WO2013086887A1 - 一种电力系统相量频率测量方法 - Google Patents

一种电力系统相量频率测量方法 Download PDF

Info

Publication number
WO2013086887A1
WO2013086887A1 PCT/CN2012/082215 CN2012082215W WO2013086887A1 WO 2013086887 A1 WO2013086887 A1 WO 2013086887A1 CN 2012082215 W CN2012082215 W CN 2012082215W WO 2013086887 A1 WO2013086887 A1 WO 2013086887A1
Authority
WO
WIPO (PCT)
Prior art keywords
phasor
module
data
value
frequency
Prior art date
Application number
PCT/CN2012/082215
Other languages
English (en)
French (fr)
Inventor
麦瑞坤
符玲
徐海波
何思模
Original Assignee
广东易事特电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东易事特电源股份有限公司 filed Critical 广东易事特电源股份有限公司
Priority to DE112012005281.1T priority Critical patent/DE112012005281T5/de
Priority to US14/364,787 priority patent/US9645595B2/en
Publication of WO2013086887A1 publication Critical patent/WO2013086887A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units

Definitions

  • the present invention relates to the field of power systems and their automation technologies, and in particular to a method for measuring phasor frequency of a power system.
  • the frequency of the phasor is an important observation.
  • the PV-connected power generation system safety automatic device needs to measure its value in real time and make corresponding control measures according to the change of its value.
  • Frequently used frequency measurement methods for power system safety automatic devices are hardware zero-crossing detection methods and methods for calculating the phase based on discrete Fourier calculations and then calculating the frequency. Both of the above methods have certain disadvantages.
  • the accuracy of the hardware zero-crossing detection method is easily interfered by the slight fluctuation of the power supply reference level, and the photovoltaic grid-connected power generation system uses a large number of power electronic devices, which generate a large amount of noise and harmonics.
  • the hardware zero-crossing detection method cannot be implemented correctly; the main point of the discrete Fourier transform to calculate the phase and then calculate the frequency is that the phase is calculated accurately, and if the phase is not accurate, the frequency calculation accuracy will be affected.
  • the traditional discrete Fourier transform calculates the phase, and the signal collected by the sampling module needs to be divided into several data windows.
  • the parameters such as the frequency and amplitude of the signals in different data windows are assumed to be constant, therefore, the traditional The Fourier transform calculates the phase by transforming the signals in two different data windows and outputting the result.
  • the photovoltaic grid-connected power generation system is a dynamic nonlinear system.
  • the frequency and amplitude of the signal of the power generation system in the data window change at any time. At this time, the measurement accuracy of the method of calculating the phase by the conventional Fourier transform is degraded.
  • the output frequency and phasor of the inverter in the photovoltaic grid-connected power generation system are not synchronized with the actual power generation system frequency and phasor, and even cause unintended oscillation of the photovoltaic grid-connected power generation system.
  • the present invention is directed to a power system phasor frequency measurement method for the defects of the above background art, which is free from interference of a reference level, has flexibility, and prevents information leakage caused by asynchronous sampling, and effectively eliminates or weakens The oscillating effect of dynamic characteristics.
  • the present invention discloses a power system phasor frequency measuring method, which includes the following steps.
  • the photovoltaic grid-connected power generation system is provided with a control module, a data buffer module, an inverter, a sampling module and an analog-to-digital conversion module, and a voltage transformer is connected to the grid side of the photovoltaic grid-connected power generation system, and the voltage transformer is electrically connected.
  • a control module Connecting an analog-to-digital conversion module, the analog-to-digital conversion module converting an analog signal sent by the voltage transformer into a digital signal, the sampling module sampling the digital signal and transmitting the data to the data buffer module, the data buffer
  • the module is provided with a plurality of data windows, and the control module receives the signal of the data window;
  • control module performs a Fourier transform calculation on the data window signal in the data buffer module:
  • the control module combines the phasor measurement result transformation value ⁇ with the phasor estimation value X , MJ , and recombines:
  • the control module performs data processing on the corrected phasor value to obtain a corrected frequency value.
  • the inverter outputs a phasor and a frequency of the driving signal in conjunction with the corrected phasor value and the corrected frequency value F ( M ).
  • the control module is electrically connected to the communication unit, and the phasor and frequency of the inverter output drive signal are transmitted to the network through the communication unit, and the communication unit communicates according to IEEE Standard C37.118.
  • MPM 2 is a window center sampling point of two different data windows 21, 7; and r 2 are times corresponding to MPM 2 , and "[ ( ⁇ 1 ) ) is an angle between phasor values ⁇ O and ⁇ .
  • the sampling module is electrically connected to a GPS receiver, and the GPS receiver marks an absolute time scale of a digital signal collected by the sampling module, and the data buffer module receives a signal of a data window marked with an absolute time stamp.
  • the corrected phasor value and the corrected frequency value F ( M ) are synchronized with an absolute time scale of the signal mark of the data window.
  • the power system phasor frequency measurement method of the present invention uses Taylor series to represent the corresponding phasor estimation value X(M, /) on the phasor reference point M in the data window for re-correction, and
  • the precise corrected phasor value X(M) corresponding to the phasor reference point ⁇ in the data window is obtained by the least square method, so that the safety automatic device of the power generation system is not interfered by the reference level, has flexibility and prevents due to non-synchronization
  • the phenomenon of spectrum leakage caused by sampling while effectively eliminating or attenuating the oscillating effect caused by dynamic characteristics.
  • FIG. 1 is a structural schematic diagram of a photovoltaic grid-connected power generation system of the present invention.
  • FIG. 2 is a flow chart of a method for measuring a phasor frequency of a power system according to the present invention.
  • FIG. 3 is a schematic diagram of a data window of a conventional sampling module of the present invention.
  • a method for measuring the phasor frequency of a power system according to the present invention is implemented by the following steps:
  • the photovoltaic grid-connected power generation system is provided with a control module 10, a data buffer module 20, an inverter 30, a communication unit 40, a sampling module 50, and an analog-to-digital conversion module 60, and the control module 10 and the resulting communication list
  • the element 40 is electrically connected, and a voltage transformer 70 is connected to the grid side of the photovoltaic grid-connected power generation system to reduce the operating voltage on the grid side.
  • the voltage transformer 70 is electrically connected to the analog-to-digital conversion module 60.
  • the analog-to-digital conversion module 60 converts the analog signal sent by the voltage transformer 70 into a digital signal, and the sampling module 50 is electrically connected to the GPS (Global).
  • the sampling module 50 samples the digital signal and transmits it to the data buffer module 20, and the GPS receiver 80 marks the digital signal collected by the sampling module 50.
  • Absolute time scale the data buffer module 20 is provided with a plurality of data windows 21, the control module 10 receives the signal of the data window 21 marked with the absolute time stamp, and performs calculation to output the phasor of the inverter 30 And the frequency is corrected.
  • the control module 10 performs a signal on the signal of the data window 21 in the data buffer module 20
  • 0 ⁇ is the phasor measurement result transformation value
  • M is defined as the phasor reference point in the data window
  • Z is the point distance (time difference) between each sampling point and the reference point in the data window
  • W is the data window time length
  • The time coefficient of the data window function
  • + is the value of the third sample point in the data window
  • ⁇ and u are the coefficient column matrix of the derivative and the coefficient column matrix of the conjugate transposed derivative, respectively.
  • the control module 10 combines the phasor measurement result conversion value ( ⁇ ) with the phasor estimation value ( ⁇ and recombines:
  • X(M, /) is re-corrected, and the exact corrected phasor value corresponding to the phasor reference point M in the data window is obtained by the least squares method.
  • the control module 10 performs necessary data processing on the corrected phasor value X(M) to obtain a corrected frequency value F(M): angle[X(M l )-X(M 2 )*]
  • ⁇ ⁇ 2 is the sampling center of the window of two different data windows 21, 7; and r 2 are the time corresponding to ⁇ ⁇ 2 respectively, and ] is the clip between the phasor values ⁇ angle (6)
  • the corrected phasor value X (M) and the corrected frequency value F ( M ) are synchronized with the absolute time scale of the signal mark of the data window, and the inverter 30 cooperates with the corrected phasor value X (M) And correcting the frequency value F ( M ) to output the phasor and frequency of the drive signal, and marking the absolute time scale and transmitting to the network via the communication unit 40, the communication unit 40 communicating in accordance with IEEE Standard C37.118.
  • the power system phasor frequency measurement method of the present invention uses Taylor series to represent the phasor estimation value corresponding to the phasor reference point ⁇ in the data window to be re-corrected and obtained by least squares method.
  • the precise correction phasor value corresponding to the phasor reference point M in the data window makes the safety automatic device of the power generation system not interfere with the reference level, has flexibility and prevents spectrum leakage caused by asynchronous sampling, and is effective at the same time Eliminate or attenuate the oscillating effects of dynamic characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

本发明公开了一种电力系统相量频率测量方法,属于电力系统及其自动化技术领域。光伏并网发电系统设置有控制模块(10)、数据缓冲模块(20)、逆变器(30)、采样模块(50)及模数转换模块(60),在光伏并网发电系统的电网侧连接电压互感器(70),所述电压互感器(70)电连接模数转换模块(60),所述模数转换模块(60)将所述电压互感器(70)发出的模拟信号转换成数字信号,所述采样模块(50)对数字信号进行采样并传送到所述数据缓冲模块(20)内,所述数据缓冲模块(20)设置有若干数据窗(21),所述控制模块(10)接收所述数据窗(21)的信号。本发明的电力系统相量频率测量方法不受基准电平的干扰,具有灵活性而且防止造成由于非同步采样导致的频谱泄露现象,同时有效消除或减弱动态特性所带来的震荡效应。

Description

说 明 书 一种电力系统相量频率测量方法
技术领域
本发明涉及电力系统及其自动化技术领域, 尤其是涉及一种电力系统相量频 率测量方法。
背景技术
在光伏并网发电系统中, 相量的频率是一个重要的观测量, 光伏并网发电系 统安全自动装置需要实时测量其值, 并根据其值的变化做出相应的控制措施。 发 电系统安全自动装置常用的频率测量方法是硬件过零检测法和根据离散傅立叶计 算出相位进而再计算出频率的方法。 上述两种方法都存在一定缺点, 硬件过零检 测法的精度容易受到电源基准电平轻微波动的干扰, 而光伏并网发电系统应用了 大量的电力电子设备, 会产生大量的噪声及谐波, 从而导致硬件过零检测法无法 正确实施; 离散傅立叶变换计算出相位进而再计算出频率的方法的要点是相位要 计算准确, 相位如果计算不准确, 频率计算精度就会受到影响。
如图 3所示, 传统的离散傅立叶变换计算相位需要将采样模块采集的信号分 成若干个数据窗,在不同数据窗内的信号的频率及幅值等相关参数是假定不变的, 因此, 传统的傅立叶变换计算相位的方法是对两个不同的数据窗内的信号进行变 换, 进而输出结果。 但是, 光伏并网发电系统是一个动态非线性系统, 发电系统 在数据窗内的信号的频率及幅值等时刻变化的, 此时用传统的傅立叶变换计算相 位的方法的测量精度会下降, 从而导致光伏并网发电系统内的逆变器的输出频率 及相量与实际的发电系统频率及相量不同步, 甚至引起光伏并网发电系统出现非 预期震荡。
发明内容 本发明是针对上述背景技术存在的缺陷提供一种电力系统相量频率测量方 法, 不受基准电平的干扰, 具有灵活性而且防止造成由于非同步采样导致的信息 泄露现象, 同时有效消除或减弱动态特性所带来的震荡效应。
为实现上述目的, 本发明公开了一种电力系统相量频率测量方法, 包括以下 步骤,
( 1 )光伏并网发电系统设置有控制模块、 数据缓冲模块、 逆变器、 采样模块 及模数转换模块, 在光伏并网发电系统的电网侧连接电压互感器, 所述电压互感 器电性连接模数转换模块, 所述模数转换模块将所述电压互感器发出的模拟信号 转换成数字信号, 所述采样模块对数字信号进行采样并传送到所述数据缓冲模块 内, 所述数据缓冲模块设置有若干数据窗, 所述控制模块接收所述数据窗的信号;
(2) 所述控制模块对数据缓冲模块内的数据窗信号进行傅立叶变换计算:
X(M ) = 2 xa (n + l)h(n)e~
Figure imgf000004_0001
k l
Figure imgf000004_0002
= DK J ' ^ + CK l Ά 其中, (M 为相量测量结果变换值, M为所述数据窗中相量参考点; /为 数据窗中各采样点与参考点的点距离; N为数据窗时间长度; 为数据窗窗 函数; ω。为数据窗窗函数时间系数; Χ" + )为数据窗内第 个采样点的值; " 为数据窗信号在 i = Q处的第 k 阶导数; 第 k 阶导数 a 的系数为
Figure imgf000005_0001
分别为导数" W系数列以及共 轭转置导数 的系数列矩阵;
(3)将相量参考点 M统一为一点, 将相量测量结果变换值 (M 进行相移 并计算后得到相量估计值 X{MJ、:
X(M,l) = e—jl(0。 ·Χ(Μ +1,0) ,
(4) 所述控制模块结合相量测量结果变换值 ^^Μ^与相量估计值 XMJ、 并进行重新组合:
E X=D A + C A* 其中, ^为数据窗采样点所对应的向量, 对 ^ ; ^构造对角矩阵
E = diag(e~JCO°lM-L ,--;e~JCO°lM+L) . X(MJ)
X =[X(M,-L) X(M,L) D = [(DKJM— ,···, (DK J
、 ' ,、 M
Figure imgf000005_0002
; ι = μτ ',···,",-; 同时, 利用泰勒级数表示所述数 据窗中相量参考点 M上对应的相量估计值 ,并通过最小二乘法得到所述 数据窗中相量参考点 M对应的修正相量值 X ;
(5) 所述控制模块对修正相量值 进行数据处理后, 得到修正频率值
F(M)。 进一步地, 所述逆变器配合修正相量值 及修正频率值 F(M)输出驱动 信号的相量及频率。 进一步地, 所述控制模块电性连接有通信单元, 所述逆变器输出驱动信号的相量 及频率通过所述通信单元传送到网络上, 所述通信单元以 IEEE标准 C37.118进 行通信。 A
4
f angle[X{Ml)-X{M2
K }~ π{Τ2χ)
其中, M P M2为两个不同数据窗 21的窗中心采样点, 7;和 r2分别为 M P M2 对应的时间, "[ (^1 ) ) 为相量值^ O和 ^之间的夹角。
进一步地, 所述采样模块电性连接有 GPS接收器, 所述 GPS接收器对所述 采样模块采集的数字信号标记绝对时标, 所述数据缓冲模块接收标记绝对时标后 的数据窗的信号, 所述修正相量值 及修正频率值 F(M)与所述数据窗的信 号标记的绝对时标同步。
综上所述, 本发明一种电力系统相量频率测量方法利用泰勒级数表示所述数 据窗中相量参考点 M上对应的相量估计值 X(M, /)以进行重新修正, 并通过最 小二乘法得到所述数据窗中相量参考点 ^对应的精确修正相量值 X(M), 使得 发电系统安全自动装置不受基准电平的干扰, 具有灵活性而且防止造成由于非同 步采样导致的频谱泄露现象, 同时有效消除或减弱动态特性所带来的震荡效应。 附图说明
图 1为本发明光伏并网发电系统的结构原理图。
图 2为本发明电力系统相量频率测量方法的流程图。
图 3为本发明传统的采样模块的数据窗的示意图。
具体实施方式
为能进一步了解本发明的特征、 技术手段以及所达到的具体目的、 功能, 下 面结合附图与具体实施方式对本发明作进一步详细描述。
如图 1和图 2所示, 本发明一种电力系统相量频率测量方法, 通过如下步骤 实现:
(1) 光伏并网发电系统设置有控制模块 10、 数据缓冲模块 20、 逆变器 30、 通信单元 40、 采样模块 50及模数转换模块 60, 所述控制模块 10与所得通信单 元 40电性连接, 在光伏并网发电系统的电网侧连接有电压互感器 70, 以降低电 网侧的工作电压。 所述电压互感器 70电性连接模数转换模块 60, 所述模数转换 模块 60将所述电压互感器 70发出的模拟信号转换成数字信号,所述采样模块 50 电性连接有 GPS (Global Positioning System, 全球卫星定位系统) 接收器 80, 所述采样模块 50 对数字信号进行采样并传送到所述数据缓冲模块 20 内, 所述 GPS接收器 80对所述采样模块 50采集的数字信号标记绝对时标,所述数据缓冲 模块 20设置有若干数据窗 21, 所述控制模块 10接收标记绝对时标后的数据窗 21的信号, 并进行计算以对所述逆变器 30的输出相量及频率进行修正。
(2)所述控制模块 10对数据缓冲模块 20内的数据窗 21的信号进行傅立
Figure imgf000007_0001
X (M ) = xa (n ^ l)h(n)e
Figure imgf000007_0002
= DK l - A -- CK l · A
其中, 0^ 为相量测量结果变换值, 定义 M为所述数据窗中相量参考点; Z为数据窗中各采样点与参考点的点距离(时间差); W为数据窗时间长度; 为数据窗窗函数; ω。为数据窗窗函数时间系数; + 为数据窗内第 Ζ个采 样点的值; " 为数据窗信号在^ = ()处的第 阶导数; 第 阶导数^)的系数为 n„ ; ^和 u分别为导数 " 的系数列矩阵以及 共轭转置导数 的系数列矩阵。
(3)将相量参考点 M统一为一点, 将相量测量结果变换值 (M 进行相移 并计算后得到相量估计值 X{MJ、:
X(M,l) = e—jl。 ·Χ(Μ +1,0)
(4) 所述控制模块 10 结合相量测量结果变换值 (Μ )与相量估计值 (Μ 并进行重新组合:
E X =D A + C A* 其中, 为数据窗采样点所对应的向量, 对 构造对角矩阵 E = diagie- 、e-ja> ) 用数据窗的采样点对 X{MJ、构造的矩阵求 对称矩阵 x=[ (M,― L), …, Ϊ(Μ^ D=U 'U ;
C = [(CK M L) ,…人 CK,1M+L) ] ;对数据窗信号在 = 0处的第 阶导数 "w构造的 矩阵求对称矩阵 A = ,…, β 。 同时, 利用泰勒级数表示所述数据窗中相量参考点^上对应的相量估计值
X(M, /)以进行重新修正, 并通过最小二乘法得到所述数据窗中相量参考点 M 对应的精确修正相量值 。
(5)所述控制模块 10对修正相量值 X(M)进行必要的数据处理后, 得到修 正频率值 F(M): angle[X(Ml)-X(M2)*]
F M
π{Τ2χ) 其中, Μ ΡΜ2为两个不同数据窗 21的窗中心采样点, 7;和 r2分别为 Μ ΡΜ2 对应的时间, ]为相量值 ^之间的夹角 (6)所述修正相量值 X (M)及修正频率值 F(M)与所述数据窗的信号标记的 绝对时标同步,所述逆变器 30配合修正相量值 X (M)及修正频率值 F(M)输出驱 动信号的相量及频率, 并标记绝对时标后通过所述通信单元 40传送到网络上,所 述通信单元 40以 IEEE标准 C37.118进行通信。 综上所述, 本发明一种电力系统相量频率测量方法利用泰勒级数表示所述数 据窗中相量参考点 ^上对应的相量估计值^ 以进行重新修正, 并通过最小 二乘法得到所述数据窗中相量参考点 M对应的精确修正相量值 , 使得发 电系统安全自动装置不受基准电平的干扰, 具有灵活性而且防止造成由于非同步 采样导致的频谱泄露现象, 同时有效消除或减弱动态特性所带来的震荡效应。
以上所述实施例仅表达了本发明的一种实施方式, 其描述较为具体和详细, 但并不能因此而理解为对本发明范围的限制。 应当指出的是, 对于本领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这 些都属于本发明的保护范围。 因此, 本发明的保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
1、 一种电力系统相量频率测量方法, 其特征在于, 包括以下步骤,
(1) 光伏并网发电系统设置有控制模块 (10)、 数据缓冲模块 (20)、 逆变 器 (30)、 采样模块 (50) 及模数转换模块 (60), 在光伏并网发电系统的电网侧 连接电压互感器 (40), 所述电压互感器 (70) 电性连接模数转换模块 (60), 所 述模数转换模块(60)将所述电压互感器(70)发出的模拟信号转换成数字信号, 所述采样模块 (50) 对数字信号进行采样并传送到所述数据缓冲模块 (20) 内, 所述数据缓冲模块 (20) 设置有若干数据窗 (21), 所述控制模块 (10) 接收所 述数据窗 (21) 的信号;
(2) 所述控制模块 (10) 对所述数据缓冲模块 (20) 内的数据窗 (21) 信 号进行傅立叶变换计算:
{N-\)I2
X(M,l) = ∑
n=-(N-l)/2
Figure imgf000010_0001
K 1 (N-l)/2
j2(n+l) 0
+∑{["("]* · ∑ i n -h{n)-e
k=0
K K
• H(k,l,0)] + ^{ [aik)]* . H(k,l,-2 0)}
k=0 k=0
= DK J · A + CK l · A 其中, 为相量测量结果变换值, M为所述数据窗(21) 中相量参考 点; 为数据窗 (21) 中各采样点与参考点的点距离; W为数据窗 (21) 时间长 度; 为数据窗(21)窗函数; ω。为数据窗(21)窗函数时间系数; Χ"(η + ί) 为数据窗(21 )内第 个采样点的值; ak、为数据窗(21 )信号在 t = 0处的第 k
(
H(k,l = ~
阶导数;第 K阶导数 Ω 的系数为
Figure imgf000011_0001
1分别为导数" W系数列以及共轭转置导数 '的系数列矩阵;
(3)将相量参考点 M统一为一点, 将相量测量结果变换值 (M'/:)进行相移
X(MJ)
并计算后得到相量估计值
X(M,l) = e~jla° ·Χ(Μ +1,0) .
(4) 所述控制模块 (10) 结合相量测量结果变换值 (M^:l与相量估计值 KM 并进行重新组合:
E X =D A + C A* 其中, e ^为数据窗 (21) 采样点所对应的向量, 对 e_ ia¾构造对角矩阵
E = diag (e · · · ~
; 对 X{M 、 构造的矩阵求对称矩阵
X=[X(M,-L) X(M,L) Ό = [φκ, Υ,··· Όκ, )τί
Figure imgf000011_0002
; 同时, 利用泰勒级数表; 所述数据窗(21) 中相量参考点 M上对应的相量估计值 ^^H) , 并通过最小二 乘法得到所述数据窗 (21) 中相量参考点 M对应的修正相量值 X(M);
(5) 所述控制模块 (10) 对修正相量值 X(M)进行数据处理后, 得到修正 频率值 F(M)。
2、 根据权利要求 1所述的一种电力系统相量频率测量方法, 其特征在于: 所述逆 变器 (30) 配合修正相量值 X M 及修正频率值 F(M)输出驱动信号的相量及频
3、 根据权利要求 2所述的一种电力系统相量频率测量方法, 其特征在于: 所述控 制模块 (10) 电性连接有通信单元 (40), 所述逆变器 (30) 输出驱动信号的相 量及频率通过所述通信单元 (40) 传送到网络上, 所述通信单元 (40) 以 IEEE 标准 C37.118进行通信。
4、 根据权利要求 1所述的一种电力系统相量频率测量方法, 其特征在于, 所述修
Figure imgf000012_0001
angle[X(ML)-X(M2)*]
F(M) =
π{Τ2χ) 其中, Μ ΡΜ2为两个不同数据窗 21的窗中心采样点, 7;和 r2分别为 Μ ΡΜ2 对应的时间, [ (ΟΆΛ .ί]为相量值 和 ( 之间的夹角。
5、 根据权利要求 1所述的一种电力系统相量频率测量方法, 其特征在于: 所述采 样模块 (50) 电性连接有 GPS接收器 (80), 所述 GPS接收器 (80) 对所述采 样模块 (50) 采集的数字信号标记绝对时标, 所述数据缓冲模块 (20) 接收标记 绝对时标后的数据窗(21)的信号,所述修正相量值 X(M)及修正频率值 F(M)与 所述数据窗 (21) 的信号标记的绝对时标同步。
PCT/CN2012/082215 2011-12-14 2012-09-27 一种电力系统相量频率测量方法 WO2013086887A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012005281.1T DE112012005281T5 (de) 2011-12-14 2012-09-27 Eine Messmethode für Frequenz von Koeffizient eines elektrischen Versorgungssystems
US14/364,787 US9645595B2 (en) 2011-12-14 2012-09-27 Method for measuring frequency of phasor of power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104168972A CN102495281B (zh) 2011-12-14 2011-12-14 一种电力系统相量频率测量方法
CN201110416897.2 2011-12-14

Publications (1)

Publication Number Publication Date
WO2013086887A1 true WO2013086887A1 (zh) 2013-06-20

Family

ID=46187122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082215 WO2013086887A1 (zh) 2011-12-14 2012-09-27 一种电力系统相量频率测量方法

Country Status (4)

Country Link
US (1) US9645595B2 (zh)
CN (1) CN102495281B (zh)
DE (1) DE112012005281T5 (zh)
WO (1) WO2013086887A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090147A (zh) * 2014-07-25 2014-10-08 国家电网公司 基于短数据窗的变电站母线电压频率瞬时值测量方法
CN105866523A (zh) * 2016-06-01 2016-08-17 深圳先进技术研究院 一种具有自动触发功能的前端电压采集系统及采集方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495281B (zh) * 2011-12-14 2013-09-04 广东易事特电源股份有限公司 一种电力系统相量频率测量方法
CN103048539A (zh) * 2012-12-28 2013-04-17 南京工程学院 一种音频取证中电网频率的精确采集装置及方法
CN103983847B (zh) * 2014-06-12 2016-10-05 福州大学 一种同步相量测量中基于rls的自适应频率跟踪测量方法
CN104181389B (zh) * 2014-07-02 2017-02-15 中国农业大学 电力系统中相量测量方法
CN104502702B (zh) * 2014-12-10 2017-04-12 广东电网有限责任公司电力科学研究院 检测电力信号的频率的方法和系统
CN104569689B (zh) * 2015-01-22 2017-06-06 福州大学 一种基于极坐标系的电力系统同步相量测量方法
CN105372495B (zh) * 2015-12-10 2016-11-30 广东蓄能发电有限公司 一种变频率正弦波形数据的频率和相量提取计算方法
CN106226590A (zh) * 2016-07-19 2016-12-14 国网河北省电力公司电力科学研究院 一种电力系统同步相量测量方法
CN107144734B (zh) * 2017-05-15 2019-09-27 北京理工大学 一种适用于pmu的配电网高精度相量测量方法
CN107271768B (zh) * 2017-05-26 2019-06-21 东南大学 一种最小二乘拟合动态频率测量方法
CN109142863B (zh) * 2017-06-27 2021-07-13 许继集团有限公司 一种电力系统测频方法及系统
CN107589299B (zh) * 2017-08-03 2019-09-24 西南交通大学 基于多频率相量模型的电力信号同步相量测量方法
CN108776262B (zh) * 2018-06-04 2021-07-30 西南交通大学 一种考虑带外干扰的电力系统频率测量方法
US10942204B1 (en) * 2020-10-27 2021-03-09 North China Electric Power University Taylor weighted least squares method for estimating synchrophasor
CN113820539B (zh) * 2021-08-19 2024-05-28 南京国电南自电网自动化有限公司 基于基波角度校准的谐波、间谐波角度校准方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547726A (en) * 1983-08-01 1985-10-15 General Electric Company Means and method for measuring power system frequency
CN1477401A (zh) * 2003-07-18 2004-02-25 清华大学 高精度的同步相量测量方法
JP2006317435A (ja) * 2005-04-14 2006-11-24 Tokyo Electric Power Co Inc:The 位相・振幅検出装置および方法
CN1888918A (zh) * 2006-07-25 2007-01-03 国电南京自动化股份有限公司 电力系统定频采样下的变频谐波测量方法及其装置
CN101603984A (zh) * 2009-07-01 2009-12-16 湖南大学 电气信号频率的数字化实时检测方法
CN101852826A (zh) * 2009-03-30 2010-10-06 西门子公司 一种电力系统的谐波分析方法及其装置
CN102128975A (zh) * 2010-12-22 2011-07-20 四川省电力公司 电压稳定在线监测相量数据测量装置及相量测量方法
CN102495281A (zh) * 2011-12-14 2012-06-13 北京易事特电源有限公司 一种电力系统相量频率测量方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459998B1 (en) * 1999-07-24 2002-10-01 Gary R. Hoffman Sensing downed power lines
ATE374447T1 (de) * 2005-02-25 2007-10-15 Nemerix Sa Half bin linearer frequenzdiskriminator
KR100809443B1 (ko) * 2006-07-26 2008-03-07 창원대학교 산학협력단 태양광 발전 시스템용 단상 전력변환기의 제어장치
US7906870B2 (en) * 2006-10-13 2011-03-15 Pv Powered, Inc. System and method for anti-islanding, such as anti-islanding for a grid-connected photovoltaic inverter
US9401439B2 (en) * 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
JP4829999B2 (ja) * 2009-05-08 2011-12-07 パナソニック株式会社 電源装置及び電池パック
US8314375B2 (en) * 2009-08-21 2012-11-20 Tigo Energy, Inc. System and method for local string management unit
JP2013526824A (ja) * 2010-05-07 2013-06-24 アドバンスド エナージィ インダストリーズ,インコーポレイテッド 太陽光発電予測システム並びに方法
US9583946B2 (en) * 2010-05-27 2017-02-28 Enphase Energy, Inc. Method and apparatus for power converter input voltage regulation
US20120212064A1 (en) * 2010-08-23 2012-08-23 Array Converter Inc. Methods and Devices for Controlling a Photovoltaic Panel in a Three Phase Power Generation System
JP2012084441A (ja) * 2010-10-13 2012-04-26 Panasonic Corp 照明装置
US8842451B2 (en) * 2010-11-23 2014-09-23 Astec International Limited Power systems for photovoltaic and DC input sources
US8614525B2 (en) * 2010-12-21 2013-12-24 General Electric Company Methods and systems for operating a power generation system
US20120173031A1 (en) * 2010-12-29 2012-07-05 Redwood Systems, Inc. Real-time power point calibration
CN102236048B (zh) * 2011-06-16 2013-07-17 南京南瑞集团公司 一种电力系统相量频率测量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547726A (en) * 1983-08-01 1985-10-15 General Electric Company Means and method for measuring power system frequency
CN1477401A (zh) * 2003-07-18 2004-02-25 清华大学 高精度的同步相量测量方法
JP2006317435A (ja) * 2005-04-14 2006-11-24 Tokyo Electric Power Co Inc:The 位相・振幅検出装置および方法
CN1888918A (zh) * 2006-07-25 2007-01-03 国电南京自动化股份有限公司 电力系统定频采样下的变频谐波测量方法及其装置
CN101852826A (zh) * 2009-03-30 2010-10-06 西门子公司 一种电力系统的谐波分析方法及其装置
CN101603984A (zh) * 2009-07-01 2009-12-16 湖南大学 电气信号频率的数字化实时检测方法
CN102128975A (zh) * 2010-12-22 2011-07-20 四川省电力公司 电压稳定在线监测相量数据测量装置及相量测量方法
CN102495281A (zh) * 2011-12-14 2012-06-13 北京易事特电源有限公司 一种电力系统相量频率测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090147A (zh) * 2014-07-25 2014-10-08 国家电网公司 基于短数据窗的变电站母线电压频率瞬时值测量方法
CN105866523A (zh) * 2016-06-01 2016-08-17 深圳先进技术研究院 一种具有自动触发功能的前端电压采集系统及采集方法

Also Published As

Publication number Publication date
DE112012005281T5 (de) 2014-09-04
US20140330443A1 (en) 2014-11-06
CN102495281A (zh) 2012-06-13
CN102495281B (zh) 2013-09-04
US9645595B2 (en) 2017-05-09

Similar Documents

Publication Publication Date Title
WO2013086887A1 (zh) 一种电力系统相量频率测量方法
ES2253785T3 (es) Sistema diferencial de corriente digital.
US7480580B2 (en) Apparatus and method for estimating synchronized phasors at predetermined times referenced to an absolute time standard in an electrical system
CN105182073B (zh) 一种同步相量测量装置的动态相量测量系统及其测量方法
CN108037496B (zh) 一种自由场水听器复数灵敏度精确测量方法
CN103543335A (zh) 一种同步相量测量方法
CN104038134B (zh) 一种基于线性霍尔的永磁同步电机转子位置误差校正方法
CN104601259B (zh) 具有同相正交信号失衡估测及校正技术的无线通信接收器
US20110077885A1 (en) apparatus and method for estimating synchronized phasors at predetermined times referenced to a common time standard in an electrical system
CN110244116B (zh) 直流瞬时功率的计量电路及其准同步计算方法
CN108132448B (zh) 用于相位发生器相位零点校准的装置及方法
WO2014063564A1 (zh) 一种基于ieee1588对时方式的电子式互感器校验装置
RU2697483C2 (ru) Устройство для измерения электрических величин и способ измерения электрических величин
CN104833937A (zh) 一种基于mir-rsd高精度余弦窗插值fft算法的谐波测量通道校准方法
CN110967658B (zh) 一种基于数字微差法的模拟量输入合并单元校验仪溯源的方法
CN108183841B (zh) 综测仪中基于IEEE802.11ah的基带数据处理方法及系统
CN111077371B (zh) 一种提高相位测量精度的方法和装置
CN104796370B (zh) 一种水声通信的信号同步方法、系统及水声通信系统
CN105242225B (zh) 一种动态相量测量装置的校准系统及其校准方法
CN101512871B (zh) 产生多相交流电力系统中电气实体的相量表示的设备和方法
CN103983828B (zh) 一种电子式互感器数字化相位补偿方法
Jing et al. A novel digital demodulation method for MFEIT based on APFFT
TWI597419B (zh) 閃爍分析儀校準裝置及校準方法
CN103701741A (zh) 实现信号调制质量测量和星座图显示的方法
CN108540284B (zh) 一种连续变量量子密钥分发后处理外差探测相位补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858306

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364787

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012005281

Country of ref document: DE

Ref document number: 1120120052811

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858306

Country of ref document: EP

Kind code of ref document: A1