WO2013137153A1 - Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film - Google Patents
Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film Download PDFInfo
- Publication number
- WO2013137153A1 WO2013137153A1 PCT/JP2013/056526 JP2013056526W WO2013137153A1 WO 2013137153 A1 WO2013137153 A1 WO 2013137153A1 JP 2013056526 W JP2013056526 W JP 2013056526W WO 2013137153 A1 WO2013137153 A1 WO 2013137153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- stretched nylon
- biaxially stretched
- laminate
- nylon film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/28—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/22—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes
- B29C55/26—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes biaxial
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2077/00—Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
Definitions
- the present invention particularly relates to a biaxially stretched nylon film, a laminate film, a laminate packaging material and a method for producing a biaxially stretched nylon film that can be suitably used as a packaging material for cold forming.
- Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging.
- the laminate packaging material including the ONy film is used as a packaging material for cold molding that is superior in safety and flexibility in shape (drawing moldability) and can be reduced in thickness and weight compared to hot molding. (For example, Patent Document 1 and Patent Document 2).
- a laminate packaging material including such an ONy film can be suitably used for battery packaging or pharmaceutical use.
- Patent Document 2 describes a packaging material including a heat-resistant resin film having an impact strength of 30000 J / m (30 KJ / m) or more. Even with such a packaging material, there is a problem in normal drawing. Must not.
- the packaging material includes a heat resistant resin film having an impact strength of 30000 J / m or more and 80000 J / m or less (30 KJ / m or more and 80 KJ / m or less). In such a packaging material, pinholes may occur when deep drawing is performed.
- an object of the present invention is to provide a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having excellent deep drawability during cold forming.
- cold molding refers to molding performed at room temperature without heating.
- One means of such cold forming is to use a cold forming machine used for forming aluminum foil or the like to push the sheet material into the female mold with a male mold and press it at high speed. According to such cold forming, plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
- the present invention provides the following biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing a biaxially stretched nylon film. That is, the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and has an impact strength defined by JIS P8134 of 160 KJ / m or more. .
- the laminate film of the present invention is formed by laminating the biaxially stretched nylon film.
- the laminate packaging material of the present invention is characterized by using the laminate film.
- the method for producing a biaxially stretched nylon film of the present invention is a method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film, and a raw film production process for forming a raw film from the raw material, Biaxial stretching for stretching the original film under the conditions that the stretching ratio in the MD direction and the TD direction is 2.8 times or more and the maximum strain rate in the MD direction and the TD direction is 3 s -1 or more, respectively. And a heat setting step of heat-setting the film after the biaxial stretching step by heat treatment.
- the biaxial stretching process is performed biaxially by a tubular biaxial stretching method.
- the present invention it is possible to provide a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having excellent deep drawability during cold forming.
- the biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
- Nylon 6, nylon 8, nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used as the nylon resin as the raw material.
- Nylon 6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
- the chemical formula of Ny6 is shown in the following formula (1).
- the number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
- the impact strength defined in JIS P8134 must satisfy the following conditions.
- the biaxially stretched nylon film needs to have an impact strength (puncture) of 160 KJ / m or more.
- the impact strength is less than 160 KJ / m, the deep drawability of the film is insufficient.
- the impact strength is more preferably 175 KJ / m or more.
- the impact strength can be measured according to the method described in JIS P8134.
- the impact strength of the biaxially stretched nylon film is preferably set to 300 KJ / m or less from the viewpoint that the effect is saturated in addition to the increase in film thickness.
- the tensile strength of the biaxially stretched nylon film is preferably 240 MPa or more. This is because if the tensile strength is less than 240 MPa, the deep drawability of the film may be insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the tensile strength is more preferably 250 MPa or more. The tensile strength can be measured according to the method described in ASTM D882.
- the elongation at break of the biaxially stretched nylon film is preferably 70% or more. This is because if the elongation at break is less than 70%, the deep drawability of the film may be insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the elongation at break is more preferably 80% or more. In particular, the breaking elongation in the TD direction is preferably 130% or less. The elongation at break can be measured according to the method described in ASTM D882.
- the laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film.
- other laminate base materials include, for example, an aluminum layer, a film containing an aluminum layer, a polypropylene-based or polyethylene-based seal layer (sealant layer), and the like.
- the laminate packaging material of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinylidene chloride resin, polyvinylidene chloride copolymer resin, lubricant, or the like on at least one surface of the above-mentioned ONy film.
- a laminate in which an antistatic agent or a coating layer of nitrified cotton amide resin is further laminated may be used.
- By laminating such a laminate substrate it is possible to improve manufacturing efficiency and conveyance efficiency, and functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, workability, etc.) Can be obtained.
- the laminate packaging material of this embodiment is comprised from the said laminate film.
- a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming.
- the above-described ONy film has excellent drawability, so that it is possible to suppress the breakage of the aluminum layer during cold deep drawing, etc. The generation of pinholes in can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
- the total thickness of the ONy film and other laminate base material is preferably 200 ⁇ m or less.
- the total thickness exceeds 200 ⁇ m, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
- the thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 ⁇ m or more and 50 ⁇ m or less, and more preferably 10 ⁇ m or more and 30 ⁇ m or less.
- the thickness of the ONy film is less than 5 ⁇ m, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient.
- the thickness of the ONy film exceeds 50 ⁇ m, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
- the film manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching.
- a first heat treatment device 20 that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set.
- a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
- the raw fabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
- the tubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air.
- the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
- the first heat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2.
- the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
- the separation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
- the second heat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
- the tension controller 50 includes guide rolls 51 ⁇ / b> A and 51 ⁇ / b> B and a tension roll 52.
- the winding device 60 includes a guide roll 61 and a winding roll 62.
- the raw material nylon resin is melt-kneaded by an extruder 91 and extruded into a tube shape by a circular die 92.
- the tubular molten resin is cooled by a water cooling ring 93.
- the raw film 1 is molded by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93.
- the cooled original film 1 is folded by the stabilizer 94.
- the folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
- the original film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11.
- the introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12.
- the film 2 after being bubble-stretched is folded by the guide plate 13.
- the folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
- the draw ratio in the MD direction and the TD direction must be 2.8 times or more, respectively.
- the impact strength is lowered, causing a problem in practicality.
- the maximum strain rates in the MD direction and the TD direction are 3 s ⁇ 1 or more, respectively.
- the maximum strain rate is more preferably 3.5 s ⁇ 1 or more.
- the strain rate refers to the rate of increase in magnification per time.
- the maximum strain rate can be obtained by the following method. First, a film sample in the middle of stretching is collected.
- a change in the folding diameter (width) of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the folding diameter (width) of the sample is created.
- the time from the start of stretching can be calculated from the moving distance.
- a change in the thickness of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the thickness of the sample is created.
- the time from the start of stretching can be calculated from the moving distance.
- the stretching ratio in the TD direction is larger than the stretching ratio in the MD direction at the end of stretching.
- the difference (TD ⁇ MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.1 to 0.8 times, and more preferably 0.2 to 0.8 times. It is more preferable that it is 0.3 times or more and 0.8 times or less. If the value of TD-MD is less than the lower limit, the deep drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to decrease. In particular, when the value of TD-MD is 0.1 times or less, the stretching stability is inferior and the thickness accuracy of the film tends to be lowered. On the other hand, if the value of TD-MD exceeds the above upper limit, the deep drawability of the resulting film tends to be insufficient, and the stretching stability is lowered.
- the film 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21.
- the film 2 is preheated at a low temperature or lower and sent to the next separation step.
- the heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
- the flat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B.
- film 2A, 2B is isolate
- the incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
- These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step.
- these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
- the overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
- the heat treatment temperature in the second heat treatment (heat setting) is preferably 190 ° C. or higher and 215 ° C. or lower.
- the film shrinkage rate is increased, and the risk of delamination is increased.
- the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases, and the distortion of the film increases. The density becomes too high, the crystallinity becomes too high, and the film is difficult to deform.
- the relaxation rate at this time is preferably 15% or less. A strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
- the film 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
- the tubular method is adopted as the biaxial stretching method, but a tenter method may be used.
- the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
- the molding depth at which no pinhole was generated in any of the 10 samples in the aluminum foil was taken as the limit molding depth, and the molding depth was shown as an evaluation value. In addition, confirmation of the pinhole confirmed the transmitted light visually.
- the biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14.
- the magnification during this stretching was 3.0 times in the MD direction and 3.3 times in the TD direction.
- the maximum strain rate during the stretching was 5.0 s -1, 4.0 s -1 at TD direction MD direction.
- First heat treatment step and second heat treatment step Next, as shown in FIG. 1, the film 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment device 20, and then passed through the separation device 30 and then heat treated at a temperature of 205 ° C. by the second heat treatment device 40. And heat fixed.
- Windding process Next, as shown in FIG.
- the film 3 heat-set in the second heat treatment step is wound as two films 3 ⁇ / b> A and 3 ⁇ / b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50.
- a biaxially stretched nylon film was produced.
- the thickness of the obtained biaxially stretched nylon film was 15 ⁇ m.
- the impact strength of the obtained biaxially stretched nylon film was measured.
- the obtained results are shown in Table 1. (Production of laminate film)
- the obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 ⁇ m was used as an intermediate substrate, and a CPP film having a thickness of 60 ⁇ m was used as a sealant film to obtain a laminate film.
- the laminated film after dry lamination was aged at 40 ° C. for 3 days. The deep drawability of the obtained laminate film was evaluated.
- the obtained results are shown in Table 1.
- Examples 2 to 5, Comparative Examples 1 to 8 A biaxially stretched nylon film and a laminate film were produced in the same manner as in Example 1 except that each condition was changed according to the production method and production conditions (biaxial stretching method, maximum strain rate, and thickness) shown in Table 1. The impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1. Further, the deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
- the biaxially stretched nylon film of the present invention is, for example, for industrial fields (such as lithium battery packaging materials mounted on electric vehicles, tablet terminal devices, smartphones, etc.), pharmaceutical fields (such as PTP packaging materials), and household goods. It can be suitably used as a packaging material that particularly requires pinhole resistance, such as packaging materials in the field (such as refill packaging for liquid detergents) and foods.
- the laminate packaging material of the present invention can be suitably used as a packaging material for cold molding that requires particularly excellent deep drawability.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Wrappers (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
This biaxially-stretched nylon film has a nylon resin as a starting material, and is characterized in that the impact strength as determined in accordance with JIS P8134 is 160 KJ/m or more.
Description
本発明は、特に、冷間成型用の包装材料として好適に用いることができる二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法に関する。
The present invention particularly relates to a biaxially stretched nylon film, a laminate film, a laminate packaging material and a method for producing a biaxially stretched nylon film that can be suitably used as a packaging material for cold forming.
二軸延伸ナイロンフィルム(以後、ONyフィルムとも言う)は、強度、耐衝撃性、耐ピンホール性などに優れるため、重量物包装や水物包装など大きな強度負荷が掛かる用途に多く用いられている。
そして、このONyフィルムを含むラミネート包材を、熱間成型に比して、安全性や形状自由度(絞り成型性)に優れ、薄肉化や軽量化が図れる冷間成型用の包装材料として用いることが検討されている(例えば、特許文献1、特許文献2)。このようなONyフィルムを含むラミネート包材は電池包装用や医薬用として好適に用いることができる。 Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. .
The laminate packaging material including the ONy film is used as a packaging material for cold molding that is superior in safety and flexibility in shape (drawing moldability) and can be reduced in thickness and weight compared to hot molding. (For example,Patent Document 1 and Patent Document 2). A laminate packaging material including such an ONy film can be suitably used for battery packaging or pharmaceutical use.
そして、このONyフィルムを含むラミネート包材を、熱間成型に比して、安全性や形状自由度(絞り成型性)に優れ、薄肉化や軽量化が図れる冷間成型用の包装材料として用いることが検討されている(例えば、特許文献1、特許文献2)。このようなONyフィルムを含むラミネート包材は電池包装用や医薬用として好適に用いることができる。 Biaxially stretched nylon film (hereinafter also referred to as ONy film) is excellent in strength, impact resistance, pinhole resistance, etc., and is therefore often used for applications that require heavy strength loads such as heavy weight packaging and water packaging. .
The laminate packaging material including the ONy film is used as a packaging material for cold molding that is superior in safety and flexibility in shape (drawing moldability) and can be reduced in thickness and weight compared to hot molding. (For example,
一方、冷間成型用の包装材料は、電池などの大容量化に伴い、更なる絞り成型性の向上(深絞り成型性)が要求されるようになっている。しかしながら、特許文献1に記載のような二軸延伸ナイロンフィルムを含むラミネート包材においては、通常の絞り成型では問題にはならないものの、深絞り成型をすると、ピンホールが発生するおそれがある。
また、特許文献2には、衝撃強度が30000J/m(30KJ/m)以上の耐熱性樹脂フィルムを含む包装用材料が記載されており、このような包装用材料でも通常の絞り成型では問題にはならない。しかしながら、特許文献2には、衝撃強度が80000J/m(80KJ/m)を超えると樹脂そのものが硬くなり、逆に成形性を阻害させる恐れがあるとの記載があり、実際に提案されているものは、衝撃強度が30000J/m以上80000J/m以下(30KJ/m以上80KJ/m以下)の耐熱性樹脂フィルムを含む包装用材料である。このような包装用材料では、深絞り成型をするとピンホールが発生するおそれがある。 On the other hand, the packaging material for cold molding is required to further improve the drawability (deep drawability) as the capacity of batteries and the like increases. However, in a laminate packaging material including a biaxially stretched nylon film as described inPatent Document 1, there is no problem in ordinary drawing, but if deep drawing is performed, pinholes may be generated.
Patent Document 2 describes a packaging material including a heat-resistant resin film having an impact strength of 30000 J / m (30 KJ / m) or more. Even with such a packaging material, there is a problem in normal drawing. Must not. However, in Patent Document 2, there is a description that when the impact strength exceeds 80,000 J / m (80 KJ / m), the resin itself becomes hard, and conversely, the moldability may be hindered. The packaging material includes a heat resistant resin film having an impact strength of 30000 J / m or more and 80000 J / m or less (30 KJ / m or more and 80 KJ / m or less). In such a packaging material, pinholes may occur when deep drawing is performed.
また、特許文献2には、衝撃強度が30000J/m(30KJ/m)以上の耐熱性樹脂フィルムを含む包装用材料が記載されており、このような包装用材料でも通常の絞り成型では問題にはならない。しかしながら、特許文献2には、衝撃強度が80000J/m(80KJ/m)を超えると樹脂そのものが硬くなり、逆に成形性を阻害させる恐れがあるとの記載があり、実際に提案されているものは、衝撃強度が30000J/m以上80000J/m以下(30KJ/m以上80KJ/m以下)の耐熱性樹脂フィルムを含む包装用材料である。このような包装用材料では、深絞り成型をするとピンホールが発生するおそれがある。 On the other hand, the packaging material for cold molding is required to further improve the drawability (deep drawability) as the capacity of batteries and the like increases. However, in a laminate packaging material including a biaxially stretched nylon film as described in
そこで、本発明は、冷間成型時に優れた深絞り成型性を有する二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having excellent deep drawability during cold forming.
本発明において、冷間成型とは、加熱せず常温下で行う成型をいう。かかる冷間成型の一手段として、アルミニウム箔などの成型に用いられる冷間成型機を用いて、シート材料を雌金型に対して雄金型で押し込み、高速でプレスすることが挙げられる。かかる冷間成型によると、加熱することなく型付け、曲げ、剪断、絞りなどの塑性変形を生じさせることができる。
In the present invention, cold molding refers to molding performed at room temperature without heating. One means of such cold forming is to use a cold forming machine used for forming aluminum foil or the like to push the sheet material into the female mold with a male mold and press it at high speed. According to such cold forming, plastic deformation such as molding, bending, shearing and drawing can be generated without heating.
前記課題を解決すべく、本発明は、以下のような二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供するものである。
すなわち、本発明の二軸延伸ナイロンフィルムは、ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、JIS P8134で規定された衝撃強度が160KJ/m以上であることを特徴とするものである。
本発明のラミネートフィルムは、前記二軸延伸ナイロンフィルムを積層してなることを特徴とするものである。
本発明のラミネート包材は、前記ラミネートフィルムを用いたことを特徴とするものである。 In order to solve the above-mentioned problems, the present invention provides the following biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing a biaxially stretched nylon film.
That is, the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and has an impact strength defined by JIS P8134 of 160 KJ / m or more. .
The laminate film of the present invention is formed by laminating the biaxially stretched nylon film.
The laminate packaging material of the present invention is characterized by using the laminate film.
すなわち、本発明の二軸延伸ナイロンフィルムは、ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、JIS P8134で規定された衝撃強度が160KJ/m以上であることを特徴とするものである。
本発明のラミネートフィルムは、前記二軸延伸ナイロンフィルムを積層してなることを特徴とするものである。
本発明のラミネート包材は、前記ラミネートフィルムを用いたことを特徴とするものである。 In order to solve the above-mentioned problems, the present invention provides the following biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing a biaxially stretched nylon film.
That is, the biaxially stretched nylon film of the present invention is a biaxially stretched nylon film made from a nylon resin, and has an impact strength defined by JIS P8134 of 160 KJ / m or more. .
The laminate film of the present invention is formed by laminating the biaxially stretched nylon film.
The laminate packaging material of the present invention is characterized by using the laminate film.
本発明の二軸延伸ナイロンフィルムの製造方法は、前記二軸延伸ナイロンフィルムを製造する二軸延伸ナイロンフィルムの製造方法であって、前記原料から原反フィルムを成形する原反フィルム製造工程と、MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であり、かつ、MD方向およびTD方向の最大歪速度がそれぞれ3s-1以上である条件で、前記原反フィルムを延伸する二軸延伸工程と、前記二軸延伸工程後のフィルムに熱処理を施して熱固定する熱固定工程と、を備えることを特徴とする方法である。
本発明の二軸延伸ナイロンフィルムの製造方法においては、前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸することが好ましい。 The method for producing a biaxially stretched nylon film of the present invention is a method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film, and a raw film production process for forming a raw film from the raw material, Biaxial stretching for stretching the original film under the conditions that the stretching ratio in the MD direction and the TD direction is 2.8 times or more and the maximum strain rate in the MD direction and the TD direction is 3 s -1 or more, respectively. And a heat setting step of heat-setting the film after the biaxial stretching step by heat treatment.
In the method for producing a biaxially stretched nylon film of the present invention, it is preferable that the biaxial stretching process is performed biaxially by a tubular biaxial stretching method.
本発明の二軸延伸ナイロンフィルムの製造方法においては、前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸することが好ましい。 The method for producing a biaxially stretched nylon film of the present invention is a method for producing a biaxially stretched nylon film for producing the biaxially stretched nylon film, and a raw film production process for forming a raw film from the raw material, Biaxial stretching for stretching the original film under the conditions that the stretching ratio in the MD direction and the TD direction is 2.8 times or more and the maximum strain rate in the MD direction and the TD direction is 3 s -1 or more, respectively. And a heat setting step of heat-setting the film after the biaxial stretching step by heat treatment.
In the method for producing a biaxially stretched nylon film of the present invention, it is preferable that the biaxial stretching process is performed biaxially by a tubular biaxial stretching method.
本発明によれば、冷間成型時に優れた深絞り成型性を有する二軸延伸ナイロンフィルム、ラミネートフィルム、ラミネート包材および二軸延伸ナイロンフィルムの製造方法を提供することができる。
According to the present invention, it is possible to provide a biaxially stretched nylon film, a laminate film, a laminate packaging material, and a method for producing a biaxially stretched nylon film having excellent deep drawability during cold forming.
以下、本発明をその好適な実施形態に即して詳細に説明する。
〔二軸延伸ナイロンフィルムの構成〕
本実施形態の二軸延伸ナイロンフィルム(ONyフィルム)は、ナイロン樹脂を原料とする原反フィルムを二軸延伸し、所定の温度で熱固定して形成したものである。
原料であるナイロン樹脂としては、ナイロン6、ナイロン8、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12などを使用することができる。物性や溶融特性、取り扱いやすさの点からはナイロン6(以後、Ny6ともいう)を用いることが好ましい。
ここで、前記Ny6の化学式を下記式(1)に示す。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[Configuration of biaxially stretched nylon film]
The biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
Nylon 6, nylon 8,nylon 11, nylon 12, nylon 6,6, nylon 6,10, nylon 6,12, etc. can be used as the nylon resin as the raw material. Nylon 6 (hereinafter also referred to as Ny6) is preferably used from the viewpoint of physical properties, melting characteristics, and ease of handling.
Here, the chemical formula of Ny6 is shown in the following formula (1).
〔二軸延伸ナイロンフィルムの構成〕
本実施形態の二軸延伸ナイロンフィルム(ONyフィルム)は、ナイロン樹脂を原料とする原反フィルムを二軸延伸し、所定の温度で熱固定して形成したものである。
原料であるナイロン樹脂としては、ナイロン6、ナイロン8、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6,12などを使用することができる。物性や溶融特性、取り扱いやすさの点からはナイロン6(以後、Ny6ともいう)を用いることが好ましい。
ここで、前記Ny6の化学式を下記式(1)に示す。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
[Configuration of biaxially stretched nylon film]
The biaxially stretched nylon film (ONy film) of this embodiment is formed by biaxially stretching a raw film made of nylon resin as a raw material and heat-fixing it at a predetermined temperature.
Nylon 6, nylon 8,
Here, the chemical formula of Ny6 is shown in the following formula (1).
原料であるナイロン樹脂の数平均分子量は、15000以上30000以下であることが好ましく、22000以上24000以下であることがより好ましい。
The number average molecular weight of the raw material nylon resin is preferably 15000 or more and 30000 or less, and more preferably 22000 or more and 24000 or less.
本実施形態においては、JIS P8134で規定された衝撃強度が下記条件を満たすことが必要である。
前記二軸延伸ナイロンフィルムの衝撃強度(パンクチュア)は、160KJ/m以上であることが必要である。衝撃強度が160KJ/m未満では、フィルムの深絞り成型性が不足する。また、冷間成型時に優れた深絞り成型性を得るという観点から、衝撃強度は、175KJ/m以上であることがより好ましい。なお、衝撃強度は、JIS P8134に記載の方法に準拠して測定できる。さらに、前記二軸延伸ナイロンフィルムの衝撃強度は、フィルム厚の増加に加え、効果が飽和するという点から、300KJ/m以下とすることが好ましい。 In the present embodiment, the impact strength defined in JIS P8134 must satisfy the following conditions.
The biaxially stretched nylon film needs to have an impact strength (puncture) of 160 KJ / m or more. When the impact strength is less than 160 KJ / m, the deep drawability of the film is insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the impact strength is more preferably 175 KJ / m or more. The impact strength can be measured according to the method described in JIS P8134. Furthermore, the impact strength of the biaxially stretched nylon film is preferably set to 300 KJ / m or less from the viewpoint that the effect is saturated in addition to the increase in film thickness.
前記二軸延伸ナイロンフィルムの衝撃強度(パンクチュア)は、160KJ/m以上であることが必要である。衝撃強度が160KJ/m未満では、フィルムの深絞り成型性が不足する。また、冷間成型時に優れた深絞り成型性を得るという観点から、衝撃強度は、175KJ/m以上であることがより好ましい。なお、衝撃強度は、JIS P8134に記載の方法に準拠して測定できる。さらに、前記二軸延伸ナイロンフィルムの衝撃強度は、フィルム厚の増加に加え、効果が飽和するという点から、300KJ/m以下とすることが好ましい。 In the present embodiment, the impact strength defined in JIS P8134 must satisfy the following conditions.
The biaxially stretched nylon film needs to have an impact strength (puncture) of 160 KJ / m or more. When the impact strength is less than 160 KJ / m, the deep drawability of the film is insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the impact strength is more preferably 175 KJ / m or more. The impact strength can be measured according to the method described in JIS P8134. Furthermore, the impact strength of the biaxially stretched nylon film is preferably set to 300 KJ / m or less from the viewpoint that the effect is saturated in addition to the increase in film thickness.
ここで、前記二軸延伸ナイロンフィルムの引張強度は、240MPa以上であることが好ましい。引張強度が240MPa未満では、フィルムの深絞り成型性が不足するおそれがあるからである。また、冷間成型時に優れた深絞り成型性を得るという観点から、引張強度は250MPa以上であることがより好ましい。なお、引張強度は、ASTM D 882に記載の方法に準拠して測定できる。
Here, the tensile strength of the biaxially stretched nylon film is preferably 240 MPa or more. This is because if the tensile strength is less than 240 MPa, the deep drawability of the film may be insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the tensile strength is more preferably 250 MPa or more. The tensile strength can be measured according to the method described in ASTM D882.
また、前記二軸延伸ナイロンフィルムの破断伸び率は70%以上であることが好ましい。破断伸び率が70%未満では、フィルムの深絞り成型性が不足するおそれがあるからである。また、冷間成型時に優れた深絞り成型性を得るという観点から、破断伸び率は80%以上であることがより好ましい。特に、TD方向の破断伸び率は130%以下であることが好ましい。なお、破断伸び率は、ASTM D 882に記載の方法に準拠して測定できる。
Further, the elongation at break of the biaxially stretched nylon film is preferably 70% or more. This is because if the elongation at break is less than 70%, the deep drawability of the film may be insufficient. Further, from the viewpoint of obtaining excellent deep drawability during cold forming, the elongation at break is more preferably 80% or more. In particular, the breaking elongation in the TD direction is preferably 130% or less. The elongation at break can be measured according to the method described in ASTM D882.
〔ラミネートフィルムの構成〕
本実施形態のラミネートフィルムは、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム層やアルミニウム層を含むフィルムや、ポリプロピレン系やポリエチレン系のシール層(シーラント層)などが挙げられる。
また、本実施形態のラミネート包材は、上記したONyフィルムの少なくとも一方の面にポリエチレンテレフタレート(PET)や、ポリエステル樹脂や、ポリ塩化ビニリデン樹脂や、ポリ塩化ビニリデン共重合体樹脂や、滑剤や、帯電防止剤や、硝化綿アミド樹脂などのコーティング層をさらに積層したものでもよい。
このようなラミネート基材が積層されることで、製造効率の向上や搬送効率の向上を図ることができるとともに、機能性(耐薬品性、電気絶縁性、防湿性、耐寒性、加工性など)が付加されたラミネートフィルムを得ることができる。 [Composition of laminate film]
The laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, other laminate base materials include, for example, an aluminum layer, a film containing an aluminum layer, a polypropylene-based or polyethylene-based seal layer (sealant layer), and the like.
In addition, the laminate packaging material of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinylidene chloride resin, polyvinylidene chloride copolymer resin, lubricant, or the like on at least one surface of the above-mentioned ONy film. A laminate in which an antistatic agent or a coating layer of nitrified cotton amide resin is further laminated may be used.
By laminating such a laminate substrate, it is possible to improve manufacturing efficiency and conveyance efficiency, and functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, workability, etc.) Can be obtained.
本実施形態のラミネートフィルムは、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム層やアルミニウム層を含むフィルムや、ポリプロピレン系やポリエチレン系のシール層(シーラント層)などが挙げられる。
また、本実施形態のラミネート包材は、上記したONyフィルムの少なくとも一方の面にポリエチレンテレフタレート(PET)や、ポリエステル樹脂や、ポリ塩化ビニリデン樹脂や、ポリ塩化ビニリデン共重合体樹脂や、滑剤や、帯電防止剤や、硝化綿アミド樹脂などのコーティング層をさらに積層したものでもよい。
このようなラミネート基材が積層されることで、製造効率の向上や搬送効率の向上を図ることができるとともに、機能性(耐薬品性、電気絶縁性、防湿性、耐寒性、加工性など)が付加されたラミネートフィルムを得ることができる。 [Composition of laminate film]
The laminate film of this embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, other laminate base materials include, for example, an aluminum layer, a film containing an aluminum layer, a polypropylene-based or polyethylene-based seal layer (sealant layer), and the like.
In addition, the laminate packaging material of the present embodiment is made of polyethylene terephthalate (PET), polyester resin, polyvinylidene chloride resin, polyvinylidene chloride copolymer resin, lubricant, or the like on at least one surface of the above-mentioned ONy film. A laminate in which an antistatic agent or a coating layer of nitrified cotton amide resin is further laminated may be used.
By laminating such a laminate substrate, it is possible to improve manufacturing efficiency and conveyance efficiency, and functionality (chemical resistance, electrical insulation, moisture resistance, cold resistance, workability, etc.) Can be obtained.
〔ラミネート包材の構成〕
本実施形態のラミネート包材は、上記ラミネートフィルムから構成されている。一般に、アルミニウム層を含むラミネート包材は、冷間成型の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成型に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた絞り成型性を有するため、冷間での深絞り成型などの際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成型品が得られる。 [Composition of laminate packaging material]
The laminate packaging material of this embodiment is comprised from the said laminate film. In general, a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming. In this respect, according to the laminate packaging material of the present embodiment, the above-described ONy film has excellent drawability, so that it is possible to suppress the breakage of the aluminum layer during cold deep drawing, etc. The generation of pinholes in can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
本実施形態のラミネート包材は、上記ラミネートフィルムから構成されている。一般に、アルミニウム層を含むラミネート包材は、冷間成型の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成型に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた絞り成型性を有するため、冷間での深絞り成型などの際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成型品が得られる。 [Composition of laminate packaging material]
The laminate packaging material of this embodiment is comprised from the said laminate film. In general, a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer is easily broken by necking during cold forming. In this respect, according to the laminate packaging material of the present embodiment, the above-described ONy film has excellent drawability, so that it is possible to suppress the breakage of the aluminum layer during cold deep drawing, etc. The generation of pinholes in can be suppressed. Therefore, even when the total thickness of the packaging material is thin, a molded product having a sharp shape and high strength can be obtained.
本実施形態のラミネート包材は、ONyフィルムと他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超えると、冷間成型によるコーナー部の成型が困難となり、シャープな形状の成型品が得られにくい傾向がある。
In the laminate packaging material of the present embodiment, the total thickness of the ONy film and other laminate base material is preferably 200 μm or less. When the total thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and it tends to be difficult to obtain a molded product having a sharp shape.
本実施形態のラミネート包材におけるONyフィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。ここで、ONyフィルムの厚さが5μm未満では、ラミネート包材の耐衝撃性が低くなり、冷間成型性が不十分となる傾向にある。一方、ONyフィルムの厚さが50μmを超えると、ラミネート包材の耐衝撃性の更なる向上効果が得られにくくなり、包材総厚が増加するばかりで好ましくない。
The thickness of the ONy film in the laminate packaging material of the present embodiment is preferably 5 μm or more and 50 μm or less, and more preferably 10 μm or more and 30 μm or less. Here, if the thickness of the ONy film is less than 5 μm, the impact resistance of the laminate packaging material tends to be low, and the cold formability tends to be insufficient. On the other hand, when the thickness of the ONy film exceeds 50 μm, it is difficult to obtain an effect of further improving the impact resistance of the laminate packaging material, which is not preferable because the total thickness of the packaging material is increased.
〔二軸延伸ナイロンフィルムの製造装置〕
次に、本実施形態の二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
先ず、本実施形態の二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60とを備えている。 [Production equipment for biaxially stretched nylon film]
Next, a method for producing the biaxially stretched nylon film of the present embodiment will be described based on the drawings.
First, an apparatus for producing the biaxially stretched nylon film of this embodiment will be described with an example.
As shown in FIG. 1, thefilm manufacturing apparatus 100 includes an original fabric manufacturing apparatus 90 for manufacturing the original fabric film 1, a biaxial stretching apparatus (tubular stretching apparatus) 10 that stretches the original fabric film 1, and stretching. A first heat treatment device 20 (preheating furnace) that preheats a base film 2 that is folded later (hereinafter also simply referred to as “film 2”), a separation device 30 that separates the preheated film 2 into two upper and lower sheets, A second heat treatment device 40 that heat-treats (heat-set) the separated film 2, a tension control device 50 that applies tension to the film 2 from the downstream side when the film 2 is heat-set, and the film 2 is heat-set. And a winding device 60 for winding the biaxially stretched nylon film 3 (hereinafter also simply referred to as “film 3”).
次に、本実施形態の二軸延伸ナイロンフィルムを製造する方法について図面に基づいて説明する。
先ず、本実施形態の二軸延伸ナイロンフィルムを製造する装置について、一例を挙げて説明する。
フィルム製造装置100は、図1に示すように、原反フィルム1を製造するための原反製造装置90と、原反フィルム1を延伸する二軸延伸装置(チューブラー延伸装置)10と、延伸後に折り畳まれた基材フィルム2(以後、単に「フィルム2」ともいう)を予熱する第一熱処理装置20(予熱炉)と、予熱されたフィルム2を上下2枚に分離する分離装置30と、分離されたフィルム2を熱処理(熱固定)する第二熱処理装置40と、フィルム2が熱固定されるときに、下流側からフィルム2に張力を加える張力制御装置50と、フィルム2が熱固定されてなる二軸延伸ナイロンフィルム3(以後、単に「フィルム3」ともいう)を巻き取る巻取装置60とを備えている。 [Production equipment for biaxially stretched nylon film]
Next, a method for producing the biaxially stretched nylon film of the present embodiment will be described based on the drawings.
First, an apparatus for producing the biaxially stretched nylon film of this embodiment will be described with an example.
As shown in FIG. 1, the
原反製造装置90は、図1に示すように、押出機91と、サーキュラーダイス92と、水冷リング93と、安定板94と、ピンチロール95とを備えている。
チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A~34Cとを備えている。また、トリミング装置32は、ブレード321を有している。 As shown in FIG. 1, the rawfabric manufacturing apparatus 90 includes an extruder 91, a circular die 92, a water cooling ring 93, a stabilizer plate 94, and a pinch roll 95.
Thetubular stretching device 10 is a device for producing a film 2 by biaxially stretching (bubble stretching) a tubular raw film 1 with the pressure of internal air. As shown in FIG. 1, the tubular stretching device 10 includes a pinch roll 11, a heating unit 12, a guide plate 13, and a pinch roll 14.
The firstheat treatment apparatus 20 is an apparatus for preliminarily heat-treating the flat film 2. As shown in FIG. 1, the first heat treatment apparatus 20 includes a tenter 21 and a heating furnace 22.
As shown in FIG. 1, theseparation device 30 includes a guide roll 31, a trimming device 32, separation rolls 33A and 33B, and grooved rolls 34A to 34C. Further, the trimming device 32 has a blade 321.
チューブラー延伸装置10は、チューブ状の原反フィルム1を内部空気の圧力により二軸延伸(バブル延伸)してフィルム2を製造するための装置である。このチューブラー延伸装置10は、図1に示すように、ピンチロール11と、加熱部12と、案内板13と、ピンチロール14とを備えている。
第一熱処理装置20は、扁平となったフィルム2を予備的に熱処理するための装置である。第一熱処理装置20は、図1に示すように、テンター21と、加熱炉22とを備えている。
分離装置30は、図1に示すように、ガイドロール31と、トリミング装置32と、分離ロール33A,33Bと、溝付ロール34A~34Cとを備えている。また、トリミング装置32は、ブレード321を有している。 As shown in FIG. 1, the raw
The
The first
As shown in FIG. 1, the
第二熱処理装置40は、図1に示すように、テンター41と、加熱炉42とを備えている。
張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。 The secondheat treatment apparatus 40 includes a tenter 41 and a heating furnace 42 as shown in FIG.
As shown in FIG. 1, thetension controller 50 includes guide rolls 51 </ b> A and 51 </ b> B and a tension roll 52.
As shown in FIG. 1, the windingdevice 60 includes a guide roll 61 and a winding roll 62.
張力制御装置50は、図1に示すように、ガイドロール51A,51Bと、張力ロール52とを備えている。
巻取装置60は、図1に示すように、ガイドロール61と、巻取ロール62とを備えている。 The second
As shown in FIG. 1, the
As shown in FIG. 1, the winding
〔二軸延伸ナイロンフィルムの製造方法〕
次に、このフィルム製造装置100を用いて二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。 [Production method of biaxially stretched nylon film]
Next, each process which manufactures a biaxially-stretched nylon film using thisfilm manufacturing apparatus 100 is demonstrated in detail.
次に、このフィルム製造装置100を用いて二軸延伸ナイロンフィルムを製造する各工程を詳細に説明する。 [Production method of biaxially stretched nylon film]
Next, each process which manufactures a biaxially-stretched nylon film using this
(原反フィルム製造工程)
原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成型される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。 (Raw film production process)
As shown in FIG. 1, the raw material nylon resin is melt-kneaded by anextruder 91 and extruded into a tube shape by a circular die 92. The tubular molten resin is cooled by a water cooling ring 93. The raw film 1 is molded by rapidly cooling a molten nylon resin as a raw material by a water cooling ring 93. The cooled original film 1 is folded by the stabilizer 94. The folded original fabric film 1 is sent to the next biaxial stretching process by a pinch roll 95 as a flat film.
原料であるナイロン樹脂は、図1に示すように、押出機91により溶融混練され、サーキュラーダイス92によりチューブ状に押し出される。チューブ状の溶融樹脂は、水冷リング93により冷却される。原反フィルム1は原料である溶融ナイロン樹脂が水冷リング93により急冷されることで成型される。冷却された原反フィルム1は、安定板94により折り畳まれる。折り畳まれた原反フィルム1は、ピンチロール95により、扁平なフィルムとして次の二軸延伸工程に送られる。 (Raw film production process)
As shown in FIG. 1, the raw material nylon resin is melt-kneaded by an
(二軸延伸工程)
原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。 (Biaxial stretching process)
As shown in FIG. 1, theoriginal film 1 manufactured by the original film manufacturing process is introduced into the apparatus as a flat film by a pinch roll 11. The introduced raw film 1 is bubble-stretched by being heated with infrared rays at the heating unit 12. Thereafter, the film 2 after being bubble-stretched is folded by the guide plate 13. The folded film 2 is pinched by the pinch roll 14 and sent to the next first heat treatment step as a flat film 2.
原反フィルム製造工程により製造された原反フィルム1は、図1に示すように、ピンチロール11により、扁平なフィルムとして装置内部に導入される。導入された原反フィルム1は、加熱部12で赤外線により加熱することでバブル延伸される。その後、バブル延伸された後のフィルム2は、案内板13により折り畳まれる。折り畳まれたフィルム2は、ピンチロール14によりピンチされ扁平なフィルム2として次の第一熱処理工程に送られる。 (Biaxial stretching process)
As shown in FIG. 1, the
この際、MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であることが必要である。MD方向およびTD方向の延伸倍率のいずれかが2.8倍未満である場合、衝撃強度が低下して実用性に問題が生ずる。
At this time, the draw ratio in the MD direction and the TD direction must be 2.8 times or more, respectively. When either the MD direction or the TD direction draw ratio is less than 2.8 times, the impact strength is lowered, causing a problem in practicality.
また、MD方向およびTD方向の最大歪速度がそれぞれ3s-1以上であることが必要である。MD方向およびTD方向の最大歪速度のいずれかが3s-1未満である場合、得られるフィルムの衝撃強度が低下して、絞り成型性が不足する。また、絞り成型性の更なる向上という観点から、最大歪速度は、3.5s-1以上であることがより好ましい。
なお、歪速度とは、時間あたりの倍率の増加率のことをいう。
そして、最大歪速度は、次のような方法により求めることができる。
まず、延伸途中のフィルムサンプルを採取する。そして、このサンプルの移動方向の移動距離に対する、サンプルの折径(幅)の変化を計測して、移動距離とサンプルの折径(幅)との関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの折径と、原反フィルム(未延伸フィルム)の折径(幅)と、TD方向の延伸倍率との関係は、下記式:
(サンプルの折径(幅))/(原反フィルムの折径(幅))=(TD方向の延伸倍率)
で表されることから、サンプルの折径(幅)を原反フィルムの折径(幅)で割ることにより、TD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの折径との関係を示す曲線から、延伸開始からの時間とTD方向の延伸倍率との関係を示す曲線を作成することができる。
次いで、上述したサンプルについて、サンプルの移動方向の移動距離に対する、サンプルの厚みの変化を計測して、移動距離とサンプルの厚みとの関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの厚みと、原反フィルムの厚みと、MD×TDの総合延伸倍率との関係は、下記式:
(原反フィルムの厚み)/(サンプルの厚み)=(MD×TDの総合延伸倍率)
で表されることから、原反フィルム厚みからサンプルの厚みを割ることにより、MD×TDの総合延伸倍率が算出できる。また、MD×TDの総合延伸倍率と、TD方向の延伸倍率と、MD方向の延伸倍率との関係は、下記式:
(MD×TDの総合延伸倍率)/(TD方向の延伸倍率)=(MD方向の延伸倍率)
で表されることから、MD×TDの総合延伸倍率から先程算出したTD方向の延伸倍率を割ることにより、MD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの厚みとの関係を示す曲線から、延伸開始からの時間とMD方向の延伸倍率との関係を示す曲線を作成することができる。
以上のようにして作成できる2つの曲線により、延伸開始からの時間に対するMD方向およびTD方向の延伸倍率の変化状況が定量化できる。そして、これらの曲線において、曲線の傾きが最大となる箇所の傾きを求めることにより、MD方向およびTD方向の最大歪速度を求めることができる。 Further, it is necessary that the maximum strain rates in the MD direction and the TD direction are 3 s −1 or more, respectively. When either of the maximum strain rates in the MD direction and the TD direction is less than 3 s −1 , the impact strength of the resulting film is lowered and the drawability is insufficient. Further, from the viewpoint of further improving the drawability, the maximum strain rate is more preferably 3.5 s −1 or more.
The strain rate refers to the rate of increase in magnification per time.
The maximum strain rate can be obtained by the following method.
First, a film sample in the middle of stretching is collected. Then, a change in the folding diameter (width) of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the folding diameter (width) of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the folding diameter of the sample, the folding diameter (width) of the raw film (unstretched film), and the stretching ratio in the TD direction is expressed by the following formula:
(Folded diameter of sample (width)) / (Folded diameter of raw film (width)) = (Stretch ratio in TD direction)
Therefore, by dividing the folding diameter (width) of the sample by the folding diameter (width) of the original film, the stretching ratio in the TD direction can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the TD direction can be created from a curve indicating the relationship between the moving distance and the folding diameter of the sample.
Next, for the sample described above, a change in the thickness of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the thickness of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the thickness of the sample, the thickness of the raw film, and the overall draw ratio of MD × TD is expressed by the following formula:
(Thickness of original film) / (Thickness of sample) = (Total draw ratio of MD × TD)
Therefore, the total draw ratio of MD × TD can be calculated by dividing the thickness of the sample from the thickness of the raw film. Moreover, the relationship between the MD × TD total draw ratio, the TD direction draw ratio, and the MD direction draw ratio is given by the following formula:
(MD × TD total draw ratio) / (TD direction draw ratio) = (MD direction draw ratio)
Therefore, by dividing the TD-direction stretch ratio calculated from the MD × TD total stretch ratio, the MD-direction stretch ratio can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the MD direction can be created from the curve indicating the relationship between the moving distance and the thickness of the sample.
With the two curves that can be created as described above, the change state of the draw ratio in the MD direction and the TD direction with respect to the time from the start of drawing can be quantified. In these curves, the maximum strain rate in the MD direction and the TD direction can be obtained by obtaining the slope of the portion where the slope of the curve is maximum.
なお、歪速度とは、時間あたりの倍率の増加率のことをいう。
そして、最大歪速度は、次のような方法により求めることができる。
まず、延伸途中のフィルムサンプルを採取する。そして、このサンプルの移動方向の移動距離に対する、サンプルの折径(幅)の変化を計測して、移動距離とサンプルの折径(幅)との関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの折径と、原反フィルム(未延伸フィルム)の折径(幅)と、TD方向の延伸倍率との関係は、下記式:
(サンプルの折径(幅))/(原反フィルムの折径(幅))=(TD方向の延伸倍率)
で表されることから、サンプルの折径(幅)を原反フィルムの折径(幅)で割ることにより、TD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの折径との関係を示す曲線から、延伸開始からの時間とTD方向の延伸倍率との関係を示す曲線を作成することができる。
次いで、上述したサンプルについて、サンプルの移動方向の移動距離に対する、サンプルの厚みの変化を計測して、移動距離とサンプルの厚みとの関係を示す曲線を作成する。ここで、移動距離からは、延伸開始からの時間が算出できる。また、サンプルの厚みと、原反フィルムの厚みと、MD×TDの総合延伸倍率との関係は、下記式:
(原反フィルムの厚み)/(サンプルの厚み)=(MD×TDの総合延伸倍率)
で表されることから、原反フィルム厚みからサンプルの厚みを割ることにより、MD×TDの総合延伸倍率が算出できる。また、MD×TDの総合延伸倍率と、TD方向の延伸倍率と、MD方向の延伸倍率との関係は、下記式:
(MD×TDの総合延伸倍率)/(TD方向の延伸倍率)=(MD方向の延伸倍率)
で表されることから、MD×TDの総合延伸倍率から先程算出したTD方向の延伸倍率を割ることにより、MD方向の延伸倍率が算出できる。そのため、移動距離とサンプルの厚みとの関係を示す曲線から、延伸開始からの時間とMD方向の延伸倍率との関係を示す曲線を作成することができる。
以上のようにして作成できる2つの曲線により、延伸開始からの時間に対するMD方向およびTD方向の延伸倍率の変化状況が定量化できる。そして、これらの曲線において、曲線の傾きが最大となる箇所の傾きを求めることにより、MD方向およびTD方向の最大歪速度を求めることができる。 Further, it is necessary that the maximum strain rates in the MD direction and the TD direction are 3 s −1 or more, respectively. When either of the maximum strain rates in the MD direction and the TD direction is less than 3 s −1 , the impact strength of the resulting film is lowered and the drawability is insufficient. Further, from the viewpoint of further improving the drawability, the maximum strain rate is more preferably 3.5 s −1 or more.
The strain rate refers to the rate of increase in magnification per time.
The maximum strain rate can be obtained by the following method.
First, a film sample in the middle of stretching is collected. Then, a change in the folding diameter (width) of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the folding diameter (width) of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the folding diameter of the sample, the folding diameter (width) of the raw film (unstretched film), and the stretching ratio in the TD direction is expressed by the following formula:
(Folded diameter of sample (width)) / (Folded diameter of raw film (width)) = (Stretch ratio in TD direction)
Therefore, by dividing the folding diameter (width) of the sample by the folding diameter (width) of the original film, the stretching ratio in the TD direction can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the TD direction can be created from a curve indicating the relationship between the moving distance and the folding diameter of the sample.
Next, for the sample described above, a change in the thickness of the sample with respect to the moving distance in the moving direction of the sample is measured, and a curve indicating the relationship between the moving distance and the thickness of the sample is created. Here, the time from the start of stretching can be calculated from the moving distance. Moreover, the relationship between the thickness of the sample, the thickness of the raw film, and the overall draw ratio of MD × TD is expressed by the following formula:
(Thickness of original film) / (Thickness of sample) = (Total draw ratio of MD × TD)
Therefore, the total draw ratio of MD × TD can be calculated by dividing the thickness of the sample from the thickness of the raw film. Moreover, the relationship between the MD × TD total draw ratio, the TD direction draw ratio, and the MD direction draw ratio is given by the following formula:
(MD × TD total draw ratio) / (TD direction draw ratio) = (MD direction draw ratio)
Therefore, by dividing the TD-direction stretch ratio calculated from the MD × TD total stretch ratio, the MD-direction stretch ratio can be calculated. Therefore, a curve indicating the relationship between the time from the start of stretching and the stretching ratio in the MD direction can be created from the curve indicating the relationship between the moving distance and the thickness of the sample.
With the two curves that can be created as described above, the change state of the draw ratio in the MD direction and the TD direction with respect to the time from the start of drawing can be quantified. In these curves, the maximum strain rate in the MD direction and the TD direction can be obtained by obtaining the slope of the portion where the slope of the curve is maximum.
さらに、延伸終了時にはMD方向の延伸倍率よりもTD方向の延伸倍率の方が大きくなることが好ましい。また、TD方向の延伸倍率からMD方向の延伸倍率を減じた差(TD-MD)が、0.1倍以上0.8倍以下であることが好ましく、0.2倍以上0.8倍以下であることがより好ましく、0.3倍以上0.8倍以下であることが更により好ましい。TD-MDの値が前記下限未満では、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、フィルムの厚み精度が低下する傾向にある。また、特に、TD-MDの値が0.1倍以下の場合には、延伸安定性が劣るとともに、フィルムの厚み精度が低下する傾向にある。一方、TD-MDの値が前記上限を超えると、得られるフィルムの深絞り成型性が不十分となる傾向にあり、また、延伸安定性が低下する。
Furthermore, it is preferable that the stretching ratio in the TD direction is larger than the stretching ratio in the MD direction at the end of stretching. Further, the difference (TD−MD) obtained by subtracting the draw ratio in the MD direction from the draw ratio in the TD direction is preferably 0.1 to 0.8 times, and more preferably 0.2 to 0.8 times. It is more preferable that it is 0.3 times or more and 0.8 times or less. If the value of TD-MD is less than the lower limit, the deep drawability of the resulting film tends to be insufficient, and the thickness accuracy of the film tends to decrease. In particular, when the value of TD-MD is 0.1 times or less, the stretching stability is inferior and the thickness accuracy of the film tends to be lowered. On the other hand, if the value of TD-MD exceeds the above upper limit, the deep drawability of the resulting film tends to be insufficient, and the stretching stability is lowered.
(第一熱処理工程)
二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。 (First heat treatment process)
Thefilm 2 sent from the biaxial stretching step is at or above the shrinkage start temperature of the film 2 and about 30 ° C. higher than the melting point of the film 2 while being gripped at both ends by clips (not shown) of the tenter 21. The film 2 is preheated at a low temperature or lower and sent to the next separation step.
The heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
By this first heat treatment step, the crystallinity of thefilm 2 is increased, and the slipping property between the overlapping films is improved.
二軸延伸工程から送られたフィルム2は、テンター21のクリップ(図示せず)で両端部を把持されながら、このフィルム2の収縮開始温度以上であって、フィルム2の融点よりも約30℃低い温度かそれ以下の温度でこのフィルム2を予め熱処理されて次の分離工程に送られる。
この第一熱処理における熱処理温度は、120℃以上190℃以下であり、かつ、弛緩率は、15%以下であることが好ましい。
この第一熱処理工程により、フィルム2の結晶化度が増して、重なり合ったフィルム同士の滑り性が良好になる。 (First heat treatment process)
The
The heat treatment temperature in the first heat treatment is preferably 120 ° C. or higher and 190 ° C. or lower, and the relaxation rate is preferably 15% or lower.
By this first heat treatment step, the crystallinity of the
(分離工程)
ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。 (Separation process)
As shown in FIG. 1, theflat film 2 sent through the guide roll 31 is cut into both ends by a blade 321 of a trimming device 32 and separated into two films 2A and 2B. And film 2A, 2B is isolate | separated, interposing air between film 2A, 2B by a pair of separation roll 33A, 33B located up and down apart. The incision of the flat film 2 may be performed so that a part of the ear is generated by positioning the blade 321 slightly inward from both ends, or by positioning the blade 321 in the fold portion of the film 2. , It may be performed so that the ear does not occur.
These films 2A and 2B are overlapped again by three grooved rolls 34A to 34C positioned in order in the film flow direction, and sent to the next second heat treatment step. In addition, these grooved rolls 34A to 34C are obtained by plating the surface after the grooved processing. A good contact state between the films 2A and 2B and the air can be obtained through the grooves.
ガイドロール31を介して送られた扁平なフィルム2は、図1に示すように、トリミング装置32のブレード321により、両端部を切開されて2枚のフィルム2A,2Bに分離される。そして、フィルム2A,2Bは、上下に離れて位置する一対の分離ロール33A、33Bにより、フィルム2A,2Bの間に空気を介在させながらこれらを分離される。この扁平なフィルム2の切開は、両端部から若干内側にブレード321を位置させることにより、一部分耳部が生じるように行ってもよく、或いは、フィルム2の折り目部分にブレード321を位置させることにより、耳部が生じないように行ってもよい。
これらのフィルム2A,2Bは、フィルムの流れ方向に順に位置する3個の溝付ロール34Aから34Cにより、再び重ねられて次の第二熱処理工程に送られる。なお、これらの溝付ロール34Aから34Cは、溝付き加工後、表面にめっき処理を施したものである。この溝を介してフィルム2A、2Bと空気との良好な接触状態が得られる。 (Separation process)
As shown in FIG. 1, the
These
(第二熱処理工程(熱固定工程))
重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
この第二熱処理(熱固定)における熱処理温度は、190℃以上215℃以下であることが好ましい。熱処理温度が前記下限未満では、フィルム収縮率が大きくなり、デラミが発生する危険性が高まり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増し、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる。
また、このときの弛緩率は、15%以下であることが好ましい。
なお、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。 (Second heat treatment process (heat setting process))
The overlapped films 2A and 2B are heat-treated at a temperature equal to or lower than the melting point of the resin constituting the film 2 and about 30 ° C. lower than the melting point while being gripped at both ends by clips (not shown) of the tenter 41. It is (heat-set) and becomes a biaxially stretched nylon film 3 (hereinafter also referred to as film 3) having stable physical properties, and is sent to the next winding step.
The heat treatment temperature in the second heat treatment (heat setting) is preferably 190 ° C. or higher and 215 ° C. or lower. When the heat treatment temperature is less than the lower limit, the film shrinkage rate is increased, and the risk of delamination is increased.On the other hand, when the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases, and the distortion of the film increases. The density becomes too high, the crystallinity becomes too high, and the film is difficult to deform.
In addition, the relaxation rate at this time is preferably 15% or less.
A strong tension is applied to the films 2A and 2B in the heating furnace 42 by the tension control device 50 located on the downstream side.
重なった状態のフィルム2A、2Bは、テンター41のクリップ(図示せず)で両端部を把持されながら、フィルム2を構成する樹脂の融点以下であって、融点から約30℃低い温度以上で熱処理(熱固定)され、物性の安定した二軸延伸ナイロンフィルム3(以後、フィルム3ともいう)となり、次の巻取工程に送られる。
この第二熱処理(熱固定)における熱処理温度は、190℃以上215℃以下であることが好ましい。熱処理温度が前記下限未満では、フィルム収縮率が大きくなり、デラミが発生する危険性が高まり、他方、前記上限を超えると、熱固定時のボーイング現象が大きくなり、フィルムの歪みが増し、また、密度が高くなり過ぎて、結晶化度が高くなり過ぎてフィルムの変形がし難くなる。
また、このときの弛緩率は、15%以下であることが好ましい。
なお、加熱炉42内のフィルム2A、2Bに対しては、下流側に位置する張力制御装置50により強い張力が加えられるようになっている。 (Second heat treatment process (heat setting process))
The overlapped
The heat treatment temperature in the second heat treatment (heat setting) is preferably 190 ° C. or higher and 215 ° C. or lower. When the heat treatment temperature is less than the lower limit, the film shrinkage rate is increased, and the risk of delamination is increased.On the other hand, when the upper limit is exceeded, the bowing phenomenon at the time of heat setting increases, and the distortion of the film increases. The density becomes too high, the crystallinity becomes too high, and the film is difficult to deform.
In addition, the relaxation rate at this time is preferably 15% or less.
A strong tension is applied to the
(巻取工程)
第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。 (Winding process)
Thefilm 3 heat-set in the second heat treatment step is wound as films 3A and 3B on the two winding rolls 62 via the guide roll 61 via the tension control device 50.
第二熱処理工程により熱固定されたフィルム3は、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取られる。 (Winding process)
The
〔実施形態の変形〕
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。 [Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the object and effect. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. In addition, the specific structure and shape in carrying out the present invention may be used as other structures and shapes within the scope of achieving the object and effect of the present invention.
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的および効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造および形状などは、本発明の目的および効果を達成できる範囲内において、他の構造や形状などとしても問題はない。 [Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention and can achieve the object and effect. It goes without saying that modifications and improvements within the scope are included in the content of the present invention. In addition, the specific structure and shape in carrying out the present invention may be used as other structures and shapes within the scope of achieving the object and effect of the present invention.
例えば、本実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式であってもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。
For example, in this embodiment, the tubular method is adopted as the biaxial stretching method, but a tenter method may be used. Furthermore, the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
次に、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、各例における特性(二軸延伸ナイロンフィルムの衝撃強度およびラミネートフィルムの深絞り成型性)は以下のような方法で評価した。
(i)衝撃強度
JIS P8134に記載の方法に準拠して、二軸延伸ナイロンフィルムの衝撃強度を、パンクチュア試験機を用いて測定した。
(ii)深絞り成型性
ラミネートフィルムを裁断して、120×80mmの短冊片を作製してサンプルとした。33×55mmの矩形状の金型を用い、0.1MPaの面圧で押えて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)した。そして、アルミニウム箔にピンホールが10枚のサンプルのいずれにも発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。なお、ピンホールの確認は透過光を目視で確認した。
A:限界成型深さが5mm以上である。
B:限界成型深さが5mm未満である。 EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples. The characteristics in each example (impact strength of the biaxially stretched nylon film and deep drawability of the laminate film) were evaluated by the following methods.
(I) Impact strength Based on the method described in JIS P8134, the impact strength of the biaxially stretched nylon film was measured using a puncture tester.
(Ii) Deep-drawing moldability The laminate film was cut to prepare a 120 × 80 mm strip piece as a sample. Using a 33 x 55 mm rectangular mold, press it with a surface pressure of 0.1 MPa, change the molding depth from 0.5 mm to 0.5 mm, and cold mold each 10 samples. (One-stage pull-in molding). The molding depth at which no pinhole was generated in any of the 10 samples in the aluminum foil was taken as the limit molding depth, and the molding depth was shown as an evaluation value. In addition, confirmation of the pinhole confirmed the transmitted light visually.
A: The limit molding depth is 5 mm or more.
B: The limit molding depth is less than 5 mm.
(i)衝撃強度
JIS P8134に記載の方法に準拠して、二軸延伸ナイロンフィルムの衝撃強度を、パンクチュア試験機を用いて測定した。
(ii)深絞り成型性
ラミネートフィルムを裁断して、120×80mmの短冊片を作製してサンプルとした。33×55mmの矩形状の金型を用い、0.1MPaの面圧で押えて、0.5mmの成型深さから0.5mm単位で成型深さを変えて各10枚のサンプルについて冷間成型(引き込み1段成型)した。そして、アルミニウム箔にピンホールが10枚のサンプルのいずれにも発生していない成型深さを限界成型深さとし、その成型深さを評価値として示した。なお、ピンホールの確認は透過光を目視で確認した。
A:限界成型深さが5mm以上である。
B:限界成型深さが5mm未満である。 EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples. The characteristics in each example (impact strength of the biaxially stretched nylon film and deep drawability of the laminate film) were evaluated by the following methods.
(I) Impact strength Based on the method described in JIS P8134, the impact strength of the biaxially stretched nylon film was measured using a puncture tester.
(Ii) Deep-drawing moldability The laminate film was cut to prepare a 120 × 80 mm strip piece as a sample. Using a 33 x 55 mm rectangular mold, press it with a surface pressure of 0.1 MPa, change the molding depth from 0.5 mm to 0.5 mm, and cold mold each 10 samples. (One-stage pull-in molding). The molding depth at which no pinhole was generated in any of the 10 samples in the aluminum foil was taken as the limit molding depth, and the molding depth was shown as an evaluation value. In addition, confirmation of the pinhole confirmed the transmitted light visually.
A: The limit molding depth is 5 mm or more.
B: The limit molding depth is less than 5 mm.
〔実施例1〕
(原反フィルム製造工程)
図1に示すように、Ny6ペレットを押出機91中で、275℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.3倍とした。また、この延伸の際の最大歪速度はMD方向で5.0s-1、TD方向で4.0s-1とした。
(第一熱処理工程および第二熱処理工程)
次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度205℃にて熱処理を施し、熱固定した。
(巻取工程)
次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
得られた二軸延伸ナイロンフィルムの衝撃強度を測定した。得られた結果を表1に示す。
(ラミネートフィルムの作製)
得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
得られたラミネートフィルムの深絞り成型性を評価した。得られた結果を表1に示す。 [Example 1]
(Raw film production process)
As shown in FIG. 1, after Ny6 pellets were melt-kneaded at 275 ° C. in anextruder 91, the melt was extruded as a tube-like film from a circular die 92, and then rapidly cooled with water (15 ° C.). Film 1 was produced.
What was used as Ny6 is Ube Industries, Ltd. nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5].
(Biaxial stretching process)
Next, as shown in FIG. 1, theraw film 1 is inserted between a pair of pinch rolls 11, and then heated by the heating unit 12 while a gas is being pressed into the film 1, and blown to the stretching start point to form bubbles. The biaxial stretching in the MD direction and the TD direction was performed by the tubular method by expanding and taking up with a pair of downstream pinch rolls 14. The magnification during this stretching was 3.0 times in the MD direction and 3.3 times in the TD direction. The maximum strain rate during the stretching was 5.0 s -1, 4.0 s -1 at TD direction MD direction.
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, thefilm 2 is subjected to heat treatment at a temperature of 170 ° C. by the first heat treatment device 20, and then passed through the separation device 30 and then heat treated at a temperature of 205 ° C. by the second heat treatment device 40. And heat fixed.
(Winding process)
Next, as shown in FIG. 1, thefilm 3 heat-set in the second heat treatment step is wound as two films 3 </ b> A and 3 </ b> B on two winding rolls 62 via a guide roll 61 via a tension control device 50. A biaxially stretched nylon film was produced. The thickness of the obtained biaxially stretched nylon film was 15 μm.
The impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1.
(Production of laminate film)
The obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 μm was used as an intermediate substrate, and a CPP film having a thickness of 60 μm was used as a sealant film to obtain a laminate film. The laminated film after dry lamination was aged at 40 ° C. for 3 days.
The deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
(原反フィルム製造工程)
図1に示すように、Ny6ペレットを押出機91中で、275℃で溶融混練した後、溶融物をサーキュラーダイス92からチューブ状のフィルムとして押出し、引き続き水(15℃)で急冷して原反フィルム1を作製した。
Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン1022FD(商品名)、相対粘度 ηr=3.5〕である。
(二軸延伸工程)
次に、図1に示すように、この原反フィルム1を一対のピンチロール11間に挿通した後、中に気体を圧入しながら加熱部12で加熱すると共に、延伸開始点に吹き付けてバブルに膨張させ、下流側の一対のピンチロール14で引き取ることにより、チューブラー法によるMD方向およびTD方向の同時二軸延伸を行った。この延伸の際の倍率はMD方向で3.0倍、TD方向で3.3倍とした。また、この延伸の際の最大歪速度はMD方向で5.0s-1、TD方向で4.0s-1とした。
(第一熱処理工程および第二熱処理工程)
次に、図1に示すように、フィルム2に対し第一熱処理装置20により温度170℃にて熱処理を施し、その後、分離装置30を経た後に、第二熱処理装置40により温度205℃にて熱処理を施し、熱固定した。
(巻取工程)
次いで、図1に示すように、第二熱処理工程により熱固定されたフィルム3を、張力制御装置50を経て、ガイドロール61を介して2本の巻取ロール62に、フィルム3A,3Bとして巻き取って二軸延伸ナイロンフィルムを製造した。得られた二軸延伸ナイロンフィルムの厚みは15μmであった。
得られた二軸延伸ナイロンフィルムの衝撃強度を測定した。得られた結果を表1に示す。
(ラミネートフィルムの作製)
得られた二軸延伸ナイロンフィルムを表基材フィルムとし、厚さ40μmのアルミニウム箔を中間基材とし、厚さ60μmのCPPフィルムをシーラントフィルムとして、ドライラミネートすることによりラミネートフィルムを得た。また、ドライラミネート後のラミネートフィルムは、40℃で3日間エージングを行った。
得られたラミネートフィルムの深絞り成型性を評価した。得られた結果を表1に示す。 [Example 1]
(Raw film production process)
As shown in FIG. 1, after Ny6 pellets were melt-kneaded at 275 ° C. in an
What was used as Ny6 is Ube Industries, Ltd. nylon 6 [UBE nylon 1022FD (trade name), relative viscosity ηr = 3.5].
(Biaxial stretching process)
Next, as shown in FIG. 1, the
(First heat treatment step and second heat treatment step)
Next, as shown in FIG. 1, the
(Winding process)
Next, as shown in FIG. 1, the
The impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1.
(Production of laminate film)
The obtained biaxially stretched nylon film was used as a front substrate film, an aluminum foil having a thickness of 40 μm was used as an intermediate substrate, and a CPP film having a thickness of 60 μm was used as a sealant film to obtain a laminate film. The laminated film after dry lamination was aged at 40 ° C. for 3 days.
The deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
〔実施例2~5、比較例1~8〕
表1に示す製造方法および製造条件(二軸延伸方法、最大歪速度、および厚み)に従って各条件を変更した以外は実施例1と同様にして、二軸延伸ナイロンフィルムおよびラミネートフィルムを製造した。
得られた二軸延伸ナイロンフィルムの衝撃強度を測定した。得られた結果を表1に示す。また、得られたラミネートフィルムの深絞り成型性を評価した。得られた結果を表1に示す。 [Examples 2 to 5, Comparative Examples 1 to 8]
A biaxially stretched nylon film and a laminate film were produced in the same manner as in Example 1 except that each condition was changed according to the production method and production conditions (biaxial stretching method, maximum strain rate, and thickness) shown in Table 1.
The impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1. Further, the deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
表1に示す製造方法および製造条件(二軸延伸方法、最大歪速度、および厚み)に従って各条件を変更した以外は実施例1と同様にして、二軸延伸ナイロンフィルムおよびラミネートフィルムを製造した。
得られた二軸延伸ナイロンフィルムの衝撃強度を測定した。得られた結果を表1に示す。また、得られたラミネートフィルムの深絞り成型性を評価した。得られた結果を表1に示す。 [Examples 2 to 5, Comparative Examples 1 to 8]
A biaxially stretched nylon film and a laminate film were produced in the same manner as in Example 1 except that each condition was changed according to the production method and production conditions (biaxial stretching method, maximum strain rate, and thickness) shown in Table 1.
The impact strength of the obtained biaxially stretched nylon film was measured. The obtained results are shown in Table 1. Further, the deep drawability of the obtained laminate film was evaluated. The obtained results are shown in Table 1.
表1に示す結果からも明らかなように、二軸延伸ナイロンフィルムの衝撃強度が前記条件を満たす場合(実施例1~5)には、冷間成型時に良好な深絞り成型性を有することが確認された。また、これらの二軸延伸ナイロンフィルムは、延伸安定性も良好で、フィルムの厚み精度が優れていることが確認された。
一方、二軸延伸ナイロンフィルムの衝撃強度が前記条件を満たさない場合(比較例1~8)では、冷間成型時に良好な深絞り成型性が不十分であることが確認された。特に、上述した特許文献2において好ましい範囲と記載の比較例7および8であっても、冷間成型時に良好な深絞り成型性が不十分であることが確認された。 As is clear from the results shown in Table 1, when the impact strength of the biaxially stretched nylon film satisfies the above conditions (Examples 1 to 5), it has good deep drawability during cold forming. confirmed. Moreover, it was confirmed that these biaxially stretched nylon films have good stretching stability and excellent film thickness accuracy.
On the other hand, when the impact strength of the biaxially stretched nylon film did not satisfy the above conditions (Comparative Examples 1 to 8), it was confirmed that good deep drawability was insufficient during cold forming. In particular, even in Comparative Examples 7 and 8 described as the preferred range inPatent Document 2 described above, it was confirmed that good deep drawability was insufficient during cold forming.
一方、二軸延伸ナイロンフィルムの衝撃強度が前記条件を満たさない場合(比較例1~8)では、冷間成型時に良好な深絞り成型性が不十分であることが確認された。特に、上述した特許文献2において好ましい範囲と記載の比較例7および8であっても、冷間成型時に良好な深絞り成型性が不十分であることが確認された。 As is clear from the results shown in Table 1, when the impact strength of the biaxially stretched nylon film satisfies the above conditions (Examples 1 to 5), it has good deep drawability during cold forming. confirmed. Moreover, it was confirmed that these biaxially stretched nylon films have good stretching stability and excellent film thickness accuracy.
On the other hand, when the impact strength of the biaxially stretched nylon film did not satisfy the above conditions (Comparative Examples 1 to 8), it was confirmed that good deep drawability was insufficient during cold forming. In particular, even in Comparative Examples 7 and 8 described as the preferred range in
本発明の二軸延伸ナイロンフィルムは、例えば工業用分野(電気自動車、タブレット型端末機器、スマートフォンなどに搭載されるリチウム電池用包材など)、医薬用分野(PTP包材など)、生活品用分野(液体洗剤用詰め替え包材など)、食品用分野などの包装材料など、耐ピンホール特性が特に必要とされる包装材料として好適に用いることができる。本発明のラミネート包材は、特に優れた深絞り成型性が要求される冷間成型用包材として好適に用いることができる。
The biaxially stretched nylon film of the present invention is, for example, for industrial fields (such as lithium battery packaging materials mounted on electric vehicles, tablet terminal devices, smartphones, etc.), pharmaceutical fields (such as PTP packaging materials), and household goods. It can be suitably used as a packaging material that particularly requires pinhole resistance, such as packaging materials in the field (such as refill packaging for liquid detergents) and foods. The laminate packaging material of the present invention can be suitably used as a packaging material for cold molding that requires particularly excellent deep drawability.
3,3A,3B…二軸延伸ナイロンフィルム
3, 3A, 3B ... Biaxially stretched nylon film
Claims (5)
- ナイロン樹脂を原料とする二軸延伸ナイロンフィルムであって、
JIS P8134で規定された衝撃強度が160KJ/m以上である
ことを特徴とする二軸延伸ナイロンフィルム。 A biaxially stretched nylon film made from nylon resin,
The biaxially stretched nylon film characterized by having an impact strength defined by JIS P8134 of 160 KJ / m or more. - 請求項1に記載の二軸延伸ナイロンフィルムを積層してなることを特徴とするラミネートフィルム。 A laminate film obtained by laminating the biaxially stretched nylon film according to claim 1.
- 請求項2に記載のラミネートフィルムを用いたことを特徴とするラミネート包材。 A laminate packaging material using the laminate film according to claim 2.
- 請求項1に記載の二軸延伸ナイロンフィルムを製造する二軸延伸ナイロンフィルムの製造方法であって、
前記原料から原反フィルムを成形する原反フィルム製造工程と、
MD方向およびTD方向の延伸倍率がそれぞれ2.8倍以上であり、かつ、MD方向およびTD方向の最大歪速度がそれぞれ3s-1以上である条件で、前記原反フィルムを延伸する二軸延伸工程と、
前記二軸延伸工程後のフィルムに熱処理を施して熱固定する熱固定工程と、を備える
ことを特徴とする二軸延伸ナイロンフィルムの製造方法。 A biaxially stretched nylon film manufacturing method for manufacturing the biaxially stretched nylon film according to claim 1,
A raw film manufacturing process for forming a raw film from the raw material,
Biaxial stretching for stretching the original film under the conditions that the stretching ratio in the MD direction and the TD direction is 2.8 times or more and the maximum strain rate in the MD direction and the TD direction is 3 s -1 or more, respectively. Process,
And a heat setting step of heat-setting the film after the biaxial stretching step by performing a heat treatment. A method for producing a biaxially stretched nylon film. - 請求項4に記載の二軸延伸ナイロンフィルムの製造方法において、
前記二軸延伸工程において、チューブラー式二軸延伸法にて二軸延伸する
ことを特徴とする二軸延伸ナイロンフィルムの製造方法。 In the manufacturing method of the biaxially stretched nylon film of Claim 4,
In the biaxial stretching step, biaxial stretching is performed by a tubular biaxial stretching method. A method for producing a biaxially stretched nylon film.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-060794 | 2012-03-16 | ||
JP2012060794A JP2013193271A (en) | 2012-03-16 | 2012-03-16 | Biaxially-stretched nylon film, laminate film, laminate packaging material, and method for manufacturing biaxially-stretched nylon film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013137153A1 true WO2013137153A1 (en) | 2013-09-19 |
Family
ID=49161062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056526 WO2013137153A1 (en) | 2012-03-16 | 2013-03-08 | Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013193271A (en) |
TW (1) | TW201347957A (en) |
WO (1) | WO2013137153A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108602596B (en) | 2016-01-29 | 2021-02-05 | 大日本印刷株式会社 | Packaging material and battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5656827A (en) * | 1979-10-17 | 1981-05-19 | Toray Ind Inc | Polyamide film |
JPH07268209A (en) * | 1994-03-30 | 1995-10-17 | Mitsubishi Chem Corp | Polyamide resin composition for forming film and biaxially oriented polyamide film made therefrom |
JP2008045016A (en) * | 2006-08-14 | 2008-02-28 | Idemitsu Unitech Co Ltd | Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film |
JP2009280714A (en) * | 2008-05-23 | 2009-12-03 | Kohjin Co Ltd | Method for producing gas-barrier film |
-
2012
- 2012-03-16 JP JP2012060794A patent/JP2013193271A/en active Pending
-
2013
- 2013-03-08 WO PCT/JP2013/056526 patent/WO2013137153A1/en active Application Filing
- 2013-03-15 TW TW102109371A patent/TW201347957A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5656827A (en) * | 1979-10-17 | 1981-05-19 | Toray Ind Inc | Polyamide film |
JPH07268209A (en) * | 1994-03-30 | 1995-10-17 | Mitsubishi Chem Corp | Polyamide resin composition for forming film and biaxially oriented polyamide film made therefrom |
JP2008045016A (en) * | 2006-08-14 | 2008-02-28 | Idemitsu Unitech Co Ltd | Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film |
JP2009280714A (en) * | 2008-05-23 | 2009-12-03 | Kohjin Co Ltd | Method for producing gas-barrier film |
Also Published As
Publication number | Publication date |
---|---|
JP2013193271A (en) | 2013-09-30 |
TW201347957A (en) | 2013-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6218582B2 (en) | Method for producing stretched nylon film, method for producing multilayer film, method for producing packaging material, and method for producing battery | |
JP2015107583A (en) | Multilayer film, package material, and battery | |
JP5226941B2 (en) | Biaxially stretched nylon film for cold forming, laminate packaging material, and method for producing biaxially stretched nylon film for cold forming | |
JP6032780B2 (en) | Biaxially stretched polybutylene terephthalate film | |
JP2015107581A (en) | Multilayer film, multilayer film package material, draw-molded article, and battery | |
WO2013089081A1 (en) | Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material | |
WO2014103785A1 (en) | Biaxially stretched nylon film, laminate film, laminate packaging material, and method for producing biaxially stretched nylon film | |
JP2015107585A (en) | Multilayer film, multilayer film package material, draw molded article, and battery | |
WO2013141135A1 (en) | Biaxially stretched nylon film, laminated film, laminated packing material, and method of manufacturing a biaxially stretched nylon film | |
WO2013137395A1 (en) | Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film | |
JP2014054797A (en) | Biaxially oriented nylon film, laminate film, laminate packaging material, and production method of biaxially oriented nylon film | |
JP2015051527A (en) | Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film | |
JP2015051525A (en) | Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film | |
WO2013137153A1 (en) | Biaxially-stretched nylon film, laminate film, laminate packaging material, and manufacturing method for biaxially-stretched nylon film | |
WO2014141963A1 (en) | Biaxially stretched nylon coating film, laminate packaging material, and molded body | |
WO2014141966A1 (en) | Biaxially stretched nylon coating film, laminate packaging material, and molded body | |
JP2015107582A (en) | Multilayer film, multilayer film package material, draw-molded article, and pharmaceutical packaging material | |
JP2015051528A (en) | Biaxially stretched nylon film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film | |
WO2014021425A1 (en) | Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film | |
JP2015107584A (en) | Multilayer film, multilayer film package material, and draw-molded article | |
JP2014037076A (en) | Biaxially stretched nylon film, laminated film, laminated packaging material and forming method of biaxially stretched nylon film | |
JP2014046473A (en) | Biaxially-oriented nylon film, laminate film, laminate packaging material, and method for producing biaxially-oriented nylon film | |
WO2013146455A1 (en) | Biaxially stretched nylon film, laminate film, laminate packing material, and method for manufacturing biaxially stretched nylon film | |
JP2015051529A (en) | Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film | |
JP2015051526A (en) | Biaxially stretched nylon coating film, laminated film, laminated packaging material, battery, and method for producing biaxially stretched nylon film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13760985 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13760985 Country of ref document: EP Kind code of ref document: A1 |