CN104502702B - 检测电力信号的频率的方法和系统 - Google Patents

检测电力信号的频率的方法和系统 Download PDF

Info

Publication number
CN104502702B
CN104502702B CN201410757190.1A CN201410757190A CN104502702B CN 104502702 B CN104502702 B CN 104502702B CN 201410757190 A CN201410757190 A CN 201410757190A CN 104502702 B CN104502702 B CN 104502702B
Authority
CN
China
Prior art keywords
sequence
frequency
phase
input signal
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410757190.1A
Other languages
English (en)
Other versions
CN104502702A (zh
Inventor
李军
陈世和
万文军
庞志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority to CN201410757190.1A priority Critical patent/CN104502702B/zh
Publication of CN104502702A publication Critical patent/CN104502702A/zh
Application granted granted Critical
Publication of CN104502702B publication Critical patent/CN104502702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种检测电力信号的频率的方法和系统,所述方法包括:根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列;测量所述输入信号序列的频率,得到所述电力信号的初步频率,并以所述初步频率为参考频率对输入信号序列和输入信号序列的±1π移相序列相减,得到相位随输入信号频率变化的两个相位调制序列;将所述两个相位调制序列用于频率测量。实施本发明,可获得较高精度的频率测量结果。

Description

检测电力信号的频率的方法和系统
【技术领域】
本发明涉及电力技术领域,特别是涉及一种检测电力信号的频率的方法和系统。
【背景技术】
电力频率测量对电力系统具有重要意义,电网运行额定工频为50Hz,属于较低的频率。可根据相位差测量低频信号频率,基本原理是,取2段间隔分开的数据序列、根据2段数据序列的相位差测量频率。
但是在实际的电力信号中存在次谐波和分次谐波干扰,所述2段数据序列不具有频域的滤波特性,不能抑制或衰减次谐波和分次谐波干扰,会降低频率测量精度。
【发明内容】
基于此,有必要针对上述频率测量方法频率测量精度低的问题,提供一种检测电力信号的频率的方法和系统。
一种检测电力信号的频率的方法,包括以下步骤:
根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列;
对所述输入信号序列进行频率初测,生成所述电力信号的初步频率;
以所述初步频率给定参考频率,根据预设的第一转换规则将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度;
根据预设的第二转换规则,将所述1π序列长度和所述预设采样频率转换为修正参考频率;
将所述输入信号序列与所述输入信号在所述1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列;
将所述输入信号序列与所述输入信号在-1π序列长度的移相序列相减,生成相位随输入信号频率变化的第二相位调制序列;
通过点频滤波器分别对所述第一相位调制序列和所述第二相位调制序列进行滤波,生成第一滤波序列和第二滤波序列;
分别对所述第一滤波序列和所述第二滤波序列进行均衡处理,生成第一均衡序列和第二均衡序列;
将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列;
将所述第二均衡序列与所述预设窗口函数序列相乘,生成第二窗口数据序列;
在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位;
在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位;
获取所述第一相位和所述第二相位的相位差;
根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率。
一种检测电力信号的频率的系统,包括:
采样模块,用于根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列;
初步频率模块,用于对所述输入信号序列进行频率初测,生成所述电力信号的初步频率;
1π序列长度模块,用于以所述初步频率给定参考频率,根据预设的第一转换规则将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度;
参考频率修正模块,用于根据预设的第二转换规则,将所述1π序列长度和所述预设采样频率转换为修正参考频率;
第一相位调制模块,用于将所述输入信号序列与所述输入信号在所述1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列;
第二相位调职模块,用于将所述输入信号序列与所述输入信号在-1π序列长度的移相序列相减,生成相位随输入信号频率变化的第二相位调制序列;
滤波模块,用于通过点频滤波器分别对所述第一相位调制序列和所述第二相位调制序列进行滤波,生成第一滤波序列和第二滤波序列;
均衡模块,用于分别对所述第一滤波序列和所述第二滤波序列进行均衡处理,生成第一均衡序列和第二均衡序列;
第一窗口数据模块,用于将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列;
第二窗口数据模块,用于将所述第二均衡序列与所述预设窗口函数序列相乘,生成第二窗口数据序列;
第一相位模块,用于在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位;
第二相位模块,用于在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位;
相位差模块,用于获取所述第一相位和所述第二相位的相位差;
频率测量模块,用于根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率。
上述检测电力信号的频率的方法和系统,根据参考频率计算所述1π移相对应的采样间隔整数,为1π序列长度,,并根据所述1π序列长度,得到所述修正参考频率,将所述输入信号序列与所述输入信号在±1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列和第二相位调制序列,可有效抑制噪声或衰减次谐波和分次谐波干扰,通过点频滤波器和均衡处理,可消除整数周期序列长度的误差,通过窗口函数可进一步抑制谐波和噪声干扰,通过复数积分和窗口函数将所述两个相位调制序列用于频率测量,可获得较高精度的频率测量结果。
【附图说明】
图1是本发明检测电力信号的频率的方法第一实施方式的流程示意图;
图2是本发明检测电力信号的频率的方法中使用的窗口函数的特性示意图;
图3是本发明检测电力信号的频率的方法中相位调制序列的幅频特性示意图;
图4是本发明检测电力信号的频率的系统第一实施方式的结构示意图。
【具体实施方式】
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
本发明中的步骤虽然用标号进行了排列,但并不用于限定步骤的先后次序,除非明确说明了步骤的次序或者某步骤的执行需要其他步骤作为基础,否则步骤的相对次序是可以调整的。
请参阅图1,图1是本发明的检测电力信号的频率的方法第一实施方式的流程示意图。
本实施方式的所述检测电力信号的频率的方法可包括以下步骤:
步骤S101,根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列。
步骤S102,对所述输入信号序列进行频率初测,生成所述电力信号的初步频率。
步骤S103,以所述初步频率给定参考频率,根据预设的第一转换规则将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度。
步骤S104,根据预设的第二转换规则,将所述1π序列长度和所述预设采样频率转换为修正参考频率。
步骤S105,将所述输入信号序列与所述输入信号在所述1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列。
步骤S106,将所述输入信号序列与所述输入信号在-1π序列长度的移相序列相减,生成相位随输入信号频率变化的第二相位调制序列。
步骤S107,通过点频滤波器分别对所述第一相位调制序列和所述第二相位调制序列进行滤波,生成第一滤波序列和第二滤波序列。
步骤S108,分别对所述第一滤波序列和所述第二滤波序列进行均衡处理,生成第一均衡序列和第二均衡序列。
步骤S109,将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列。
步骤S110,将所述第二均衡序列与所述预设窗口函数序列相乘,生成第二窗口数据序列。
步骤S111,在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位。
步骤S112,在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位。
步骤S113,获取所述第一相位和所述第二相位的相位差。
步骤S114,根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率。
本实施方式,根据参考频率计算所述1π移相对应的采样间隔整数,为1π序列长度,并根据所述1π序列长度,得到所述修正参考频率,将所述输入信号序列与所述输入信号在±1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列和第二相位调制序列,可有效抑制噪声或衰减次谐波和分次谐波干扰,通过点频滤波器和均衡处理,可消除整数周期序列长度的误差,通过窗口函数可进一步抑制谐波和噪声干扰,通过复数积分和窗口函数将所述两个相位调制序列用于频率测量,可获得较高精度的频率测量结果。
其中,对于步骤S101,可通过电网领域的采样设备对所述电力信号进行采样,获得输入信号序列。
优选地,为了保证一定的频率测量实时性,电力系统频率通常指信号在时间长度0.2s的平均频率,可取时间长度等于0.2s。
进一步地,电力系统额定频率50Hz,为了提高性能,采样频率应远大于50Hz,优选地,设置采样频率等于fn=10KHz,采样间隔表达为式(1):
式中,Tn为采样间隔,单位s;fn为所述预设采样频率,单位Hz。
所述样输入信号序列长度表达为式(2):
N=Tsfn (2);
式中,N为输入信号序列长度,单位无量纲,Ts为输入信号对应的输入时间,单位s。
所述输入信号序列表达为式(3):
n=-Nπ+1,-Nπ+2,....,-1,0,1,2,.....,N-Nπ-1 (3);
式中,Xi(n)为输入信号序列;A为信号幅值,单位v;ω为信号频率,单位rad/s;Tn为采样间隔,单位s;n为序列离散数,单位无量纲;Nπ为1π序列长度;为初相位,单位rad。
对于步骤S102,可通过零交法对所述输入信号序列进行频率初测,获取所述初步频率。还可通过本领域技术人员惯用的其他频率测量方法对所述输入信号序列进行频率初测。
所述初步频率表达为式(4):
ωo (4);
式中,ωo为初步频率,单位rad/s;
对于步骤S103,以所述初步频率为参考频率跟踪所述输入信号序列的频率。
优选地,所述参考频率表达为式(5):
ωs=ωo (5);
式中,ωs为参考频率,单位rad/s;ωo为初步频率,单位rad/s;
进一步地,根据所述预设的第一转换规则式(6)将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度::
式中,Nπ为所述1π序列长度,单位无量纲;ωs为初步频率,单位rad/s;fn为所述预设采样频率,单位Hz。
对于步骤S104,所述预设的第二转换规则将所述1π序列长度转换为所述修正参考频率,用于修正Nπ整数化存在1个采样间隔内的误差。
优选地,可通过所述预设的第二转换规则式(7)将所述1π序列长度转换为所述修正参考频率:
式中,ωset为所述修正参考频率,单位rad/s;Nπ为所述1π序列长度,单位无量纲;fn为所述预设采样频率,单位Hz。
对于步骤S105,将所述输入信号序列与所述输入信号在所述1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列。
优选地,所述第一相位调制序列为式(8):
n=0,1,2,3,.....,N-2Nπ-1
式中,XPh1(n)为所述第一相位调制序列。
所述第一相位调制相位为式(9):
进一步地,所述第一相位调制序列的幅频特性如图3所示。其中信号频率为100πrad/s,相位调制序列对偶次谐波有较好的抑制作用,对分次谐波也有较好的衰减作用。
对于步骤S106,所述-1π序列长度为所述1π序列长度的相反数。
优选地,所述第二相位调制序列为式(10):
n=0,1,2,3,.....,N-2Nπ-1
式中,XPh2(n)为所述第二相位调制序列。
优选地所述第二相位调制序列的相位为式(11):
进一步地,所述第二相位调制序列的幅频特性如图3所示。其中信号频率为100πrad/s,相位调制序列对偶次谐波有较好的抑制作用,对分次谐波也有较好的衰减作用。
对于步骤S107,优选地,点频滤波器可为频率带宽为零的带通滤波器。
在一个实施例中,点频滤波器的离散域C语言计算为式(12):
Xp1+=[XPh1(n)-Uc1-Xp1]TnΔB-3dB
Xp1(n)=Xp1
Xp2+=[XPh2(n)-Uc2-Xp2]TnΔB-3dB
Xp2(n)=Xp2 (12);
n=0,1,2,3,.......,N-2Nπ-1
式(12)中,Xp1为第一点频滤波器的输出信号中间值,XPh1(n)为第一相位调制序列,Xp1(n)为第一点频滤波器的输出信号序列,Uc1为第一点频滤波器电容两端信号中间值;Xp2为第二点频滤波器的输出信号中间值,XPh2(n)为第二相位调制序列,Xp2(n)为第二点频滤波器的输出信号序列,Uc2为第二点频滤波器电容两端信号中间值。
对于步骤S108,由于点频滤波器输出信号幅值随过程时间变化,需要对输出信号过程进行均衡,以减小幅值的过程变化量。
在一个实施例中,进行均衡处理可通过式(13)分别将第一滤波序列与第二滤波序列除序列值,生成第一均衡数列和第二均衡数列:
n=0,1,2,3,...,N-2Nπ-1
式(13)中,Xo1(n)为第一均衡序列,Xo1(n)为第二均衡序列。
在点频率等于信号频率,相对水平直线,均衡处理误差为0。在点频率不等于信号频率,例如点频率与信号频率之间误差±1×10-3时,在1s时间的过程均衡误差为-0.308%。
对于步骤S109,将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列。
优选地,预设窗口函数为布莱克曼窗函数,布莱克曼窗函数数据序列为式(14):
n=0,1,2,....,N-2Nπ-1
窗口频率为式(15):
式中,Ω为窗口频率,单位rad/s。所述窗口函数的频域幅频特性,如图2所示。
优选地,所述第一窗口数据序列的表达式为(16):
XW1(n)=W(n)Xo1(n)
n=0,1,2,3,.....,N-2Nπ-1 (16);
式中,XW1(n)为所述第一窗口数据序列,Xo1(n)为第一均衡数列。
对于步骤S110,将所述第二相位调制序列与所述预设窗口函数序列相乘,生成第二窗口数据序列。
优选地,所述第二窗口数据序列的表达式为(17):
XW2(n)=W(n)Xo2(n)
n=0,1,2,3,.....,N-2Nπ-1 (17);
式中,XW2(n)为所述第二窗口数据序列,Xo2(n)为第二均衡数列。
对于步骤S111,在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位。
在一个实施例中,在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位的步骤包括以下步骤:
通过以下所述公式(18),对所述第一窗口数据序列进行复数积分计算,生成所述第一相位:
n=0,1,2,......,N-2Nπ-1 (18);
式中,Xw1(n)为所述第一窗口数据序列;ωset为所述修正参考频率,单位rad/s;R1为第一实数向量;I1为第一虚数向量;PH1为所述第一相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad。
对于步骤S112,在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位。
在一个实施例中,在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位的步骤包括以下步骤:
通过以下所述公式(19),对所述第二窗口数据序列进行复数积分计算,生成所述第二相位:
n=0,1,2,......,N-2Nπ-1 (19);
式中,Xw2(n)为所述第二窗口数据序列;ωset为所述修正参考频率,单位rad/s;R2为第二实数向量;I2为第二虚数向量;PH2为所述第二相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad。
对于步骤S113,获取所述第一相位和所述第二相位的相位差。
所述相位差为式(20):
式中,PH2为所述第二相位,单位rad;PH1为所述第一相位,单位rad;△PH所述相位差,单位rad。
对于步骤S114,可通过电网领域的频率检测设备将所述相位差和所述修正参考频率转换为所述电力信号的频率。
在一个实施例中,根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率的步骤包括以下步骤:
获取所述相位差与π的比值生成相位位置;
将所述相位比值与所述修正参考频率相乘,生成所述电力信号的频率。
优选地,可根据所述预设的频率转换规则式(21)获得所述电力信号的频率:
式中,ω为所述输入信号序列的频率,单位rad/s;ωset为所述修正参考频率,单位rad/s。
在其他实施方式中,还可采用本领域技术人员惯用的复数积分方法获得所述相位调制序列的相位。
请参阅图4,图4是本发明的检测电力信号的频率的系统第一实施方式的结构示意图。
本实施方式的所述检测电力信号的频率的系统可包括采样模块1010、初步频率测量模块1020、1π序列长度模块1030、参考频率修正模块1040、第一相位调制模块1050、第二相位调制模块1060、滤波模块1070、均衡模块1080、第一窗口数据模块1090、第二窗口数据模块1100、第一相位模块1110、第二相位模块1120、相位差模块1130和频率测量模块1140,其中:
采样模块1010,用于根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列。
初步频率模块1020,用于对所述输入信号序列进行频率初测,生成所述电力信号的初步频率。
1π序列长度模块1030,用于以所述初步频率给定参考频率,根据预设的第一转换规则将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度。
参考频率修正模块1040,用于根据预设的第二转换规则,将所述1π序列长度和所述预设采样频率转换为修正参考频率。
第一相位调制模块1050,用于将所述输入信号序列与所述输入信号在所述1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列。
第二相位调职模块1060,用于将所述输入信号序列与所述输入信号在-1π序列长度的移相序列相减,生成相位随输入信号频率变化的第二相位调制序列。
滤波模块1070,用于通过点频滤波器分别对所述第一相位调制序列和所述第二相位调制序列进行滤波,生成第一滤波序列和第二滤波序列。
均衡模块1080,用于分别对所述第一滤波序列和所述第二滤波序列进行均衡处理,生成第一均衡序列和第二均衡序列。
第一窗口数据模块1090,用于将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列。
第二窗口数据模块1100,用于将所述第二均衡序列与所述预设窗口函数序列相乘,生成第二窗口数据序列。第一相位模块1110,用于在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位。
第二相位模块1120,用于在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位。
相位差模块1130,用于获取所述第一相位和所述第二相位的相位差。
频率测量模块1140,用于根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率。
本实施方式,根据参考频率计算所述1π移相对应的采样间隔整数,为1π序列长度,并根据所述1π序列长度,得到所述修正参考频率,将所述输入信号序列与所述输入信号在±1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列和第二相位调制序列,可有效抑制噪声或衰减次谐波和分次谐波干扰,通过点频滤波器和均衡处理,可消除整数周期序列长度的误差,通过窗口函数可进一步抑制谐波和噪声干扰,通过复数积分和窗口函数将所述两个相位调制序列用于频率测量,可获得较高精度的频率测量结果。
其中,对于采样模块1010,可通过电网领域的采样设备对所述电力信号进行采样,获得输入信号序列。
优选地,为了保证一定的频率测量实时性,电力系统频率通常指信号在时间长度0.2s的平均频率,可取时间长度等于0.2s。
进一步地,电力系统额定频率50Hz,为了提高性能,采样频率应远大于50Hz,优选地,设置采样频率等于fn=10KHz,采样间隔表达为式(1):
式中,Tn为采样间隔,单位s;fn为所述预设采样频率,单位Hz。
所述样输入信号序列长度表达为式(2):
N=Tsfn (2);
式中,N为输入信号序列长度,单位无量纲,Ts为输入信号对应的输入时间,单位s。
所述输入信号序列表达为式(3):
n=-Nπ+1,-Nπ+2,....,-1,0,1,2,.....,N-Nπ-1 (3);
式中,Xi(n)为输入信号序列;A为信号幅值,单位v;ω为信号频率,单位rad/s;Tn为采样间隔,单位s;n为序列离散数,单位无量纲;Nπ为1π序列长度;为初相位,单位rad。
对于初步频率测量模块1020,可通过零交法对所述输入信号序列进行频率初测,获取所述初步频率。还可通过本领域技术人员惯用的其他频率测量方法对所述输入信号序列进行频率初测。
所述初步频率表达为式(4):
ωo (4);
式中,ωo为初步频率,单位rad/s;
对于1π序列长度模块1030,以所述初步频率为参考频率跟踪所述输入信号序列的频率。可通过电网领域的采样间隔检测设备,将所述预设采样频率转换为1π移相对应的采样间隔数整数。
优选地,所述参考频率表达为式(5):
ωs=ωo (5);
式中,ωs为参考频率,单位rad/s;ωo为初步频率,单位rad/s;
进一步地,根据所述预设的第一转换规则式(6)将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度::
式中,Nπ为所述1π序列长度,单位无量纲;ωs为初步频率,单位rad/s;fn为所述预设采样频率,单位Hz。
对于参考频率修正模块1040,所述预设的第二转换规则将所述1π序列长度转换为所述修正参考频率,用于修正Nπ整数化存在1个采样间隔内的误差。
优选地,可通过所述预设的第二转换规则式(7)将所述1π序列长度转换为所述修正参考频率:
式中,ωset为所述修正参考频率,单位rad/s;Nπ为所述1π序列长度,单位无量纲;fn为所述预设采样频率,单位Hz。
对于第一相位调制模块1050,将所述输入信号序列与所述输入信号在所述1π序列长度的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列。
优选地,所述第一相位调制序列为式(8):
n=0,1,2,3,.....,N-2Nπ-1
式中,XPh1(n)为所述第一相位调制序列。
所述第一相位调制相位为式(9):
进一步地,所述第一相位调制序列的幅频特性如图3所示。其中信号频率为100πrad/s,相位调制序列对偶次谐波有较好的抑制作用,对分次谐波也有较好的衰减作用。
对于第二相位调制模块1060,所述-1π序列长度为所述1π序列长度的相反数。
优选地,所述第二相位调制序列为式(10):
n=0,1,2,3,.....,N-2Nπ-1
式中,XPh2(n)为所述第二相位调制序列。
所述第二相位调制相位为式(11):
进一步地,所述第二相位调制序列的幅频特性如图3所示。其中信号频率为100πrad/s,相位调制序列对偶次谐波有较好的抑制作用,对分次谐波也有较好的衰减作用。
对于滤波模块1070,优选地,点频滤波器可为频率带宽为零的带通滤波器。
在一个实施例中,点频滤波器的离散域C语言计算为式(12):
Xp1+=[XPh1(n)-Uc1-Xp1]TnΔB-3dB
Xp1(n)=Xp1
Xp2+=[XPh2(n)-Uc2-Xp2]TnΔB-3dB
Xp2(n)=Xp2
n=0,1,2,3,.......,N-2Nπ-1 (12);
式(12)中,Xp1为第一点频滤波器的输出信号中间值,XPh1(n)为第一相位调制序列,Xp1(n)为第一点频滤波器的输出信号序列,Uc1为第一点频滤波器电容两端信号中间值;Xp2为第二点频滤波器的输出信号中间值,XPh2(n)为第二相位调制序列,Xp2(n)为第二点频滤波器的输出信号序列,Uc2为第二点频滤波器电容两端信号中间值。
对于均衡模块1080,由于点频滤波器输出信号幅值随过程时间变化,需要对输出信号过程进行均衡,以减小幅值的过程变化量。
在一个实施例中,均衡模块1080进行均衡处理可通过式(13)分别将第一滤波序列与第二滤波序列除序列值,生成第一均衡数列和第二均衡数列:
n=0,1,2,3,...,N-2Nπ-1 (13);
式(13)中,Xo1(n)为第一均衡序列,Xo1(n)为第二均衡序列。
在点频率等于信号频率,相对水平直线,均衡处理误差为0。在点频率不等于信号频率,例如点频率与信号频率之间误差±1×10-3时,在1s时间的过程均衡误差为-0.308%。
对于第一窗口数据模块1090,将所述第一相位调制序列与预设窗口函数序列相乘,生成第一窗口数据序列。
优选地,预设窗口函数为布莱克曼窗函数,布莱克曼窗函数数据序列为式(14):
n=0,1,2,....,N-2Nπ-1
窗口频率为式(15):
式中,Ω为窗口频率,单位rad/s。所述窗口函数的频域幅频特性,如图2所示。
优选地,所述第一窗口数据序列的表达式为(16):
XW1(n)=W(n)Xo1(n)
n=0,1,2,3,.....,N-2Nπ-1 (16);
式中,XW1(n)为所述第一窗口数据序列,Xo1(n)为第一均衡数列。
对于第二窗口数据模块1100,将所述第二相位调制序列与所述预设窗口函数序列相乘,生成第二窗口数据序列。
优选地,所述第二窗口数据序列的表达式为(17):
XW2(n)=W(n)Xo2(n)
n=0,1,2,3,.....,N-2Nπ-1 (17);
式中,XW2(n)为所述第二窗口数据序列,Xo2(n)为第二均衡数列。
对于第一相位模块1110,在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位。
在一个实施例中,第一相位模块1110还用于:
通过以下所述公式(18),对所述第一窗口数据序列进行复数积分计算,生成所述第一相位:
n=0,1,2,......,N-2Nπ-1 (18);
式中,Xw1(n)为所述第一窗口数据序列;ωset为所述修正参考频率,单位rad/s;R1为第一实数向量;I1为第一虚数向量;PH1为所述第一相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad。
对于第二相位模块1120,在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位。
在一个实施例中,第二相位模块1120还用于:
通过以下所述公式(19),对所述第二窗口数据序列进行复数积分计算,生成所述第二相位:
n=0,1,2,......,N-2Nπ-1 (19);
式中,Xw2(n)为所述第二窗口数据序列;ωset为所述修正参考频率,单位rad/s;R2为第二实数向量;I2为第二虚数向量;PH2为所述第二相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad。
对于相位差模块1130,获取所述第一相位和所述第二相位的相位差。
优选地,相位差模块1130可通过如下公式(20)获取所述相位差:
式中,PH2为所述第二相位,单位rad;PH1为所述第一相位,单位rad;△PH所述相位差,单位rad。
对于频率测量模块1140,可通过电网领域的频率检测设备将所述相位差和所述修正参考频率转换为所述电力信号的频率。
优选地,频率测量模块1140可根据所述预设的频率转换规则式(21)获得所述电力信号的频率:
式中,ω为所述输入信号序列的频率,单位rad/s;ωset为所述修正参考频率,单位rad/s。
在其他实施方式中,还可采用本领域技术人员惯用的相位计算方法获得所述相位调制序列的相位。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种检测电力信号的频率的方法,其特征在于,包括以下步骤:
根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列;
对所述输入信号序列进行频率初测,生成所述电力信号的初步频率;
以所述初步频率给定参考频率,根据预设的第一转换规则将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度;
根据预设的第二转换规则,将所述1π序列长度和所述预设采样频率转换为修正参考频率,其中,所述预设的第二转换规则满足下式:
ω s e t = πf n N π
式中,ωset为所述修正参考频率,单位rad/s;Nπ为所述1π序列长度,单位无量纲;fn为所述预设采样频率,单位Hz;
将所述输入信号序列与所述输入信号序列在所述1π序列长度下的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列;
将所述输入信号序列与所述输入信号序列在-1π序列长度下的移相序列相减,生成相位随输入信号频率变化的第二相位调制序列;
通过点频滤波器分别对所述第一相位调制序列和所述第二相位调制序列进行滤波,生成第一滤波序列和第二滤波序列;
分别对所述第一滤波序列和所述第二滤波序列进行均衡处理,生成第一均衡序列和第二均衡序列,其中,所述均衡处理是指分别将所述第一滤波序列与所述第二滤波序列除序列值;
将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列;
将所述第二均衡序列与所述预设窗口函数序列相乘,生成第二窗口数据序列;
在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位;
在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位;
获取所述第一相位和所述第二相位的相位差;
根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率,其中,所述预设的频率转换规则满足下式:
ω = Δ P H π ω s e t
式中,ω为所述输入信号序列的频率,单位rad/s;ωset为所述修正参考频率,单位rad/s。
2.根据权利要求1所述的检测电力信号的频率的方法,其特征在于,所述预设窗口函数序为布莱克曼窗口函数序列。
3.根据权利要求1所述的检测电力信号的频率的方法,其特征在于,在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位的步骤包括以下步骤:
通过以下公式,对所述第一窗口数据序列进行复数积分计算,生成所述第一相位:
其中,Xw1(n)为所述第一窗口数据序列;ωset为所述修正参考频率,单位rad/s;R1为第一实数向量;I1为第一虚数向量;PH1为所述第一相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad;ω为信号频率,单位rad/s;Tn为采样间隔,单位s;Nπ为1π序列长度;为初相位,单位rad。
4.根据权利要求1所述的检测电力信号的频率的方法,其特征在于,在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位的步骤包括以下步骤:
通过以下公式,对所述第二窗口数据序列进行复数积分计算,生成所述第二相位:
其中,Xw2(n)为所述第二窗口数据序列;ωset为所述修正参考频率,单位rad/s;R2为第二实数向量;I2为第二虚数向量;PH2为所述第二相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad;ω为信号频率,单位rad/s;Tn为采样间隔,单位s;Nπ为1π序列长度;为初相位,单位rad。
5.根据权利要求1至4中任意一项所述的检测电力信号的频率的方法,其特征在于,根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率的步骤包括以下步骤:
获取所述相位差与π的比值生成相位比值;
将所述相位比值与所述修正参考频率相乘,生成所述电力信号的频率。
6.一种检测电力信号的频率的系统,其特征在于,包括:
采样模块,用于根据预设信号时间长度和预设采样频率,对电力信号进行采样,获得输入信号序列;
初步频率模块,用于对所述输入信号序列进行频率初测,生成所述电力信号的初步频率;
1π序列长度模块,用于以所述初步频率给定参考频率,根据预设的第一转换规则将所述预设采样频率转换为所述参考频率在1π移相的采样间隔整数,生成1π序列长度;
参考频率修正模块,用于根据预设的第二转换规则,将所述1π序列长度和所述预设采样频率转换为修正参考频率,其中,所述预设的第二转换规则满足下式:
ω s e t = πf n N π
式中,ωset为所述修正参考频率,单位rad/s;Nπ为所述1π序列长度,单位无量纲;fn为所述预设采样频率,单位Hz;
第一相位调制模块,用于将所述输入信号序列与所述输入信号序列在所述1π序列长度下的移相序列相减,生成相位随输入信号频率变化的第一相位调制序列;
第二相位调制模块,用于将所述输入信号序列与所述输入信号序列在-1π序列长度下的移相序列相减,生成相位随输入信号频率变化的第二相位调制序列;
滤波模块,用于通过点频滤波器分别对所述第一相位调制序列和所述第二相位调制序列进行滤波,生成第一滤波序列和第二滤波序列;
均衡模块,用于分别对所述第一滤波序列和所述第二滤波序列进行均衡处理,生成第一均衡序列和第二均衡序列,其中,所述均衡处理是指分别将所述第一滤波序列与所述第二滤波序列除序列值;
第一窗口数据模块,用于将所述第一均衡序列与预设窗口函数序列相乘,生成第一窗口数据序列;
第二窗口数据模块,用于将所述第二均衡序列与所述预设窗口函数序列相乘,生成第二窗口数据序列;
第一相位模块,用于在所述修正参考频率,对所述第一窗口数据序列进行复数积分计算,生成第一相位;
第二相位模块,用于在所述修正参考频率,对所述第二窗口数据序列进行复数积分计算,生成第二相位;
相位差模块,用于获取所述第一相位和所述第二相位的相位差;
频率测量模块,用于根据预设的频率转换规则,将所述相位差和所述修正参考频率转换为所述电力信号的频率,其中,所述预设的频率转换规则满足下式:
ω = Δ P H π ω s e t
式中,ω为所述输入信号序列的频率,单位rad/s;ωset为所述修正参考频率,单位rad/s。
7.根据权利要求6所述的检测电力信号的频率的系统,其特征在于,所述预设窗口函数序为布莱克曼窗口函数序列。
8.根据权利要求6所述的检测电力信号的频率的系统,其特征在于,所述第一相位模块还用于:
通过以下公式,对所述第一窗口数据序列进行复数积分计算,生成所述第一相位:
其中,Xw1(n)为所述第一窗口数据序列;ωset为所述修正参考频率,单位rad/s;R1为第一实数向量;I1为第一虚数向量;PH1为所述第一相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad;ω为信号频率,单位rad/s;Tn为采样间隔,单位s;Nπ为1π序列长度;为初相位,单位rad。
9.根据权利要求6所述的检测电力信号的频率的系统,其特征在于,所述第二相位模块还用于:
通过以下公式,对所述第二窗口数据序列进行复数积分计算,生成所述第二相位:
其中,Xw2(n)为所述第二窗口数据序列;ωset为所述修正参考频率,单位rad/s;R2为第二实数向量;I2为第二虚数向量;PH2为所述第二相位,单位rad;β为所述修正参考频率与所述输入信号序列频率误差产生的相位,单位rad;ω为信号频率,单位rad/s;Tn为采样间隔,单位s;Nπ为1π序列长度;为初相位,单位rad。
10.根据权利要求6至9中任意一项所述的检测电力信号的频率的系统,其特征在于,所述频率测量模块还用于获取所述相位差与π的比值生成相位比值;将所述相位比值与所述修正参考频率相乘,生成所述电力信号的频率。
CN201410757190.1A 2014-12-10 2014-12-10 检测电力信号的频率的方法和系统 Active CN104502702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410757190.1A CN104502702B (zh) 2014-12-10 2014-12-10 检测电力信号的频率的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410757190.1A CN104502702B (zh) 2014-12-10 2014-12-10 检测电力信号的频率的方法和系统

Publications (2)

Publication Number Publication Date
CN104502702A CN104502702A (zh) 2015-04-08
CN104502702B true CN104502702B (zh) 2017-04-12

Family

ID=52944113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410757190.1A Active CN104502702B (zh) 2014-12-10 2014-12-10 检测电力信号的频率的方法和系统

Country Status (1)

Country Link
CN (1) CN104502702B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445547B (zh) * 2015-07-09 2018-05-25 深圳市科润宝实业有限公司 正弦信号的频率检测方法和系统
CN105203843B (zh) * 2015-09-18 2018-03-20 广东电网有限责任公司电力科学研究院 电力信号的平均初相位检测方法和系统
CN105158564B (zh) * 2015-09-18 2018-06-12 广东电网有限责任公司电力科学研究院 根据正弦函数调制的电力信号全相位差检测方法和系统
CN105182077B (zh) * 2015-09-18 2017-11-14 广东电网有限责任公司电力科学研究院 根据余弦函数调制的电力信号全相位差检测方法和系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373802A2 (en) * 1988-12-10 1990-06-20 THORN EMI plc Frequency measurement
CN1375702A (zh) * 2002-04-05 2002-10-23 清华大学 一种基于数字滤波的无功功率测量方法
CN1382995A (zh) * 2002-04-24 2002-12-04 清华大学 一种频率和相位的数字测量方法
CN1693906A (zh) * 2004-05-04 2005-11-09 安捷伦科技有限公司 用于分析电网络的系统和方法
CN1800864A (zh) * 2006-01-19 2006-07-12 清华大学 一种基于数字滤波的无功功率测量方法及其系统
CN102495281A (zh) * 2011-12-14 2012-06-13 北京易事特电源有限公司 一种电力系统相量频率测量方法
CN102539916A (zh) * 2011-12-07 2012-07-04 中国人民解放军海军工程大学 船舶电力系统同步相量测量装置
CN103116059A (zh) * 2013-01-21 2013-05-22 山东大学 适用于并网发电系统低电压穿越功能的电压快速检测算法
CN103501176A (zh) * 2013-09-24 2014-01-08 南车株洲电力机车研究所有限公司 一种相位检测方法和电路,及锁相同步电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101510777B1 (ko) * 2009-03-20 2015-04-10 삼성전자주식회사 주파수 측정 회로 및 이를 구비하는 반도체 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373802A2 (en) * 1988-12-10 1990-06-20 THORN EMI plc Frequency measurement
CN1375702A (zh) * 2002-04-05 2002-10-23 清华大学 一种基于数字滤波的无功功率测量方法
CN1382995A (zh) * 2002-04-24 2002-12-04 清华大学 一种频率和相位的数字测量方法
CN1693906A (zh) * 2004-05-04 2005-11-09 安捷伦科技有限公司 用于分析电网络的系统和方法
CN1800864A (zh) * 2006-01-19 2006-07-12 清华大学 一种基于数字滤波的无功功率测量方法及其系统
CN102539916A (zh) * 2011-12-07 2012-07-04 中国人民解放军海军工程大学 船舶电力系统同步相量测量装置
CN102495281A (zh) * 2011-12-14 2012-06-13 北京易事特电源有限公司 一种电力系统相量频率测量方法
CN103116059A (zh) * 2013-01-21 2013-05-22 山东大学 适用于并网发电系统低电压穿越功能的电压快速检测算法
CN103501176A (zh) * 2013-09-24 2014-01-08 南车株洲电力机车研究所有限公司 一种相位检测方法和电路,及锁相同步电路

Also Published As

Publication number Publication date
CN104502702A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104635045B (zh) 基于相位调制的电力信号频率检测方法和系统
CN104635044B (zh) 基于幅值调制的电力信号频率检测方法和系统
CN104502698B (zh) 电力信号的频率测量方法和系统
CN104502702B (zh) 检测电力信号的频率的方法和系统
CN104502706B (zh) 电力信号的谐波幅值测量方法和系统
CN103869162B (zh) 一种基于时域准同步的动态信号相量测量方法
CN104535836B (zh) 电力信号的基波频率测量方法和系统
CN105067880A (zh) 对电力信号进行正交调制的方法和系统
CN104459321B (zh) 电力信号的基波相位测量方法和系统
US9037429B2 (en) Methods and apparatus for measuring the fundamental frequency of a line signal
CN104502701A (zh) 基于相位调制检测电力信号频率的方法和系统
CN104267287B (zh) 多通道音频设备串扰系数测量的方法和装置
CN106154035A (zh) 一种快速谐波及间谐波检测方法
CN101832803B (zh) 基于同步调制的科氏质量流量计数字信号处理方法
CN106680585A (zh) 谐波/间谐波的检测方法
CN105334381A (zh) 一种交流有功功率的测量方法和装置
CN103197143A (zh) 基于汉宁窗fft算法与遍历滤波的谐波、间谐波检测方法
CN101556173A (zh) 一种基于小波降噪的科里奥利质量流量计数字解算装置及方法
CN104459318B (zh) 电力谐波的测量方法和系统
CN104330644A (zh) 检测电力系统中正弦波信号幅值的方法和系统
CN104483547A (zh) 电力信号的滤波方法及系统
CN105445547A (zh) 正弦信号的频率检测方法和系统
Mihov et al. Methodology for measuring the frequency of powerline interferences
CN105353197A (zh) 一种交流真有效值的测量方法和装置
Mihov et al. Investigation of Digital Procedure for Mains Frequency Measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant