride (PVC), polyvinylidene chloride resin (PVDC), polyvinyl chloride on at least one surface of the above ONy film. A layer obtained by further laminating a layer (which may be a coating layer) such as a vinylidene copolymer resin, a lubricant, an antistatic agent, or a nitrified cotton amide resin may be used.
By laminating such a laminate substrate and coating layer, it is possible to improve manufacturing efficiency and transport efficiency, and to add value as a film.
As a lamination | stacking aspect of the said laminate film, ONy / Al / PP, PET / ONy / Al / CPP, transparent vapor deposition PET / ONy / CPP is mentioned, for example.
 〔易裂性ラミネート包材の構成〕
 本実施形態の易裂性ラミネート包材は、前記易裂性ラミネートフィルムから構成されている。本実施形態の易裂性ラミネート包材によれば、上記した易裂性ラミネートフィルムから構成されているため、優れた易裂性を有するとともに、高い強度を有するラミネート包材を得ることができる。
[Composition of easy tear laminate packaging material]
The easily tearable laminate packaging material of this embodiment is composed of the easily tearable laminate film. According to the easily tearable laminate packaging material of the present embodiment, since it is composed of the above easily tearable laminate film, a laminate packaging material having excellent tearability and high strength can be obtained.
 本実施形態の易裂性ラミネート包材におけるONyフィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。ここで、ONyフィルムの厚さが5μm未満では、ラミネート包材の耐衝撃性が低くなる傾向にある。一方、ONyフィルムの厚さが50μmを超えると、ラミネート包材の耐衝撃性の更なる向上効果が得られにくくなり、包材総厚が増加するばかりで好ましくない。 The thickness of the ONy film in the easily tearable laminate packaging material of the present embodiment is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm or less. Here, when the thickness of the ONy film is less than 5 μm, the impact resistance of the laminate packaging material tends to be low. On the other hand, when the thickness of the ONy film exceeds 50 μm, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
 〔易裂性二軸延伸ナイロンフィルムの製造装置〕
 次に、本実施形態の易裂性二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
 先ず、本実施形態の易裂性二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
 フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60と、を備えている。
[Equipment for producing tearable biaxially stretched nylon film]
Next, a method for producing the easily tearable biaxially stretched nylon film of the present embodiment will be described based on the drawings.
First, an apparatus for producing the easily tearable biaxially stretched nylon film of this embodiment will be described with an example.
As shown in FIG. 1, the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching. A first heat treatment device 20 (preheating furnace) that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set. And a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
 原反製造装置90は、図1に示すように、押出機91と、サーキュラーダイス92と、水冷リング93と、安定板94と、ピンチロール95とを備えている。
 チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
 第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
 分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A~34Cとを備えている。また、トリミング装置32は、ブレード321を有している。
As shown in FIG. 1, the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
The tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air. As shown in FIG. 1, the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
The first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2. As shown in FIG. 1, the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
As shown in FIG. 1, the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
 第二熱処理装置40は、図1に示すように、テンター41と、加熱炉42とを備えている。
 張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
 巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。
The second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
As shown in FIG. 1, the tension controller 50 includes guide rolls 51 </ b> A and 51 </ b> B and a tension roll 52.
As shown in FIG. 1, the winding device 60 includes a guide roll 61 and a winding roll 62.
 〔易裂性二軸延伸ナイロンフィルムの製造方法〕
 次に、このフィルム製造装置100を用いて易裂性二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。
[Method of producing easily tearable biaxially stretched nylon film]
Next, each process which manufactures an easily tearable biaxially-stretched nylon film using this film manufacturing apparatus 100 is demonstrated in detail.
 (原反フィルム製造工程)
 原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成形される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。
(Raw film production process)
As shown in FIG. 1, the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92. The tubular molten resin is cooled by a water cooling ring 93. The raw film 1 is formed by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93. The cooled original film 1 is folded by the stabilizer 94. The folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
 (二軸延伸工程)
 原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。
(Biaxial stretching process)
As shown in FIG. 1, the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11. The introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12. Thereafter, the film 2 after being bubble-stretched is folded by the guide plate 13. The folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
 この際、MD方向およびTD方向の延伸倍率をそれぞれ2.8倍以上とすることで、衝撃強度の向上が期待できる。 At this time, an improvement in impact strength can be expected by setting the draw ratio in the MD direction and the TD direction to 2.8 times or more, respectively.
 (第一熱処理工程)
 二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
 この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
 この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。
(First heat treatment process)
The film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21. The film 2 is preheated at a low temperature or lower and sent to the next separation step.
The heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
By this first heat treatment step, the crystallinity of the film 2 is increased, and the slipping property between the overlapping films is improved.
 (分離工程)
 ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
 これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。
(Separation process)
As shown in FIG. 1, the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B. And film 2A, 2B is isolate | separated, interposing air between film 2A, 2B by a pair of separation roll 33A, 33B located up and down apart. The incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step. In addition, these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
 (第二熱処理工程(熱固定工程))
 重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
 この第二熱処理(熱固定)における熱処理温度は、160℃以上215℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。熱処理温度が前記下限未満では、フィルム収縮率が大きくなり、デラミが発生する危険性が高まる傾向にあり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増す傾向にあり、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる傾向にあり好ましくない。
 また、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。
(Second heat treatment process (heat setting process))
The overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
The heat treatment temperature in the second heat treatment (heat setting) is preferably 160 ° C. or more and 215 ° C. or less, and the relaxation rate is preferably 15% or less. If the heat treatment temperature is less than the lower limit, the film shrinkage rate tends to increase and the risk of delamination tends to increase. On the other hand, if the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases and the distortion of the film increases. In addition, the density tends to be too high, the crystallinity becomes too high, and the film tends to be difficult to deform.
Further, a strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
 (巻取工程)
 第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。
(Winding process)
The film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
 〔実施形態の変形〕
 なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。
[Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the object and effect. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. In addition, the specific structure and shape in carrying out the present invention may be used as other structures and shapes within the scope of achieving the object and effect of the present invention.
 例えば、本実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式であってもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。 For example, in this embodiment, the tubular method is adopted as the biaxial stretching method, but a tenter method may be used. Furthermore, the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
 次に、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、各例における特性(易裂性二軸延伸ナイロンフィルムの三次元屈折率、面配向度、平面屈折率比、衝撃強度およびエレメンドルフ引裂強度、並びに易裂性ラミネートフィルムの直線カット性、引裂抵抗および衝撃強度)は以下のような方法で評価した。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, characteristics in each example (three-dimensional refractive index of easily tearable biaxially stretched nylon film, degree of plane orientation, plane refractive index ratio, impact strength and Elmendorf tear strength, and straight cut property of tearable laminate film, tearing Resistance and impact strength were evaluated by the following methods.
(i)三次元屈折率、面配向度および平面屈折率比
 大塚電子社製RETS-100を使用して、フィルムを0°のものと45°傾斜させたものにおいて屈折率を測定し、得られた結果を解析することにより、三次元屈折率(測定波長:589nm)の各成分Nx、NyおよびNzを算出した。また、これら三次元屈折率の値から、面配向度および平面屈折率比を算出した。
(ii)衝撃強度
 衝撃強度の測定は、東洋精機(株)製のフィルム・インパクト・テスターを使用し、23℃において、固定されたリング状のフィルムに半円球状の振り子(直径1/2インチ)を打ち付けて、フィルムの打ち抜きに要した衝撃強度(J/m)を測定することにより行った。
(iii)エレメンドルフ引裂強度
 エレメンドルフ引裂強度試験(JIS K 7128)に準拠して、フィルムのMD方向およびTD方向の引裂強度を測定した。
(I) Three-dimensional refractive index, plane orientation, and plane refractive index ratio Using RETS-100 manufactured by Otsuka Electronics Co., Ltd. By analyzing the results, the respective components Nx, Ny and Nz of the three-dimensional refractive index (measurement wavelength: 589 nm) were calculated. Further, the plane orientation degree and the plane refractive index ratio were calculated from these three-dimensional refractive index values.
(Ii) Impact strength The impact strength was measured using a film impact tester manufactured by Toyo Seiki Co., Ltd. at 23 ° C., a semicircular pendulum (1/2 inch in diameter) on a fixed ring-shaped film. ), And the impact strength (J / m) required for punching the film was measured.
(Iii) Elmendorf tear strength Based on the Elemendorf tear strength test (JIS K 7128), the tear strength in the MD and TD directions of the film was measured.
(iv)直線カット性
 ラミネートフィルムに対して、下記方法にて直線カット性を評価した。
 まず、20cm幅のラミネートフィルムに所定間隔Ws(例えば2cm間隔)で切れ目を入れ、これらの切れ目に沿ってラミネートフィルムを引き裂いた後、ラミネートフィルム片の他端の幅Weを測定し、元の間隔Wsとの偏差αを下記式で求めた。
 α=〔|Ws-We|/Ws〕×100
 この測定を10枚のラミネートフィルム片に対して行い、その平均値のα(%)が±10%未満のものをA(直線カット性が非常に良好)、±10%≦α≦±30%のものをB(直線カット性が良好)、α(%)が±30%を超えるものをC(直線カット性が不良)として評価した。α(%)が±30%を超えると、ラミネートフィルムを直線に切ることが困難となる。
(v)引裂抵抗
 ラミネートフィルムに対して、上述した(iii)と同様にエレメンドルフ引裂強度を測定した。そして、引裂強度が60N/cm以下をA、60N/cm超え65N/cm以下をB、65N/cmを超えるものをCとして評価した。
(vi)衝撃強度
 ラミネートフィルムに対して、上述した(iv)と同様に衝撃強度を測定した。そして、衝撃強度が55000J/mを超えるものをA、50000J/mを超え55000J/m以下のものをB、45000J/mを超え50000J/m以下のものをC、45000J/m以下のものをDとして評価した。
(Iv) Straight line cut property The following method evaluated the straight line cut property with respect to the laminate film.
First, a 20 cm wide laminate film is cut at a predetermined interval Ws (for example, 2 cm interval), and after tearing the laminate film along these cuts, the width We of the other end of the laminate film piece is measured to obtain the original interval. Deviation α from Ws was determined by the following equation.
α = [| Ws−We | / Ws] × 100
This measurement was performed on 10 pieces of laminated film, and the average value α (%) was less than ± 10% A (the linear cut property was very good), ± 10% ≦ α ≦ ± 30% Were evaluated as B (good linear cut property) and α (%) exceeding ± 30% as C (poor linear cut property). When α (%) exceeds ± 30%, it becomes difficult to cut the laminate film in a straight line.
(V) Tear resistance The Elmendorf tear strength of the laminate film was measured in the same manner as in the above (iii). And tear strength of 60 N / cm or less was evaluated as A, 60 N / cm and 65 N / cm or less as B, and 65 N / cm as C.
(Vi) Impact strength The impact strength of the laminate film was measured in the same manner as (iv) described above. The impact strength exceeds 55000 J / m, A, 50000 J / m and 55000 J / m or less B, 45000 J / m and 50000 J / m or less C, 45000 J / m or less D As evaluated.
〔実施例1〕
(原反フィルム製造工程)
 Ny6ペレット70質量%と、MXD6ペレット30質量%とを混合してドライブレンド品を作製した。
 そして、図1に示すように、このドライブレンド品を押出機91中、275℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。なお、Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン 1022FD(商品名)、相対粘度ηr=3.5〕であり、MXD6として使用したものは、三菱ガス化学(株)製メタキシリレンジアジパミド〔MXナイロン6007(商品名)、相対粘度 ηr=2.7〕である。
(二軸延伸工程)
 次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.5倍、TD方向で3.2倍とした。
(第一熱処理工程および第二熱処理工程)
 次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度197℃にて熱処理を施し、熱固定した。
(巻取工程)
 次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って易裂性二軸延伸ナイロンフィルムを製造した。得られた易裂性二軸延伸ナイロンフィルムの厚みは15μmであった。
 得られた易裂性二軸延伸ナイロンフィルムの三次元屈折率、面配向度、平面屈折率比、衝撃強度およびエレメンドルフ引裂強度を測定した。得られた結果を表1に示す。
(ラミネートフィルムの作製)
 得られた易裂性二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ7μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
 得られた易裂性ラミネートフィルムの直線カット性、引裂抵抗および衝撃強度を評価した。得られた結果を表1に示す。
[Example 1]
(Raw film production process)
A dry blend product was prepared by mixing 70% by mass of Ny6 pellets and 30% by mass of MXD6 pellets.
Then, as shown in FIG. 1, after this dry blend product was melt-kneaded in an extruder 91 at 275 ° C., the melt was extruded from a circular die 92 as a tubular film, and then rapidly cooled with water (15 ° C.). Thus, a raw film 1 was produced. Ny6 used is nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5] manufactured by Ube Industries, Ltd., and MXD6 used is Mitsubishi Gas Chemical Co., Ltd. Metaxylylene adipamide [MX nylon 6007 (trade name), relative viscosity ηr = 2.7].
(Biaxial stretching process)
Next, as shown in FIG. 1, the raw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while a gas is being pressed into the film 1, and blown to the stretching start point to form bubbles. The biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14. The magnification during this stretching was 3.5 times in the MD direction and 3.2 times in the TD direction.
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment device 20, and then passed through the separation device 30 and then heat treated at a temperature of 197 ° C. by the second heat treatment device 40. And heat fixed.
(Winding process)
Next, as shown in FIG. 1, the film 3 heat-set in the second heat treatment step is wound as two films 3 </ b> A and 3 </ b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50. An easily tearable biaxially stretched nylon film was produced. The resulting easily tearable biaxially stretched nylon film had a thickness of 15 μm.
The three-dimensional refractive index, the degree of plane orientation, the plane refractive index ratio, the impact strength, and the Elmendorf tear strength of the obtained easily tearable biaxially stretched nylon film were measured. The obtained results are shown in Table 1.
(Production of laminate film)
The obtained easily tearable biaxially stretched nylon film is used as a surface base film, a 7 μm thick aluminum foil is used as an intermediate base material, and a 60 μm thick CPP film is used as a sealant film to obtain a laminate film. It was. The laminated film after dry lamination was aged at 40 ° C. for 3 days.
The straight tearability, tear resistance, and impact strength of the easily tearable laminate film were evaluated. The obtained results are shown in Table 1.
〔実施例2~3、比較例1~3〕
 実施例2~3および比較例3として、実施例1で示した製造方法で製造条件(延伸倍率、熱固定温度)を適宜調整し、易裂性二軸延伸ナイロンフィルムおよび易裂性ラミネートフィルムを作製した。
 得られた易裂性二軸延伸ナイロンフィルムの三次元屈折率、面配向度、平面屈折率比、衝撃強度およびエレメンドルフ引裂強度を測定した。得られた結果を表1に示す。また、得られた易裂性ラミネートフィルムの直線カット性、引裂抵抗および衝撃強度を評価した。得られた結果を表1に示す。
 一方、比較例1~2として、表1に示す製造方法で得られた二軸延伸ナイロンフィルムを入手し、実施例1と同様に、三次元屈折率、面配向度、平面屈折率比、衝撃強度およびエレメンドルフ引裂強度を測定した。得られた結果を表1に示す。また、比較例1~2の二軸延伸ナイロンフィルムを用いてラミネートフィルムを作製し、実施例1と同様に、直線カット性、引裂抵抗および衝撃強度を評価した。得られた結果を表1に示す。
[Examples 2 to 3, Comparative Examples 1 to 3]
As Examples 2 to 3 and Comparative Example 3, production conditions (stretch ratio, heat setting temperature) were appropriately adjusted by the production method shown in Example 1, and an easily tearable biaxially stretched nylon film and an easily tearable laminate film were obtained. Produced.
The three-dimensional refractive index, the degree of plane orientation, the plane refractive index ratio, the impact strength, and the Elmendorf tear strength of the obtained easily tearable biaxially stretched nylon film were measured. The obtained results are shown in Table 1. Moreover, the straight cut property, tear resistance, and impact strength of the obtained easily tearable laminate film were evaluated. The obtained results are shown in Table 1.
On the other hand, as Comparative Examples 1 and 2, a biaxially stretched nylon film obtained by the production method shown in Table 1 was obtained, and as in Example 1, the three-dimensional refractive index, the degree of plane orientation, the plane refractive index ratio, the impact Strength and Elmendorf tear strength were measured. The obtained results are shown in Table 1. In addition, a laminate film was produced using the biaxially stretched nylon films of Comparative Examples 1 and 2, and the linear cut property, tear resistance and impact strength were evaluated in the same manner as in Example 1. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す結果からも明らかなように、易裂性二軸延伸ナイロンフィルムの面配向度が前記条件を満たす場合(実施例1~3)には、直線カット性、引裂抵抗および衝撃強度が優れるラミネートフィルムが得られることが確認された。
 一方で、二軸延伸ナイロンフィルムの面配向度が前記条件を満たさない場合(比較例1~3)には、この二軸延伸ナイロンフィルムを用いて得られるラミネートフィルムの直線カット性、引裂抵抗および衝撃強度が不十分であることが確認された。
As is clear from the results shown in Table 1, when the plane orientation degree of the easily tearable biaxially stretched nylon film satisfies the above conditions (Examples 1 to 3), the linear cut property, tear resistance and impact strength are It was confirmed that an excellent laminate film was obtained.
On the other hand, when the degree of plane orientation of the biaxially stretched nylon film does not satisfy the above conditions (Comparative Examples 1 to 3), the linear cut property, tear resistance, and It was confirmed that the impact strength was insufficient.
 本発明の易裂性二軸延伸ナイロンフィルムを含むラミネートフィルムは、例えば、レトルト食品や菓子などの食品包材、流動食や輸液などを充填する医薬用包材、液体洗剤詰め替え用などの生活用品用包材、工業用包材の包装材料(ラミネート包材)として好適に用いることができる。 The laminate film containing the easily tearable biaxially stretched nylon film of the present invention is, for example, a food packaging material such as retort food or confectionery, a pharmaceutical packaging material that is filled with liquid food or infusion, or a household product such as a liquid detergent refill. It can be suitably used as a packaging material for industrial and industrial packaging materials (laminate packaging material).
  3,3A,3B…易裂性二軸延伸ナイロンフィルム 3, 3A, 3B ... Easy tear biaxially stretched nylon film

Claims (8)

  1.  ナイロン6(以後、Ny6ともいう)とメタキシリレンアジパミド(以後、MXD6ともいう)とを原料として含む易裂性二軸延伸ナイロンフィルムであって、
     当該フィルムの三次元屈折率のうち、当該フィルム面内の最大屈折率値をNxとし、当該フィルム面内の最小屈折率値をNyとし、当該フィルムの厚み方向の屈折率値をNzとした場合に、面配向度(P)が下記数式(F1)で表される条件を満たす
     ことを特徴とする易裂性二軸延伸ナイロンフィルム。
    P = (Nx+Ny)/2-Nz ≧ 0.040 ・・・(F1)
    An easily tearable biaxially stretched nylon film containing nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6) as raw materials,
    Of the three-dimensional refractive index of the film, the maximum refractive index value in the film plane is Nx, the minimum refractive index value in the film plane is Ny, and the refractive index value in the thickness direction of the film is Nz. And a plane orientation degree (P) satisfying the condition represented by the following formula (F1).
    P = (Nx + Ny) /2−Nz≧0.040 (F1)
  2.  請求項1に記載の易裂性二軸延伸ナイロンフィルムにおいて、
     当該フィルムの平面屈折率比(Nx/Ny)が下記数式(F2)で表される条件を満たす
     ことを特徴とする易裂性二軸延伸ナイロンフィルム。
    1.0 ≦ (Nx/Ny) ≦ 1.0045 ・・・(F2)
    In the easily tearable biaxially stretched nylon film according to claim 1,
    An easily tearable biaxially stretched nylon film, wherein the plane refractive index ratio (Nx / Ny) of the film satisfies a condition represented by the following mathematical formula (F2).
    1.0 ≤ (Nx / Ny) ≤ 1.0045 (F2)
  3.  請求項1または請求項2に記載の易裂性二軸延伸ナイロンフィルムにおいて、
     衝撃強度が50000J/m以上である
     ことを特徴とする易裂性二軸延伸ナイロンフィルム。
    In the easily tearable biaxially stretched nylon film according to claim 1 or 2,
    An easily tearable biaxially stretched nylon film characterized by having an impact strength of 50000 J / m or more.
  4.  請求項1から請求項3のいずれか一項に記載の易裂性二軸延伸ナイロンフィルムにおいて、
     エレメンドルフ引裂強度が、MD方向およびTD方向いずれも65N/cm以下である
     ことを特徴とする易裂性二軸延伸ナイロンフィルム。
    In the easily tearable biaxially stretched nylon film according to any one of claims 1 to 3,
    An easily tearable biaxially stretched nylon film having an Elmendorf tear strength of 65 N / cm or less in both MD and TD directions.
  5.  請求項1から請求項4のいずれか一項に記載の易裂性二軸延伸ナイロンフィルムにおいて、
     前記原料は、40質量%以上85質量%以下の前記Ny6と、15質量%以上60質量%以下の前記MXD6とからなる
     ことを特徴とする易裂性二軸延伸ナイロンフィルム。
    In the easily tearable biaxially stretched nylon film according to any one of claims 1 to 4,
    The said raw material consists of said Ny6 of 40 mass% or more and 85 mass% or less, and said MXD6 of 15 mass% or more and 60 mass% or less. The easily tearable biaxially-stretched nylon film characterized by the above-mentioned.
  6.  請求項1から請求項5のいずれか一項に記載の易裂性二軸延伸ナイロンフィルムが積層されてなることを特徴とする易裂性ラミネートフィルム。 An easily tearable laminate film comprising the easily tearable biaxially stretched nylon film according to any one of claims 1 to 5.
  7.  請求項6に記載の易裂性ラミネートフィルムを用いたことを特徴とする易裂性ラミネート包材。 An easily tearable laminate packaging material using the easily tearable laminate film according to claim 6.
  8.  請求項1から請求項5のいずれか一項に記載の易裂性二軸延伸ナイロンフィルムを製造する易裂性二軸延伸ナイロンフィルムの製造方法であって、
     前記原料から原反フィルムを成形する原反フィルム製造工程と、
     チューブラー式二軸延伸法にて、前記原反フィルムを二軸延伸する二軸延伸工程と、
     前記二軸延伸工程後のフィルムに熱処理を施す熱処理工程と、を備える
     ことを特徴とする易裂性二軸延伸ナイロンフィルムの製造方法。
    It is a manufacturing method of the easily tearable biaxially stretched nylon film which manufactures the easily tearable biaxially stretched nylon film according to any one of claims 1 to 5,
    A raw film manufacturing process for forming a raw film from the raw material,
    In a tubular biaxial stretching method, a biaxial stretching step of biaxially stretching the raw film,
    And a heat treatment step for heat-treating the film after the biaxial stretching step. A method for producing an easily tearable biaxially stretched nylon film.
PCT/JP2013/070870 2012-08-02 2013-08-01 Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film WO2014021418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528218A JPWO2014021418A1 (en) 2012-08-02 2013-08-01 Easily tearable biaxially stretched nylon film, easily tearable laminate film, easily tearable laminate packaging material, and method for producing easily tearable biaxially stretched nylon film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012172376 2012-08-02
JP2012-172376 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021418A1 true WO2014021418A1 (en) 2014-02-06

Family

ID=50028085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070870 WO2014021418A1 (en) 2012-08-02 2013-08-01 Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film

Country Status (3)

Country Link
JP (1) JPWO2014021418A1 (en)
TW (1) TW201408468A (en)
WO (1) WO2014021418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019026500A1 (en) * 2017-07-31 2020-08-20 三菱瓦斯化学株式会社 Easy tear film, multilayer film, packaging material and container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125132A (en) * 1993-10-28 1995-05-16 Idemitsu Petrochem Co Ltd Wrapping material
JPH08165426A (en) * 1994-12-14 1996-06-25 Idemitsu Petrochem Co Ltd Easily tearable film and method for producing same
JPH09157410A (en) * 1995-12-06 1997-06-17 Unitika Ltd Biaxially oriented polyamide film and its production
JP2003071970A (en) * 2001-09-05 2003-03-12 Mitsubishi Chemicals Corp Easily tearable laminated film and easily tearable
JP2008024744A (en) * 2006-07-18 2008-02-07 Idemitsu Unitech Co Ltd Easily tearable shrink film, easily tearable laminated film, easily tearable bag and process for producing easily tearable shrink film
JP2012135892A (en) * 2010-12-24 2012-07-19 Dainippon Printing Co Ltd Straight line tearable transparent laminated film, and laminate and packaging bag using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125132A (en) * 1993-10-28 1995-05-16 Idemitsu Petrochem Co Ltd Wrapping material
JPH08165426A (en) * 1994-12-14 1996-06-25 Idemitsu Petrochem Co Ltd Easily tearable film and method for producing same
JPH09157410A (en) * 1995-12-06 1997-06-17 Unitika Ltd Biaxially oriented polyamide film and its production
JP2003071970A (en) * 2001-09-05 2003-03-12 Mitsubishi Chemicals Corp Easily tearable laminated film and easily tearable
JP2008024744A (en) * 2006-07-18 2008-02-07 Idemitsu Unitech Co Ltd Easily tearable shrink film, easily tearable laminated film, easily tearable bag and process for producing easily tearable shrink film
JP2012135892A (en) * 2010-12-24 2012-07-19 Dainippon Printing Co Ltd Straight line tearable transparent laminated film, and laminate and packaging bag using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019026500A1 (en) * 2017-07-31 2020-08-20 三菱瓦斯化学株式会社 Easy tear film, multilayer film, packaging material and container
JP7218724B2 (en) 2017-07-31 2023-02-07 三菱瓦斯化学株式会社 Easy-to-tear films, multilayer films, packaging materials and containers
US11873401B2 (en) 2017-07-31 2024-01-16 Mitsubishi Gas Chemical Company, Inc. Easily tearable film, multilayer film, packaging material, and container

Also Published As

Publication number Publication date
TW201408468A (en) 2014-03-01
JPWO2014021418A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5079275B2 (en) Method for preventing delamination of easily tearable shrink film
JP6218582B2 (en) Method for producing stretched nylon film, method for producing multilayer film, method for producing packaging material, and method for producing battery
WO2013089081A1 (en) Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
JP5079268B2 (en) Method for preventing delamination of easily tearable stretched film
WO2014103785A1 (en) Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film
WO2013141135A1 (en) Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film
WO2014021418A1 (en) Easily-tearable biaxially-oriented nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-oriented nylon film
JP2014054797A (en) Biaxially oriented nylon film, laminate film, laminate packaging material, and production method of biaxially oriented nylon film
JP2015051525A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2014028893A (en) Easy tearable biaxial oriented nylon film, easy tearable laminate film, easy tearable laminate package material, and production method of easy tearable biaxial oriented nylon film
WO2013137106A1 (en) Easily-tearable biaxially-stretched nylon film, easily-tearable laminate film, easily-tearable laminate packaging material, and manufacturing method for easily-tearable biaxially-stretched nylon film
WO2013080940A1 (en) Gripper and heat treatment method
WO2013137153A1 (en) Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film
WO2014148279A1 (en) Method for manufacturing multilayer stretched film, and multilayer stretched film
JP2015051528A (en) Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP5739384B2 (en) Easy tear film, easy tear laminate film, easy tear bag, and method for producing easy tear film
WO2014021425A1 (en) Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film
WO2014156556A1 (en) Biaxially stretched nylon film, laminated film and molded body
WO2013146455A1 (en) Biaxially stretched nylon film, laminate film, laminate packing material, and method for manufacturing biaxially stretched nylon film
JP2015051526A (en) Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film
JP2005297576A (en) Manufacturing method of biaxially oriented polyamide resin film
WO2014123026A1 (en) Method for producing biaxially oriented film, biaxially oriented film, and laminated film
JP2013129169A (en) Method of manufacturing biaxially oriented nylon film
WO2013094414A1 (en) Easy-to-tear stretched film and method for manufacturing same
JP2004237743A (en) Manufacturing method for biaxially oriented polyamide resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825811

Country of ref document: EP

Kind code of ref document: A1