JP2008045015A - Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film - Google Patents

Biaxially oriented nylon film, laminated packaging material and method for producing biaxially oriented nylon film Download PDF

Info

Publication number
JP2008045015A
JP2008045015A JP2006221052A JP2006221052A JP2008045015A JP 2008045015 A JP2008045015 A JP 2008045015A JP 2006221052 A JP2006221052 A JP 2006221052A JP 2006221052 A JP2006221052 A JP 2006221052A JP 2008045015 A JP2008045015 A JP 2008045015A
Authority
JP
Japan
Prior art keywords
film
mxd6
nylon film
biaxially stretched
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006221052A
Other languages
Japanese (ja)
Other versions
JP4970872B2 (en
Inventor
Masao Takashige
真男 高重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Unitech Co Ltd
Original Assignee
Idemitsu Unitech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006221052A priority Critical patent/JP4970872B2/en
Application filed by Idemitsu Unitech Co Ltd filed Critical Idemitsu Unitech Co Ltd
Priority to PCT/JP2007/065700 priority patent/WO2008020569A1/en
Priority to KR1020137008206A priority patent/KR101295427B1/en
Priority to CN2007800299308A priority patent/CN101528441B/en
Priority to KR1020097002778A priority patent/KR101288668B1/en
Priority to EP12154809.3A priority patent/EP2455209B1/en
Priority to KR1020137008207A priority patent/KR101292901B1/en
Priority to EP07792345A priority patent/EP2058106B1/en
Priority to US12/377,421 priority patent/US8518321B2/en
Priority to TW101150665A priority patent/TWI508845B/en
Priority to TW096129876A priority patent/TWI393624B/en
Priority to TW101150664A priority patent/TWI508844B/en
Publication of JP2008045015A publication Critical patent/JP2008045015A/en
Priority to US13/339,031 priority patent/US8445626B2/en
Application granted granted Critical
Publication of JP4970872B2 publication Critical patent/JP4970872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially oriented nylon film which is excellent in formability, strength and pin hole resistance as a main substrate for cold forming packaging materials and the like, to provide a laminated packaging material containing the same, and to provide a method for producing the biaxially oriented nylon film. <P>SOLUTION: This biaxially oriented nylon film comprises a virgin raw material comprising Ny6 and MXD6 and a heat history product produced by melt-kneading Ny6 with MXD6 and having a MXD6 melting point of 233 to 238°C as raw materials and is characterized in that the hot water shrinkage rate of the film is 3 to 20%; the breaking elongations of the film in four directions (MD direction, TD direction, 45°direction, 135°) in a tensile test is ≥70%; and a stress ratio A (σ<SB>1</SB>/σ<SB>2</SB>) of a tensile stressσ<SB>1</SB>at an elongation of 50% to a tensile stressσ<SB>2</SB>at yield point in a stress-strain curve in the tensile test of the film is ≥2 in each of the above-mentioned four directions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二軸延伸ナイロンフィルム、ラミネート包材及び二軸延伸ナイロンフィルムの製造方法に関する。   The present invention relates to a biaxially stretched nylon film, a laminate packaging material, and a method for producing a biaxially stretched nylon film.

二軸延伸ナイロンフィルム(以後、ONyフィルムとも言う)は、強度や耐衝撃性、耐ピンホール性等に優れるため、重量物包装や水物包装など大きな強度負荷が掛かる用途に多く用いられている。   Biaxially stretched nylon films (hereinafter also referred to as ONy films) are excellent in strength, impact resistance, pinhole resistance, etc., and are therefore often used in applications where heavy strength loads such as heavy weight packaging and water packaging are applied. .

ここで、従来、深絞り成形や張り出し成形等の成形用の包材に、ナイロンを使用する技術が知られている(例えば、特許文献1,2参照)。
具体的に、特許文献1には、ポリスチレン系樹脂を含有する基材層と、この基材層の両面又は一方の片面に1又は2層以上積層されている機能層とを有する冷間成形用樹脂シートが示されている。そして、上記機能層として、ナイロン樹脂を含有する耐磨耗層を、冷間成形用樹脂シートの表層に設ける構成が示されている。
このような冷間成形用樹脂シートによれば、耐衝撃性に優れかつ保形性を有する冷間成形加工品を得ることが可能となる。そして、ナイロン樹脂を含有する耐磨耗層を表層に設けることで、冷間成形時にシートの表層が損傷することを防止可能としている。
なお、特許文献1にも記載されているように、冷間成形は、熱間成形に比して、加熱装置を不要とし装置の小型化が図れると共に、高速連続成形が可能である点で優れている。
Here, conventionally, a technique of using nylon as a packaging material for molding such as deep drawing molding or stretch molding is known (see, for example, Patent Documents 1 and 2).
Specifically, Patent Document 1 discloses a material for cold forming having a base material layer containing a polystyrene-based resin and one or more functional layers laminated on one or both surfaces of the base material layer. A resin sheet is shown. And the structure which provides the abrasion-resistant layer containing a nylon resin in the surface layer of the resin sheet for cold forming as the said functional layer is shown.
According to such a cold-molding resin sheet, it is possible to obtain a cold-molded product having excellent impact resistance and shape retention. And by providing a wear-resistant layer containing a nylon resin on the surface layer, it is possible to prevent the surface layer of the sheet from being damaged during cold forming.
In addition, as described in Patent Document 1, cold forming is superior to hot forming in that a heating device is not required, the size of the device can be reduced, and high-speed continuous forming is possible. ing.

一方、特許文献2には、シール層がポリプロピレン樹脂層、中間層が酸素バリアー樹脂層、ナイロン樹脂層及びポリエチレン樹脂層を含み、最外層が吸湿性のある素材からなるシートをラミネートしてなる深絞り成形用複合シートが示されている。
このような深絞り成形用複合シートによれば、中間層にナイロン樹脂層を設けることで、複合シートに機械的強度を付与できる。これにより、150℃程度での深絞り成形時にピンホールが発生することを防止可能としている。
On the other hand, in Patent Document 2, a seal layer is a polypropylene resin layer, an intermediate layer is an oxygen barrier resin layer, a nylon resin layer, and a polyethylene resin layer, and the outermost layer is formed by laminating a sheet made of a hygroscopic material. A drawing sheet composite sheet is shown.
According to such a deep drawing composite sheet, a mechanical strength can be imparted to the composite sheet by providing the intermediate layer with a nylon resin layer. This makes it possible to prevent the occurrence of pinholes during deep drawing at about 150 ° C.

特開2004−74795号公報JP 2004-74795 A 特開2004−98600号公報JP 2004-98600 A

しかしながら、上記特許文献1には、冷間成形用樹脂シートの表層に設けるナイロン樹脂層についての具体的記載がないため、使用するナイロン樹脂層によっては、冷間成形において良好な成形性や強度、耐ピンホール性を示さない場合もある。この場合、シャープな形状の成形品が得られず、また、冷間成形の際にシートにピンホールが発生してしまうおそれがある。   However, in Patent Document 1, since there is no specific description about the nylon resin layer provided on the surface layer of the cold-molding resin sheet, depending on the nylon resin layer used, good moldability and strength in cold molding, It may not show pinhole resistance. In this case, a molded product having a sharp shape cannot be obtained, and pinholes may occur in the sheet during cold forming.

また、特許文献2では、ナイロン樹脂層の使用原料について具体的記載はあるものの、ナイロン樹脂層の伸び率等の機械的特性については具体的記載がない。さらに、150℃程度の深絞り成形については言及されているものの、冷間での成形については言及されていない。このため、上記特許文献1と同様、冷間成形により良好な成形品が得られないおそれがある。   Further, in Patent Document 2, although there is a specific description of the raw material used for the nylon resin layer, there is no specific description of mechanical properties such as elongation of the nylon resin layer. Furthermore, although deep drawing at about 150 ° C. is mentioned, it is not mentioned about cold forming. For this reason, like the above-mentioned patent document 1, there is a possibility that a good molded product cannot be obtained by cold forming.

そこで、本発明の目的は、冷間成形用包材等の主要基材として、成形性、強度および耐ピンホール性に優れた二軸延伸ナイロンフィルム、これを含むラミネート包材、及び該二軸延伸ナイロンフィルムの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a biaxially stretched nylon film excellent in formability, strength and pinhole resistance, a laminate packaging material including the biaxially stretched nylon film as a main base material such as a cold molding packaging material, and the biaxial It is providing the manufacturing method of a stretched nylon film.

本発明の要旨とするところは、以下の通りである。
(1) ナイロン6(以後、Ny6ともいう)及びメタキシリレンアジパミド(以後、MXD6ともいう)からなるバージン原料と、Ny6及びMXD6を溶融混練してMXD6の融点を233〜238℃とした熱履歴品とを原料として含む二軸延伸ナイロンフィルムであって、当該フィルムを95℃の熱水中で30分間保持した場合における、当該フィルムのMD方向およびTD方向の熱水収縮率が3〜20%であり、当該フィルムの引張試験(試料幅15mm、標点間距離50mm、引張速度100mm/min)における4方向(MD方向、TD方向、45°方向、135°方向)の破断までの伸び率が70%以上であり、かつ、当該フィルムの前記引張試験における応力−ひずみ曲線において、伸び率が50%となった際の引張応力σと、降伏点における引張応力σとの比である応力比A(σ/σ)が、前記4方向についていずれも2以上であることを特徴とする二軸延伸ナイロンフィルム。
(2) 上記(1)に記載の二軸延伸ナイロンフィルムにおいて、前記4方向におけるそれぞれの前記応力比Aのうち、最大となる応力比Amaxと最小となる応力比Aminとの比(Amax/Amin)が、2以下であることを特徴とする二軸延伸ナイロンフィルム。
(3) 上記(1)または(2)に記載の二軸延伸ナイロンフィルムにおいて、当該フィルムの前記引張試験における前記4方向の引張破断強度が、いずれも180MPa以上であることを特徴とする二軸延伸ナイロンフィルム。
(4) 上記(1)ないし(3)のいずれかに記載の二軸延伸ナイロンフィルムにおいて、前記バージン原料は、60〜85質量部のNy6、及び15〜40質量部のMXD6からなり、前記熱履歴品の含有量が前記原料全量基準で5〜40質量%であることを特徴とする二軸延伸ナイロンフィルム。
(5) 上記(1)ないし(4)に記載の二軸延伸ナイロンフィルムにおいて、前記熱履歴品におけるNy6とMXD6の配合割合は、Ny6:MXD6=60〜85質量部:15〜40質量部であることを特徴とする二軸延伸ナイロンフィルム。
(6) 上記(1)ないし(5)のいずれかに記載の二軸延伸ナイロンフィルムを含むことを特徴とするラミネート包材。
(7) Ny6及びMXD6からなるバージン原料と、Ny6及びMXD6を溶融混練してMXD6の融点を233〜238℃とした熱履歴品とを原料として含む二軸延伸ナイロンフィルムの製造方法であって、前記原料で構成された未延伸原反フィルムに対して、MD方向(フィルムの移動方向)およびTD方向(フィルムの幅方向)のそれぞれの延伸倍率が2.8倍以上となる条件で二軸延伸した後、160〜200℃で熱処理を行い、当該フィルムを95℃の熱水中で30分間保持した場合における、当該フィルムのMD方向およびTD方向の熱水収縮率が3〜20%であり、当該フィルムの引張試験(試料幅15mm、標点間距離50mm、引張速度100mm/min)における4方向(MD方向、TD方向、45°方向、135°方向)の破断までの伸び率が70%以上であり、かつ、当該フィルムの前記引張試験における応力−ひずみ曲線において、伸び率が50%となった際の引張応力σと、降伏点における引張応力σとの比である応力比A(σ/σ)が、前記4方向についていずれも2以上である二軸延伸ナイロンフィルムを形成することを特徴とする二軸延伸ナイロンフィルムの製造方法。
The gist of the present invention is as follows.
(1) A virgin raw material composed of nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6), Ny6 and MXD6 were melt-kneaded to set the melting point of MXD6 to 233 to 238 ° C. A biaxially stretched nylon film containing a heat history product as a raw material, and when the film is held in hot water at 95 ° C. for 30 minutes, the hot water shrinkage in the MD and TD directions of the film is 3 to 3 20%, elongation to break in 4 directions (MD direction, TD direction, 45 ° direction, 135 ° direction) in the tensile test of the film (sample width 15 mm, distance between gauge points 50 mm, tensile speed 100 mm / min) rate is 70% or more, and stress in the tensile test of the film - in strain curve, the tensile stress when the elongation became 50% sigma When biaxially oriented nylon film, which is a ratio of the tensile stress sigma 2 at the yield point stress ratio A (σ 1 / σ 2) is at both 2 above for the four directions.
(2) In the biaxially stretched nylon film described in the above (1), among the stress ratios A in the four directions, the ratio of the maximum stress ratio Amax and the minimum stress ratio Amin (A max / Amin ) is 2 or less, The biaxially-stretched nylon film characterized by the above-mentioned.
(3) The biaxially stretched nylon film according to (1) or (2) above, wherein the tensile rupture strength in the four directions in the tensile test of the film is 180 MPa or more. Stretched nylon film.
(4) In the biaxially stretched nylon film according to any one of (1) to (3), the virgin raw material is composed of 60 to 85 parts by mass of Ny6 and 15 to 40 parts by mass of MXD6, and the heat A biaxially stretched nylon film characterized in that the content of a history product is 5 to 40% by mass based on the total amount of the raw materials.
(5) In the biaxially stretched nylon film described in (1) to (4) above, the blending ratio of Ny6 and MXD6 in the heat history product is Ny6: MXD6 = 60 to 85 parts by mass: 15 to 40 parts by mass. A biaxially stretched nylon film characterized by being.
(6) A laminate packaging material comprising the biaxially stretched nylon film according to any one of (1) to (5).
(7) A method for producing a biaxially stretched nylon film comprising, as raw materials, a virgin raw material composed of Ny6 and MXD6 and a heat history product in which Ny6 and MXD6 are melt-kneaded to have a melting point of MXD6 of 233 to 238 ° C. Biaxially stretched under the condition that the stretching ratio in the MD direction (film movement direction) and TD direction (film width direction) is 2.8 times or more with respect to the unstretched raw film composed of the raw materials. Then, heat treatment is performed at 160 to 200 ° C., and when the film is held in hot water at 95 ° C. for 30 minutes, the hot water shrinkage in the MD direction and TD direction of the film is 3 to 20%, Four directions (MD direction, TD direction, 45 ° direction, 135 °) in the tensile test of the film (sample width 15 mm, distance between gauge points 50 mm, tensile speed 100 mm / min) Elongation to failure of direction) is 70% or more, and stress in the tensile test of the film - in strain curve, the tensile stress sigma 1 when the elongation rate was 50%, a tensile at yield point stress sigma 2 ratio a is stress ratio a (σ 1 / σ 2) with the production of biaxially oriented nylon film and forming a biaxially oriented nylon film is either 2 or more for the four directions Method.

本発明のONyフィルムによれば、当該ONyフィルムの引張試験における4方向の破断までの伸び率を70%以上とし、かつ、当該ONyフィルムの応力−ひずみ曲線における応力比Aを各方向についていずれも2以上としているので、優れた成形性、強度および耐ピンホール性を有し、特に冷間成形の際にこれらの特性を発揮できる。また、当該ONyフィルムは、95℃の熱水中で30分間保持した場合における当該フィルムの熱水収縮率が3〜20%であるため、成形時に良好な伸び特性を示す。そして、このようなONyフィルムを含んで構成されたラミネート包材によれば、冷間における深絞り成形等の際に、当該ONyフィルムにピンホールが発生することなく、シャープな形状の成形品を製造することができる。また、当該包材は、ONyフィルム中にMXD6が含まれているので、優れた耐熱性を示す。このため、当該包材をONyフィルム層とシーラント層とを積層して構成し、当該包材をシールバーにより加熱してシール処理した場合、包材がシールバーに付着することなく、良好なシール処理が実現できる。さらに、当該包材によれば、ONyフィルム中に熱履歴品が含まれているので、ONyフィルムにおける層内剥離を防止でき、耐衝撃性に優れた成形品を得ることができる。   According to the ONy film of the present invention, the elongation ratio until breaking in four directions in the tensile test of the ONy film is 70% or more, and the stress ratio A in the stress-strain curve of the ONy film is in each direction. Since it is 2 or more, it has excellent moldability, strength and pinhole resistance, and can exhibit these characteristics particularly during cold forming. Moreover, since the hot water shrinkage rate of the ONy film when held in hot water at 95 ° C. for 30 minutes is 3 to 20%, it exhibits good elongation characteristics during molding. And, according to the laminate wrapping material configured to include such an ONy film, a sharp shaped molded product can be obtained without generating a pinhole in the ONy film during cold drawing or the like. Can be manufactured. Moreover, since MXD6 is contained in the ONy film, the packaging material exhibits excellent heat resistance. For this reason, when the packaging material is formed by laminating an ONy film layer and a sealant layer, and the packaging material is heated and sealed with a seal bar, the packaging material does not adhere to the seal bar, and a good seal is obtained. Processing can be realized. Furthermore, according to the packaging material, since the heat history product is contained in the ONy film, it is possible to prevent delamination within the ONy film and obtain a molded product having excellent impact resistance.

本発明において、冷間成形とは、樹脂のガラス転移点(Tg)未満の温度雰囲気下で行う成形をいう。かかる冷間成形はアルミニウム箔等の成形に用いられる冷間成形機を用いて、シート材料を雌金型に対して雄金型で押し込み、高速でプレスすることが好ましく、かかる冷間成形によると、加熱することなく型付け、曲げ、剪断、絞り等の塑性変形を生じさせることができる。   In the present invention, cold forming refers to forming performed in a temperature atmosphere less than the glass transition point (Tg) of the resin. Such cold forming is preferably performed by using a cold forming machine used for forming aluminum foil or the like and pressing the sheet material with a male die against a female die and pressing at a high speed. Plastic deformation such as molding, bending, shearing and drawing can be generated without heating.

以下に、本発明を実施するための最良の形態について詳述する。
〔二軸延伸ナイロンフィルムの構成〕
本実施形態に係る二軸延伸ナイロンフィルム(ONyフィルム)は、Ny6およびMXD6からなるバージン原料と、Ny6及びMXD6を溶融混練してなる熱履歴品とを原料として含む未延伸原反フィルムを二軸延伸し、所定の温度で熱処理して形成したものである。このように未延伸原反フィルムを二軸延伸することで、耐衝撃性に優れたONyフィルムが得られる。
ここで、前記Ny6の化学式を下記の化1に示し、またMXD6の化学式を下記の化2に示す。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
[Configuration of biaxially stretched nylon film]
The biaxially stretched nylon film (ONy film) according to the present embodiment is a biaxial unstretched raw film containing a virgin raw material composed of Ny6 and MXD6 and a heat history product formed by melting and kneading Ny6 and MXD6 as raw materials. It is formed by stretching and heat treatment at a predetermined temperature. Thus, an ONy film excellent in impact resistance can be obtained by biaxially stretching an unstretched raw film.
Here, the chemical formula of Ny6 is shown in the following chemical formula 1, and the chemical formula of MXD6 is shown in the chemical formula 2 below.

Figure 2008045015
Figure 2008045015

Figure 2008045015
Figure 2008045015

上述のバージン原料とは、通常は、Ny6とMXD6とが互いに混合され溶融混練された履歴を持つ混合原料ではない状態の原料を意味する。例えば、Ny6やMXD6が各々単独で溶融混練された履歴があっても(例えばリサイクル品)、これらが混合され溶融混練されていない場合は、バージン原料である。
バージン原料におけるNy6とMXD6の配合割合は、ONyフィルムの衝撃強度および耐熱性の観点から、Ny6が60〜85質量部、MXD6が15〜40質量部であることが好ましい。なお、バージン原料におけるMXD6が15質量部より少ない場合には、耐熱効果が減り、当該ONyフィルムを適当なシーラントフィルムとラミネートしてラミネート包材を構成し、これをシール処理した際、ラミネート包材がシールバーに付着するおそれがある。また、MXD6が40質量部より多い場合には、衝撃強度が大幅に低下して実用性に乏しくなる。
The above-mentioned virgin raw material usually means a raw material that is not a mixed raw material having a history in which Ny6 and MXD6 are mixed and melt-kneaded. For example, even if Ny6 and MXD6 have a history of being melt-kneaded independently (for example, recycled products), they are virgin raw materials when they are not mixed and melt-kneaded.
The blending ratio of Ny6 and MXD6 in the virgin raw material is preferably 60 to 85 parts by mass of Ny6 and 15 to 40 parts by mass of MXD6 from the viewpoint of impact strength and heat resistance of the ONy film. In addition, when MXD6 in the virgin raw material is less than 15 parts by mass, the heat-resistant effect is reduced, and the ONy film is laminated with an appropriate sealant film to form a laminate packaging material. May adhere to the seal bar. Moreover, when there is more MXD6 than 40 mass parts, impact strength will fall significantly and it will become scarce practicality.

上述の熱履歴品とは、Ny6とMXD6の配合品で、一度押出機を通過したものをいい、本発明については、示査走査熱量計(DSC)でMXD6の融点が233〜238℃、好ましくは235〜237℃の範囲に保持されたものを用いる。なお、この熱履歴品は、本実施形態により得られたONyフィルムをリサイクルしたものでもよい。このような熱履歴品は、Ny6とMXD6の双方に親和性のある相溶化剤として機能するので、かかる熱履歴品をONyフィルムに加えることで層内剥離の発生を防止できる。
ここで、層内剥離とは、ONyフィルムを適当なシーラントフィルムとラミネートした後に冷間成形のような過酷な条件で使用すると、ONyフィルム内で剥離を引き起こす現象をいう。この層内剥離の機構は必ずしも明確ではないが、ONyフィルム内では、Ny6とMXD6が層状に配向しており、その界面で剥離が起こるものと考えられる。
また、熱履歴品におけるMXD6の融点とは、バージン原料と溶融混練される前の状態で測定された融点をいう。熱履歴品におけるMXD6の融点が233℃未満になると、ONyフィルムの衝撃強度が低下する。また、熱履歴品におけるMXD6の融点が238℃以上になると、層内剥離を防止する効果が低くなる。
The above-mentioned heat history product is a blended product of Ny6 and MXD6, which has passed through the extruder once. For the present invention, the melting point of MXD6 is 233 to 238 ° C., preferably with a scanning scanning calorimeter (DSC). Use what was hold | maintained in the range of 235-237 degreeC. The heat history product may be a recycled ONy film obtained according to the present embodiment. Since such a heat history product functions as a compatibilizing agent having affinity for both Ny6 and MXD6, the occurrence of in-layer peeling can be prevented by adding such a heat history product to the ONy film.
Here, delamination refers to a phenomenon that causes delamination within the ONy film when it is used under severe conditions such as cold forming after laminating the ONy film with an appropriate sealant film. The mechanism of this delamination is not necessarily clear, but it is considered that Ny6 and MXD6 are oriented in layers in the ONy film, and delamination occurs at the interface.
Moreover, the melting point of MXD6 in the heat history product refers to a melting point measured in a state before being melt kneaded with the virgin raw material. When the melting point of MXD6 in the heat history product is less than 233 ° C., the impact strength of the ONy film is lowered. In addition, when the melting point of MXD6 in the heat history product is 238 ° C. or higher, the effect of preventing in-layer peeling is reduced.

熱履歴品の含有量は、原料全量基準で5〜40質量%であることが好ましい。熱履歴品が5質量%未満では、ONyフィルムをラミネートフィルムとした後に冷間成形のような過酷な条件下で使用すると、層内剥離を起こしやすくなる。また、熱履歴品が40質量%を超えると、ONyフィルムの衝撃強度が低下する。
熱履歴品におけるNy6とMXD6の配合割合は、衝撃強度及び層内剥離防止効果の観点から、Ny6:MXD6=60〜85質量部:15〜40質量部であることが好ましい。なお、熱履歴品におけるMXD6の配合割合が15質量部未満(Ny6の配合割合が85質量部より多い)である場合、ONyフィルムの層内剥離防止効果が低くなる。熱履歴品におけるMXD6の配合割合が40質量部を越える(Ny6の配合割合が60質量部未満)場合、ONyフィルムの衝撃強度が低下する。
The content of the heat history product is preferably 5 to 40% by mass based on the total amount of raw materials. When the heat history product is less than 5% by mass, the use of an ONy film as a laminate film under severe conditions such as cold forming tends to cause delamination within the layer. Moreover, when a heat history product exceeds 40 mass%, the impact strength of an ONy film will fall.
The blending ratio of Ny6 and MXD6 in the heat history product is preferably Ny6: MXD6 = 60 to 85 parts by mass: 15 to 40 parts by mass from the viewpoint of impact strength and the effect of preventing in-layer peeling. In addition, when the blending ratio of MXD6 in the heat history product is less than 15 parts by mass (the blending ratio of Ny6 is more than 85 parts by mass), the effect of preventing the on-layer peeling of the ONy film is lowered. When the mixing ratio of MXD6 in the heat history product exceeds 40 parts by mass (the mixing ratio of Ny6 is less than 60 parts by mass), the impact strength of the ONy film decreases.

また、本実施形態に係るONyフィルムは、当該フィルムを95℃の熱水中で30分間保持した場合における、当該フィルムのMD方向およびTD方向の熱水収縮率が3〜20%、好ましくは6〜20%である必要がある。このようにすることで、通常のONyフィルムに比べて成形時の伸び特性に優れたONyフィルムを得ることができ、例えば冷間成形時におけるONyフィルムの破断やピンホールの発生を防止できる。当該フィルムの熱水収縮率が3%未満である場合、通常のONyフィルムに比べて成形時の伸び特性に大差がない。一方、当該フィルムの熱水収縮率が20%を超える場合、ONyフィルムと他のフィルム層とを積層してラミネート包材を構成した場合に、ONyフィルムと他のフィルム層との間で剥離現象(デラミ)が生じるおそれがある。   The ONy film according to the present embodiment has a hot water shrinkage of 3 to 20%, preferably 6 in the MD direction and the TD direction when the film is held in hot water at 95 ° C. for 30 minutes. Must be ~ 20%. By doing in this way, the ONy film excellent in the elongation characteristic at the time of shaping | molding compared with a normal ONy film can be obtained, for example, the fracture | rupture of an ONy film at the time of cold forming and generation | occurrence | production of a pinhole can be prevented. When the hot water shrinkage rate of the film is less than 3%, there is no great difference in elongation characteristics at the time of molding as compared with a normal ONy film. On the other hand, when the hot water shrinkage rate of the film exceeds 20%, a laminate phenomenon is formed between the ONy film and another film layer when the ONy film and another film layer are laminated to form a laminate packaging material. (Delami) may occur.

本実施形態において、ONyフィルムの4方向(MD方向、TD方向、45°方向、135°方向)における引張破断までの伸び率、応力比A、および引張破断応力は、当該ONyフィルムについて引張試験(試料幅15mm、標点間距離50mm、引張速度100mm/min)を実施し、これにより得られた応力−ひずみ曲線に基づいて求める。
ここで、上記引張試験により得られる応力−ひずみ曲線としては、例えば図1に示すものが挙げられる。
図1において、縦軸はONyフィルムの引張応力σ(MPa)を示し、横軸はONyフィルムのひずみε(ε=Δl/l、l:フィルムの初期長さ、Δl:フィルムの増加長)を示す。ONyフィルムの引張試験を実施すると、ひずみεの増加に伴い、引張応力σが略一次関数的に増加し、所定のひずみεにおいて引張応力σの増加傾向が大きく変化する。本発明ではこの点(ε、σ)を降伏点として定義している。そして、ひずみεが更に増加すると、これに伴い引張応力σも増加し、所定のひずみεに至ると、フィルムが破断する。このような応力−ひずみ曲線を、1つのONyフィルムにつき4方向(MD方向、TD方向、45°方向、135°方向)取得する。
In this embodiment, the elongation rate until the tensile rupture in four directions (MD direction, TD direction, 45 ° direction, 135 ° direction), the stress ratio A, and the tensile rupture stress of the ONy film are the tensile test ( The sample width is 15 mm, the distance between the gauge points is 50 mm, and the tensile speed is 100 mm / min), and is obtained based on the stress-strain curve obtained thereby.
Here, examples of the stress-strain curve obtained by the tensile test include those shown in FIG.
In FIG. 1, the vertical axis represents the tensile stress σ (MPa) of the ONy film, and the horizontal axis represents the strain ε (ε = Δl / l, l: initial length of the film, Δl: increased length of the film) of the ONy film. Show. When the tensile test of the ONy film is performed, the tensile stress σ increases in a substantially linear function as the strain ε increases, and the increasing tendency of the tensile stress σ greatly changes at a predetermined strain ε 1 . In the present invention, this point (ε 1 , σ 2 ) is defined as the yield point. When the strain ε further increases, the tensile stress σ also increases with this, and when the strain ε 2 is reached, the film breaks. Such stress-strain curves are acquired in four directions (MD direction, TD direction, 45 ° direction, and 135 ° direction) for each ONy film.

本実施形態に係るONyフィルムでは、上記引張試験における4方向(MD方向、TD方向、45°方向、135°方向)の破断までの伸び率が、70%以上である必要がある。つまり、図1の応力−ひずみ曲線のように、フィルム破断時のひずみεが0.7以上であることが必要である。これにより、ONyフィルムがバランス良く伸びるようになり、ラミネート材としたときの絞り成形性が良くなる。なお、上記4方向のうちいずれか一方の伸び率が70%未満である場合は、冷間での深絞り成形等の際にフィルムが破断し易くなり、良好な成形性が得られない。
この際、これらの4方向の伸び率のうち最大伸び率を最小伸び率で除算した値が2.0以下であればより好ましい。これにより、ONyフィルムがさらにバランス良く伸びるようになる。
また、ONyフィルムの4方向の伸び率が75%以上で、かつ、これら4方向の伸び率のうち最大伸び率を最小伸び率で除算した値が2.0以下であれば、より一層優れた成形性が得られるため望ましい。
In the ONy film according to the present embodiment, the elongation rate until breakage in four directions (MD direction, TD direction, 45 ° direction, 135 ° direction) in the tensile test needs to be 70% or more. That is, as in the stress-strain curve of FIG. 1, the strain ε 2 at the time of film breakage needs to be 0.7 or more. As a result, the ONy film can be stretched in a well-balanced manner, and the drawability when the laminate material is obtained is improved. In addition, when the elongation percentage of any one of the four directions is less than 70%, the film is likely to be broken at the time of cold deep drawing or the like, and good moldability cannot be obtained.
At this time, it is more preferable that the value obtained by dividing the maximum elongation by the minimum elongation among the elongations in these four directions is 2.0 or less. As a result, the ONy film is stretched with a better balance.
Further, if the elongation rate in the four directions of the ONy film is 75% or more and the value obtained by dividing the maximum elongation rate by the minimum elongation rate among the elongation rates in these four directions is 2.0 or less, it is even better. It is desirable because moldability is obtained.

本実施形態に係るONyフィルムでは、例えば図1に示す応力−ひずみ曲線において、伸び率が50%(ひずみε=0.5)となった際の引張応力σと、降伏点における引張応力σとの比である応力比A(σ/σ)が、前記4方向についていずれも2以上、より好ましくは2.2以上である必要がある。これにより、冷間での深絞り成形等におけるピンホールの発生を確実に防止でき、シャープな形状の成形品を製造できる。なお、いずれか一方向での応力比Aが2未満であれば、偏肉が悪く局所的に薄くなり、フィルムが破断する場合がある。
この際、これら4方向におけるそれぞれの応力比Aのうち、最大となる応力比Amaxと最小となる応力比Aminとの比(Amax/Amin)が、2.0以下より好ましくは1.8以下であることが望ましい。これにより、冷間成形時にフィルムがバランス良く伸び、均一な厚みの成形品を製造できる。なお、Amax/Aminが2.0を超えると偏肉が悪く局所的に薄くなり、フィルムが破断する場合がある。
In the ONy film according to this embodiment, for example, in the stress-strain curve shown in FIG. 1, the tensile stress σ 1 when the elongation is 50% (strain ε = 0.5) and the tensile stress σ at the yield point. The stress ratio A (σ 1 / σ 2 ), which is a ratio to 2, needs to be 2 or more, more preferably 2.2 or more in any of the four directions. As a result, pinholes can be reliably prevented from occurring during cold deep drawing or the like, and a sharp shaped molded product can be manufactured. In addition, if the stress ratio A in any one direction is less than 2, uneven thickness is poor and locally thins, and the film may break.
At this time, the ratio (A max / A min ) between the maximum stress ratio A max and the minimum stress ratio A min among the respective stress ratios A in these four directions is preferably 2.0 or less, more preferably 1 .8 or less is desirable. Thereby, a film is extended with sufficient balance at the time of cold forming, and a molded product having a uniform thickness can be manufactured. In addition, when Amax / Amin exceeds 2.0, uneven thickness will be bad and it will become thin locally and a film may fracture | rupture.

さらに、本実施形態に係るONyフィルムは、例えば図1に示す応力−ひずみ曲線において、4方向における引張破断強度(σ)が、それぞれ180MPa以上であることが好ましい。これにより、十分な加工強度を得ることができ、冷間での深絞り成形等の際にONyフィルムがより破断し難くなる。この際、4方向での引張破断強度のうち最大強度を最小強度で除算した値が2.0以下であれば、バランスに優れた加工強度を得ることができるため好ましい。
さらに、ONyフィルムの4方向における引張破断強度が200MPa以上であり、かつ、4方向での引張破断強度のうち最大強度を最小強度で除算した値が1.8以下であれば、よりバランスに優れた加工強度を得ることができるため好ましい。
Furthermore, the ONy film according to the present embodiment preferably has a tensile breaking strength (σ 3 ) in four directions of 180 MPa or more, for example, in the stress-strain curve shown in FIG. Thereby, sufficient processing strength can be obtained, and the ONy film is more difficult to break during cold drawing or the like. At this time, if the value obtained by dividing the maximum strength by the minimum strength among the tensile rupture strengths in the four directions is 2.0 or less, it is preferable because a processing strength excellent in balance can be obtained.
Further, if the tensile breaking strength in four directions of the ONy film is 200 MPa or more and the value obtained by dividing the maximum strength by the minimum strength among the tensile breaking strengths in the four directions is 1.8 or less, the balance is more excellent. It is preferable because a high processing strength can be obtained.

〔ONyフィルムの製造方法〕
以上のようなONyフィルムは、上述したNy6及びMXD6からなるバージン原料と熱履歴品とを所定の混合比で含んだ原料からなる未延伸原反フィルムに対して、MD方向およびTD方向のそれぞれの延伸倍率が2.8倍以上となる条件で二軸延伸した後、160〜200℃で熱処理することで得られる。
二軸延伸方法としては、例えばチューブラー方式やテンター方式による同時二軸延伸あるいは逐次二軸延伸を採用できるが、縦横の強度バランスの点で、チューブラー法による同時二軸延伸により行うことが好ましい。
バージン原料を構成するNy6とMXD6は、いずれもペレット状のものをドライブレンドして使用することが好ましい。また、熱履歴品にもペレット状のものを使用することが好ましい。例えば、本実施形態により得られた二軸延伸ナイロンフィルムを細かく切断・圧縮してペレット状としてもよい。これにより、熱履歴品を、Ny6のペレット及びMXD6のペレットと好適にドライブレンドすることができる。
[ONy film manufacturing method]
The ONy film as described above is in the MD direction and the TD direction with respect to the unstretched raw film made of the raw material containing the virgin raw material made of Ny6 and MXD6 and the heat history product at a predetermined mixing ratio. It can be obtained by biaxial stretching under conditions where the stretching ratio is 2.8 times or more and then heat-treating at 160 to 200 ° C.
As the biaxial stretching method, for example, simultaneous biaxial stretching by the tubular method or tenter method or sequential biaxial stretching can be adopted, but it is preferable to carry out by simultaneous biaxial stretching by the tubular method from the viewpoint of the longitudinal and lateral strength balance. .
Ny6 and MXD6 constituting the virgin raw material are preferably used by dry blending pellets. Moreover, it is preferable to use a pellet in the heat history product. For example, the biaxially stretched nylon film obtained by this embodiment may be finely cut and compressed into pellets. Thus, the heat history product can be suitably dry blended with the Ny6 pellets and the MXD6 pellets.

具体的には、本実施形態のONyフィルムは、次のようにして製造できる。
まず、Ny6ペレット、MXD6ペレットおよびペレット状熱履歴品を押出機中、270℃で溶融混練した後、溶融物をダイスから円筒状のフィルムとして押出し、引き続き水で急冷して原反フィルムを作製する。
次に、例えば図2に示すように、この原反フィルム11を一対のニップロール12間に挿通した後、中に気体を圧入しながらヒータ13で加熱すると共に、延伸開始点にエアーリング14よりエアー15を吹き付けてバブル16に膨張させ、下流側の一対のニップロール17で引き取ることにより、チューブラー法によるMD方向及びTD方向の同時二軸延伸を行った。この際、MD方向およびTD方向のそれぞれの延伸倍率が2.8倍以上である必要がある。延伸倍率が2.8倍未満である場合、衝撃強度が低下して実用性に問題が生ずる。
この後、この延伸フィルムをテンター式熱処理炉(図示せず)に入れ、160〜200℃で熱固定を施すことにより、本実施形態のONyフィルム18を得ることができる。
Specifically, the ONy film of this embodiment can be manufactured as follows.
First, after Ny6 pellets, MXD6 pellets and pellet-like heat history products are melt-kneaded at 270 ° C. in an extruder, the melt is extruded from a die as a cylindrical film, and then rapidly cooled with water to produce a raw film. .
Next, for example, as shown in FIG. 2, the raw film 11 is inserted between a pair of nip rolls 12 and then heated by a heater 13 while a gas is being pressed into the film 11. 15 was blown to expand into bubbles 16 and taken up by a pair of downstream nip rolls 17 to perform simultaneous biaxial stretching in the MD direction and the TD direction by the tubular method. At this time, the respective draw ratios in the MD direction and the TD direction need to be 2.8 times or more. When the draw ratio is less than 2.8 times, the impact strength is lowered, causing a problem in practicality.
Thereafter, this stretched film is put in a tenter type heat treatment furnace (not shown) and heat-set at 160 to 200 ° C., whereby the ONy film 18 of the present embodiment can be obtained.

〔ラミネート包材の構成〕
本実施形態のラミネート包材は、上記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上の他のラミネート基材を積層して構成されている。具体的に、他のラミネート基材としては、例えばアルミニウム層やアルミニウム層を含むフィルム、シーラント層等が挙げられる。
一般に、アルミニウム層を含むラミネート包材は、冷間成形の際にアルミニウム層においてネッキングによる破断が生じ易いため冷間成形に適していない。この点、本実施形態のラミネート包材によれば、上記したONyフィルムが優れた成形性、耐衝撃性および耐ピンホール性を有するため、冷間での張出し成形や深絞り成形等の際に、アルミニウム層の破断を抑制でき、包材におけるピンホールの発生を抑制できる。したがって、包材総厚が薄い場合でも、シャープな形状かつ高強度の成形品が得られる。
また、当該包材は、ONyフィルム層中にMXD6が含まれているので、優れた耐熱性を示す。このため、当該包材がシーラント層を備えている場合、当該包材をシールバーにより加熱してシール処理した際に当該包材がシールバーに付着することなく、良好なシール処理が実現できる。
さらに、当該包材によれば、ONyフィルム層中に熱履歴品が含まれているので、冷間成形等の際にONyフィルム層内で剥離現象が生じることなく、耐衝撃性に優れた成形品を得ることができる。
[Composition of laminate packaging material]
The laminate packaging material of the present embodiment is configured by laminating one or two or more other laminate base materials on at least one surface of the above-described ONy film. Specifically, examples of other laminate base materials include an aluminum layer, a film including an aluminum layer, and a sealant layer.
In general, a laminate packaging material including an aluminum layer is not suitable for cold forming because the aluminum layer easily breaks due to necking during cold forming. In this regard, according to the laminate packaging material of the present embodiment, the above-described ONy film has excellent moldability, impact resistance, and pinhole resistance. Moreover, the breakage of the aluminum layer can be suppressed, and the occurrence of pinholes in the packaging material can be suppressed. Therefore, even when the total packaging material thickness is thin, a molded product having a sharp shape and high strength can be obtained.
Moreover, since MXD6 is contained in the ONy film layer, the packaging material exhibits excellent heat resistance. For this reason, when the said packaging material is provided with the sealant layer, when the said packaging material is heated and sealed with a seal bar, the said packaging material does not adhere to a seal bar, but a favorable sealing process is realizable.
Furthermore, according to the packaging material, since the heat history product is included in the ONy film layer, molding with excellent impact resistance without causing a peeling phenomenon in the ONy film layer during cold molding or the like. Goods can be obtained.

本実施形態のラミネート包材は、ONyフィルムと他のラミネート基材との全体の厚みが200μm以下であることが好ましい。かかる全体の厚みが200μmを超える場合、冷間成形によるコーナー部の成形が困難となり、シャープな形状の成形品が得られないおそれがある。   The laminate packaging material of this embodiment preferably has an overall thickness of the ONy film and other laminate base material of 200 μm or less. When the total thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and there is a possibility that a molded product having a sharp shape cannot be obtained.

本実施形態のラミネート包材におけるONyフィルムの厚さは、5〜50μm、より好ましくは10μm〜30μmであることが望ましい。ここで、ONyフィルムの厚さが5μmよりも小さい場合は、ラミネート包材の耐衝撃性が低くなり、冷間成形性が不十分となる。一方、ONyフィルムの厚さが50μmを超える場合、ラミネート包材の耐衝撃性の更なる向上効果が得られず、包材総厚が増加するばかりで好ましくない。   The thickness of the ONy film in the laminate packaging material of this embodiment is desirably 5 to 50 μm, more preferably 10 μm to 30 μm. Here, when the thickness of the ONy film is smaller than 5 μm, the impact resistance of the laminate packaging material becomes low, and the cold formability becomes insufficient. On the other hand, when the thickness of the ONy film exceeds 50 μm, the effect of further improving the impact resistance of the laminate packaging material cannot be obtained, and the total thickness of the packaging material only increases, which is not preferable.

本実施形態のラミネート包材に使用するアルミニウム層としては、純アルミニウムまたはアルミニウム−鉄系合金の軟質材からなるアルミ箔を使用することができる。この場合、アルミニウム箔には、ラミネート性能を向上する観点から、シランカップリング剤やチタンカップリング剤等によるアンダーコート処理、あるいはコロナ放電処理等の前処理を施してから、ONyフィルムに積層することが好ましい。
このようなアルミニウム層の厚さは20〜100μmであることが好ましい。これにより、成形品の形状を良好に保持することが可能となり、また、酸素や水分等が包材中を透過することを防止できる。
なお、アルミニウム層の厚さが20μm未満である場合、ラミネート包材の冷間成形時にアルミニウム層の破断が生じ易く、また、破断しない場合でもピンホール等が発生し易くなる。このため、包材中を酸素や水分等が透過してしまうおそれがある。一方、アルミニウム層の厚さが100μmを超える場合、冷間成形時の破断の改善効果もピンホール発生防止効果も特に改善されるわけではなく、単に包材総厚が厚くなるだけであるため好ましくない。
As an aluminum layer used for the laminate packaging material of this embodiment, an aluminum foil made of a soft material of pure aluminum or an aluminum-iron alloy can be used. In this case, from the viewpoint of improving the laminating performance, the aluminum foil is subjected to a pretreatment such as an undercoat treatment or a corona discharge treatment with a silane coupling agent or a titanium coupling agent, and then laminated on the ONy film. Is preferred.
The thickness of such an aluminum layer is preferably 20 to 100 μm. Thereby, it becomes possible to hold | maintain the shape of a molded article favorably, and it can prevent that oxygen, a water | moisture content, etc. permeate | transmit the inside of a packaging material.
When the thickness of the aluminum layer is less than 20 μm, the aluminum layer is likely to break during cold forming of the laminate packaging material, and pinholes and the like are likely to occur even if the aluminum layer is not broken. For this reason, there exists a possibility that oxygen, a water | moisture content, etc. may permeate | transmit the inside of a packaging material. On the other hand, when the thickness of the aluminum layer exceeds 100 μm, neither the improvement effect of breaking during cold forming nor the effect of preventing pinhole generation is particularly improved, and it is preferable because the total thickness of the packaging material is merely increased. Absent.

なお、本発明を実施するための最良の構成などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
したがって、上記に開示した材質、層構成などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの材質などの限定の一部若しくは全部の限定を外した名称での記載は、本発明に含まれるものである。
Although the best configuration for carrying out the present invention has been disclosed in the above description, the present invention is not limited to this. That is, the present invention has been described primarily with reference to specific embodiments, but with respect to the above-described embodiments without departing from the scope of the technical idea and object of the present invention, the material, quantity, and other details. In this configuration, those skilled in the art can make various modifications.
Accordingly, the description of the materials, layer structures, and the like disclosed above is exemplary for easy understanding of the present invention, and does not limit the present invention. Descriptions with names excluding some or all of the limitations are included in the present invention.

例えば、本実施形態では、二軸延伸方法としてチューブラー方式を採用したが、テンター方式でもよい。さらに、延伸方法としては同時二軸延伸でも逐次二軸延伸でもよい。
また、ONyフィルムには、必要な添加剤を適宜添加することができる。このような添加剤として、例えばアンチブロッキング剤(無機フィラー等)、はっ水剤(エチレンビスステアリン酸エステル等)、滑剤(ステアリン酸カルシウム等)を挙げることができる。
さらに、上記実施形態では、ONyフィルムにアルミニウム層やシーラント層等を積層したラミネート包材を例示したが、これに限定されず、本発明のラミネート包材としては、さらに帯電防止層や印刷層、バリア層、強度補強層などの種々の機能層を積層したものも挙げられる。
For example, in this embodiment, the tubular method is adopted as the biaxial stretching method, but a tenter method may be used. Furthermore, the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
In addition, necessary additives can be appropriately added to the ONy film. Examples of such additives include anti-blocking agents (such as inorganic fillers), water repellents (such as ethylene bis stearates), and lubricants (such as calcium stearate).
Furthermore, in the said embodiment, although the laminate packaging material which laminated | stacked the aluminum layer, the sealant layer, etc. on the ONy film was illustrated, it is not limited to this, As a laminate packaging material of this invention, an antistatic layer, a printing layer, There may be mentioned a laminate in which various functional layers such as a barrier layer and a strength reinforcing layer are laminated.

次に、実施例及び比較例により本発明をさらに詳細に説明する。ただし、本発明はこれらの例によって何等限定されるものではない。
[実施例1,2]
(延伸フィルムの製造)
Ny6ペレット及びMXD6ペレットをそれぞれ70質量部及び30質量部の割合で混合したものに対して、すでに一度、この配合比で溶融混合してペレット化した熱履歴品(MXD6の融点が236℃のもの)を原料全量に対して10質量%配合した。このドライブレンド品を押出機中、270℃で溶融混練した後、溶融物をダイスから円筒状のフィルムとして押出し、引き続き水で急冷して原反フィルムを作製した。
なお、MXD6の融点は、パーキンエルマー社製示差走査熱量測定装置(DSC)を用い、昇温速度10℃/minで50℃から280℃まで昇温を行って測定した。いずれもファーストランにおける値を融点とした。
Ny6として使用したものは、宇部興産(株)製ナイロン6〔UBEナイロン 1023FD(商品名)、相対粘度 ηr=3.6〕であり、MXD6として使用したものは、三菱ガス化学(株)製メタキシリレンアジパミド〔MXナイロン 6007(商品名)、相対粘度ηr=2.7〕である。
また、Ny6とMXD6の配合割合を、それぞれ70質量部と30質量部とし、40φEX、シングルスクリュー(株式会社山口製作所製)を用い、270℃で押出したものを熱履歴品とした。
次に、図2に示すように、この原反フィルム11を一対のニップロール12間に挿通した後、中に気体を圧入しながらヒータ13で加熱すると共に、延伸開始点にエアーリング14よりエアー15を吹き付けてバブル16に膨張させ、下流側の一対のニップロール17で引き取ることにより、チューブラー法によるMD方向及びTD方向の同時二軸延伸を行った。この延伸の際の倍率は、MD方向では3.0倍、TD方向では3.2倍であった。
次に、この延伸フィルムをテンター式熱処理炉(図示せず)に入れ、200℃で熱固定を施して、本実施例1に係る、厚さ15μm、3.4%の熱水収縮率を有したONyフィルム18を得た。
実施例2に係るONyフィルム18は、以上の実施例1の製造動作のうち、熱履歴品の配合割合を原料全量に対して20質量%とし、延伸フィルムをテンター式熱処理炉により160℃で熱固定した点以外は、同様の条件で製造している。この実施例2の熱水収縮率は19%で、フィルム厚さは15μmであった。
Next, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to these examples.
[Examples 1 and 2]
(Manufacture of stretched film)
Ny6 pellets and MXD6 pellets are mixed at a ratio of 70 parts by weight and 30 parts by weight, respectively, and heat history products that have already been melt-mixed and pelletized at this blending ratio (with a melting point of MXD6 of 236 ° C) ) Was blended in an amount of 10% by mass based on the total amount of raw materials. After this dry blend product was melt-kneaded at 270 ° C. in an extruder, the melt was extruded as a cylindrical film from a die and then rapidly cooled with water to produce a raw film.
The melting point of MXD6 was measured by increasing the temperature from 50 ° C. to 280 ° C. at a temperature increase rate of 10 ° C./min using a differential scanning calorimeter (DSC) manufactured by PerkinElmer. In all cases, the value in the first run was taken as the melting point.
What was used as Ny6 is nylon 6 [UBE nylon 1023FD (trade name), relative viscosity ηr = 3.6] manufactured by Ube Industries, Ltd., and what was used as MXD6 is a product manufactured by Mitsubishi Gas Chemical Co., Ltd. Xylylene adipamide [MX nylon 6007 (trade name), relative viscosity ηr = 2.7].
Moreover, the mixture ratio of Ny6 and MXD6 was 70 parts by mass and 30 parts by mass, respectively, and 40φEX, a single screw (manufactured by Yamaguchi Seisakusho Co., Ltd.) was used and extruded at 270 ° C. to obtain a heat history product.
Next, as shown in FIG. 2, the raw film 11 is inserted between a pair of nip rolls 12 and then heated with a heater 13 while a gas is being pressed into the film 11. Was blown into the bubble 16 and taken up by a pair of downstream nip rolls 17 to perform simultaneous biaxial stretching in the MD direction and the TD direction by the tubular method. The magnification during this stretching was 3.0 times in the MD direction and 3.2 times in the TD direction.
Next, this stretched film was put into a tenter type heat treatment furnace (not shown), and heat-set at 200 ° C., and had a hot water shrinkage ratio of 15 μm, 3.4% according to Example 1. The obtained ONy film 18 was obtained.
In the ONy film 18 according to Example 2, the blending ratio of the heat history product is 20% by mass with respect to the total amount of raw materials in the manufacturing operation of Example 1 described above, and the stretched film is heated at 160 ° C. in a tenter type heat treatment furnace. Manufactured under the same conditions except for the fixed points. In Example 2, the hot water shrinkage percentage was 19%, and the film thickness was 15 μm.

[評価方法]
(引張試験)
ONyフィルム18の引張試験は、インストロン社製5564型を使用し、試料幅15mm、チャック間50mm、100mm/minの引張速度で実施した。ONyフィルム18のMD方向/TD方向/45°方向/135°方向のそれぞれについて測定を行った。各方向について得られた応力−ひずみ曲線に基づいて、各方向での破断伸び率(%)と、これら破断伸び率のうちの最大値と最小値との比率と、各方向での応力比A(A=σ/σ、σ:伸び率50%での引張応力、σ:降伏点での引張応力)と、これら応力比Aのうちの最大値Amaxと最小値Aminとの比率とを求めた。
[Evaluation methods]
(Tensile test)
The tensile test of the ONy film 18 was carried out using an Instron type 5564 type, with a sample width of 15 mm, a chuck interval of 50 mm, and a tensile speed of 100 mm / min. Measurement was performed for each of the MD direction / TD direction / 45 ° direction / 135 ° direction of the ONy film 18. Based on the stress-strain curve obtained in each direction, the elongation at break (%) in each direction, the ratio between the maximum value and the minimum value of these elongation at break, and the stress ratio A in each direction (A = σ 1 / σ 2 , σ 1 : tensile stress at an elongation of 50%, σ 2 : tensile stress at the yield point), and the maximum value A max and the minimum value A min of these stress ratios A The ratio was calculated.

(絞り成形性)
ONyフィルム18を含むラミネート包材の絞り成形性を評価した。
具体的には、まず、実施例1,2に係るONyフィルム18を表基材フィルムとし、L−LDPEフィルム〔ユニラックス LS−711C(商品名)、出光ユニテック(株)製、厚さ120μm〕をシーラントフィルムとして、両者をドライラミネートすることによりラミネート包材を得た。なお、ドライラミネート用の接着剤としては、三井タケダケミカル製のタケラックA−615/タケネートA−65の配合品(配合比16/1)を用いた。また、ドライラミネート後のラミネート包材は、40℃で3日間エージングを行った。
このようにして作製した各ラミネート包材について、平面視長方形(5mm×10mm)の金型を用いて、冷間(常温)で深絞り成形を実施した。この深絞り成形を各ラミネート包材のそれぞれについて10回ずつ実施し、ピンホールやクラックなどの欠陥の発生数を調べた。欠陥の発生数が10回中0回である場合は◎、1〜2回である場合は○、3〜5回である場合は△、6回以上である場合は×として評価した。
(Drawing formability)
The drawability of the laminate packaging material including the ONy film 18 was evaluated.
Specifically, first, the ONy film 18 according to Examples 1 and 2 was used as a front substrate film, and an L-LDPE film [Unilux LS-711C (trade name), manufactured by Idemitsu Unitech Co., Ltd., thickness 120 μm] Was used as a sealant film to dry laminate them to obtain a laminate packaging material. In addition, as an adhesive for dry lamination, a blended product of Takelac A-615 / Takenate A-65 (mixing ratio 16/1) manufactured by Mitsui Takeda Chemical was used. The laminated packaging material after dry lamination was aged at 40 ° C. for 3 days.
Each laminate packaging material thus produced was deep-drawn with cold (normal temperature) using a rectangular (5 mm × 10 mm) mold in plan view. This deep drawing was performed 10 times for each laminate packaging material, and the number of defects such as pinholes and cracks was examined. When the number of occurrences of defects was 0 out of 10 times, the evaluation was evaluated as 、, when it was 1 to 2 times, ◯, when it was 3 to 5 times, and when it was 6 times or more, ×.

(層内剥離性)
上述の絞り成形性評価と同様にしてラミネート包材を作製し、このラミネート包材から15mm幅の短冊状試験片を切り出し、その端部を手で数cmほど界面剥離を行い、表基材フィルム(ONyフィルム18)とシーラントフィルムとに分離した。その後、各々のフィルム片を引張り試験機(インストロン万能試験機 1123型)にセットして、300mm/minの速度でラミネート部分の剥離試験を行った(90度剥離)。
剥離試験の最中に表基材フィルム内部で層内剥離が生ずると剥離強度が急激に減少するため、そのような挙動が発現したか否かで層内剥離発生の有無を判別できる。例えば、剥離試験の開始時は、剥離強度が7N/m程度であったものが、剥離試験の途中で急激に1〜2N/m程度に減少すれば、層内剥離が生じたと判断できる。
そして、表基材フィルム内部で層内剥離の挙動を示さないものを○、層内剥離の挙動を示したものを×として評価した。
(In-layer peelability)
A laminate packaging material was prepared in the same manner as in the drawability evaluation described above, a strip-shaped test piece having a width of 15 mm was cut out from the laminate packaging material, and the end portion of the laminate was peeled off by several centimeters by hand, and the front substrate film Separated into (ONy film 18) and sealant film. Thereafter, each film piece was set in a tensile tester (Instron universal tester 1123 type), and a peel test of the laminate portion was performed at a speed of 300 mm / min (90 ° peel).
In the middle of the peel test, if peeling inside the surface substrate film occurs, the peel strength sharply decreases. Therefore, it can be determined whether or not such peeling has occurred, depending on whether or not such behavior has occurred. For example, at the start of the peel test, if the peel strength is about 7 N / m, but is suddenly reduced to about 1 to 2 N / m during the peel test, it can be determined that in-layer peel has occurred.
And the thing which did not show the behavior of peeling in a layer inside a surface base film was evaluated as ◯, and the thing which showed the behavior of peeling in a layer was evaluated as x.

(耐シール性)
上述の絞り成形性評価と同様にしてラミネート包材を作製し、このラミネート包材に対してシール処理を実施した。シール処理では、シールバーの温度を200℃に設定し、シール幅を5mmとし(テフロン(登録商標)テープの貼付無し)、シール時間は10秒とし、シールバーの圧力は2kg/cmとした。ラミネート包材の耐シール性は、上記条件でシール処理を施した際に、包材がシールバーに付着しなかったものは○、包材がシールバーに付着したものは△、包材がシールバーに付着して外観が白化したものは×として評価した。
(Seal resistance)
A laminate packaging material was produced in the same manner as the above-described drawability evaluation, and a sealing treatment was performed on the laminate packaging material. In the sealing process, the temperature of the seal bar was set to 200 ° C., the seal width was 5 mm (no Teflon (registered trademark) tape was applied), the seal time was 10 seconds, and the pressure of the seal bar was 2 kg / cm 2 . . The seal resistance of the laminate packaging material is: ○ when the packaging material does not adhere to the seal bar when the sealing treatment is applied under the above conditions, Δ when the packaging material adheres to the seal bar, and the packaging material is sealed. Those that had a white appearance on the bar were evaluated as x.

[比較例1]
上記の実施例1の製造動作のうち、熱履歴品の配合割合を原料全量に対して15質量%とし、延伸フィルムをテンター式熱処理炉により210℃で熱固定した点以外は同様にして、比較例1に係るONyフィルム18を製造した。この比較例1の熱水収縮率は2.8%で、フィルム厚さは15μmであった。
[Comparative Example 1]
In the production operation of Example 1 above, the mixing ratio of the heat history product is 15% by mass with respect to the total amount of the raw material, and the comparison is performed in the same manner except that the stretched film is heat-set at 210 ° C. with a tenter type heat treatment furnace. An ONy film 18 according to Example 1 was produced. The hot water shrinkage of Comparative Example 1 was 2.8%, and the film thickness was 15 μm.

[比較例2]
上記の実施例1の製造動作のうち、原料にNy6のみ使用し、延伸フィルムをテンター式熱処理炉により195℃で熱固定した点以外は同様にして、比較例2に係るONyフィルム18を製造した。この比較例2の熱水収縮率は5%で、フィルム厚さは15μmであった。
[Comparative Example 2]
The ONy film 18 according to Comparative Example 2 was manufactured in the same manner except that only Ny6 was used as a raw material and the stretched film was heat-set at 195 ° C. in a tenter-type heat treatment furnace among the manufacturing operations of Example 1 above. . In Comparative Example 2, the hot water shrinkage was 5%, and the film thickness was 15 μm.

これら比較例1,2についても、実施例1,2と同様にして評価試験を行った。
表1に、実施例1,2および比較例1,2についての構成原料、熱履歴品含有率、熱処理温度、熱水収縮率およびフィルム厚さをそれぞれ示す。表2に、実施例1,2および比較例1,2のそれぞれについての引張試験結果を示す。表3に、実施例1,2および比較例1,2のそれぞれについての絞り成形性、層内剥離および耐シール性の評価結果を示す。
These Comparative Examples 1 and 2 were also evaluated in the same manner as in Examples 1 and 2.
Table 1 shows constituent raw materials, heat history product content, heat treatment temperature, hot water shrinkage, and film thickness for Examples 1 and 2 and Comparative Examples 1 and 2, respectively. Table 2 shows the tensile test results for Examples 1 and 2 and Comparative Examples 1 and 2. Table 3 shows the evaluation results of drawability, in-layer peeling, and seal resistance for each of Examples 1 and 2 and Comparative Examples 1 and 2.

Figure 2008045015
Figure 2008045015

Figure 2008045015
Figure 2008045015

Figure 2008045015
Figure 2008045015

[評価結果]
表1に示すように、実施例1,2に係るONyフィルム18は、比較例1,2と比較して、絞り成形性、層内剥離および耐シール性のいずれについても優れている。
一方、比較例は、上述の条件を満たしていないため、いずれも、ONyフィルム18の物性に問題がある。具体的には、比較例1は、TD方向および45°方向の応力比Aが2未満であるため、絞り成形性に劣る。また、比較例2は、原料にMXD6を含まないため、耐シール性に劣る。
[Evaluation results]
As shown in Table 1, the ONy film 18 according to Examples 1 and 2 is excellent in all of drawability, delamination in layers and seal resistance as compared with Comparative Examples 1 and 2.
On the other hand, since the comparative examples do not satisfy the above-described conditions, there are problems in the physical properties of the ONy film 18. Specifically, Comparative Example 1 is inferior in drawability because the stress ratio A in the TD direction and 45 ° direction is less than 2. Moreover, since the comparative example 2 does not contain MXD6 in a raw material, it is inferior to seal resistance.

本発明は、冷間成形用包材等に利用することができる。   The present invention can be used for cold forming packaging materials and the like.

本発明の実施形態に係るONyフィルムに対して引張試験を行った際に得られる応力−ひずみ曲線の一例。An example of the stress-strain curve obtained when a tensile test is performed with respect to the ONy film which concerns on embodiment of this invention. 前記実施形態に係るONyフィルムを製造する二軸延伸装置の概略図。Schematic of the biaxial stretching apparatus which manufactures the ONy film which concerns on the said embodiment.

符号の説明Explanation of symbols

11 原反フィルム
16 バブル
18 延伸フィルム
11 Raw film 16 Bubble 18 Stretched film

Claims (7)

ナイロン6(以後、Ny6ともいう)及びメタキシリレンアジパミド(以後、MXD6ともいう)からなるバージン原料と、Ny6及びMXD6を溶融混練してMXD6の融点を233〜238℃とした熱履歴品とを原料として含む二軸延伸ナイロンフィルムであって、
当該フィルムを95℃の熱水中で30分間保持した場合における、当該フィルムのMD方向およびTD方向の熱水収縮率が3〜20%であり、
当該フィルムの引張試験(試料幅15mm、標点間距離50mm、引張速度100mm/min)における4方向(MD方向、TD方向、45°方向、135°方向)の破断までの伸び率が70%以上であり、かつ、
当該フィルムの前記引張試験における応力−ひずみ曲線において、伸び率が50%となった際の引張応力σと、降伏点における引張応力σとの比である応力比A(σ/σ)が、前記4方向についていずれも2以上である
ことを特徴とする二軸延伸ナイロンフィルム。
Virgin raw material consisting of nylon 6 (hereinafter also referred to as Ny6) and metaxylylene adipamide (hereinafter also referred to as MXD6), Ny6 and MXD6 were melt-kneaded to obtain a heat history product having a melting point of MXD6 of 233-238 ° C. A biaxially stretched nylon film containing
When the film is held in hot water at 95 ° C. for 30 minutes, the hot water shrinkage in the MD direction and TD direction of the film is 3 to 20%,
Elongation rate to break in 4 directions (MD direction, TD direction, 45 ° direction, 135 ° direction) in the tensile test (sample width 15 mm, distance between gauge points 50 mm, tensile speed 100 mm / min) of the film is 70% or more. And
Stress in the tensile test of the film - strain in the curve, the tensile stress sigma 1 when the elongation rate was 50%, the ratio of the tensile stress sigma 2 at the yield point stress ratio A (σ 1 / σ 2 Is a biaxially stretched nylon film, wherein all of the four directions are 2 or more.
請求項1に記載の二軸延伸ナイロンフィルムにおいて、
前記4方向におけるそれぞれの前記応力比Aのうち、最大となる応力比Amaxと最小となる応力比Aminとの比(Amax/Amin)が、2以下である
ことを特徴とする二軸延伸ナイロンフィルム。
In the biaxially stretched nylon film according to claim 1,
Of the respective stress ratios A in the four directions, the ratio (A max / A min ) between the maximum stress ratio A max and the minimum stress ratio A min is 2 or less. Axially stretched nylon film.
請求項1または請求項2に記載の二軸延伸ナイロンフィルムにおいて、
当該フィルムの前記引張試験における前記4方向の引張破断強度が、いずれも180MPa以上である
ことを特徴とする二軸延伸ナイロンフィルム。
In the biaxially stretched nylon film according to claim 1 or 2,
The biaxially stretched nylon film, wherein the tensile breaking strength in the four directions in the tensile test of the film is 180 MPa or more.
請求項1ないし請求項3のいずれかに記載の二軸延伸ナイロンフィルムにおいて、
前記バージン原料は、60〜85質量部のNy6、及び15〜40質量部のMXD6からなり、
前記熱履歴品の含有量が前記原料全量基準で5〜40質量%である
ことを特徴とする二軸延伸ナイロンフィルム。
In the biaxially stretched nylon film according to any one of claims 1 to 3,
The virgin raw material is composed of 60 to 85 parts by mass of Ny6 and 15 to 40 parts by mass of MXD6.
Content of the said heat history goods is 5-40 mass% on the said raw material whole quantity basis. The biaxially-stretched nylon film characterized by the above-mentioned.
請求項1ないし請求項4のいずれかに記載の二軸延伸ナイロンフィルムにおいて、
前記熱履歴品におけるNy6とMXD6の配合割合は、Ny6:MXD6=60〜85質量部:15〜40質量部である
ことを特徴とする二軸延伸ナイロンフィルム。
In the biaxially stretched nylon film according to any one of claims 1 to 4,
The blend ratio of Ny6 and MXD6 in the heat history product is Ny6: MXD6 = 60 to 85 parts by mass: 15 to 40 parts by mass.
請求項1ないし請求項5のいずれかに記載の二軸延伸ナイロンフィルムを含むことを特徴とするラミネート包材。   A laminate packaging material comprising the biaxially stretched nylon film according to any one of claims 1 to 5. Ny6及びMXD6からなるバージン原料と、Ny6及びMXD6を溶融混練してMXD6の融点を233〜238℃とした熱履歴品とを原料として含む二軸延伸ナイロンフィルムの製造方法であって、
前記原料で構成された未延伸原反フィルムに対して、MD方向(フィルムの移動方向)およびTD方向(フィルムの幅方向)のそれぞれの延伸倍率が2.8倍以上となる条件で二軸延伸した後、160〜200℃で熱処理を行い、
当該フィルムを95℃の熱水中で30分間保持した場合における、当該フィルムのMD方向およびTD方向の熱水収縮率が3〜20%であり、
当該フィルムの引張試験(試料幅15mm、標点間距離50mm、引張速度100mm/min)における4方向(MD方向、TD方向、45°方向、135°方向)の破断までの伸び率が70%以上であり、かつ、
当該フィルムの前記引張試験における応力−ひずみ曲線において、伸び率が50%となった際の引張応力σと、降伏点における引張応力σとの比である応力比A(σ/σ)が、前記4方向についていずれも2以上である二軸延伸ナイロンフィルムを形成する
ことを特徴とする二軸延伸ナイロンフィルムの製造方法。
A method for producing a biaxially stretched nylon film comprising, as raw materials, a virgin raw material comprising Ny6 and MXD6, and a heat history product in which the melting point of MXD6 is 233 to 238 ° C. by melting and kneading Ny6 and MXD6,
Biaxially stretched under the condition that the stretching ratio in the MD direction (film movement direction) and TD direction (film width direction) is 2.8 times or more with respect to the unstretched raw film composed of the raw materials. After that, heat treatment is performed at 160 to 200 ° C.
When the film is held in hot water at 95 ° C. for 30 minutes, the hot water shrinkage in the MD direction and TD direction of the film is 3 to 20%,
Elongation rate to break in 4 directions (MD direction, TD direction, 45 ° direction, 135 ° direction) in the tensile test (sample width 15 mm, distance between gauge points 50 mm, tensile speed 100 mm / min) of the film is 70% or more. And
Stress in the tensile test of the film - strain in the curve, the tensile stress sigma 1 when the elongation rate was 50%, the ratio of the tensile stress sigma 2 at the yield point stress ratio A (σ 1 / σ 2 ) Form a biaxially stretched nylon film that is 2 or more in each of the four directions. A method for producing a biaxially stretched nylon film, wherein:
JP2006221052A 2006-08-14 2006-08-14 Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material Expired - Fee Related JP4970872B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2006221052A JP4970872B2 (en) 2006-08-14 2006-08-14 Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material
EP07792345A EP2058106B1 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
CN2007800299308A CN101528441B (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
KR1020097002778A KR101288668B1 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
EP12154809.3A EP2455209B1 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film and laminate wrapping material
KR1020137008207A KR101292901B1 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
PCT/JP2007/065700 WO2008020569A1 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
US12/377,421 US8518321B2 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
KR1020137008206A KR101295427B1 (en) 2006-08-14 2007-08-10 Biaxially oriented nylon film, laminate wrapping material, process for production of biaxially oriented nylon film and process for production of laminate wrapping material
TW101150665A TWI508845B (en) 2006-08-14 2007-08-13 Biaxially-oriented nylon film, laminated packing material and manufacturing method for biaxially-oriented nylon film
TW096129876A TWI393624B (en) 2006-08-14 2007-08-13 Biaxially-oriented nylon film, laminated packing material and manufacturing method for biaxially-oriented nylon film
TW101150664A TWI508844B (en) 2006-08-14 2007-08-13 Biaxially-oriented nylon film, laminated packing material and manufacturing method for biaxially-oriented nylon film
US13/339,031 US8445626B2 (en) 2006-08-14 2011-12-28 Biaxially oriented nylon film and process for production of biaxially oriented nylon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221052A JP4970872B2 (en) 2006-08-14 2006-08-14 Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material

Publications (2)

Publication Number Publication Date
JP2008045015A true JP2008045015A (en) 2008-02-28
JP4970872B2 JP4970872B2 (en) 2012-07-11

Family

ID=39179064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221052A Expired - Fee Related JP4970872B2 (en) 2006-08-14 2006-08-14 Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material

Country Status (1)

Country Link
JP (1) JP4970872B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234034A (en) * 2008-03-27 2009-10-15 Mitsubishi Plastics Inc Biaxially-stretched polyamide film
WO2013089081A1 (en) * 2011-12-13 2013-06-20 出光ユニテック株式会社 Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
WO2014021425A1 (en) * 2012-08-02 2014-02-06 出光ユニテック株式会社 Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film
WO2014123025A1 (en) * 2013-02-08 2014-08-14 出光ユニテック株式会社 Method for producing biaxially oriented film, biaxially oriented film, and laminated film
KR20140118369A (en) 2013-03-29 2014-10-08 코오롱인더스트리 주식회사 Nylon film and manufacturing method thereof
JP2016532764A (en) * 2013-09-16 2016-10-20 コーロン インダストリーズ インク Nylon film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106619A (en) * 1992-09-24 1994-04-19 Idemitsu Petrochem Co Ltd Manufacture of easily tearable film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106619A (en) * 1992-09-24 1994-04-19 Idemitsu Petrochem Co Ltd Manufacture of easily tearable film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234034A (en) * 2008-03-27 2009-10-15 Mitsubishi Plastics Inc Biaxially-stretched polyamide film
WO2013089081A1 (en) * 2011-12-13 2013-06-20 出光ユニテック株式会社 Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
WO2014021425A1 (en) * 2012-08-02 2014-02-06 出光ユニテック株式会社 Biaxially-oriented nylon film, laminate film, laminate packaging material, battery, and method for producing biaxially-oriented nylon film
WO2014123025A1 (en) * 2013-02-08 2014-08-14 出光ユニテック株式会社 Method for producing biaxially oriented film, biaxially oriented film, and laminated film
KR20140118369A (en) 2013-03-29 2014-10-08 코오롱인더스트리 주식회사 Nylon film and manufacturing method thereof
JP2016532764A (en) * 2013-09-16 2016-10-20 コーロン インダストリーズ インク Nylon film

Also Published As

Publication number Publication date
JP4970872B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
KR101295427B1 (en) Biaxially oriented nylon film, laminate wrapping material, process for production of biaxially oriented nylon film and process for production of laminate wrapping material
JP5226941B2 (en) Biaxially stretched nylon film for cold forming, laminate packaging material, and method for producing biaxially stretched nylon film for cold forming
JP5226942B2 (en) Biaxially stretched nylon film for cold forming, laminate packaging material, and method for producing biaxially stretched nylon film for cold forming
WO2013011909A1 (en) Biaxially stretched nylon film for cold molding, laminate film, and molded body
JP6350276B2 (en) Biaxially oriented polyamide resin film
JP4970872B2 (en) Biaxially stretched nylon film, laminate packaging material, method for producing biaxially stretched nylon film, and method for producing laminate packaging material
JP5739383B2 (en) Easy tear stretch film, easy tear laminate film, easy tear bag, and easy tear stretch film manufacturing method
JP5079268B2 (en) Method for preventing delamination of easily tearable stretched film
WO2013099698A1 (en) Easy-to-tear laminated film and easy-to-tear packaging bag
JP2013028660A (en) Method for producing easily tearable biaxially oriented nylon film and easily tearable biaxially oriented nylon film
JP2014113789A (en) Method for producing multilayer stretched film and multilayer stretched film
WO2014148279A1 (en) Method for manufacturing multilayer stretched film, and multilayer stretched film
EP4011937A1 (en) Polyamide composition useful for the manufacture of film for food packaging
WO2013094414A1 (en) Easy-to-tear stretched film and method for manufacturing same
TW201441014A (en) Method for producing biaxially oriented film, biaxially oriented film, and laminated film
JP2011252119A (en) Styrene-based film for molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees