WO2013087907A1 - Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires - Google Patents

Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires Download PDF

Info

Publication number
WO2013087907A1
WO2013087907A1 PCT/EP2012/075665 EP2012075665W WO2013087907A1 WO 2013087907 A1 WO2013087907 A1 WO 2013087907A1 EP 2012075665 W EP2012075665 W EP 2012075665W WO 2013087907 A1 WO2013087907 A1 WO 2013087907A1
Authority
WO
WIPO (PCT)
Prior art keywords
mir
hsa
subject
muscular dystrophy
mirnas
Prior art date
Application number
PCT/EP2012/075665
Other languages
English (en)
Inventor
Laurence JEANSON-LEH
David Israeli
Fatima AMOR
Thomas Voit
Original Assignee
Genethon
Association Institut De Myologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genethon, Association Institut De Myologie filed Critical Genethon
Priority to EP12809235.0A priority Critical patent/EP2791353A1/fr
Priority to CA2858465A priority patent/CA2858465A1/fr
Priority to CN201280062188.1A priority patent/CN104271760A/zh
Priority to AU2012351524A priority patent/AU2012351524A1/en
Priority to JP2014546559A priority patent/JP2015504655A/ja
Priority to US14/364,338 priority patent/US20140342937A1/en
Publication of WO2013087907A1 publication Critical patent/WO2013087907A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6881Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for tissue or cell typing, e.g. human leukocyte antigen [HLA] probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the invention relates to the diagnosis, monitoring and evaluation of the efficacy of a treatment of muscular dystrophy by detecting microRNA in a body fluid, especially in the urine.
  • Duchenne muscular dystrophy or Becker muscular dystrophy (BMD) is caused by mutations or deletions of the gene encoding dystrophin (Muntoni, Torelli et al., 2003). In the first case, where the phenotype is the most severe, dystrophin is completely absent.
  • the DAPC complex (Dystrophin Associated Protein Complex), which links intracellular actin filaments to the extracellular matrix (Rumor, Winder et al.), Is also missing. This complex usually protects the membrane of muscle fibers that are subject to contractions and relaxations. In its absence, the fibers are no longer protected, muscle cells are seen to be degenerating and new cells are showing regeneration tending to counterbalance the phenomenon (Batchelor and Winder 2006). In the long term, the regeneration is insufficient and the fibers are replaced by adipose tissue.
  • BMD which leads to a less serious phenotype, is also due to one or more mutations in the gene coding for dystrophin but the fundamental domains of the protein are conserved:
  • cysteine-rich C-terminal domain which binds to the DAPC complex.
  • the muscle biopsy analysis allows to observe the damaged fibers, smaller fibers testifying to the muscular regeneration, as well as areas of necrosis replaced by adipose tissue.
  • This method has the disadvantage of being very invasive for the patient.
  • CK creatine kinase
  • This enzyme is linked to energy metabolism present in several types of cells. The increase of its concentration in the blood testifies to the state of degradation of the muscular fibers.
  • this biomarker is not completely reliable because its level also depends on stress such as physical activity (Nicholson, Morgan et al., 1986).
  • Other enzymes exist, such as aldolase or lactate dehydrogenase, but as with CK, their abundance is not dependent solely on disease status (Lott and Austin 1984). Therefore, it appears necessary to identify new and more reliable biomarkers for Duchenne muscular dystrophy, which could be measured from non-invasive samples such as urine specimens.
  • Micro ARs are promising bio markers. They are expressed in all tissues of the body and especially in skeletal muscle. It is also known that they exist in the "circulating" state in all biological fluids (Weber, Baxter et al.). Recent work in the literature has shown that there is a specific signature of Duchenne muscle myopathy in muscle (Cacchiarelli, Martone et al., Greco, De Simone et al., 2009) and in serum (Cacchiarelli, Legnini et al. .).
  • the inventors have in particular studied urine samples from DMD patients in order to determine whether specific miRNAs of this pathology could be identified. This work has highlighted a specific signature relating to the abundance of certain miRNAs in the urine of DMD patients compared to the urine of healthy donors. The finding of such a variation in the expression of one or more miRNAs in a sick individual as compared to a healthy individual finds application in the field of diagnosis.
  • the present invention thus relates to the use of at least one miRNA selected from the miRNAs of Table 1, for the implementation of a method for diagnosing muscular dystrophy. It also relates to the use of one or more of said miRNAs for assessing the risk of developing or presenting muscular dystrophy.
  • the invention relates to a method for diagnosing muscular dystrophy or assessing the risk of developing or presenting muscular dystrophy in a subject, comprising measuring the level of expression of at least one miRNA in a sample. body fluid (e.g. a urine sample) of said subject.
  • the invention may in particular comprise comparing said level of expression measured in said sample to a level obtained in a healthy reference sample, a difference between the level of expression relative to the reference level being indicative of muscular dystrophy in the subject.
  • the invention also relates to a method for diagnosing muscular dystrophy or for assessing the risk of developing or presenting muscular dystrophy, comprising determining in a body fluid sample (e.g. a urine sample) of a subject of the presence or level of expression of at least one miRNA selected from the group consisting of the miRNAs listed in Table 1.
  • a body fluid sample e.g. a urine sample
  • the present invention relates in particular to a method for diagnosing muscular dystrophy, in particular Duchenne muscular dystrophy, comprising the comparison of:
  • the invention relates to a method for diagnosing muscular dystrophy comprising the following steps:
  • the comparison of miRNA expression levels can be performed between a sample from a patient suspected of having muscular dystrophy and a reference healthy sample, or a reference sample from a patient with muscular dystrophy.
  • the method according to the invention comprises measuring the level in a urine sample of a subject of at least one miRNA selected from the group consisting of let-7f, let-7a, miR -548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208 , miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR -139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a *, miR- 193a-3p, miR-381, miR-34
  • the invention also relates to a method for monitoring the course of muscular dystrophy, and a method for evaluating the efficacy of a therapeutic treatment of muscular dystrophy.
  • the method comprises measuring the level of expression of at least one of the above-mentioned miRNAs in a second sample of body fluid (especially urine) of a subject, that level in the sample of the subject being compared at the level of said miRNA in a first reference sample which corresponds to a sample taken previously on the same subject.
  • the first sample may have been taken before the administration of the therapeutic treatment to the subject, and the second sample will be taken after administration of the therapeutic treatment (for example several days / weeks / month after administration of the therapeutic treatment).
  • the first and second samples can be taken both after administration of the therapeutic treatment (for example, the first sample is taken after treatment, the same day as this treatment, or several days / weeks / months after the treatment, and the second sample is taken several days / weeks / month after the first sample).
  • the invention further relates to a kit and a multiwell support useful for the diagnosis of muscular dystrophy.
  • MiRNAs are non-coding single-stranded RNAs of approximately 17 to 26 nucleotides in length, which regulate gene expression by repressing the translation of their target mRNA. MiRNAs that have been identified are registered in the miRBase database release 14 th (http://microarn.saner.ac.uk).
  • a "reference sample”, when reference is made to a “healthy sample”, corresponds to a sample obtained from one or more subjects, preferably two or more, which do not suffer from muscular dystrophy.
  • the reference sample may also be a sample obtained from one or more patients with muscular dystrophy.
  • Reference expression levels can be determined by measuring the level of expression of miRNAs to explore in one or more subjects. These reference levels can also be adjusted according to specific subject populations.
  • the reference sample is obtained from a pool of healthy subjects.
  • the expression pattern of the miRNAs in the reference sample may preferably be generated from a population of two or more subjects. For example, the population may include 2, 4, 5, 10, 15, 20, 30, 40, 50 subjects, or more.
  • the reference sample is a sample taken from the subject that will be followed, but before the follow-up has begun.
  • body fluid refers to the body fluid of a subject, in particular a human subject, that is to say any liquid taken from a subject, such as serum, plasma, whole blood, urine, cerebrospinal fluid or saliva.
  • the body fluid used in the present invention is a urine sample.
  • the term "subject” means a mammal, human or non-human, preferably human.
  • the subject may have a predisposition for muscular dystrophy (revealed for example by genetic analysis, or suspicion that may result from family history) or suffer from a reported muscular dystrophy.
  • the invention can also be applied in screening, the subject having no known symptoms or predisposition.
  • the method according to the invention can be applied to mass screening in young children before the classical age of declaration of symptoms (0-5 years).
  • the invention can also be applied to the follow-up of model animals of the disease, in particular of dogs or of model mice and more particularly to the dogs GRMD (Golden Retriever Muscular Dystrophy), LMD (Labrador Muscular Dystrophy) or CXMDj (Canine X-linked Muscular Dystrophy in Japan), during the preclinical development of treatments.
  • GRMD Golden Retriever Muscular Dystrophy
  • LMD Labelerador Muscular Dystrophy
  • CXMDj Canine X-linked Muscular Dystrophy in Japan
  • level of expression of a miRNA in a sample corresponds to a measurement value specific to a miRNA, but expressed either in arbitrary units, in units of mass, in molecules or in concentrations, or in values normalized by compared to another measurement, especially in normalized value compared to the amounts of the same miRNA in a reference sample (healthy or a patient with muscular dystrophy).
  • the expression level of miRNAs can be measured by any conventional method, such as
  • the level of expression of miRNAs can be measured by the "microarray” technique.
  • the technique of the "DNA chip” is well known to those skilled in the art. This is hybridization of miRNAs extracted on a solid support composed of a nylon membrane, a surface of silicon or glass, optionally nano-beads or particles, comprising oligonucleotides of known sequences attached to or adhered to the support.
  • oligonucleotides fixed with the sequences of the microRNAs or their conversion products makes it possible to generate a signal (fluorescence, luminescence, radioactivity, electrical signal, etc.) according to the techniques of labeling used at the level of immobilized oligonucleotides (DNA chips).
  • This signal is detected by a specific device and a value of intensity of this own signal for each miRNA is thus recorded.
  • chips for the detection of miRNAs are already on the market, for example the GeneChip (R) miRNAs marketed by Affymetrix, miRcury arrays by Exiqon, miRXplore microarrays by Miltenyi.
  • miRNAs are extracted and purified from a sample, isolated from each other by methods provided by sequencing equipment suppliers such as Roche, Invitrogen.
  • This kind of analysis consists in individualizing the molecules of the various microRNAs, performing an amplification step and sequencing the products ("nucleic acid clones") thus generated.
  • the realization of a large number of sequences to identify each of these "clones" makes it possible to generate a list of the microRNAs present in a sample and to quantify each of these miRNAs simply by counting how many times each sequence is found in the list. Detailed.
  • the miRNA assays are performed by quantitative PCR (real-time PCR or digital PCR).
  • the real-time PCR makes it possible to obtain values, called Ct, corresponding to the number of cycles from which the emitted fluorescence exceeds a certain threshold, the threshold being fixed by the user at the beginning of the exponential phase.
  • This Ct value is proportional to the amount of cDNA (derived from reverse transcription of miRNAs to cDNA by Reverse Transcriptase) initially present in the sample. In the absence of a specific standard range for each cDNA, only relative quantification between samples is possible.
  • the assay values for each miRNA are normalized with the data obtained for a non-coding RNA. It is also possible to normalize the expression of a miRNA compared to the average Ct of all the miRNAs of a PCR plate (384 well TLDA plates, including a different miRNA detected per well - see the examples for more details). Thus, the results can be normalized with respect to several miRNA references whose abundance varies little in the urine.
  • the digital PCR allows, from a starting sample to determine the exact number of copies of a miRNA it contains, following either a dilution of the PCR reaction in a large number of microwells (PCR technology Life Life Technologies or Roche) or to a dispersion of the PCR reaction in microdroplets (Droplet technology, Bio-Rad).
  • the relative quantification of a miRNA between 2 types of samples is then obtained thanks for example to the SDS2.3 software, RQ manager (Applied Biosystems), and by the Ct delta delta method on Miscrosoft Excel spreadsheet or any other software allowing a complex calculation.
  • miRNA expression levels are analyzed by "microarray” or Northern blot hybridization, or by sequencing, they can be expressed as Formula I:
  • Amount of miRNAx intensity of detection signal for miRNAx Where "signal intensity” means amount of fluorescence, radioactivity or luminescence recorded on “DNA chips” by the matched detector, or number of identical sequences detected by high throughput sequencing analysis. The quantities are expressed in arbitrary units.
  • RNA RNA whose concentration does not vary in the different types of samples analyzed.
  • This standardization makes it possible to ensure that the expression levels of the detectable miRNAs are compared in extracts whose RNA concentrations are similar between these different purified extracts.
  • the normalized expression level for a miRNA in a sample is expressed by formula II:
  • the level of miRNA expression is assayed by quantitative PCR in real time.
  • Tables 2 and 3 below describe the expression pattern of miRNA whose expression is altered in patients with DMD, relative to the expression pattern observed in healthy subjects.
  • the inventors having been able to highlight a difference of expression between the patients according to their age, the information is classified according to this criterion.
  • Table 2 Expression profile of indicative miRNAs in patients / subjects aged 3-8 years
  • let-7g Increase miR-151-5p Increase miR-15a Increase miR-15b Increase miR-182 Increase miR-183 Increase miR-192 * Increase miR-196b Increase miR-200b * Increase miR-206 Increase miR-224 Increase miR-23b Increase miR- 26b Increase miR-28-5p Increase miR-30d Increase miR-30e-3p Increase miR-335 Increase miR-33a * Increase miR-487b Increase miR-490-3p Increase miR-492 Increase miR-502-3p Increase miR-505 * Increase miR-520a-3p Increase miR-548d-5p Increase miR-590-3p Increase miR-628-3p Increase miR-659 Increase miR-942 Increase miR-1244 Decrease miR-328 Decrease miR-484 Decrease miR-494 Decrease miR-593 Decrease miR-650 Decrease miR-657 Decrease miR-668 Decrease miR-720 Decrease miR-886-3p Decrease Table 3: Expression profile of indicative miRNAs in patients / subjects aged 13-18
  • miR-216b Decrease mid -23a Decrease
  • Tables 2 and 3 increase: higher expression in patients compared to healthy subjects; decrease: lower expression in patients compared to healthy subjects.
  • the miRNAs listed above all vary in patient samples compared to healthy subjects.
  • the invention therefore relates to a method (a) for diagnosing muscular dystrophy, (b) monitoring the progression of muscular dystrophy, and (c) evaluating the efficacy of a therapeutic treatment of muscular dystrophy, comprising determining a change in the level of expression of one or more of these miRNAs in a body fluid sample of a subject relative to the level of expression in a reference sample.
  • a first category of miRNA corresponds to those who are over-represented in the urine of DMD patients, (referred to as the "increase" category in Tables 2 and 3). If one or more miRNAs of this first category are used in a method according to the invention:
  • a lower expression in a sample of the test subject taken at a time T2 relative to a sample of the same test subject taken at a time T1 (T1 before T2 chronologically ) will be indicative of an effective treatment of the disease (method of monitoring the effectiveness of a treatment of muscular dystrophy).
  • a second category of miRNAs are underrepresented in the urine of DMD patients, compared to healthy subjects (designated in the "decrease” category in Tables 2 and 3). If one or more miRNAs of this second category are exploited in a method according to the invention:
  • a lower expression in a sample of the tested subject taken at a time T2 relative to a sample of the same test subject taken at a time T1 (T1 before T2 chronologically) will be indicative of a progression of the disease (prognostic method, or method for monitoring muscular dystrophy);
  • an upper expression in a sample of the test subject taken at a time T2 relative to a sample of the same test subject taken at a time Tl will be indicative of an effective treatment of the disease (method of monitoring the effectiveness of a treatment of muscular dystrophy).
  • “higher expression level” or “lower expression level” is meant a level of expression whose variation is statistically significant, according to procedures well known to those skilled in the art.
  • the description made above of the two categories of miRNAs identified and their use in a diagnostic method according to the invention implements a reference sample from a healthy subject. Of course, the desired expression variations will be reversed when the reference sample comes from a patient suffering from muscular dystrophy.
  • the methods of the invention include the detection of at least one miRNA selected from the group consisting of miRNAs of Tables 2 and 3.
  • the detected miRNAs are chosen from the miRNAs of Table 4. Table 4
  • the detected miRNAs are chosen from the miRNAs of Table 5.
  • the detected miRNAs are chosen from the miRNAs of Table 6.
  • the body fluid sample is from a human subject and the detected one or more miRNAs are selected from the group consisting of the miRNAs of Table 2 and 3, or from the miRNAs in Table 2 or 3 and also appearing in Tables 4, 5 and 6.
  • a particular embodiment of the diagnostic method according to the invention as described above also comprises a step confirming the diagnosis using an alternative method of assessing muscular dystrophy.
  • the invention also relates to a kit for diagnosing muscular dystrophy, this kit comprising means for detecting or assaying at least one miRNA selected from let-7f, let-7a, miR-548d-5p, miR-183 , miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597 , miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b , miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a *, miR-193a-3p, miR-381, miR-34c-5
  • the kit comprises the detection or dosing means of all the miRNAs of this list.
  • the kit comprises means for detecting or assaying one or more miRNAs (in particular all) chosen from the miRNAs listed in Table 4, Table 5 or Table 6.
  • the detection or dosing means in the kit consist of means for detecting or assaying one or more of the miRNAs of Tables 2 and 3, or of one or more of the miRNAs listed in each of the tables 4, 5 and 6.
  • the miRNAs detected or assayed using the kit consist of all the miRNAs of Table 4, more particularly the set of miRNAs in Table 5, and even more particularly in the aggregate. Table 6 miRNAs.
  • the kit according to the invention may be a kit for performing a real-time PCR and may also contain a reverse transcriptase, a DNA polymerase, one or more buffer (s) adapted to the reactions to be carried out, probes specific for amplified regions (for example Taqman® probes), or markers specific for double-stranded DNA such as SYBR Green.
  • the invention also relates to a set of nucleotide sequences, this set comprising primer pairs that can be used to specifically amplify at least two miRNAs selected from let-7f, let-7a, miR-548d-5p, miR-183, and miR-490.
  • the nucleotide sequences make it possible to amplify one or more miRNAs of each of Tables 4, 5 and 6.
  • the set of nucleotide sequences comprises pairs of primers allowing amplification. specific to all the miRNAs listed above.
  • the set of nucleotide sequences can also comprise a nucleotide sequence that can be used as a labeled probe for the detection and quantification of the amplified fragments (for example a probe that can be used in the TaqMan real-time PCR system).
  • the invention also relates to a set of nucleotide sequences comprising one or more labeled oligonucleotides usable for the specific detection of at least two miRNAs of Table 1, for example in a Northern blot experiment.
  • the set of sequences contains oligonucleotides specific to each of the miRNAs of Table 1, Table 2, Table 3, 4, Table 5 or Table 6.
  • the invention also relates to a multiwell support for PCR, comprising at least two pairs of PCR primers each specific for a miRNA different from Table 1, Table 2, Table 3, 4, Table 5 or Table 6, each of the primer pairs being disposed in a different well of the support.
  • the support contains pairs of primers consisting of primers specific for at least two miRNAs of Table 1, 2, 3, 4, 5 or 6, each of the pairs of primers being arranged in a different well. of the support.
  • the multiwell support comprises primer pairs specific for all the miRNAs of Table 1, Table 2, Table 3, 4, Table 5 or Table 6, each of these pairs of primers being arranged in a different well.
  • the support contains pairs of primers consisting of primers specific for all the miRNAs of Table 1, 2, 3, 4, 5 or 6, each of the pairs of primers being arranged in a well. different from the support.
  • Figure 1 (high) number of different miRNAs detected by sample category after TLDA card expression pattern A and B (patients 3-8 years) or TLDA A (patients 13-18 years). (low) Average Ct per sample category. Healthy 3-8years (5 samples), DMD 3-8 years (5 samples), healthy 13-18years (3 samples), DMD 13-18years (2 samples).
  • Figure 2 heatmaps including the abundances of each miRNA identified for each donor tested, and hierarchical grouping of donors according to miRNA expression candidates, (high) heatmap for 3-8 years. (low) heatmap for 13-18 year olds.
  • the heatmaps and hierarchical grouping calculations are done via the CIMminer software (http://discovcr.nci.nih.gov/cimmincr/)
  • Figure 3 Example of deregulated miRNAs in the urine of DMD patients. The abundance of miRNAs is represented according to the group of patients.
  • Urine is collected in sterile containers. In the next half hour, it is centrifuged at 2000rpm for 5 min to eliminate the cells present. The supernatant is then recovered, aliquoted and frozen at -80 ° C.
  • Map A The study on Map A is based on urine samples from 4 DMD patients and 6 healthy subjects aged 3 to 8 years or 2 DMD patients and 3 healthy subjects aged 13 to 18 years.
  • Map B The study on Map B is based on urine samples from 4 DMD patients and 5 healthy subjects.
  • RNAs 10ml of urine are used to extract the total RNAs containing the microRNAs using Norgen Biotek's kit "Urine total RNA maxi kit, slurry format", according to the supplier's protocol.
  • the RNAs are eluted in 2 successive elutions of ⁇ . They are then precipitated overnight at -20 ° C. in the presence of sodium acetate, absolute ethanol and linear acrylamide (Ambion) according to the Ambion protocol. The RNAs are then resuspended in water without RNAse.
  • a quality control of the RNAs is then carried out in 3 steps: 1) assay by the absorbance at 260nm (Nanodrop 8000, Thermo Scientifc) 2) capillary electrophoresis on a small RNA chip and pico (Agilent Technologies) 3) amplification of 3 small urinary RNAs controls by RT-qPCR (miR-16, miR-377 *, U6). 100 ng of total RNA are then subjected to multiplex reverse transcription (Megaplex pools, Applied biosystems). We perform 2 reverse transcripts from 2 different primer pools: pools A and B.
  • ddCt (miR) dCt (reference) - dCt (miR);
  • Relative quantity (miR) 2 A delta delta Ct (miR).
  • the reference corresponds to the average value obtained for a given miR in healthy donors.
  • the calibrator is the average Ct of the entire TLDA plate.
  • Panel B was only tested for donors 3-8 years of age and detected an average of 160 additional miRNAs (approximately 330 different miRNAs detectable in donor urine 3-8 years old). We therefore observe a rather large abundance and variety of miRNAs in the urine.
  • the miRNAs are shown in Table 7 and for each miRNA is indicated its level of deregulation in the urine of the 3-8 and 13-18 age groups (difference factor), its category (increased, decreased in DMD relative to healthy), and its potential as biomarkers (score out of 4).
  • High potential or intermediate potential miRNAs have a score of 3 or 2.
  • Figure 2 shows these results as 2 heatmaps, one for each age group. From the abundance data of the different urinary miRNAs selected in Table 7, the hierarchical grouping algorithm used (http://discover.nci.nih.gov/cimminer/) allows donors to be effectively separated according to their healthy status or DMD. Thus, this result shows that the expression of the identified miRNAs can be used as a signature of the DMD pathology.
  • Figure 3 shows examples of deregulated miRNAs in DMD patients.
  • hsa-let-7b 5 increases 2 hsa-let-7d 5 increase 2 hsa-let-7g 5 increase 2 hsa-mi -196b 5 increase 2 hsa-miR-26b 5 increase 2 hsa-miR-942 5 increase 2 hsa-miR-200b * 3 increase 2 hsa-miR-502-3p 3 increases 2 hsa-miR-151-5p 3 increases 1 hsa-miR-192 * 3 increases 1 hsa-miR-28-5p 3 increases 1 hsa-miR-30d 3 increases 1 hsa-miR- 30e-3p 3 increase 1 hsa-miR-668 -100 decrease 4 hsa-miR-1244 -20 decrease 4 hsa-miR-494 -20 decrease 4 hsa-miR-328 -10 decrease 4 hsa-miR-484 -5 decrease 3 hsa-m
  • hsa-miR-521 40000 increase 4 hsa-miR-597 30000 increase 4 hsa-miR-520a-3p 67 increase 4 hsa-miR-548d-5p 63 increase 4 hsa-miR-208 54 increase 4 hsa-miR-490- 3p 20 increases 4 hsa-miR-328 7 increases 4 hsa-miR-494 7 increases 4 hsa-miR-193a-3p 35 increases 3 hsa-miR-34c-5p 26 increases 3 hsa-miR-433 20 increases 3 hsa- miR-381 increases 3 hsa-miR-410 14 increases 3 hsa-miR-518a-3p 173 increases 2 hsa-miR-198 84 increases 2 hsa-miR-511 58 increases 2 hsa-miR-373 36 increases 2
  • Cacchiarelli, D., I. Legnini, et al. "miRNAs have serum biomarkers for Duchenne muscular dystrophy.”
  • Cacchiarelli, D., J. Martone, et al. "MicroRNAs involved in molecular circuits falling under the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin / nNOS pathway.”

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

L'invention concerne le diagnostic, le suivi et l'évaluation de l'efficacité d'un traitement d'une dystrophie musculaire par détection de microARN dans un liquide corporel, notamment dans l'urine.

Description

PROCEDES POUR LE DIAGNOSTIC ET LE SUIVI THERAPEUTIQUE DE
DYSTROPHIES MUSCULAIRES
DOMAINE DE L'INVENTION
L'invention concerne le diagnostic, le suivi et l'évaluation de l'efficacité d'un traitement d'une dystrophie musculaire par détection de microARN dans un liquide corporel, notamment dans l'urine.
ETAT DE LA TECHNIQUE
Les dystrophies musculaires de Duchenne (DMD) ou de Becker (BMD) sont causées par des mutations ou des délétions du gène codant la dystrophine (Muntoni, Torelli et al. 2003). Dans le premier cas, où le phénotype est le plus sévère, la dystrophine est totalement absente. Le complexe DAPC (Dystrophine Associated Protein Complex), qui permet de relier les filaments intracellulaires d'actine à la matrice extracellulaire (Le Rumeur, Winder et al.), est également manquant. Ce complexe protège habituellement la membrane des fibres musculaires qui sont soumises aux contractions et aux relâchements. En son absence, les fibres ne sont plus protégées, on observe dans les muscles des cellules musculaires en dégénérescence et des nouvelles cellules qui témoignent d'une régénération tendant à contrebalancer le phénomène (Batchelor and Winder 2006). A terme, la régénération est insuffisante et les fibres sont remplacées par du tissus adipeux.
Sur le plan thérapeutique, de grands espoirs reposent actuellement sur la technique du saut d'exon (Cirak, Arechavala-Gomeza et al.; Lu, Yokota et al.). En effet, la BMD, qui mène à un phénotype moins grave, est également due à une ou plusieurs mutations dans le gène codant pour la dystrophine mais les domaines fondamentaux de la protéine sont conservés :
- un domaine N-terminal de liaison aux filaments d'actine,
- un domaine C-terminal riche en cystéines qui se lie au complexe DAPC.
Pour les patients DMD, il est donc possible d'obtenir un phénotype Becker en excluant les exons porteurs de mutations non-sens au sein des AR messagers (ARNm) et ainsi rétablir le cadre de lecture ouvert. La protéine produite, plus courte, est alors partiellement fonctionnelle. Cette stratégie est actuellement testée via plusieurs essais cliniques. Une surveillance médicale régulière, pluridisciplinaire, permet d'évaluer l'évolution de la pathologie et de proposer une prise en charge permettant d'améliorer la vie des patients. Il s'agit de prévention des rétractions, d'apport d'aides techniques, kinésithérapie, surveillance cardiaque, orthopédie et aide respiratoire. Le suivi diagnostique est réalisé entre autre par l'évaluation des fonctions motrices, par des biopsies musculaires ou par le dosage d'une enzyme sécrétée dans la circulation, la créatine kinase (Bushby, Finkel et al).
L'analyse de biopsie musculaire permet d'observer les fibres lésées, des fibres plus petites témoignant de la régénération musculaire, ainsi que des zones de nécrose remplacées par du tissu adipeux. Cette méthode a pour inconvénient d'être très invasive pour le patient.
Une autre méthode consiste à doser la créatine kinase (CK) dans le sang. Cette enzyme est liée au métabolisme énergétique présent dans plusieurs types de cellules. L'augmentation de sa concentration dans le sang témoigne de l'état de dégradation des fibres musculaires. Cependant, ce biomarqueur n'est pas totalement fiable car son niveau dépend également de stress comme l'activité physique (Nicholson, Morgan et al. 1986). Il existe d'autres enzymes telles que l'aldolase ou la lactate déshydrogénase mais, comme pour la CK, leur abondance n'est pas uniquement dépendante de l'état pathologique (Lott and Landesman 1984). Par conséquent, il apparaît nécessaire d'identifier de nouveaux biomarqueurs plus fiables dans le cadre de la dystrophie musculaire de Duchenne, marqueurs qui pourraient être dosés à partir de prélèvements non invasifs, comme le prélèvement d'urine.
Les micro AR (ou miARN) sont des bio marqueurs prometteurs. Ils sont exprimés dans tous les tissus de l'organisme et notamment dans le muscle squelettique. On sait également qu'ils existent à l'état « circulant » dans tous les fluides biologiques (Weber, Baxter et al.). Des travaux récents de la littérature ont montré qu'il existait une signature spécifique de la myopathie de Duchenne dans le muscle (Cacchiarelli, Martone et al.; Greco, De Simone et al. 2009) et dans le sérum (Cacchiarelli, Legnini et al.).
A ce jour, aucune étude n'a montré l'utilisation potentielle des miARN comme marqueurs de dystrophies musculaires dans l'urine. Les inventeurs ont étudié le profil de présence de miARN dans l'urine de patients atteints d'une dystrophie musculaire afin d'identifier une signature spécifique de ce type de pathologies. Par ailleurs, les inventeurs ont également recherché de nouveaux marqueurs circulants des dystrophie musculaires.
RESUME DE L'INVENTION
Les inventeurs ont notamment étudié des échantillons d'urine de patients DMD afin de déterminer si des miARN spécifiques de cette pathologie pouvaient être identifiés. Ces travaux ont permis de mettre en évidence une signature spécifique relative à l'abondance de certains miARN dans l'urine de patients DMD par rapport à l'urine de donneurs sains. La constatation d'une telle variation de l'expression d'un ou plusieurs miARN chez un individu malade par rapport à un individu sain trouve une application dans le domaine du diagnostic. La présente invention se rapporte ainsi à l'utilisation d'au moins un miARN choisi parmi les miARN du tableau 1, pour la mise en œuvre d'un procédé de diagnostic d'une dystrophie musculaire. Elle concerne par ailleurs l'utilisation d'un ou plusieurs desdits miARN pour l'évaluation du risque de développer ou présenter une dystrophie musculaire.
Tableau 1;
miARN urinaire séquence seq id# hsa-let-7a UGAGGUAGUAGGUUGUAUAGUU 1 hsa-let-7b UGAGGUAGUAGGUUGUGUGGUU 2 hsa-let-7c UGAGGUAGUAGGUUGUAUGGUU 3 hsa-let-7d AGAGGUAGUAGGUUGCAUAGUU 4 hsa-let-7e UGAGGUAGGAGGUUGUAUAGUU 5 hsa-let-7f UGAGGUAGUAGAUUGUAUAGUU 6 hsa-let-7g UGAGGUAGUAGUUUGUACAGUU 7 hsa-miR-1244 AAGUAGUUGGUUUGUAUGAGAUGGUU 8 hsa-miR-139-5p UCUACAGUGCACGUGUCUCCAGU 9 hsa-miR-151-5p UCGAGGAGCUCACAGUCUAGU 10 hsa-miR-155 UUAAUGCUAAUCGUGAUAGGGGU 11 hsa-miR-15a UAGCAGCACAUAAUGGUUUGUG 12 hsa-miR-15b UAGCAGCACAUCAUGGUUUACA 13 hsa-miR-182 UUUGGCAAUGGUAGAACUCACACU 14 hsa-miR-183 UAUGGCACUGGUAGAAUUCACU 15 hsa-miR-192* CUGCCAAUUCCAUAGGUCACAG 16 s a-miR- 193 a-3 p AACUGGCCUACAAAGUCCCAGU 17 hsa-miR-196b UAGGUAGUUUCCUGUUGUUGGG 18 hsa-miR-198 GGUCCAGAGGGGAGAUAGGUUC 19 hsa-miR-200b* CAUCUUACUGGGCAGCAUUGGA 20 hsa-miR-206 UGGAAUGUAAGGAAGUGUGUGG 21 hsa-miR-208 AUAAGACGAGCAAAAAGCUUGU 22 hsa-miR-214 UGCCUGUCUACACUUGCUGUGC 23 hsa-miR-216b AAAUCUCUGCAGGCAAAUGUGA 24 hsa-miR-220 CCACACCGUAUCUGACACUUU 25 hsa-miR-224 CAAGUCACUAGUGGUUCCGUU 26 hsa-miR-23a AUCACAUUGCCAGGGAUUUCC 27 hsa-miR-23b AUCACAUUGCCAGGGAUUACC 28 hsa-miR-26b UUCAAGUAAUUCAGGAUAGGU 29 hsa-miR-28-5p AAGGAGCUCACAGUCUAUUGAG 30 hsa-miR-30d UGUAAACAUCCCCGACUGGAAG 31 hsa-miR-30e-3 UGUAAACAUCCUUGACUGGAAG 32 hsa-miR-328 CUGGCCCUCUCUGCCCUUCCGU 33 hsa-miR-335 UCAAGAGCAAUAACGAAAAAUGU 34 hsa-miR-33a* CAAUGUUUCCACAGUGCAUCAC 35 hsa-miR-346 UGUCUGCCCGCAUGCCUGCCUCU 36 hsa-miR-34c-5p AGGCAGUGUAGUUAGCUGAUUGC 37 hsa-miR-373 ACUCAAAAUGGGGGCGCUUUCC 38 hsa-miR-376c GGUGGAUAUUCCUUCUAUGUU 39 hsa-miR-381 AGCGAGGUUGCCCUUUGUAUAU 40 hsa-miR-410 AAUAUAACACAGAUGGCCUGU 41 hsa-miR-412 ACUUCACCUGGUCCACUAGCCGU 42 hsa-miR-423-5p UGAGGGGCAGAGAGCGAGACUUU 43 hsa-miR-433 AUCAUGAUGGGCUCCUCGGUGU 44 hsa-miR-484 UCAGGCUCAGUCCCCUCCCGAU 45 hsa-miR-487b AAUCGUACAGGGUCAUCCACUU 46 hsa-miR-490-3p CAACCUGGAGGACUCCAUGCUG 47 hsa-miR-492 AGGACCUGCGGGACAAGAUUCUU 48 hsa-miR-493 UUGUACAUGGUAGGCUUUCAUU 49 hsa-miR-494 UGAAACAUACACGGGAAACCUC 50 hsa-miR-502-3p AAUGCACCUGGGCAAGGAUUCA 51 hsa-miR-505* GGGAGCCAGGAAGUAUUGAUGU 52 hsa-miR-511 GUGUCUUUUGCUCUGCAGUCA 53 hsa-miR-517b AUCGUGCAUCCCUUUAGAGUGU 54 hsa-miR-518a-3p GAAAGCGCUUCCCUUUGCUGGA 55 hsa-miR-518b CAAAGCGCUCCCCUUUAGAGGU 56 hsa-miR- 18e AAAGCGCUUCCCUUCAGAGUG 57 hsa-miR-518f GAAAGCGCUUCUCUUUAGAGG 58 s a-miR- 520 a-3 p AAAGUGCUUCCCUUUGGACUGU 59 hsa-miR-520g ACAAAGUGCUUCCCUUUAGAGUGU 60 hsa-miR-521 AACGCACUUCCCUUUAGAGUGU 61 hsa-miR-523 GAACGCGCUUCCCUAUAGAGGGU 62 hsa-miR-548b-5p AAAAGUAAUUGUGGUUUUGGCC 63 sa-miR-548c-5p AAAAGUAAUUGCGGUUUUUGCC 64 sa-miR-548d-5p AAAAGUAAUUGUGGUUUUUGCC 65 hsa-miR-590-3p UAAUUUUAUGUAUAAGCUAGU 66 hsa-miR-593 UGUCUCUGCUGGGGUUUCU 67 hsa-miR-597 UGUGUCACUCGAUGACCACUGU 68 hsa-miR-628-3p UCUAGUAAGAGUGGCAGUCGA 69 hsa-miR-650 AGGAGGCAGCGCUCUCAGGAC 70 hsa-miR-657 GGCAGGUUCUCACCCUCUCUAGG 71 hsa-miR-659 CUUGGUUCAGGGAGGGUCCCCA 72 hsa-miR-668 UGUCACUCGGCUCGGCCCACUAC 73 hsa-miR-720 UCUCGCUGGGGCCUCCA 74 hsa-miR-874 CUGCCCUGGCCCGAGGGACCGA 75 hsa-miR-886-3p CGCGGGUGCUUACUGACCCUU 76 hsa-miR-942 UCUUCUCUGUUUUGGCCAUGUG 77
L'invention concerne plus spécifiquement un procédé pour le diagnostic d'une dystrophie musculaire ou d'évaluation du risque de développer ou présenter une dystrophie musculaire chez un sujet, comprenant la mesure du niveau d'expression d'au moins un miARN dans un échantillon de liquide corporel (par exemple un échantillon d'urine) dudit sujet. L'invention peut notamment comprendre la comparaison dudit niveau d'expression mesuré dans ledit échantillon à un niveau obtenu dans un échantillon de référence sain, une différence entre le niveau d'expression par rapport au niveau de référence étant indicative d'une dystrophie musculaire chez le sujet.
L'invention concerne également un procédé pour le diagnostic d'une dystrophie musculaire ou pour l'évaluation du risque de développer ou présenter une dystrophie musculaire, comprenant la détermination dans un échantillon de liquide corporel (par exemple un échantillon d'urine) d'un sujet de la présence ou du niveau d'expression d'au moins un miARN choisi dans le groupe constitué des miARN listés dans le tableau 1.
La présente invention se rapporte notamment à un procédé de diagnostic d'une dystrophie musculaire, en particulier de la dystrophie musculaire de Duchenne, comprenant la comparaison:
a) du niveau d'expression d'au moins un miARN dans un échantillon de liquide corporel (e.g. d'urine) d'un sujet (échantillon test), le miARN étant choisi dans le groupe constitué des miARN du tableau 1 , et b) du niveau d'expression dudit miARN dans un échantillon sain de référence, une différence statistiquement significative entre le niveau d'expression dans l'échantillon test par rapport à l'échantillon de référence étant indicative d'une dystrophie musculaire chez le sujet.
Selon un aspect particulier, l'invention se rapporte à un procédé de diagnostic d'une dystrophie musculaire comprenant les étapes suivantes:
- mesure du niveau d'expression d'au moins un miARN choisi parmi les miARN du tableau 1, dans un échantillon de liquide corporel (en particulier d'urine) provenant d'un sujet à tester (par exemple un sujet suspecté de présenter une dystrophie musculaire); et
- la comparaison:
- entre le niveau d'expression d'au moins un desdits miARN dans ledit échantillon et le niveau d'expression dudit miARN dans un échantillon sain de référence, ou
- entre le niveau d'expression d'au moins un premier desdits miARN dans l'échantillon provenant d'un patient suspecté de présenter une dystrophie musculaire et le niveau d'expression dudit miARN dans un échantillon de référence provenant d'un patient présentant une dystrophie musculaire, en particulier une DMD.
Ainsi, la comparaison des niveaux d'expression des miARN peut être réalisée entre un échantillon provenant d'un patient suspecté de présenter une dystrophie musculaire et un échantillon sain de référence, ou un échantillon de référence provenant d'un patient présentant une dystrophie musculaire.
L'existence dans l'urine de miARN spécifiques d'une dystrophie musculaire, et en particulier de la DMD, n'a jamais été rapportée par des publications antérieures. Par ailleurs, les miARN suivants n'ont jamais été rapportés comme présents dans un liquide corporel et comme indicatifs d'une dystrophie musculaire: let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR- 523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR- 720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511 , miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p. Ainsi, selon un mode particulier de réalisation, le procédé selon l'invention comprend la mesure du niveau d'au moins un miARN choisi dans le groupe constitué des miARN listés dans la phrase précédente.
Selon un autre mode particulier de réalisation, le procédé selon l'invention comprend la mesure du niveau dans un échantillon d'urine d'un sujet d'au moins un miARN choisi dans le groupe constitué de let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR- 590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR- 410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR- 346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR- 593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28- 5p, miR-30d et miR-30e-3p, la mesure d'une différence du niveau dudit miARN dans l'échantillon du sujet par rapport à l'échantillon de référence sain étant indicative d'une possible dystrophie musculaire.
L'invention concerne également un procédé de suivi de l'évolution d'une dystrophie musculaire, et un procédé pour l'évaluation de l'efficacité d'un traitement thérapeutique d'une dystrophie musculaire. Dans ce cas, le procédé comprend la mesure du niveau d'expression d'au moins l'un des miARN mentionnés ci-dessus dans un second échantillon de liquide corporel (notamment d'urine) d'un sujet, ce niveau dans l'échantillon du sujet étant comparé au niveau dudit miARN dans un premier échantillon de référence qui correspond à un échantillon prélevé antérieurement sur le même sujet. Dans le cas du suivi de l'efficacité d'un traitement, le premier échantillon pourra avoir été prélevé avant l'administration du traitement thérapeutique au sujet, et le second échantillon sera prélevé après administration du traitement thérapeutique (par exemple plusieurs jours/semaines/mois après administration du traitement thérapeutique). Alternativement, les premier et second échantillons peuvent être prélevés tous les deux après administration du traitement thérapeutique (par exemple, le premier échantillon est prélevé après traitement, le même jour que ce traitement, ou plusieurs jours/semaines/mois après le traitement, et le second échantillon est prélevé plusieurs jours/semaines/mois après le premier échantillon).
L'invention concerne par ailleurs une trousse et un support multipuits utiles pour le diagnostic d'une dystrophie musculaire.
DESCRIPTION DETAILLEE DE L'INVENTION
Les "microARN" (ou miARN) sont des ARN simple brin non codants d'environ 17 à 26 nucléotides de long, qui régulent l'expression génique en réprimant la traduction de leur ARNm cible. Les miARN qui ont été identifiés sont enregistrés dans la base de données miRBase, 14eme version (http://microarn.saner.ac.uk).
Dans le cadre de l'invention, un "échantillon de référence", lorsqu'il est fait mention d'un "échantillon sain", correspond à un échantillon obtenu à partir d'un ou plusieurs sujets, de préférence deux ou plus, qui ne souffrent pas de dystrophie musculaire. L'échantillon de référence peut également correspondre à un échantillon obtenu à partir d'un ou plusieurs patients souffrant d'une dystrophie musculaire. Les niveaux d'expression de référence peuvent être déterminés en mesurant le niveau d'expression des miARN à explorer dans un ou plusieurs sujets. Ces niveaux de référence peuvent également être ajustés en fonction de populations de sujets spécifiques. Dans un mode préféré de réalisation, l'échantillon de référence est obtenu à partir d'un pool de sujets sains. Le profil d'expression des miARN dans l'échantillon de référence peut, de préférence, être généré à partir d'une population de deux ou plus de deux sujets. Par exemple, la population peut comprendre 2, 4, 5, 10, 15, 20, 30, 40, 50 sujets, ou plus. Dans le cadre de méthodes pour le suivi d'une dystrophie musculaire ou pour le suivi de l'efficacité d'un traitement, l'échantillon de référence est un échantillon prélevé sur le sujet qui sera suivi, mais avant que le suivi ait débuté.
Par "dystrophie musculaire", on désigne notamment la dystrophie musculaire de Duchenne, la dystrophie musculaire de Becker, les dystrophies musculaires des ceintures telles les alpha- et gamma-sarcoglycanopathies. L'invention se rapporte plus particulièrement à l'étude d'une dystrophie musculaire de Duchenne ou d'une dystrophie musculaire de Becker, plus particulièrement de Duchenne. Le terme "liquide corporel" ou "fluide biologique" se réfère au liquide corporel d'un sujet, notamment d'un sujet humain, c'est-a-dire tout liquide prélevé sur un sujet, tel que le sérum, le plasma, le sang total, l'urine, le liquide céphalo-rachidien ou encore la salive. Selon un mode préféré de réalisation, le liquide corporel utilisé dans la présente invention est un échantillon d'urine.
On entend par "sujet" un mammifère, humain ou non humain, de préférence humain. Le sujet peut présenter une prédisposition pour une dystrophie musculaire (révélée par exemple par analyse génétique, ou une suspicion pouvant résulter d'antécédents familiaux) ou souffrir d'une dystrophie musculaire déclarée. L'invention peut également être appliquée en dépistage, le sujet ne présentant aucun symptôme ou prédisposition connue. En particulier, la méthode selon l'invention peut être appliquée au dépistage de masse chez les jeunes enfants avant l'âge classique de déclaration des symptômes (0-5 ans). L'invention peut également être appliquée au suivi d'animaux modèles de la maladie, notamment de chiens ou de souris modèles et plus particulièrement aux chien GRMD (Golden Retriever Muscular Dystrophy), LMD (Labrador Muscular Dystrophy) ou CXMDj (Canine X-linked Muscular Dystrophy in Japan), lors de la mise au point préclinique de traitements.
Le terme "niveau d'expression" d'un miARN dans un échantillon correspond à une valeur de mesure propre à un miARN, mais exprimé soit en unité arbitraire, soit en unité de masse, de molécules ou de concentration, ou en valeur normalisée par rapport à une autre mesure, en particulier en valeur normalisée par rapport aux quantités du même miARN dans un échantillon de référence (sain ou d'un patient atteint d'une dystrophie musculaire). Le niveau d'expression des miARN peut être mesuré par toute méthode conventionnelle, telle que
- l'hybridation sur "puces à ADN",
- des méthodes de séquençage à haut débit d'un grand nombre de miARN individualisés,
- la PCR quantitative en temps réel ou digitale,
- le Northern blot,
- ou encore par toute autre méthode spécifique des miARN.
Le niveau d'expression des miARN peut être mesuré par la technique de la "puce à ADN". La technique de la "puce à ADN" est bien connue de l'homme du métier. Il s'agit de l'hybridation de miARN extraits sur un support solide composé d'une membrane nylon, d'une surface de silicium ou de verre, éventuellement de nano-billes ou particules, comportant des oligonucléotides de séquences connues fixés sur le support ou adhérents à celui-ci. La complémentarité des oligonucléotides fixés avec les séquences des microARN ou de leurs produits de conversion (produits d'amplification, cDNA, ARN ou cARN) permet de générer un signal (fluorescence, luminescence, radioactivité, signal électrique...) selon les techniques de marquage employées, au niveau des oligonucléotides immobilisés sur les supports (puces à ADN). Ce signal est détecté par un équipement spécifique et une valeur d'intensité de ce signal propre pour chaque miARN est ainsi enregistrée. Plusieurs types de puces destinées à la détection des miARN sont déjà mis sur le marché, comme par exemple les GeneChip(R) miARN commercialisés par Affymetrix, miRcury arrays par Exiqon, miRXplore microarrays par Miltenyi.
Dans le cas de l'analyse haut débit par séquençage, les miARN sont extraits et purifiés d'un échantillon, isolés les uns des autres par des méthodes proposées par les fournisseurs d'équipements de séquençage tels que Roche, Invitrogen. Ce genre d'analyse consiste à individualiser les molécules des différents microARNs, de procéder à une étape d'amplification et de séquencer les produits (" clones d'acides nucléiques ") ainsi générés. La réalisation de très nombreuses séquences pour identifier chacun de ces " clones " (plusieurs milliers) permet de générer une liste des microARNs présents dans un échantillon et de quantifier chacun de ces miARN en comptant tout simplement combien de fois chaque séquence est retrouvée dans la liste détaillée.
Dans un mode de réalisation préférée de l'invention, les dosages de miARN sont réalisés par PCR quantitative (PCR en temps réel ou PCR digitale). La PCR en temps réel permet d'obtenir des valeurs, appelées Ct, correspondant au nombre de cycles à partir duquel la fluorescence émise dépasse un certain seuil, le seuil étant fixé par l'utilisateur en début de phase exponentielle. Cette valeur de Ct est proportionnelle à la quantité de cDNA (provenant de la transcription inverse des miARN en cDNA par la Reverse Transcriptase) présent initialement dans l'échantillon. En l'absence de gamme-étalon spécifique pour chaque cDNA, seule une quantification relative entre échantillons est possible. Dans un premier temps, afin de pouvoir comparer le contingent de chaque miARN pris individuellement et présent dans les échantillons, les valeurs de dosage pour chaque miARN sont normalisées avec les données obtenues pour un ARN non-codant. Il est également possible de normaliser l'expression d'un miARN par rapport au Ct moyen de tous les miARNs d'une plaque de PCR (plaques TLDA à 384 puits, comprenant un miARN différent détecté par puits - cf les exemples pour plus de détails). Ainsi, les résultats peuvent être normalisés par rapport à plusieurs miARN références dont l'abondance varie peu dans l'urine. La PCR digitale permet, à partir d'un échantillon de départ de déterminer le nombre exact de copies d'un miARN qu'il contient, suite soit à une dilution de la réaction de PCR en un nombre important de micropuits (technologie PCR digitale Life Technologies ou Roche) soit à une dispersion de la réaction de PCR en microgouttes d'huile (technologie Droplet, Bio-Rad). La quantification relative d'un miARN entre 2 types d'échantillons est obtenue ensuite grâce par exemple aux logiciels SDS2.3, RQ manager (Applied Biosystems), et par la méthode de delta delta de Ct sur feuille de calcul Miscrosoft Excel ou tout autre logiciel permettant un calcul complexe. Lorsque les niveaux d'expression des miARN sont analysés par hybridation sur "puces à ADN", ou par Northern blot, ou par séquençage, ils peuvent être exprimés par la formule I :
(I) Quantité de miARNx = intensité du signal de détection pour miARNx Où "intensité de signal" signifie quantité de fluorescence, de radioactité ou de luminescence enregistrée sur les "puces à ADN" par le détecteur adapté, ou nombre de séquences identiques détectées par l'analyse à haut débit par séquençage. Les quantités sont exprimées en unités arbitraires.
Les quantités de miARN peuvent être normalisées par rapport à un autre dosage, notamment un ARN (ARNnorm) dont la concentration ne varie pas dans les différents types d'échantillons analysés. Cette normalisation permet de garantir que l'on compare les niveaux d'expression des miARN détectables dans des extraits dont les concentrations en ARN sont similaires entre ces différents extraits purifiés. Dans ce cas, le niveau d'expression normalisé pour un miARN dans un échantillon est exprimé par la formule II :
(II) Quantité de miARNx normalisée = intensité du signal de détection pour miARNx / intensité du signal pour ARNnorm Lorsque les niveaux d'expression des miARN sont analysés par la PCR en temps réel, ils peuvent être exprimés par la formule III, qui définit la quantité de miARN présente dans le milieu réactionnel de dosage lorsque le nombre de cycles d'amplification est égal à Ct (Quantité de miARNx à Ct) :
(III) Quantité de miARNx à Ct = Quantité de miARN à tO x Efficacité"0.
Où "Quantité de miARN à tO" désigne la quantité de miARN, ou son équivalent en cDNA, au moment où la réaction de dosage par amplification PCR est initiée. L'expression "efficacité" dans la formule (III) signifie la valeur de l'efficacité de PCR (fixée arbitrairement à 2 dans le cas de calculs par la méthode delta delta Ct). Cette valeur dépend de divers paramètres expérimentaux, et notamment de l'appareil effectuant la PCR en temps réel mis en œuvre. Une fois que cette valeur est mesurée pour un protocole particulier et une machine de PCR configurée, il n'est plus nécessaire de mesurer cette valeur chaque fois avant le calcul, sauf si le protocole expérimental et/ou la condition de fonctionnement de la machine ont été modifiés pour l'expérience donnée.
Dans un mode particulier de réalisation, le niveau d'expression des miARN est dosé par PCR quantitative en temps réel.
Les tableaux 2 et 3 ci-dessous décrivent le profil d'expression de miARN dont l'expression est modifiée chez des patients atteints d'une DMD, par rapport au profil d'expression observé chez des sujets sains. Les inventeurs ayant pu mettre en évidence une différence d'expression entre les patients selon leur âge, les informations sont classées selon ce critère.
Tableau 2: profil d'expression des miARN indicatifs chez des patients/sujets de 3-8 ans
Expression chez les patients par rapport aux
miARN urinaire sujets sains
let-7a Augmentation
let-7b Augmentation
let-7c Augmentation
let-7d Augmentation
let-7e Augmentation
let-7f Augmentation
let-7g Augmentation miR-151-5p Augmentation miR-15a Augmentation miR-15b Augmentation miR-182 Augmentation miR-183 Augmentation miR-192* Augmentation miR-196b Augmentation miR-200b* Augmentation miR-206 Augmentation miR-224 Augmentation miR-23b Augmentation miR-26b Augmentation miR-28-5p Augmentation miR-30d Augmentation miR-30e-3p Augmentation miR-335 Augmentation miR-33a* Augmentation miR-487b Augmentation miR-490-3p Augmentation miR-492 Augmentation miR-502-3p Augmentation miR-505* Augmentation miR-520a-3p Augmentation miR-548d-5p Augmentation miR-590-3p Augmentation miR-628-3p Augmentation miR-659 Augmentation miR-942 Augmentation miR-1244 Diminution miR-328 Diminution miR-484 Diminution miR-494 Diminution miR-593 Diminution miR-650 Diminution miR-657 Diminution miR-668 Diminution miR-720 Diminution miR-886-3p Diminution Tableau 3: profil d'expression des miARN indicatifs chez des patients/sujets de 13-18 ans
Expression chez les patients par rapport aux
miARN urinaire sujets sains
mi -183 Augmentation
miR-193a-3p Augmentation
miR-198 Augmentation
miR-208 Augmentation
miR-214 Augmentation
miR-220 Augmentation
miR-328 Augmentation
miR-346 Augmentation
miR-34c-5p Augmentation
miR-373 Augmentation
miR-381 Augmentation
miR-410 Augmentation
miR-433 Augmentation
miR-490-3p Augmentation
miR-493 Augmentation
miR-494 Augmentation
miR-511 Augmentation
miR-517b Augmentation
miR-518a-3p Augmentation
miR-518b Augmentation
miR-518e Augmentation
miR-518f Augmentation
miR-520a-3p Augmentation
miR-520g Augmentation
miR-521 Augmentation
miR-523 Augmentation
miR-548b-5p Augmentation
miR-548c-5p Augmentation
miR-548d-5p Augmentation
miR-597 Augmentation
let-7b Diminution
let-7c Diminution
let-7e Diminution
let-7f Diminution
miR-139-5p Diminution
miR-155 Diminution
miR-15a Diminution
miR-216b Diminution mi -23a Diminution
miR-376c Diminution
miR-412 Diminution
miR-423-5p Diminution
miR-492 Diminution
miR-502-3p Diminution
miR-874 Diminution
Légende des tableaux 2 et 3 augmentation: expression supérieure chez les patients par rapport aux sujets sains; diminution: expression inférieure chez les patients par rapport aux sujets sains.
Les miARN listés ci-dessus varient tous dans les échantillons de patients par rapport aux sujets sains. L'invention concerne donc un procédé (a) de diagnostic d'une dystrophie musculaire, (b) de suivi de l'évolution d'une dystrophie musculaire, et (c) d'évaluation de l'efficacité d'un traitement thérapeutique d'une dystrophie musculaire, comprenant la détermination d'une variation du niveau d'expression d'un ou plusieurs de ces miARN dans un échantillon de fluide corporel d'un sujet par rapport au niveau d'expression dans un échantillon de référence.
Dans un mode particulier de réalisation, une première catégorie de miARN correspond à ceux qui sont sur-représentés dans l'urine de patients DMD, (désignés par la catégorie "augmentation" dans les tableaux 2 et 3). Si un ou plusieurs miARN de cette première catégorie sont exploités dans une méthode selon l'invention:
- une expression supérieure chez le sujet testé par rapport à une référence obtenue dans un échantillon d'un sujet sain sera indicative d'une dystrophie musculaire (méthode de diagnostic);
- une expression supérieure dans un échantillon du sujet testé prélevé à un temps T2 par rapport à un échantillon du même sujet testé prélevé à un temps Tl (Tl précédant T2 chronologiquement) sera indicative d'une progression de la maladie (méthode de pronostic, ou méthode pour le suivi d'une dystrophie musculaire);
- dans le cadre d'un traitement d'une dystrophie musculaire chez un patient, une expression inférieure dans un échantillon du sujet testé prélevé à un temps T2 par rapport à un échantillon du même sujet testé prélevé à un temps Tl (Tl précédant T2 chronologiquement) sera indicative d'un traitement efficace de la maladie (méthode de suivi de l'efficacité d'un traitement d'une dystrophie musculaire).
Une deuxième catégorie de miARN sont sous représentés dans l'urine de patients DMD, par rapport au sujets sains (désignés dans la catégorie "diminution" dans les tableaux 2 et 3).. Si un ou plusieurs miARN de cette deuxième catégorie sont exploités dans une méthode selon l'invention:
- une expression inférieure chez le sujet testé par rapport à une référence obtenue dans un échantillon d'un sujet sain sera indicative d'une dystrophie musculaire (méthode de diagnostic);
- une expression inférieure dans un échantillon du sujet testé prélevé à un temps T2 par rapport à un échantillon du même sujet testé prélevé à un temps Tl (Tl précédant T2 chronologiquement) sera indicative d'une progression de la maladie (méthode de pronostic, ou méthode pour le suivi d'une dystrophie musculaire);
- dans le cadre d'un traitement d'une dystrophie musculaire chez un patient, une expression supérieure dans un échantillon du sujet testé prélevé à un temps T2 par rapport à un échantillon du même sujet testé prélevé à un temps Tl (Tl précédant T2 chronologiquement) sera indicative d'un traitement efficace de la maladie (méthode de suivi de l'efficacité d'un traitement d'une dystrophie musculaire).
Par "niveau d'expression supérieur" ou "niveau d'expression inférieur", on entend un niveau d'expression dont la variation est statistiquement significative, selon des procédures bien connues de l'homme du métier. La description faite ci-dessus des deux catégories de miARN identifiées et leur exploitation dans une méthode de diagnostic selon l'invention met en œuvre un échantillon de référence provenant d'un sujet sain. Bien entendu, les variations d'expression recherchées seront inversées lorsque l'échantillon de référence proviendra d'un patient malade atteint d'une dystrophie musculaire.
Les procédés selon l'invention comprennent notamment la détection d'au moins un miARN choisi dans le groupe constitué des miARN des tableaux 2 et 3.
Selon une première variante de réalisation, les miARN détectés sont choisis parmi les miARN du tableau 4. Tableau 4
Figure imgf000019_0001
Selon une seconde variante de réalisation, les miARN détectés sont choisis parmi les miARN du tableau 5.
Tableau 5
let-7f miR-494 let-7c miR-376c
let-7a miR-668 let-7e miR-412
miR-548d-5p miR-208 miR-15b miR-433
miR-183 miR-521 miR-487b miR-206
miR-490-3p miR-597 miR-410 miR-335
miR-520a-3p miR-874 miR-139-5p miR-33a*
miR-590-3p miR-224 miR-216b miR-193a-3p
miR-15a miR-182 miR-423-5p miR-381 miR-1244 miR-23b miR-484 miR-34c-5p |
miR-328 miR-492 miR-23a
Selon une troisième variante de réalisation, les miARN détectés sont choisis parmi les miARN du tableau 6.
Tableau 6
Figure imgf000020_0001
Selon un mode particulier de réalisation, l'échantillon de liquide corporel, en particulier un échantillon d'urine, provient d'un sujet humain et le ou les miARN détectés sont choisis dans le groupe constitué des miARN du tableau 2 et 3, ou parmi les miARN du tableau 2 ou 3 et figurant également dans l'un des tableaux 4, 5 et 6.
Le diagnostic (ou l'évaluation du risque), le pronostic ou l'efficacité du traitement pourra par ailleurs être confirmé dans des procédures suivant les procédés selon l'invention, comprenant des étapes connues d'évaluation d'une dystrophie musculaire (par exemple, détermination du niveau de créatine kinase, recherche de marqueurs spécifiques dans des biopsies musculaires, analyse génomique, etc.) Ainsi, un mode particulier de réalisation de la méthode de diagnostic selon l'invention telle que décrite ci-dessus comprend en outre une étape de confirmation du diagnostic par utilisation d'une méthode alternative d'évaluation d'une dystrophie musculaire.
L'invention concerne également une trousse de diagnostic d'une dystrophie musculaire, cette trousse comprenant des moyens de détection ou de dosage d'au moins un miARN choisi parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR- 335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let- 7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p. Selon un mode particulier de réalisation, la trousse comprend les moyens de détection ou de dosage de tous les miARN de cette liste. Selon un mode particulier de réalisation, la trousse comprend des moyens de détection ou de dosage d'un ou plusieurs miARN (en particulier tous) choisis parmi les miARN listés dans le tableau 4, le tableau 5 ou le tableau 6. Selon un mode spécifique de réalisation, les moyens de détection ou de dosage dans la trousse consistent en des moyens de détection ou de dosage d'un ou plusieurs des miARN des tableaux 2 et 3, ou d'un ou plusieurs des miARN listés dans chacun des tableaux 4, 5 et 6. Selon un mode particulier de réalisation, les miARN détectés ou dosés grâce au kit consistent en l'ensemble des miARN du tableau 4, plus particulièrement en l'ensemble des miARN du tableau 5, et encore plus particulièrement en l'ensemble des miARN du tableau 6.
A titre illustratif, la trousse selon l'invention peut être une trousse pour la réalisation d'une PCR en temps réel et également contenir une reverse transcriptase, une ADN polymérase, un ou plusieurs tampon(s) adaptés aux réactions à mettre en œuvre, des sondes spécifiques des régions amplifiées (par exemple sondes Taqman®), ou des marqueurs spécifiques de l'ADN double brin comme le SYBR Green. L'invention concerne également un ensemble de séquences nucléotidiques, cet ensemble comprenant des paires d'amorces utilisables pour amplifier spécifiquement au moins deux miARN choisi parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR- 590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR- 410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR- 346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR- 593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28- 5p, miR-30d et miR-30e-3 dans une expérience de PCR. Selon une variante, les séquences nucléotidiques permettent l'amplification d'un ou plusieurs miARN de chacun des tableaux 4, 5 et 6. Selon un mode particulier de réalisation, l'ensemble de séquences nucléotidiques comprend des paires d'amorces permettant l'amplification spécifique de tous les miARN listés ci-avant. Selon une variante de réalisation, l'ensemble de séquences nucléotidiques peut également comprendre une séquence nucléotidique utilisable comme sonde marquée pour la détection et quantification des fragments amplifiés (par exemple une sonde utilisable dans le système de PCR en temps réel TaqMan).
L'invention concerne également un ensemble de séquences nucléotidiques comprenant un ou plusieurs oligonucléotides marqués utilisables pour la détection spécifique d'au moins deux miARN du tableau 1, par exemple dans une expérience de Northern Blot. Dans un mode particulier de réalisation, l'ensemble de séquences contient des oligonucléotides spécifiques de chacun des miARN du tableau 1, du tableau 2, du tableau 3, du 4, du tableau 5 ou du tableau 6.
L'invention concerne également un support multipuits pour PCR, comprenant au moins deux paires d'amorces PCR spécifiques chacune d'un miARN différent du tableau 1, du tableau 2, du tableau 3, du 4, du tableau 5 ou du tableau 6, chacune des paires d'amorce étant disposées dans un puits différent du support. Selon une variante spécifique, le support contient des paires d'amorces consistant en des amorces spécifiques d'au moins deux miARN du tableau 1, 2, 3, 4, 5 ou 6, chacune des paires d'amorces étant disposées dans un puits différent du support. Selon un mode particulier de réalisation, le support multipuits comprend des paires d'amorces spécifiques de tous les miARN du tableau 1, du tableau 2, du tableau 3, du 4, du tableau 5 ou du tableau 6, chacune de ces paires d'amorces étant disposées dans un puits différent. Selon un autre mode spécifique de réalisation, le support contient des paires d'amorces consistant en des amorces spécifiques de tous les miARN du tableau 1, 2, 3, 4, 5 ou 6, chacune des paires d'amorces étant disposées dans un puits différent du support.
La présente invention est illustrée par les figures et exemples suivants. Légende des figures
Figure 1 : (haut) nombre de miARN différents détectés par catégorie d'échantillons après profil d'expression par cartes TLDA A et B (patients 3-8ans) ou TLDA A (patients 13-18ans). (bas) Ct moyen par catégorie d'échantillon. Sains 3-8ans (5 échantillons), DMD 3-8 ans (5 échantillons), sains 13-18ans (3 échantillons), DMD 13-18ans (2 échantillons).
Figure 2 : heatmaps comprenant les abondances de chaque miARN identifié pour chaque donneur testé, et regroupement hiérarchique des donneurs selon l'expression des miARN candidats, (haut) heatmap pour les 3-8ans. (bas) heatmap pour les 13-18ans. Les heatmaps et les calculs de regroupement hiérarchique sont réalisés via le logiciel CIMminer (http://discovcr.nci.nih.gov/cimmincr/,) Figure 3 : exemple de miARN dérégulés dans l'urine de patients DMD. L'abondance de miARN est représentée en fonction du groupe de patients.
EXEMPLES
Matériel et Méthodes :
L'urine est collectée dans des récipients stériles. Dans la demi-heure qui suit, elle est centrifugée à 2000rpm pendant 5min afin d'éliminer les cellules présentes. Le surnageant est ensuite récupéré, aliquoté et congelé à -80°C.
L'étude sur la carte A est basée sur des échantillons d'urine de 4 patients DMD et 6 sujets sains âgés de 3 à 8 ans ou sur 2 patients DMD et 3 sujets sains âgés de 13 à 18 ans.
L'étude sur la carte B est basée sur des échantillons d'urine de 4 patients DMD et 5 sujets sains.
10ml d'urine sont utilisés afin d'extraire les ARN totaux contenant les microARN grâce au kit « Urine total RNA maxi kit, slurry format » de Norgen Biotek, selon le protocole du fournisseur. Les ARN sont élués dans 2 élutions successives de ΙΟΟμί. Ils sont ensuite précipités sur la nuit à -20°C en présence d'acétate de sodium, d'éthanol absolu et d'acrylamide linéaire (Ambion) selon le protocole d'Ambion. Les ARN sont ensuite resuspendus dans de l'eau sans RNAse. Un contrôle qualité des ARN est ensuite réalisé en 3 étapes : 1) dosage par l'absorbance à 260nm (Nanodrop 8000, Thermo Scientifîc) 2) électrophorèse capillaire sur puce RNA small et pico (Agilent Technologies) 3) amplification de 3 petits ARN urinaires contrôles par RT- qPCR (miR-16, miR-377*, U6). lOOng d'ARN total sont ensuite soumis à une transcription inverse multiplexe (Megaplex pools, Applied biosystems). Nous réalisons 2 transcriptions inverses à partir de 2 pools d'amorces différents : pools A et B. A eux deux, ils couvrent la détection de 762 microARN différents, ce qui représente environ la moitié des 1424 miARN humains connus (miRbase, www.mirbase.org, release 17, avril 2011). Les ADN complémentaires obtenus subissent ensuite une étape de préamplification (preAmp master mix et preAmp primer pools, Applied Biosystems) avant d'être déposés sur des plaques TLDA (Taqman Low Density Array). Cette technologie a été développée par Applied Biosystems, et consiste en la détection simultanée de 381 miARN sur plaque 384 puits par RT-qPCR. La quantité relative de chaque miARN est déterminée en normalisant par le Ct (cycle threshold) moyen de chaque échantillon (Mestdagh, Génome Biol 2009), et en utilisant un échantillon de donneur sain comme référence (méthode du ddCt). On détermine ensuite les ratios des quantités relatives de chaque miARN entre la population de donneurs sains et la population de patients DMD. Les quantités relatives sont calculées selon la méthode des delta delta de Ct. Avec dCt (miR) = Ct miR - Ct calibrateur;
ddCt (miR) = dCt (référence) - dCt (miR); et
Quantité relative (miR) = 2Adelta delta Ct (miR).
La référence correspond à la valeur moyenne obtenue pour un miR donné chez les donneurs sains. Le calibrateur correspond au Ct moyen de toute la plaque TLDA.
Résultats :
Nous avons considéré uniquement les miARN détectés avec un Ct inférieur à 35 pour un seuil de 0,1, selon le logiciel RQ manager (Applied Biosystems). Parmi les sujets 3-8 ans, en considérant uniquement le panel A des cartes TLDA utilisées, et pour chaque échantillon urinaire, nous avons détecté une moyenne de 172 miARN différents, le Ct moyen de chaque échantillon étant égal à 28,2 (figure 1). Parmi les sujets 13-18 ans, en considérant uniquement le panel A des cartes TLDA utilisées, et pour chaque échantillon urinaire, nous avons détecté une moyenne de 210 miARN différents, le Ct moyen de chaque échantillon étant égal à 27,8 (figure 1). Le panel B a uniquement été testé pour les donneurs 3-8ans et a permis de détecter une moyenne de 160 miARN supplémentaires (soit environ 330 miARN différents détectables dans l'urine des donneurs de 3-8ans). Nous observons donc une abondance et une variété assez importantes de miARN dans l'urine. Nous avons enfin déterminé la liste des miARN différemment représentés dans l'urine des patients DMD par rapport aux donneurs sains, en comparant les sujets d'âge équivalent (1 : groupe 3-8 ans; 2: groupe 13-18 ans). Les miARN sont représentés dans le tableau 7 et pour chaque miARN est indiqué son niveau de dérégulation dans l'urine des groupes 3-8ans et 13- 18 ans (facteur de différence), sa catégorie (augmenté, diminué chez les DMD par rapport aux sains), et son potentiel en tant que biomarqueurs (note sur 4). Les miARN à très haut potentiel (potentiel=4) montrent des facteurs de modification importants et/ou une dérégulation dans les 2 groupes d'âge. Les miARN à bon potentiel (potentiel=l) montrent des facteurs de différence faibles mais significatifs. Les miARN à haut potentiel ou à potentiel intermédiaires ont la note de 3 ou 2. La figure 2 représente ces résultats sous la forme de 2 heatmaps, une par groupe d'âge. A partir des données d'abondance des différents miARN urinaires sélectionnées dans le tableau 7, l'algorithme de regroupement hiérarchique utilisé (http://discover.nci.nih.gov/cimminer/) permet de séparer efficacement les donneurs en fonction de leur statut sain ou DMD. Ainsi, ce résultat montre que l'expression des miARN identifiés peut être utilisée comme signature de la pathologie DMD. La figure 3 représente des exemples de miARN dérégulés chez les patients DMD.
Tableau 7
Facteur de
différence augmente/diminue
miARN urinaire potentiel /4
(DMD / sains) chez DMD 3-8ans
3-8ans
hsa-let-7f 80000 augmente 4
hsa-let-7a 20000 augmente 4
hsa-miR-548d-5p 4000 augmente 4
hsa-miR-183 2000 augmente 4
hsa-miR-490-3p 2000 augmente 4
hsa-miR-520a-3p 1000 augmente 4
hsa-miR-590-3p 80 augmente 4
hsa-miR-15a 9 augmente 4
hsa-miR-224 8000 augmente 3
hsa-miR-182 25 augmente 3
hsa-miR-23b 8 augmente 3
hsa-miR-492 6 augmente 3
hsa-let-7c 5 augmente 3
hsa-let-7e 5 augmente 3
hsa-miR-15b 5 augmente 3
hsa-miR-206 3 augmente 3
hsa-miR-335 3 augmente 3
hsa-miR-33a* 3 augmente 3
hsa-miR-487b 3 augmente 3
hsa-miR-628-3p 12 augmente 2
hsa-miR-659 9 augmente 2
hsa-miR-505* 7 augmente 2
hsa-let-7b 5 augmente 2 hsa-let-7d 5 augmente 2 hsa-let-7g 5 augmente 2 hsa-mi -196b 5 augmente 2 hsa-miR-26b 5 augmente 2 hsa-miR-942 5 augmente 2 hsa-miR-200b* 3 augmente 2 hsa-miR-502-3p 3 augmente 2 hsa-miR-151-5p 3 augmente 1 hsa-miR-192* 3 augmente 1 hsa-miR-28-5p 3 augmente 1 hsa-miR-30d 3 augmente 1 hsa-miR-30e-3p 3 augmente 1 hsa-miR-668 -100 diminue 4 hsa-miR-1244 -20 diminue 4 hsa-miR-494 -20 diminue 4 hsa-miR-328 -10 diminue 4 hsa-miR-484 -5 diminue 3 hsa-miR-657 -17 diminue 2 hsa-miR-593 -13 diminue 2 hsa-miR-650 -12 diminue 2 hsa-miR-720 -12 diminue 2 hsa-miR-886-3p -8 diminue 2
Facteur de
différence augmente / diminue chez potentiel miARN urinaire
(DMD / sains) DMD 13-18ans /4 13-18ans
hsa-miR-521 40000 augmente 4 hsa-miR-597 30000 augmente 4 hsa-miR-520a-3p 67 augmente 4 hsa-miR-548d-5p 63 augmente 4 hsa-miR-208 54 augmente 4 hsa-miR-490-3p 20 augmente 4 hsa-miR-328 7 augmente 4 hsa-miR-494 7 augmente 4 hsa-miR-193a-3p 35 augmente 3 hsa-miR-34c-5p 26 augmente 3 hsa-miR-433 20 augmente 3 hsa-miR-381 15 augmente 3 hsa-miR-410 14 augmente 3 hsa-miR-518a-3p 173 augmente 2 hsa-miR-198 84 augmente 2 hsa-miR-511 58 augmente 2 hsa-miR-373 36 augmente 2
hsa-miR-548c-5p 29 augmente 2
hsa-miR-220 26 augmente 2
hsa-miR-346 24 augmente 2
hsa-miR-518b 24 augmente 2
hsa-miR-214 22 augmente 2
hsa-miR-520g 22 augmente 2
hsa-miR-548b-5p 21 augmente 2
hsa-miR-517b 17 augmente 2
hsa-miR-518e 17 augmente 2
hsa-miR-518f 17 augmente 2
hsa-miR-493 13 augmente 2
hsa-miR-523 12 augmente 2
hsa-miR-874 -2000 diminue 4
hsa-let-7f -171 diminue 4
hsa-miR-183 -162 diminue 4
hsa-miR-15a -16 diminue 4
hsa-miR-412 -620 diminue 3
hsa-miR-216b -533 diminue 3
hsa-miR-23a -464 diminue 3
hsa-miR-139-5p -216 diminue 3
hsa-miR-376c -128 diminue 3
hsa-miR-492 -123 diminue 3
hsa-miR-423-5p -120 diminue 3
hsa-let-7e -11 diminue 3
hsa-let-7c -10 diminue 3
has-miR-155 -17 diminue 2
hsa-let-7b -10 diminue 2
REFERENCES Batchelor, C. L. and S. J. Winder (2006). "Sparks, signais and shock absorbers: how dystrophin loss causes muscular dystrophy." Trends Cell Biol 16(4): 198-205.
Bushby, ., R. Finkel, et al. "Diagnosis and management of Duchenne muscular dystrophy, part 1 : diagnosis, and pharmacological and psychosocial management." Lancet Neurol 9(1): 77-93.
Cacchiarelli, D., I. Legnini, et al. "miRNAs as sérum biomarkers for Duchenne muscular dystrophy." EMBO Mol Med 3(5): 258-65. Cacchiarelli, D., J. Martone, et al. "MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway." Cell Metab 12(4): 341-51.
Cirak, S., V. Arechavala-Gomeza, et al. "Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study." Lancet.
Gidlof, O., P. Andersson, et al. "Cardiospecifïc microR A Plasma Levels Correlate with Troponin and Cardiac Function in Patients with ST Elévation Myocardial Infarction, Are Selectively Dépendent on Rénal Elimination, and Can Be Detected in Urine Samples." Cardiologv 118(4): 217-226.
Greco, S., M. De Simone, et al. (2009). "Common micro-RNA signature in skeletal muscle damage and régénération induced by Duchenne muscular dystrophy and acute ischemia." Faseb J 23(10): 3335-46.
Hanke, M., K. Hoefïg, et al. "A robust methodology to study urine microRNA as tumor marker: microRNA- 126 and microRNA- 182 are related to urinary bladder cancer." Urol Oncol 28(6): 655-61.
Le Rumeur, E., S. J. Winder, et al. "Dystrophin: more than just the sum of its parts." Biochim Biophvs Acta 1804(9): 1713-22.
Lott, J. A. and P. W. Landesman (1984). "The enzymology of skeletal muscle disorders." Crit Rev Clin Lab Sci 20(2): 1 3-90.
Lu, Q. L., T. Yokota, et al. "The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy." Mol Ther 19(1): 9-15.
Muntoni, F., S. Torelli, et al. (2003). "Dystrophin and mutations: one gene, several proteins, multiple phenotypes." Lancet Neurol 2(12): 731-40.
Nicholson, G. A., G. J. Morgan, et al. (1986). "The effect of aérobic exercise on sérum creatine kinase activities." Muscle Nerve 9(9): 820-4.
Wang, G., L. S. Tarn, et al. "Sérum and urinary free microRNA level in patients with systemic lupus erythematosus." Lupus 20(5): 493-500.
Weber, J. A., D. H. Baxter, et al. "The microRNA spectrum in 12 body fiuids." Clin Chem 56(11): 1733-41.
Yamada, Y., H. Enokida, et al. "MiR-96 and miR-183 détection in urine serve as potential tumor markers of urothelial carcinoma: corrélation with stage and grade, and comparison with urinary cytology." Cancer Sci 102(3): 522-9.

Claims

REVENDICATIONS
1. Procédé pour le diagnostic ou pour l'évaluation du risque de développer ou présenter une dystrophie musculaire chez un sujet, comprenant la mesure du niveau d'expression d'au moins un microARN dans un échantillon d'urine dudit sujet et la comparaison dudit niveau d'expression mesuré dans ledit échantillon d'urine à un niveau obtenu dans un échantillon de référence sain, une différence entre le niveau d"expression par rapport à l'échantillon de référence étant indicative d'une dystrophie chez le sujet.
2. Procédé selon la revendication l, dans lequel le au moins un microARN est choisi parmi les let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR- 335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let- 7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p.
3. Procédé pour le diagnostic ou pour l'évaluation du risque de développer ou présenter une dystrophie musculaire chez un sujet, comprenant la mesure du niveau d'expression dans un échantillon de liquide corporel dudit sujet d'au moins un microARN choisi parmi let-7f, let- 7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-335, miR-33a*, miR- 193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR- 196b, miR-26b, miR-942, miR-200b*, miR-523, miR-346, miR-155, miR-548b-5p, miR- 548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR-593, miR-657, miR-502-3p miR- 198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p.
4. Procédé de suivi de l'évolution d'une dystrophie musculaire comprenant la mesure du niveau d'expression d'au moins un microARN choisi parmi let-7f, let-7a, miR-548d-5p, miR- 183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR- 668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR- 23a, miR-376c, miR-412, miR-433, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c- 5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886- 3p, miR-650, miR-720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR- 373, miR-511, miR- 17b, miR-518a-3p, miR- 18b, miR-518e, miR-520g, miR-493, miR- 1 1-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p dans un second échantillon de liquide corporel d'un sujet, ce niveau dans l'échantillon du sujet étant comparé au niveau dudit microARN dans un premier échantillon de référence qui correspond à un échantillon prélevé antérieurement sur le même sujet;
l'évolution du niveau d'expression du ou des microARN choisis étant indicative d'une progression de la dystrophie musculaire.
5. Procédé pour déterminer l'efficacité d'un traitement thérapeutique d'une dystrophie musculaire chez un sujet, comprenant
a) la mesure du niveau d'expression dans un liquide corporel dudit sujet, d'un ou plusieurs microARN, moyennant quoi un niveau de référence est déterminé; puis
b) la mesure du niveau d'expression dudit au moins un microARN choisi dans l'étape a) dans un second échantillon de liquide biologique prélevé au même sujet à un temps donné après l'administration du traitement thérapeutique, moyennant quoi un niveau de test est déterminé; et
c) la comparaison des niveaux contrôle et de test, l'évolution du niveau d'expression des microARN choisis étant indicative d'un traitement efficace du sujet;
ledit ou lesdits miARN étant choisi(s) parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490- 3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-335, rniR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR- 523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR- 720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511 , miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p.
6. Procédé selon l'une quelconque des revendications 3 à 5, l'échantillon étant un échantillon d'urine.
7. Procédé pour (a) le suivi de l'évolution d'une dystrophie musculaire ou (b) déterminer l'efficacité d'un traitement thérapeutique d'une dystrophie musculaire chez un sujet, comprenant la mesure du niveau d'expression dans un échantillon d'urine dudit sujet d'au moins un microARN choisi parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR- 520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR- 487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR- 412, miR-433, miR-206, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628- 3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-51 1, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p.
8. Procédé selon l'une quelconque des revendications 1 à 7, ledit ou lesdits microARN étant choisi(s) parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590- 3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR- 874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-1 b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR- 346, miR-155, miR-548b-5p, miR-548c-5p, miR- 18f, miR-886-3p, miR-650, miR-720, miR- 593, miR-657, miR-502-3p, miR-198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR- 18b, miR-518e, miR-520g et miR-493.
9. Procédé selon l'une quelconque des revendications 1 à 8, ledit ou lesdits miARN étant choisi(s) parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-
3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR- 874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a*, miR-193a-3p, miR-381 et miR-34c-5p.
10. Procédé selon l'une quelconque des revendications 1 à 9, ledit ou lesdits miARN étant choisi(s) parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590- 3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597 et miR- 874.
11. Procédé selon l'une quelconque des revendications 1 à 10, le procédé comprenant la mesure de l'ensemble des miARN listés.
12. Procédé selon l'une quelconque des revendications 1 à 11, pour le diagnostic, l'évaluation du risque, le suivi de l'évolution ou le suivi de l'efficacité d'un traitement de la dystrophie musculaire de Duchenne ou de la dystrophie musculaire de Becker, en particulier de la dystrophie musculaire de Duchenne.
13. Trousse comprenant des moyens de détection ou de dosage de micro ARN, les moyens de détection ou de dosage dans la trousse consistant en des moyens de détection ou de dosage d'un ou plusieurs miARN choisis parmi let-7f, let-7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-15b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR-33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR- 200b*, miR-523, miR-346, miR-155, miR-548b-5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR-593, miR-657, miR-502-3p miR-198, miR-214, miR-220, miR-373, miR-511, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e-3p.
14. Trousse selon la revendication 13, chacun des miARN étant détectés ou dosés au moyen d'une sonde et/ou paire d'amorces spécifique.
15. Support multipuits pour PCR comprenant des paires d'amorces PCR consistant en des amorces spécifiques d'au moins deux miARN choisis dans le groupe constitué de let-7f, let- 7a, miR-548d-5p, miR-183, miR-490-3p, miR-520a-3p, miR-590-3p, miR-15a, miR-1244, miR-328, miR-494, miR-668, miR-208, miR-521, miR-597, miR-874, miR-224, miR-182, miR-23b, miR-492, let-7c, let-7e, miR-1 b, miR-487b, miR-410, miR-139-5p, miR-216b, miR-423-5p, miR-484, miR-23a, miR-376c, miR-412, miR-433, miR-206, miR-335, miR- 33a*, miR-193a-3p, miR-381, miR-34c-5p, miR-628-3p, miR-659, miR-505*, let-7b, let-7d, let-7g, miR-196b, miR-26b, miR-942, miR-200b*, miR-523, miR-346, miR-155, miR-548b- 5p, miR-548c-5p, miR-518f, miR-886-3p, miR-650, miR-720, miR-593, miR-657, miR-502- 3p miR-198, miR-214, miR-220, miR-373, miR- 11, miR-517b, miR-518a-3p, miR-518b, miR-518e, miR-520g, miR-493, miR-151-5p, miR-192*, miR-28-5p, miR-30d et miR-30e- 3p, chacune des paires d'amorce étant disposée dans un puits différent du support.
PCT/EP2012/075665 2011-12-16 2012-12-14 Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires WO2013087907A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12809235.0A EP2791353A1 (fr) 2011-12-16 2012-12-14 Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires
CA2858465A CA2858465A1 (fr) 2011-12-16 2012-12-14 Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires
CN201280062188.1A CN104271760A (zh) 2011-12-16 2012-12-14 用于肌营养不良的诊断和治疗随访的方法
AU2012351524A AU2012351524A1 (en) 2011-12-16 2012-12-14 Methods for diagnosis and therapeutic follow-up of muscular dystrophies
JP2014546559A JP2015504655A (ja) 2011-12-16 2012-12-14 筋ジストロフィーの診断および治療経過観察の方法
US14/364,338 US20140342937A1 (en) 2011-12-16 2012-12-14 Methods for diagnosis and therapeutic follow-up of muscular dystrophies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1161862 2011-12-16
FR1161862A FR2984358A1 (fr) 2011-12-16 2011-12-16 Methodes pour le diagnostic de dystrophies musculaires

Publications (1)

Publication Number Publication Date
WO2013087907A1 true WO2013087907A1 (fr) 2013-06-20

Family

ID=47471797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075665 WO2013087907A1 (fr) 2011-12-16 2012-12-14 Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires

Country Status (8)

Country Link
US (1) US20140342937A1 (fr)
EP (1) EP2791353A1 (fr)
JP (1) JP2015504655A (fr)
CN (1) CN104271760A (fr)
AU (1) AU2012351524A1 (fr)
CA (1) CA2858465A1 (fr)
FR (1) FR2984358A1 (fr)
WO (1) WO2013087907A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642751B2 (en) 2010-12-15 2014-02-04 Miragen Therapeutics MicroRNA inhibitors comprising locked nucleotides
US9388408B2 (en) 2012-06-21 2016-07-12 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9428749B2 (en) 2011-10-06 2016-08-30 The Board Of Regents, The University Of Texas System Control of whole body energy homeostasis by microRNA regulation
CN106296524A (zh) * 2016-08-19 2017-01-04 北京大学人民医院 随访方法及系统
US9885042B2 (en) 2015-01-20 2018-02-06 MiRagen Therapeutics, Inc. miR-92 inhibitors and uses thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140309280A1 (en) * 2013-04-12 2014-10-16 Emory University Assays for micro-rna-182 as a biomarker for muscle atrophy and therapeutic applications
CN106729750A (zh) * 2015-11-20 2017-05-31 昆山彭济凯丰生物科技有限公司 通过miR-183治疗高血脂、脂肪肝、二型糖尿病和降低体重的方法和药物及它们的应用
JP2019528081A (ja) * 2016-08-30 2019-10-10 イェール ユニバーシティーYale University 子宮内膜症についてのバイオマーカーとしてのマイクロrna
CN108359725A (zh) * 2018-01-11 2018-08-03 中国科学院微生物研究所 微RNA hsa-mir-593-5p及其类似物的应用和表达该微RNA载体的应用
KR102359603B1 (ko) * 2019-09-24 2022-02-08 건국대학교 글로컬산학협력단 근육질환 및 혈관질환 진단용 마커로서의 miR-5739의 용도
CN112430645A (zh) * 2020-12-09 2021-03-02 北京华瑞康源生物科技发展有限公司 一种多重实时荧光pcr法检测人dmd基因拷贝数的相对定量方法及试剂盒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215197A (en) * 1978-08-04 1980-07-29 Miles Laboratories, Inc. Test means and method for creatinine determination
US5360740A (en) * 1992-07-02 1994-11-01 Regeneron Pharmaceuticals, Inc. Assay system for degenerative muscle disease
WO2010136415A1 (fr) * 2009-05-25 2010-12-02 Università Degli Studi Di Roma "La Sapienza" BIOMARQUEURS ARNmi POUR LE DIAGNOSTIC DE LA DYSTROPHIE MUSCULAIRE DE DUCHENNE, LE SUIVI DE LA PROGRESSION DE CETTE MALADIE ET LE CONTRÔLE D'INTERVENTIONS THÉRAPEUTIQUES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215197A (en) * 1978-08-04 1980-07-29 Miles Laboratories, Inc. Test means and method for creatinine determination
US5360740A (en) * 1992-07-02 1994-11-01 Regeneron Pharmaceuticals, Inc. Assay system for degenerative muscle disease
WO2010136415A1 (fr) * 2009-05-25 2010-12-02 Università Degli Studi Di Roma "La Sapienza" BIOMARQUEURS ARNmi POUR LE DIAGNOSTIC DE LA DYSTROPHIE MUSCULAIRE DE DUCHENNE, LE SUIVI DE LA PROGRESSION DE CETTE MALADIE ET LE CONTRÔLE D'INTERVENTIONS THÉRAPEUTIQUES

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "GeneChip miRNA Array", 2009, pages 1 - 2, XP055035969, Retrieved from the Internet <URL:http://media.affymetrix.com/support/technical/datasheets/miRNA_datasheet.pdf> [retrieved on 20120821] *
ANONYMOUS: "Stem-loop sequence mmu-mir-34c", 9 June 2012 (2012-06-09), XP055053330, Retrieved from the Internet <URL:http://web.archive.org/web/20120609105202/http://mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000403> [retrieved on 20130213] *
ANONYMOUS: "Taqman array human MicroRNA Cards", INTERNET CITATION, 2010, pages 1 - 2, XP002672200, Retrieved from the Internet <URL:http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_054742.pdf> [retrieved on 20120323] *
BATCHELOR, C. L.; S. J. WINDER: "Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy", TRENDS CELL BIOL, vol. 16, no. 4, 2006, pages 198 - 205, XP025109599, DOI: doi:10.1016/j.tcb.2006.02.001
BUSHBY, K.; R. FINKEL ET AL.: "Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management", LANCET NEUROL, vol. 9, no. 1, pages 77 - 93, XP026812748
CACCHIARELLI, D.; I. LEGNINI ET AL.: "miRNAs as serum biomarkers for Duchenne muscular dystrophy", EMBO MOL MED, vol. 3, no. 5, pages 258 - 65, XP055036012, DOI: doi:10.1002/emmm.201100133
CACCHIARELLI, D.; J. MARTONE ET AL.: "MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway", CELL METAB, vol. 12, no. 4, pages 341 - 51, XP055036033, DOI: doi:10.1016/j.cmet.2010.07.008
CIRAK, S.; V. ARECHAVALA-GOMEZA ET AL.: "Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study", LANCET
DAVIDE CACCHIARELLI ET AL: "MicroRNAs Involved in Molecular Circuitries Relevant for the Duchenne Muscular Dystrophy Pathogenesis Are Controlled by the Dystrophin/nNOS Pathway", CELL METABOLISM, vol. 12, no. 4, 1 October 2010 (2010-10-01), pages 341 - 351, XP055036033, ISSN: 1550-4131, DOI: 10.1016/j.cmet.2010.07.008 *
DAVIDE CACCHIARELLI ET AL: "miRNAs as serum biomarkers for Duchenne muscular dystrophy", EMBO MOLECULAR MEDICINE, vol. 3, no. 5, 21 March 2011 (2011-03-21), pages 258 - 265, XP055036012, ISSN: 1757-4676, DOI: 10.1002/emmm.201100133 *
EISENBERG IRIS ET AL: "Distinctive patterns of microRNA expression in primary muscular disorders", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 104, no. 43, 1 October 2007 (2007-10-01), pages 17016 - 17021, XP002532416, ISSN: 0027-8424, DOI: 10.1073/PNAS.0708115104 *
ENOKIDA H ET AL: "MICRORNAS DETECTION IN PLASMA AND URINE SAMPLES FROM PATIENTS WITH UROTHELIAL CARCINOMA", JOURNAL OF UROLOGY, LIPPINCOTT WILLIAMS & WILKINS, BALTIMORE, MD, US, vol. 181, no. 4, 1 April 2009 (2009-04-01), pages 346 - 347, XP026009035, ISSN: 0022-5347, [retrieved on 20090318], DOI: 10.1016/S0022-5347(09)60986-1 *
GIDLOF, O.; P. ANDERSSON ET AL.: "Cardiospecific microRNA Plasma Levels Correlate with Troponin and Cardiac Function in Patients with ST Elevation Myocardial Infarction, Are Selectively Dependent on Renal Elimination, and Can Be Detected in Urine Samples", CARDIOLOGY, vol. 118, no. 4, pages 217 - 226
GRECO SIMONA ET AL: "Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia", FASEB JOURNAL, FED. OF AMERICAN SOC. FOR EXPERIMENTAL BIOLOGY, US, vol. 23, no. 10, 1 October 2009 (2009-10-01), pages 3335 - 3346, XP002594658, ISSN: 0892-6638, DOI: 10.1096/FJ.08-128579 *
GRECO, S.; M. DE SIMONE ET AL.: "Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia", FASEB J, vol. 23, no. 10, 2009, pages 3335 - 46, XP002601174, DOI: doi:10.1096/FJ.08-128579
HANKE M ET AL: "A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer", UROLOGIC ONCOLOGY, ELSEVIER, NEW YORK, NY, US, vol. 28, no. 6, 1 November 2010 (2010-11-01), pages 655 - 661, XP027481370, ISSN: 1078-1439, [retrieved on 20090417], DOI: 10.1016/J.UROLONC.2009.01.027 *
HANKE, M.; K. HOEFIG ET AL.: "A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer", UROL ONCOL, vol. 28, no. 6, pages 655 - 61, XP027481370, DOI: doi:10.1016/j.urolonc.2009.01.027
HIDEYA MIZUNO ET AL: "Identification of Muscle-Specific MicroRNAs in Serum of Muscular Dystrophy Animal Models: Promising Novel Blood-Based Markers for Muscular Dystrophy", PLOS ONE, vol. 6, no. 3, 30 March 2011 (2011-03-30), pages e18388, XP055036013, DOI: 10.1371/journal.pone.0018388 *
LE RUMEUR, E.; S. J. WINDER ET AL.: "Dystrophin: more than just the sum of its parts", BIOCHIM BIOPHYS ACTA, vol. 1804, no. 9, pages 1713 - 22, XP027170122, DOI: doi:10.1016/j.bbapap.2010.05.001
LOTT, J. A.; P. W. LANDESMAN: "The enzymology of skeletal muscle disorders", CRIT REV CLIN LAB SCI, vol. 20, no. 2, 1984, pages 153 - 90
LU, Q. L.; T. YOKOTA ET AL.: "The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy", MOL THER, vol. 19, no. 1, pages 9 - 15, XP055076657, DOI: doi:10.1038/mt.2010.219
MUNTONI, F.; S. TORELLI ET AL.: "Dystrophin and mutations: one gene, several proteins, multiple phenotypes", LANCET NEUROL, vol. 2, no. 12, 2003, pages 731 - 40, XP004810124, DOI: doi:10.1016/S1474-4422(03)00585-4
NICHOLSON, G. A.; G. J. MORGAN ET AL.: "The effect of aerobic exercise on serum creatine kinase activities", MUSCLE NERVE, vol. 9, no. 9, 1986, pages 820 - 4
THOMAS C ROBERTS ET AL: "Expression Analysis in Multiple Muscle Groups and Serum Reveals Complexity in the MicroRNA Transcriptome of the mdx Mouse with Implications for Therapy", MOLECULAR THERAPY - NUCLEIC ACIDS, vol. 1, no. 8, 14 August 2012 (2012-08-14), pages e39, XP055053377, DOI: 10.1038/mtna.2012.26 *
WANG, G.; L. S. TAM ET AL.: "Serum and urinary free microRNA level in patients with systemic lupus erythematosus", LUPUS, vol. 20, no. 5, pages 493 - 500
WEBER, J. A.; D. H. BAXTER ET AL.: "The microRNA spectrum in 12 body fluids", CLIN CHEM, vol. 56, no. 11, pages 1733 - 41, XP055188106, DOI: doi:10.1373/clinchem.2010.147405
YAMADA, Y.; H. ENOKIDA ET AL.: "MiR-96 and miR-183 detection in urine serve as potential tumor markers ofurothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology", CANCER SCI, vol. 102, no. 3, pages 522 - 9

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642751B2 (en) 2010-12-15 2014-02-04 Miragen Therapeutics MicroRNA inhibitors comprising locked nucleotides
US9428749B2 (en) 2011-10-06 2016-08-30 The Board Of Regents, The University Of Texas System Control of whole body energy homeostasis by microRNA regulation
US9388408B2 (en) 2012-06-21 2016-07-12 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9803202B2 (en) 2012-06-21 2017-10-31 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US10337005B2 (en) 2012-06-21 2019-07-02 MiRagen Therapeutics, Inc. Oligonucleotide-based inhibitors comprising locked nucleic acid motif
US9885042B2 (en) 2015-01-20 2018-02-06 MiRagen Therapeutics, Inc. miR-92 inhibitors and uses thereof
US10280422B2 (en) 2015-01-20 2019-05-07 MiRagen Therapeutics, Inc. MiR-92 inhibitors and uses thereof
CN106296524A (zh) * 2016-08-19 2017-01-04 北京大学人民医院 随访方法及系统

Also Published As

Publication number Publication date
FR2984358A1 (fr) 2013-06-21
CA2858465A1 (fr) 2013-06-20
JP2015504655A (ja) 2015-02-16
AU2012351524A1 (en) 2014-08-07
CN104271760A (zh) 2015-01-07
EP2791353A1 (fr) 2014-10-22
US20140342937A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
EP2510122B1 (fr) Utilisation de miarns comme biomarqueurs dans le diagnostic de gliomes
WO2013087907A1 (fr) Procedes pour le diagnostic et le suivi therapeutique de dystrophies musculaires
JP6841661B2 (ja) 骨折および骨障害の診断および治療のための組成物および方法
US10011835B2 (en) miRNAs as novel therapeutic targets and diagnostic biomarkers for parkinson&#39;s disease
AU2008275877B2 (en) Differential expression of microRNAs in nonfailing versus failing human hearts
EP2714927B1 (fr) Procédés et dispositifs pour le pronostic d&#39;une rechute du cancer
US20090306181A1 (en) Compositions and methods for evaluating and treating heart failure
US20100202973A1 (en) Microrna molecules associated with inflammatory skin disorders
US20110107440A1 (en) Skin cancer associated micrornas
US20160138106A1 (en) Circulating Non-coding RNA Profiles for Detection of Cardiac Transplant Rejection
WO2011154008A1 (fr) Classification de micro-arn de néoplasie folliculaire de la thyroïde
US20150152499A1 (en) Diagnostic portfolio and its uses
EP2649200A1 (fr) Methode de diagnostic in vitro intra-tissulaire pour diagnostiquer les tumeurs du cerveau
FR2953529A1 (fr) Utilisation de mi arns comme biomarqueurs dans le diagnostic de gliomes
Dias MicroRNA expression profiling in peripheral blood mononuclear cells and serum of Type 2 diabetic, Pre-diabetic and Normo-glycaemic individuals
JP5755849B2 (ja) 胃がんの補助化学療法感受性判定用組成物又はキット
Morsiani Circulating microRNAs during human aging and longevity
Lu et al. Characterisation of microRNAs in the heart
FR2968674A1 (fr) Methode de diagnostic in vitro inter-tissulaire pour diagnostiquer les tumeurs du cerveau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12809235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2858465

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012809235

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012809235

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14364338

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014546559

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012351524

Country of ref document: AU

Date of ref document: 20121214

Kind code of ref document: A