WO2013086786A1 - 具有降血糖作用的化合物、组合物及其用途 - Google Patents

具有降血糖作用的化合物、组合物及其用途 Download PDF

Info

Publication number
WO2013086786A1
WO2013086786A1 PCT/CN2012/001700 CN2012001700W WO2013086786A1 WO 2013086786 A1 WO2013086786 A1 WO 2013086786A1 CN 2012001700 W CN2012001700 W CN 2012001700W WO 2013086786 A1 WO2013086786 A1 WO 2013086786A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
formula
compound
deletion
lysine
Prior art date
Application number
PCT/CN2012/001700
Other languages
English (en)
French (fr)
Inventor
秦树林
Original Assignee
Qin Shulin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qin Shulin filed Critical Qin Shulin
Priority to CN201280061395.5A priority Critical patent/CN104114575B/zh
Publication of WO2013086786A1 publication Critical patent/WO2013086786A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/30Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention belongs to the field of biopharmaceuticals, and particularly relates to compounds, compositions and uses thereof having hypoglycemic effects. Background technique
  • insulin has undergone three generations of historical evolution:
  • the first generation of products was extracted from the pancreas of animals such as pigs or cattle. Due to heterogeneous allergic reactions, these products are less effective.
  • the second generation of products is recombinant human insulin, which is obtained by extracting insulin genes from human cells, and then inserting them into yeast or E. coli for cultivation through complex modern biological gene technology.
  • the third generation is an insulin analogue obtained by structural modification of human insulin, including fast-acting insulin and long-acting insulin.
  • ADA American Diabetes Association
  • EASD European Diabetes Association
  • Basal insulin is used to maintain normal blood glucose secretion on an empty stomach. Many metabolic studies have found that maintaining a basic insulin level between meals and at night can reduce the breakdown of triglyceride, inhibit the liver's output of glucose, and stabilize the fasting blood glucose, thereby reducing overall blood sugar levels. Ideal basal insulins, such as long-acting insulin analogues, should be able to mimic physiological insulin secretion patterns, avoid hypoglycemia, especially nocturnal hypoglycemia, and do not increase body weight.
  • the most long-acting insulins currently used can be divided into three major categories.
  • the first type is a suspension of crystals formed by human insulin with zinc ions or basal protamine, such as NPH insulin, lente insulin, and the like. These insulin preparations are unstable and are being replaced by long-acting insulin analogues.
  • the second is detemir. It is an insulin analog of myristic acid linked to B29 lysine. Detemir is slowly absorbed after injection. The disappearance time T 50% at the injection site is approximately 10 hours. It binds to albumin in the blood through the fatty acid at position 29 and then slowly dissociates from the complex. Dihexamerization, hexamer and dimer binding to albumin prolongs the retention time of insulin detemir at the injection site. After the insulin enters the blood circulation, it binds to albumin, further prolonging the residence time in the body.
  • the third is that the insulin glargine drug dissolves in the formulation at pH 3.0, and crystallizes when the pH rises to about 7.4 after injection.
  • the slow decomposition of the injection site brings about a delayed effect.
  • absorption properties and pharmacokinetics vary widely in the population and within the individual.
  • Insulin glargine and insulin detemir are the only two long-acting insulin analogues on the market, with a maximum duration of action of no more than 24 hours. Insulin glargine is much more active on the insulin-like growth factor-1 receptor (IGF-1R) than native human insulin. Because insulin-like growth factor-1 receptor is closely related to the development of many types of cancer, it has been controversial whether long-term use of insulin glargine increases the risk of cancer in patients. The biological activity of insulin detemir in the human body is approximately the confirmation of natural human insulin. 20%, so it is used at a dose five times the conventional insulin dose, which significantly increases production and use costs.
  • IGF-1R insulin-like growth factor-1 receptor
  • Recombinant human insulin is difficult to meet the insulin requirements of the meal.
  • the human insulin molecule usually forms a hexamer structure, which is gradually depolymerized into a dimer after subcutaneous injection, and further dissociates into a monomer to enter the circulation through the capillaries, thereby exerting a hypoglycemic effect. Due to the depolymerization and absorption process, recombinant human insulin takes about 30 minutes after subcutaneous injection, and the peak time is long, and the effect lasts for about 6-7 hours. Moreover, due to individual differences, there is a significant difference in the amount of final influx after injection of the same dose of human insulin.
  • Rapid-acting insulin analogues such as insulin aspart, insulin lispro, etc.
  • Fast-acting insulin analogues absorb quickly, have a short peak time, have a higher peak value, and have a peak concentration of 1 to 3 hours.
  • the duration of action is 3 to 5 hours, which is significantly better than human insulin.
  • the onset time of insulin aspart and insulin lispro is about 20 minutes, which is still not convenient for diabetics, and there is still much room for improvement.
  • a first aspect of the invention provides a compound having hypoglycemic effect, the amino acid sequence of said compound being:
  • Xl07 is a phenine-valine-asparagine-glutamine tetrapeptide, a proline-asparagine-glutamine tripeptide, an asparagine-glutamine dipeptide, or glutamine, or a sequence in which the amino acid residue of any of the above-mentioned di-, tri-, or tetrapeptide sequences is substituted with lysine or arginine, or a deletion;
  • X 1 () 8 is histidine, phenylalanine, arginine or Glutamine;
  • X 1Q9 is arginine, alanine, glutamic acid or aspartic acid;
  • Xuo is phenylalanine, tyrosine or histidine;
  • X 14 is threonine, asparagine, glutamic acid, aspartic acid or deletion;
  • X 113 is valine, lysine
  • the present invention further provides a compound having a hypoglycemic effect and modified on a polypeptide basis to further improve the solubility, stability, in vivo circulation time, and the like of the compound.
  • the modification is an ⁇ -amino group which links the modified side chain to the N-terminal amino acid residue of the compound of the present invention, or an ⁇ -amino group which is linked to the lysine present in the compound of the present invention.
  • the structure of the compound is:
  • X 30 o is phenylalanine or U L -phenylalanine;
  • X 3 () 1 is phenylalanine, histidine or tyrosine;
  • X 3 o2 is tyrosine, benzene 2 001700
  • X 3 03 is threonine, asparagine, glutamic acid, aspartic acid or deletion;
  • X 3 04 is valine, lysine, glutamic acid, aspartic acid or Missing; X 3 .
  • X 3 o 6 is threonine, structure or deletion of formula (I)
  • X 3()7 is lysine, serine, alanine, glycine, structure or deletion of formula (I);
  • X 3Q8 is glycine, structure or deletion of formula (I);
  • X 3G9 is lysine, glycine , serine, structure or deletion of formula (I);
  • X 31Q is lysine, glycine, serine, structure or deletion of formula (I);
  • x 311 is lysine, glycine, serine, alanine, formula ( I) structure or deletion;
  • x 312 is lysine, arginine, alanine, valine, glycine, structure or deletion of formula (I);
  • x 313 is glycine, alanine, arginine, lysine Acid, glut
  • a third aspect of the present invention provides a pharmaceutical composition which is prepared by mixing a hypoglycemic compound of the present invention and a pharmaceutically acceptable carrier, and the mixing ratio may be about 90/10%, about 80/20%. , about 70/30%, about 60/40%, about 50/50%, about 40/60%, about 30/70%, about 20/80%, or about 10/90%; preferably, the composition Further comprising a fast-acting insulin analog; the fast-acting insulin analog can be Asp B28 human insulin, Lys B28 Pro B29 human insulin or Lys B3 Glu B29 human insulin.
  • a fourth aspect of the invention provides the use of a compound of the invention in the manufacture of a medicament for the treatment of diabetes or hyperglycemia.
  • a fifth aspect of the invention provides a method of treating diabetes or hyperglycemia, etc., comprising administering a compound or composition of the invention to a patient in need thereof.
  • the compound of the present invention Compared with the existing insulin and its analogs, the compound of the present invention has good water solubility, high activity in binding to the insulin receptor, low toxic side effects, and easy preparation. The cycle time of the modified compound in the body is significantly prolonged. DRAWINGS
  • Figure 1 is a graph showing changes in blood glucose with time after subcutaneous injection of physiological saline, human insulin and a compound of the invention II-2
  • Fig. 2 is a graph showing changes in blood glucose with time after subcutaneous injection of physiological saline and a compound of the invention II-17 in mice. ;
  • Figure 3 is a graph showing changes in blood glucose over time following subcutaneous injection of physiological saline, human insulin, and the compound II-11 of the present invention in mice.
  • Amino acid refers to any molecule that contains both amino and carboxyl functional groups, the amino and carboxyl groups of the alpha-amino acid being attached to the same carbon atom (alpha carbon).
  • the alpha carbon may have 1-2 organic substituents.
  • Amino acids contain L and D isomers and racemic mixtures 0
  • amino acid residues in the polypeptide sequence of the present invention are L isomers, that is, L-amino acids, and D-amino acids are represented by a lowercase letter "d" before the amino acid name or abbreviation, such as dK.
  • encodeable amino acid or “encodeable amino acid residue” is used to mean an amino acid or amino acid residue which may be encoded by a nucleotide triplet.
  • hGlu is homoglutamic acid
  • -hGlu is - the L isomer of HNCH(CO-)CH 2 CH 2 CH 2 COOH;
  • ⁇ -hGlu is the L isomer of -H CH(COOH)CH 2 CH 2 CH 2 CO-;
  • a-Asp is the L isomer of H CH(CO-)CH 2 COOH;
  • ⁇ -Asp is the L isomer of -HNCH(COOH)C3 ⁇ 4CO-;
  • a-Glu is the L isomer of -HNCH(CO-)CH 2 CH 2 COOH;
  • ⁇ -Glu is the L isomer of -HNCH(COOH)CH 2 CH 2 CO-;
  • ⁇ -Ala is — HN-CH 2 —CH 2 —COOH
  • Sar is sarcosine.
  • Amino acid residues can be represented by three-letter amino acid codes or single-letter amino acid codes; the amino acid tables are as follows: Table 1: Amino acid names and cartridges
  • Natural insulin refers to mammalian insulin (such as human insulin, bovine insulin, porcine insulin, etc.) derived from natural, chemical synthesis, genetic engineering. Human insulin comprises an A chain consisting of 21 amino acids and a B chain consisting of 30 amino acids. The two strands are linked by three disulfide bonds: A7 and B7, A20 and B19, A6 and AI L B7, A7 refer to the amino acid residue of position 7 (from the N-terminus) of the native insulin B chain and the position of the insulin A chain. 7 (from the N-terminus) of amino acid residues.
  • Insulin analogs are generic terms for modified insulin polypeptides, including double-stranded molecules consisting of A and B chains with homologous sequences to native insulin, and single chain insulin analogs. "Insulin analogs, which have partial, total or enhanced activity of natural insulin, or which can be converted in vivo or in vitro to a polypeptide that has partial, total or enhanced activity of natural insulin, for example one that increases, decreases or replaces one or more than native insulin. Polypeptides of amino acid residues.
  • Insulin analogs Human, animal, and even non-mammalian proinsulin, pro-proinsulin, insulin precursors, single-chain insulin precursors, and the like are all called “insulin analogs.” Many insulin analogs are found in The "insulin analog” broadly includes natural insulin and insulin analogs, unless otherwise stated.
  • the insulin referred to in this application refers to human insulin.
  • the human insulin A chain sequence is the sequence set forth in SEQ ID NO: 124
  • the human insulin B chain sequence is the sequence set forth in SEQ ID NO: 125. 1700
  • a single-chain compound refers to a polypeptide sequence having a general structural B chain-C L -A chain or a modified polypeptide sequence, wherein the B chain is the B chain or analog of insulin, and the A chain is the A chain or analog of insulin, C L is a peptide chain which links the C-terminal amino acid residue of the B chain to the N-terminus of the A chain.
  • the amino acid indicated by the position of the A chain or the B chain in the present application such as A14, B28, etc., represents an amino acid corresponding to the A chain or B chain of insulin or a change thereof, wherein the A chain or B chain of insulin The number starts from 1.
  • the insulin A and B chain sequences are found in SEQ ID NOS: 124 and 125, respectively.
  • cysteines in each compound of the present invention are numbered, respectively, C n] ⁇ C [6] , which in turn correspond to six cysteines of the single-chain compound from the N-terminus to the C-terminus.
  • the compound of the present invention is an insulin-based structure, and therefore the disulfide bond is contained in the tertiary structure of any of the compounds of the present invention, and a disulfide bond is formed in the same manner as insulin, that is, C n] and C[ 4] are formed.
  • Disulfide bond, . [2 ] and. [6 ] forms a disulfide bond, and C [3] and C [5] form a disulfide bond.
  • the insulin analog may comprise one or more modifying groups.
  • the modifying group is capable of providing the characteristics required for the insulin analog.
  • a modifying group can reduce the rate of degradation of an insulin analog in various environments (e.g., digestive tract, blood).
  • Preferred modifying groups are those which allow the insulin analog to retain comparable insulin receptor binding activity.
  • Preferred modifying groups include amphoteric groups, water soluble groups, or groups which render the insulin analog less lipophilic, more lipophilic, and more water soluble than the unmodified analog.
  • the modifying group can comprise a degradable linker.
  • PAG may include a readily hydrolyzable linker such as lactide, glycolide, carbonic acid, ester, amino phthalate. This method can degrade the polymer into small molecular weight fragments.
  • the modifying group may include one or more hydrophilic groups, lipophilic groups, amphoteric groups, salt-forming groups, spacer groups, linking groups, capping groups, or a combination of these groups.
  • the various groups may be linked together by covalent bonds or by hydrolyzable or non-hydrolyzable bonds. Representative hydrophilic groups and lipophilic groups are described below.
  • hydrophilic group examples include a PAG group, a polysaccharide, a polysorbate, and a combination of these groups.
  • Polyalkylene Glycol consists of a plurality of alkylene glycol monomers. In one embodiment, all monomers are the same (e.g., polyethylene glycol (PEG) or polypropylene glycol (PPG)). In another embodiment, the alkylene glycols are different.
  • the polymer may be a random copolymer such as a copolymer of ethylene oxide and propylene oxide, or a branched or graft copolymer.
  • PEG polyethylene glycol refers to any water soluble polyethylene glycol or polyethylene oxide.
  • the chemical formula of polyethylene glycol is -(CH 2 CH 2 0) n -, wherein n may be an integer from 2 to 2,000.
  • One end of the PEG is usually a relatively inactive functional group such as an alkyl group or an alkoxy group.
  • Alkyl groups include saturated straight or branched chain hydrocarbon groups. Representative examples of alkoxy are decyloxy, ethoxy, propoxy (e.g., 1-propoxy and 2-propoxy), butoxy (e.g., 1-butoxy, 2-butoxy). And 2-methyl-2-propoxy), pentyloxy, hexyloxy and the like.
  • the methoxy-terminated PEG is designated mPEG, the structural formula CH 3 0(CH 2 CH 2 0) n -, but is still generally referred to as PEG.
  • PEG20K refers to a molecular weight of 20,000 polyethylene glycol molecules.
  • the other end of the PEG is usually an activating functional group or a functional group which is liable to form a covalent bond, such as an amino group, a carboxyl group, a hydroxyl group, a thiol group, and the like.
  • PEG-maleimide, PEG-vinyl sulfone and PEG-iodoacetyl (CO-CH 2 -I ) can be combined with cyste 0
  • the thiol-SH reaction of the side chain of the acid forms a stable covalent bond;
  • PEG-NHS succinimide
  • acylation nucleophilic substitution reaction
  • the PEG-aldehyde and the amino group of the polypeptide can be joined by a reductive alkylation reaction under the action of a reducing agent such as sodium cyanoborohydride.
  • the PEG molecule in the present invention may be a linear, branched, bifurcated or dumbbell-shaped PEG.
  • the branched PEG can be represented by the formula m R (-PEG- n OH), where R (typically polyhydric) of the core group, such as pentaerythritol, a sugar, lysine or glycerol.
  • R typically polyhydric
  • m represents the number of branches, which may be the maximum number of attachment sites from 2 to the core group
  • n represents the number of PEG fragments, and the number of PEG fragments per branch may vary. In general, n is an integer from 2 to 1800.
  • the branched PEG can be represented by the formula (CH 3 0-PEG- n ) p RZ, p is equal to 2 or 3, R is lysine or glycerol, and Z represents an activating functional group capable of undergoing a reaction.
  • the bifurcated PEG is represented by the general formula PEG(-LX) n , L is a linking group, and X is a terminal activating functional group.
  • PEG is generally polydisperse, with multiple ⁇ I moieties less than 1.05.
  • the PEG group can also be mono-:.
  • Monodisperse means that PEG has a single length (molecular weight) rather than a mixture of various lengths (molecular weight).
  • Representative sugar groups include, but are not limited to, glycerin, monosaccharides, disaccharides, trisaccharides, oligosaccharides, and polysaccharides such as starch, glycogen, cellulose, and/or polysaccharide gums.
  • Particular monosaccharides include C6 and above (especially C6 and C8) sugars such as glucose, fructose, mannose, galactose, nucleic acid sugar or sedose heptose; disaccharides and trisaccharides include two or three monosaccharide units ( In particular, groups of C5 to C8), such as sucrose, cellobiose, maltose, lactose and/or raffinose.
  • Biocompatible polycationic groups include polyamine groups having a plurality of amino groups on the backbone or side chain, such as polylysine and other natural or synthetic amino acids having a plurality of positively charged amino acid polymers, including poly birds.
  • Biocompatible polyanionic groups include groups having a plurality of carboxyl groups on the backbone or side chain, such as polyaspartic acid, polyglutamic acid, and the like.
  • Other hydrophilic groups include natural or synthetic polysaccharides such as chitosan, dextran, and the like.
  • Certain hydrophilic groups have potential bioadhesive properties. An example of this can be found in U.S. Patent 6,197,346. These polymers having a plurality of carboxyl groups exhibit bioadhesive properties. Rapid biodegradable polymers that exhibit multiple carboxyl groups upon degradation, such as lactic acid glycolic acid copolymers, polyanhydrides, and polyorthoesters, are also bioadhesives. These polymers can be used to administer insulin analogs to the gastrointestinal tract. The carboxyl groups exposed during polymer degradation can be firmly attached to the gastrointestinal tract and assist in the administration of insulin analogs.
  • the modifying group includes one or more lipophilic groups.
  • Lipophilic groups can be well known to those skilled in the art and include, but are not limited to: alkyl, alkenyl, alkynyl, aryl, arylalkyl, alkylaryl, fatty acid, cholesterol, and lipophilic polymers And oligomers.
  • the hydrocarbyl group can be a saturated, unsaturated, linear, branched or cyclic hydrocarbon having one or more carbon atoms.
  • the hydrocarbon group has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more carbon atoms.
  • the hydrocarbyl group may be unsubstituted or have one or more substituents which preferably do not lose the biological activity of the conjugate.
  • the lipophilic group can also be a fatty acid such as a natural, synthetic, saturated, unsaturated, linear or branched fatty acid.
  • the fatty acids are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or more carbon atoms. Conjugation strategy
  • an insulin analog has one, two, three, four or more modifying groups after modification.
  • the binding site may include an amino acid residue, such as a lysine residue.
  • the insulin conjugate is a single conjugate.
  • the insulin conjugate is a multi-conjugate.
  • the insulin conjugate is a mixture of monoconjugates, biconjugates, triconjugates, tetraconjugates, and the like.
  • the modifier groups can be the same or different.
  • one or more modifying groups are preferably attached to the insulin conjugate via a hydrolyzable linkage and the other one or more modifying groups are preferably linked to the insulin conjugate via a non-hydrolyzable linkage.
  • all of the modifying groups are linked to the insulin conjugate via a hydrolyzable bond, but the rate of hydrolysis of each modifying group in vivo is fast and slow.
  • binding sites include an N-terminal alpha amino group and a lysine side chain amino group. Alternatively, it can be created by embedding a natural or non-natural number of acid residues having an amino group or a thiol group in a linking fragment of a single-chain compound or an oxime chain or an oxime chain. Other binding sites.
  • the modifying group and the insulin analog can be combined by a hydrolyzable bond such as an ester, carbonic acid, hydrolyzable aminodecanoate.
  • the hydrolyzable bond allows the insulin conjugate to have the effect of a prodrug.
  • a prodrug strategy is the preferred method if it is desired that the modifying group is inactive with the insulin conjugate, such as the binding site of the modifying group in the insulin analog to insulin receptor binding region.
  • the insulin analog is linked to the modifying group by a non-hydrolyzable linkage (eg, an amide linkage, an ether linkage).
  • a non-hydrolyzable linkage eg, an amide linkage, an ether linkage.
  • non-hydrolyzed bonds help to prolong the circulation time of the insulin conjugate in plasma.
  • Insulin homologs can be attached to the modifying group by various nucleophilic functional groups including, but not limited to, nucleophilic hydroxyl or amino groups. For example, serine, threonine, tyrosine have a nucleophilic hydroxyl group, histidine, lysine or insulin analog A chain, B chain N-terminus has a nucleophilic amino group. Insulin homologs can also be attached to the modifying group via free thiol-SH, for example to form succinate, thioether, sulfonamide linkages.
  • a common method is to form a hydrolyzable or non-hydrolyzable bond with a natural or synthetic macromolecule.
  • Biomacromolecules include albumin, polysaccharides, antibodies (such as IgG), and the like. 70% of the albumin in the blood vessels is mercaptalbumin, and the side chain thiol of cysteine-34 is the most active sulfhydryl group in plasma.
  • the insulin analog can be reacted with a linker having an activating functional group such as maleimine at one end to form an insulin-albumin conjugate.
  • the linker can be a long chain fatty acid or a PEG molecule. Specific examples can be found in Bioconjugate Chem. 2005, 16, 1000-1008. Synthetic macromolecules include polyethylene glycol and dextran. Another way is fatty acid acylation, which will be discussed in the section on acylated insulin analogs.
  • Sortase is a transpeptidase that mediates the covalent binding of Gram-positive bacterial cell walls to surface proteins, mainly in Gram-positive bacteria.
  • SrtA or SrtA Stap h Staphylococcus aureus sortase A
  • isoform isoform
  • SrtA recognizes a substrate comprising the LPXTG (Leu-Pro-X-Thr-Gly) motif, and the cysteine at position 184 acts as a nucleophilic group to attack the peptide bond Thr-Gly in the LPXTG motif, thereby producing a Acyl-enzyme intermediate.
  • the thioester intermediate of the threonine carboxyl group undergoes a nucleophilic reaction with the amino group of the oligoglycine of the substrate (penta-glycine (Gly 5 ) which is a bridge of the precursor of the branched lipid II in S. aureus) , creating new connection products.
  • SrtA strep Another related ⁇ Str ⁇ ptococciw / ⁇ ogew y sortase can accept a nucleophilic group consisting of two alanines, but the aureus enzyme cannot.
  • This sortase (SrtA strep ) cleaves the peptide bond Thr-Ala in the LPXTA motif, allowing an alanine-based nucleophilic group.
  • SrtA strep also recognizes LPXTG motifs but is less active. The LPXTA motif is not cut by SrtA Staph .
  • SrtA Staph For the sake of simplicity, the following methods are discussed with SrtA Staph as an example, but the SrtA strep equivalent can also be used in the same or similar manner.
  • SrtA is highly specific for the LPXTG motif and the glycine repeat (a-Gly n ) with a free amino group at the N-terminus.
  • the X position can be all natural amino acids other than cysteine and tryptophan (not yet tested).
  • the non-natural functional group can be a small molecule, a synthetic polypeptide or protein, a polymer, and the like. These functional groups can be combined with LPXTG or a-Gly n to form a substrate for SrtA.
  • Specific methods and reaction conditions can be referred to, literature (: ⁇ mouth Tsukiji et al, "Sortase-Mediated Ligation: A Gift from Gram-Positive Bacteria to Protein Engineering", ChemBioChem, 2009, 10, 787-798; Popp et al, "Sortase- Catalyzed transformations that improve the properties of cytokines", PNAS, 2011, 108, 3169-3174).
  • SrtA is capable of introducing non-natural functional groups on insulin analogs, depending on the structure of the insulin analog.
  • the binding site that affects biological activity less is the N-terminus of the B-chain or the C-terminus of the B-chain.
  • the N-terminus of the insulin B chain preferably introduces a plurality of glycines, such as the GGGGG-insulin B chain, and the modified group to be introduced, such as PEG, long-chain fatty acids or albumin.
  • the C-terminus has a LPXTG motif such as PEG-LPATGGGG, albumin-LPETGGG or fatty acid LPGTGGGGG.
  • the binding site is the C-terminus of the A or B chain
  • the C-terminal amino acid sequence of the A or B chain comprises an LPXTG motif, such as insulin A-LPATGGGGG or insulin B-LPGTGGGG, etc.
  • the modified group to be introduced Groups such as PEG, long-chain fatty acids or albumin have one or more glycines at the N-terminus, such as GGG-PEG, GGGG-long-chain fatty acids, GGGGG-albumin, and the like.
  • the easiest binding site is the N-terminus of the B-chain or the C-terminus of the A-chain, and the method and the double-stranded analog are substantially identical.
  • Single-chain compound single-chain compound based on insulin
  • Proinsulin is a single-stranded precursor of 86 amino acids constructed as: ⁇ chain -ArgArg-C peptide -LysArg-A chain.
  • the C peptide is a "linker peptide" composed of 31 amino acids.
  • Arg-Arg and Lys-Arg are the proteolytic enzymes that cause the C-peptide to split from the A and B chains.
  • Proteolytic enzymes are known to be prohormone convertases (PC1 and PC2), and exoproteinase carboxypeptidase 5 . These changes in proinsulin remove the C-peptide, and the remaining B-chain and A-chain are bound together by disulfide bonds.
  • the double-stranded structure of insulin allows insulin to have multiple conformations.
  • Insulin has the potential for considerable conformational changes, and limitations on these changes significantly reduce the affinity of the insulin receptor for ligands. Blocking the amino terminus of GlyAl also attenuates receptor binding ability.
  • Proinsulin has an affinity for insulin receptors of only 1-2% of insulin.
  • C-peptide in proinsulin folding is still unclear.
  • the length of the C peptide varies between 26 and 38 amino acids in different animal species.
  • the dibasic amino acid residues at the junction of the B-chain-C peptide (B-C) and the C-peptide-A chain (C-A) are conserved and the need for insulin conservation is considered to be minimal.
  • the three-dimensional structure of insulin shows that the A chain and the B chain can be bound by a linker peptide which is much smaller than the 31 amino acid C peptide.
  • the intrinsic physical and chemical stability of insulin molecules is a prerequisite for insulin therapy for diabetes, and is also the basis for insulin conformation, applicable insulin delivery methods, and shelf life and storage conditions for pharmaceutical formulations.
  • insulin administration 1700 The use of solutions to expose insulin molecules to a variety of factors, such as elevated temperatures, gas-liquid-solid phase changes, and shear forces, may result in irreversible conformational changes in insulin molecules, such as fibrillation.
  • This is closely related to the insulin solution in the syringe pump, because insulin molecules are exposed to these factors, both externally and implanted, as well as from the shear forces generated during long-term movement of the pump. Therefore, fibrillation is a big problem when using a syringe pump as an insulin delivery system.
  • solubility of insulin is affected by a variety of factors and is significantly reduced in the range of pH 4.2-6.6.
  • the pH settling zone typically imposes limitations on the formulation.
  • the present invention addresses these problems by providing a stable single-stranded compound by introducing a C-peptide between the B and A chains, reducing molecular flexibility while reducing fibrillation tendency, limiting or modifying the pH settling zone, thereby providing more formulation and formulation. Broad choice.
  • the current genetic engineering and then the pancreatin precursor is digested to generate double-stranded islets ⁇ :. If the single-chain insulin analog is directly produced, the production process is greatly simplified and the cost is reduced.
  • insulin-like growth factor-1 is a single-chain peptide having 70 amino acid residues, including the A, B, C, and D domains.
  • the basic structure of the A and B domains of IGF-1 is highly similar to the A and B chains of insulin, with 52% and 45% homology, respectively. Their three-dimensional structure is also very similar.
  • the C domain of IGF-1 plays a minor role in insulin receptor binding. Removal of all IGF-1 C domains, replaced by a bridge of four glycines, resulted in a twofold increase in insulin receptor binding compared to wild type, while addition of the IGF-1 C domain to the C-terminus of the insulin B chain causes insulin Receptor affinity was reduced by a factor of 3.5 compared to wild type. The insulin binding capacity of the single-chain insulin/IGF-1 mixture consisting of insulin and the IGF-1 C domain was not significantly different from that of native human insulin. Interestingly, the IGF-1 CII hybrid has increased affinity for both IR-A and IR-B, while IGF-2 CI has a weaker affinity, indicating that the C domain determines IR binding specificity.
  • Tyr31 in IGF-1 is essential for maintaining high affinity for IGF-1 receptors, but it appears to block binding to the insulin receptor, as tyrosine is replaced by alanine, resulting in a small but distinct human placenta A double increase in insulin receptor binding.
  • the inventors have found in the research that a single-stranded compound formed by ligation of a double strand of an insulin molecule by a linker has the same insulin activity and has the advantages of being easy to prepare, providing more polypeptide modification sites, and the like.
  • the ligation fragment CL is a peptide sequence consisting of 6-60 amino acids, wherein each amino acid is independently selected from the group consisting of glycine, alanine, serine, threonine, and valine.
  • a suitable connecting segment C L has a three-point feature: First, the connecting segment requires an appropriate length. When the B chain is 30 amino acids in length, the length of the ligated fragment is preferably not less than 6 amino acids; when the B chain is 25 amino acids, the length of the ligated fragment is preferably not less than 10 amino acids.
  • the insulin receptor binding ability of the single-chain analog has a decreasing tendency;
  • the ligated fragment preferably has no secondary structure, and the spatial conformation can be flexibly changed;
  • the ligation fragment itself is not biologically active, but can provide polypeptide modification sites such as acylation, glycosylation and the like.
  • C L may be substituted by amino acid residues and comprising at least one insert or an aspartic acid, glutamic acid, arginine, lysine, cysteine or asparagine.
  • C L may include 1, 2, 3, 4 aspartic acid, glutamic acid, arginine or lysine to regulate the charge balance of the polypeptide sequence and improve solubility.
  • the sequence may comprise 1, 2, 3, 4, 5 asparagine and the same amount of serine or threonine to form the NXS/T consensus sequence required for N-glycosylation (X is a codeable natural amino acid) ).
  • the peptide may further comprise 1, 2, 3 or 4 lysine or cysteine, and the side chain amino group or sulfhydryl group may be a natural or synthetic modifying group such as a fatty acid, polyethylene glycol or albumin.
  • the linked insulin molecules have different physical, chemical and biological properties by being linked by a hydrolysis bond or a non-hydrolysis bond.
  • the C-terminal amino acid of C L may be selected from the group consisting of glycine-lysine, glycine-arginine, arginine-arginine, lysine-lysine, arginine-lysine a group consisting of lysine-arginine, valine-glutamine-threonine, valine-glutamine-lysine, or valine-glutamine-arginine.
  • the terminal amino acid is selected from lysine or arginine.
  • C L may be all or part of the sequence of the following polypeptide fragments, or may differ from the following polypeptide fragments by 1, 2 or 3 amino acid residues, or 70%, 80% of the following polypeptide fragments, 90% similar, or 1, 2, 3, 4 or 5 repeats of all or part of the sequence of the following polypeptide fragments:
  • GASPGGSSGS (GASPGGSSGS)FortunatelyGR, where n is 1, 2, 3, 4 or 5; GSSGSSGPGSSR; GSSGSGSSAPQT;
  • GSGGAPSRSGSSR GGSGGSGGR; GSSPATSGSPQR; GASSSATPSPQR; GSGSSSRAPPSAPSPQR; GSSSESPSGAPQT; GAGTPASGSAPGR; GSSPSGGSSAPQT;
  • GSGSSSAAAPQT GSGSSSAAPQT ; GASPGTSSTSGR ; GSGSSSAPQT ; GSGSSSRRA ;
  • GSPAGSPTSTSR GSGPSSATPASR
  • GSGSSSRGR GSGGPSTRSAPQR
  • GPETPSGPSSAPQT GSPAGSPTSTSR
  • GSGPSSATPASR GSGSSSRGR
  • GGPSTRSAPQR GSGSSSRGR
  • GSGPSTRSAPQR GSGSSSRGR
  • GPETPSGPSSAPQT GSPAGSPTSTSR; GSGPSSATPASR; GSGSSSRGR; GSGPSTRSAPQR; GPETPSGPSSAPQT;
  • GAGSSSRAPPPSAPSPSRAPGPSAPQR GSGSSAGR; GASSPSTSRPGR; GSSSGSSGSPSGR; GSSPSASTGTGR; GAGSSSAPSAPSPSRAPGPSAPQR; GSGSGSGR; GSPSSPTRGSAPQT;
  • GASTSSRGAPSR GASTSSRGAPSR; GSGSSSAGR; GPSGTSTSAPGR; GAGSSSAPQT; SSSSAPSAPSPSRPQR;
  • GSGASSPTSPQR GAGGSGSGR; GSSPATSATPQT; GAGSSSAPPPSAPSPSRAPGPSAPQR;
  • GASTGSSRPSGR GSTAGSRTSTGR; GSTAGSRTSPQR; GSGTATSGSPQT; GASSSATSASGR;
  • GAGSATRGSASR GAGSATRGSASR; GSSSRSPSGSGR; SSSSAPPPSAPSPSRAPGPSAPQR; GSSPSG SSSPGR; GSPAGSPSSSAGSSASASPASPGR; GSPAGSPSSSAGSSASASPASGPGSSSAPSAGSPGR;
  • SSSAPPPSAPSPSRAPGPSPQR SAASSSASSSSASSASAGR; GAGGPSSGAPPPSPQT;
  • GSGSSGGR GAGSPAAPASPAPAPS AGR; SSSAPSPSRSPGPSPQR; SSSAPSAPSPSPQR;
  • GSGSSSRRAPQT SSSSAASAASASSSASGR; SSSRAPPSAPSPQR; GGPSSGAPPPSR; SSSSGAPPPGR; GPSSGAPSR; GPSSGAPQT; GGPSSGAPPPSPQT; SSSAPPPSAPSPSRAPQT;
  • GAGPSSGAPPPSPQT GGGGAPQT; GAGGPSSGAPPPQT; GGPSSGAPPPSPSPSRPGPSPQR;
  • SSASSASSSSAGR GAGSSR
  • SSASSSAASSSASSSASGR SSSGAPPPSPSRAPGPSPQR
  • GSGSASRGR SSSSAASSASGR ; SASASASASSASSGR ; SASSPSPSAPSSPSPAS ;
  • GPSSPSPSAPSSPSPASPSSGR SSSAPPPASPSPSRAPGPQR ; SASASASASASSAGR ; GSGASSRGR ; GSGAAPASPAAPAPS AGR; GGPSSGAPPPSGR ; SSPSASPSSPASPSSGR ;
  • GAPASPAPSAPAPAAPSGR GPSSPSPSAPSSPSPASPSSAPQT
  • SSASSASSSSSASAGR SSASSASSSSSASAGR
  • SAPSSPSPSAPSSPSASPSGR SSSAPPPSAPSPSAPQR ; GASSPSPSAPSSPSPASGR ;
  • GSGSSR GSGSSSAR
  • GSGSSSGR GSGAPQR
  • SSSSAPSAPSPSRAPGPSPAPQR GSGSSSR; GSGSSAPQT; GGGGAPQR; GSGSSSAAR; GSGSSAAPQR; SSSSRRAPQR;
  • GSGSSSAAAPQR GSGSSSAAAPQR
  • GAGSSSAAAPQR GAGSSSAAAPQT
  • GSSGGSGR GAGGGSSGR;
  • SSSSRAPPPSAPSPSRAPGPSAPQR GGGSSR; GSGSSSAAPQR; GASPGGSSGSSR; GSGSSSRSGR; GTGPSSATPASR; GAGPSGTASPSS; SSSSAPSAPSPSRAPQR; GSPSSPTRGSAT ; GPETPSGPSSAT ; GSSPATSGTPQT ;
  • GSGSSSRAPPPSAPSPSRAPGPSPAPQR GSGSSSRAPPPSAPSPSRAPGPSPAPQR; GSSTPSGAGPQT; GSGSSSRAPPPSAPSPSRAPQR; GSPAGSPSSSAGSSASASPASGPGSSSAPSAGSPAR; GAGSSSRAPPPSAPSPSRAPGPSPQR; GSGSSSRAPPSAPSAPQR; GSTAGSRTSTAR; GSSPSGRSSSPAR; SSASSASSSSSAASAGR; GSSSGSSGSPSAR; SSSAPSPSRAPGPSPQR; GAGSSSRAPPPSAPSPSRAPQR; GSPAAPAPASPAAPAPSAGR; SSSAPSAPSPSAPQR; GGPSSGAPPPSPSPSRPGPSDTPPQR; SASASASASASASSASSGR; SASSPSPSAPSSPSPASGR; SASASASASASASSAGR; SSPSASPSSPASPSPSSGR; GAPASPAPAAPSAPAPAAPSGR; GAGSPAAPAPASPAPAPSAGR; SSSRAPPPSAPSPSAPQT
  • the present invention provides a single-chain compound having a hypoglycemic effect, the compound being modified according to the structure of the insulin, the structure of which is:
  • X 1Q7 is phenylalanine-valine-asparagine-glutamine tetrapeptide, proline -asparagine-glutamine tripeptide, asparagine-glutamine dipeptide, or glutamine , or a sequence in which the amino acid residue of any of the above two, three, or tetrapeptide sequences is substituted with lysine or arginine, or a deletion;
  • X 1 () 8 is histidine, phenylalanine, spermine Acid or glutamine;
  • ⁇ ) 9 is arginine, alanine, glutamic acid or aspartic acid;
  • X 110 is phenylalanine, tyrosine or histidine;
  • X m is tyrosine, Phenylalanine or deletion;
  • X 112 is threonine, asparagine, glutamic acid, aspartic acid or deletion;
  • X 113 is valine,
  • cysteine in the single chain forms a double bond, specifically: C n] and C [4 ] form a double bond, and C m and C[ 6] form two Sulfur bond, C [3 ] and. [ 5] Formation of a disulfide bond.
  • X 108 , X 10 9 , X , X , X are related to whether the compound produces self association like human insulin.
  • Human insulin is typically stored in islet beta cells by self-association to form hexamers. After subcutaneous injection of recombinant human insulin molecules, the hexamers are gradually depolymerized into dimers, and further dissociated into monomers to enter the circulation through the capillaries, and play a hypoglycemic effect.
  • Recombinant human insulin has a long-lasting effect after subcutaneous injection due to the presence of depolymerization and absorption processes (Brange et al., "Monomelic insulins and their experimental and clinical implications" Diabetes Care, Vol 13 No.
  • X 108 is histidine, it is advantageous for the compound to form a hexamer structure with the aid of zinc ions.
  • X 1 () 8 is an amino acid residue such as aspartic acid, glutamic acid, phenylalanine, glutamine or arginine, a stable hexamer structure cannot be formed.
  • the amino acid residues of ⁇ ) 9 , X 112 , X 113 , X U4 and the like are aspartic acid or glutamic acid, stable self-association is not easily formed. Therefore, if X 108 is an unhistidine amino acid residue, or Xl09,
  • One or more of the amino acid residues of X, Xii3, X and the like are aspartic acid or glutamic acid, and the corresponding compound is more likely to exist in the form of dimer or monomer, and rapidly enters the blood after subcutaneous injection. , can achieve the effect of lowering blood sugar in a short time.
  • the structure of the single chain compound is:
  • x is tyrosine or deletion; x 112 is threonine or deletion; x 113 is valine or deletion; x 114 is lysine or deletion; X U5 is threonine or a deletion; C L is a linker fragment as defined herein.
  • the structure of the single chain compound is:
  • the single-chain compound of the present invention having hypoglycemic action is selected from the group consisting of the following compounds: I -1:
  • NYCN SEQ ID NO: 44 ;
  • NYCN SEQ ID NO: 45 ;
  • FVNC CN (SEQIDNO: 51 );
  • NYCN SEQ ID NO: 84 ;
  • SICSLYQLENYCN SEQ ID NO: 110
  • FVNQP NYCN (SEQ ID NO: 115);
  • I-119 ENYCN (SEQ ID NO: 119); I -120:
  • Polypeptide chemists have used several methods to solve the problem of rapid clearance of drug molecules with a molecular weight of less than 67 kDa in the kidney by plasma.
  • the injection site is built with "depot”; 2. It is combined with non-covalent bond of plasma carrier protein to prevent glomerular filtration; 3. Covalently linked with carrier protein; 4. Large molecular weight Modification group binding, such as large molecular weight PEG, polysaccharides, etc. (as disclosed in the previous section of this application).
  • "Hydrophobic depoting" greatly increases the hydrophobicity of the peptide to reduce solubility and make it in the injection section.
  • the polypeptide binds to the cell membrane and/or the systemic carrier protein (such as albumin, etc.)
  • the systemic carrier protein such as albumin, etc.
  • the molecular weight of the carrier protein is greater than the maximum molecular weight of the glomerular filtration, so it is not easily removed by the kidney.
  • the plasma is circulated for many days. Therefore, the polypeptide bound to the carrier protein is not easily filtered by the glomerulus or degraded by the protease on the inner membrane.
  • Fatty acids generally extend the time of action of the polypeptide in vivo in three ways.
  • the fatty acid can bind non-covalently to albumin at the site of drug injection, and the formed polypeptide-fatty acid-albumin macromolecule conjugate is slowly dried.
  • the large molecular weight of the polypeptide-fatty acid-albumin conjugate is The renal clearance rate is reduced;
  • albumin provides protection for the polypeptide and is not easily degraded by proteases.
  • fatty acids reduce the immunogenicity of the polypeptide. The latter three features are similar to the long-chain PEG modification. Further mechanisms and experimental support can be found in Biochem. J.
  • modification of insulin with macromolecules such as polyethylene glycol (PEG, molecular weight not less than 20K) and human albumin can also achieve an effect of prolonging the in vivo action time similar to the above fatty acid modification. Therefore, all of the sites which can be acylated with fatty acids can be modified with macromolecules such as polyethylene glycol or human albumin.
  • the present invention is based on the recognition that the overall hydrophobicity of the hypoglycemic compound of the present invention plays an important role in the in vivo efficacy of the compound.
  • the present invention further provides a compound having a hypoglycemic effect and modified on a polypeptide basis to further increase the in vivo circulation time of the compound.
  • the modification is an ⁇ -amino group which links the modified side chain to the N-terminal amino acid residue of the single-chain compound of the present invention, or an ⁇ -amino group of lysine which is linked to the single-chain compound.
  • the modified compounds of the invention may also be formed based on modification of insulin or an analog thereof.
  • Ben The invention provides a modified single chain compound based on insulin, the structure of which is:
  • ⁇ 30 ⁇ is phenylalanine or phenylalanine;
  • X 3 oi is phenylalanine, histidine or tyrosine;
  • X 302 is tyrosine, phenylalanine or deletion;
  • X 3 03 is sul Acid, asparagine, glutamic acid, aspartic acid or deletion;
  • X30 4 is valine, lysine, glutamic acid, aspartic acid or deletion;
  • X 3Q5 is aspartic acid, glutamine Acid, valine, arginine, lysine or deletion, or structure of formula (I);
  • X 3 o 6 is threonine, structure or deletion of formula (I);
  • X 3 () 7 is lysine Acid, serine, alanine, glycine, structure or deletion of formula (I);
  • s is glycine, structure or deletion of formula (I);
  • X 3 o 9 is lysine, glycine, serine, structure or deletion of formula (I);
  • X 31Q is lysine, glycine, serine, formula (I) Structure or deletion;
  • X 311 is lysine, glycine, serine, alanine, structure or deletion of formula (I);
  • X 312 is lysine, arginine, alanine, valine, glycine, Structure or deletion of formula (I);
  • X 3 13 is glycine, alanine, arginine, lysine, glutamine, valine, structure or deletion of formula (I);
  • X 314 is arginine , alanine, valine, threonine, glutamine, glycine, structure or deletion of formula (I);
  • X 315 is valine, glutamine, arginine, glycine or deletion or
  • X 325 is asparagine or a structure of formula (I);
  • x 326 is alanine, glycine or asparagine;
  • x 327 is lysine, arginine-lysine dipeptide or deletion Or a structure of the formula (I); when x 327 is a dipeptide, one of the amino acids is a structure of the formula (I);
  • the pass structure is:
  • U L is -WXYZ structure, fatty acid, polyethylene glycol, albumin, L Principal-M L structure, hydrogen atom or N a -(N a -(HOOC(CH 2 ) n CO)-Y-Glu)- , N a -(N a -(CH 3 (CH 2 ) n CO)-Y-Glu)- , wherein ⁇ is an integer from 8 to 20, such as 8, 10, 12, 14, 16, 18 or 20, ⁇ ⁇
  • the structure of the formula ( ⁇ ) is:
  • J is a -WXYZ structure, an L n -M t structure or a hydrogen atom.
  • M L is a modifying group including, but not limited to, -WXYZ, a fatty acid, polyethylene glycol, albumin, IgGFc, a sugar group, and the like. In the present invention, it is an optional linker, covalent bond or absent.
  • Optional linkers include, but are not limited to: A long chain formed by covalent bonding of polyethylene glycol, long chain fatty acids or one or more polyethylene glycol molecules and long chain fatty acid molecules.
  • List can be -NH-(CH 2 ) n -£0-, -NH-(CH 2 CH 2 0) n -CH 2 -CO- , -NH-(CH 2 CH 2 0) faced-(CH 2 r -CO-, n is an integer from 1 to 20, and r is an integer from 1 to 10; in one embodiment, is -NH-(C3 ⁇ 4CH 2 0) 2 -CH 2 -CONH -(CH 2 CH 2 0) 2 -CH 2 -CO-; In one embodiment, -NH-iCHz ⁇ -C CHzCHzO CH nj- O-, nl, n2, ⁇ 3 are integers from 1 to 16 respectively; Wherein, L n is -NH-(CH 2 ) nl -(OCH 2 CH 2 ) deliberately2-£0-, nl, n2 are integers of 1 to 16 respectively.
  • Lache is underlined by The bond of the carbonyl carbon forms an amide bond with the amino group of the polypeptide compound, and the other end forms a covalent bond with M L .
  • L amide forms an amide bond with the amino group of the polypeptide compound via a bond from the underlined carbonyl carbon and an amide bond with -WXYZ at the other end.
  • W is an ⁇ -amino acid residue having a carboxyl group in a side chain which has a carboxyl group and an ⁇ -amino group of the ⁇ -terminal amino acid residue of the polypeptide compound of the present invention or an ⁇ -amino group of a lysine residue of the polypeptide compound.
  • W is a chain linked by 2, 3 or 4 ⁇ -amino acid residues via an amide bond, the chain being linked to the ⁇ -amino group of the ⁇ -terminal amino acid residue of the polypeptide compound or the lysine of the polypeptide compound by an amide bond
  • the ⁇ -amino group of the residue, the amino acid residue of W is selected from the group consisting of an amino acid residue having a neutral side chain and an amino acid residue having a carboxyl group in a side chain, such that W contains at least one amino acid residue having a carboxyl group in a side chain.
  • W is a covalent bond from X to the ?-amino group of the ?-terminal amino acid residue of the polypeptide compound or to the ?-amino group of the lysine residue of the polypeptide compound;
  • X is -£0-, -CH(COOH)CO-, -N(CH 2 COOH)CH 2 CO- , -N(CH 2 COOH)CH 2 CON (CH 2 COOH)CH 2 CO- , -N( CH 2 CH 2 COOH)CH 2 CH 2 CO- , -N(CH 2 CH 2 COOH)CH 2 CH 2 CON(CH 2 CH 2 COOH)CH 2 CH 2 CO-, -NHCH(COOH)(CH 2 ) 4 NHCO-, -N(CH 2 CH 2 COOH)CH 2 £0- or -N (CH 2 COOH)CH 2 CH 2 CO- , wherein
  • is -(CH 2 ) m , where m is an integer from 6 to 32;
  • Z is -COOH, -CO- Asp, -CO-Glu , -CO-Gly, -CO-Sar, -CH (COOH) 2, -N (CH 2 COOH) 2, -S0 3 H, -P0 3 H Or absent; condition is that when W is a covalent bond and X is -CO-, Z is not -COOH.
  • the middle W of the side chain -W-X-Y-Z can be a covalent bond.
  • W may be an ⁇ -amino acid residue having a carboxyl group in the side chain, including a total of 4 to 10 carbon atoms.
  • W may be an alpha-amino acid residue encoded by a genetic code.
  • W may be selected from the group consisting of a-Asp, ⁇ -Asp, ⁇ -Glu, and ⁇ -Glu.
  • Other choices for W are, for example, ⁇ -hGlu or 5-hGlu.
  • W is a chain consisting of two alpha-amino acid residues, wherein one alpha-amino acid residue has 4-10 carbon atoms and the side chain has a carboxyl group and the other has 2-11 carbons Atom but no free carboxyl group.
  • the alpha-amino acid residue without a free carboxyl group may be a neutral, codeable alpha-amino acid residue.
  • Examples of W according to this embodiment are: a-Asp-Gly, Gly-a-Asp, ⁇ -Asp-Gly, Gly-P.Asp, a-Glu-Gly, Gly-a-Glu, y-Glu -Gly Gly-y-Glu> a-hGlu-Gly.
  • W is a chain consisting of two alpha-amino acid residues, each having from 4 to 10 carbon atoms and having a carboxyl group in the side chain.
  • ⁇ -amino acid residues may be an encoded ⁇ -amino acid residue.
  • W examples are: a-Asp-a-Asp, a-Asp-a-Glu, a-Asp-a-hGlu, a-Asp-P-Asp, a-Asp-y-Glu , a-Asp-6-hGlu, ⁇ -Asp-a-Asp, ⁇ -Asp-a-Glu, ⁇ -Asp-a-hGlu, ⁇ - ⁇ - ⁇ - ⁇ , ⁇ -Asp-y-Glu, - Asp-6-hGlu, a-Glu-a-Asp, a-Glu-a-Glu, a-Glu-a-hGlu, a-Glu-P-Asp a-Glu-y-Glu, a-Glu-5 -hGlu, ⁇ -Glu-a-Asp, ⁇ -Glu-a-Glu, ⁇ -Glu-a-hGlu, y-Glu-P_Asp, ⁇ -Glu-y-Glu, ⁇ -Glu
  • W is a chain consisting of three a-amino acid residues each having 4 to 10 carbon atoms, the amino acid residue of the chain being selected from the group consisting of residues having a neutral side chain and side chains having The residue of the carboxyl group is such that the chain contains at least one residue having a carboxyl group in its side chain.
  • the amino acid residue is a codeable residue.
  • W is a chain consisting of four a-amino acid residues each having 4 to 10 carbon atoms, the amino acid residue of the chain being selected from the group consisting of a residue having a neutral side chain and a side chain having The residue of the carboxyl group is such that the chain contains at least one residue having a carboxyl group in its side chain.
  • the amino acid residue is a codeable residue.
  • W in -W-X-Y-Z can be attached to the ⁇ -amino group of the lysine residue by a urea derivative.
  • X in the side chain -WXYZ may be a group of the formula -£0-, forming an amide bond with an amino group in W by a bond from an underlined carbonyl carbon; or when W is a covalent bond, X is derived from The underlined carbonyl carbon bond forms an amide bond with the ⁇ -terminal a-amino group of the polypeptide compound or with the ⁇ -amino group of the lysine residue in the polypeptide compound.
  • X in the side chain -WXYZ may be a group of the formula -CH(COOH) £0-, forming an amide bond with an amino group in W by a bond from an underlined carbonyl carbon; Or when W is a covalent bond, X forms an amide bond with the a-amino group at the N-terminus of the polypeptide compound or the ⁇ -amino group of the lysine residue in the polypeptide compound by a bond from the underlined carbonyl carbon.
  • X in the side chain -WXYZ may be a group of the formula -N(CH 2 COOH)CH 2 £0-, which forms an amide with an amino group from W by a bond from an underlined carbonyl carbon. Key; or when W is a covalent bond, X forms an amide bond with the a-amino group at the N-terminus of the polypeptide compound or the ⁇ -amino group of the lysine residue in the polypeptide compound by a bond from the underlined carbonyl carbon. .
  • the X in the side chain -WXYZ may be a group of the formula -N(CH 2 CH 2 COOH)CH 2 £0-, by a bond from the underlined carbonyl carbon and an amino group in W Forming an amide bond; or when W is a covalent bond, X is formed by a bond from an underlined carbonyl carbon to the N-terminal a-amino group of the polypeptide compound or to the ⁇ -amino group of the lysine residue in the polypeptide compound Amide bond.
  • X in -WXYZ may be a group of the formula -N(CH 2 COOH) CH 2 CH 2 £0-, formed by an bond from the underlined carbonyl carbon and an amide bond in W Or when W is a covalent bond, X forms an amide bond with the a-amino group at the N-terminus of the polypeptide compound or the ⁇ -amino group of the lysine residue in the polypeptide compound by a bond from the underlined carbonyl carbon.
  • X in -WXYZ may be a group of the formula -N(CH 2 COOH) CH 2 CON(CH 2 COOH)CH 2 £0-, by a bond from an underlined carbonyl carbon
  • the amino group in W forms an amide bond; or when W is a covalent bond, X passes through the bond from the underlined carbonyl carbon to the N-terminal a-amino group of the polypeptide compound or to the lysine residue in the polypeptide compound
  • the ⁇ -amino group forms an amide bond.
  • X in -WXYZ can be of the formula -N(CH 2 C3 ⁇ 4COOH) C3 ⁇ 4CH 0- a group, which forms an amide bond with an amino group in W by a bond derived from an underlined carbonyl carbon; or when W is a covalent bond, X passes through a bond derived from an underlined carbonyl carbon and an N-terminal ⁇ -amino group of the polypeptide compound Or forming an amide bond with the ⁇ -amino group of the lysine residue in the polypeptide compound.
  • X in -WXYZ can be a group of the formula -N(CH 2 CH 2 COOH) CH 2 CH 2 CON(CH 2 CH 2 COOH) CH 2 CH 2 £0-,
  • the underlined carbonyl carbon bond forms an amide bond with the amino group in W; or when W is a covalent bond, X passes through the bond from the underlined carbonyl carbon to the ⁇ -terminal ⁇ -amino group of the polypeptide compound or to the polypeptide compound
  • the ⁇ -amino group of the lysine residue in the amide bond forms an amide bond.
  • the oxime in the side chain -WXYZ may be a group of the formula -(CH 2 ) m wherein m is an integer of 6-32, 8-20, 12-20 or 12-16.
  • the number of groups satisfying the total number of carbon atoms in the hydrocarbon chain is in the range of 6-32, 10-32, 12-20 or 12-16.
  • Y in -WXYZ is a divalent hydrocarbon chain of the formula -(CH 2 ) V C 6 H 4 (CH 2 ) w -, wherein v and w are integers, or one of them is Zero, such that the sum of V and w ranges from 6-30, 10-20 or 12-16.
  • Z in the side chain -W-X-Y-Z is -COOH, provided that when W is a covalent bond and X is -CO-, Z is not -COOH.
  • -WXYZ in Z is -CO-Asp, -CO-Glu, -CO-Gly, -CO-Sar, -CH (COOH) 2, -N (CH 2 COOH) 2, -S0 3 H or - P0 3 H.
  • W in -WXYZ is a-Asp, p-Asp> a-Glu or ⁇ -Glu;
  • X is -CO- or -CH(COOH)CO-;
  • Y is -(CH 2 ) m , wherein m is an integer from 12 to 18;
  • Z is -COOH -, -CH(COOH) 2 or is absent.
  • W in -WXYZ is a-Asp, ⁇ -Asp, a-Glu or ⁇ -Glu; -XYZ is -CO(CH 2 ), through a bond from the underlined carbonyl carbon An amide bond is formed with an amino group in W, wherein n is an integer in 10-20.
  • W in -W-X-Y-Z is a-Asp, ⁇ -Asp, a-Glu or ⁇ -Glu; -X-Y-Z is
  • W in -WXYZ is a-Asp, ⁇ -Asp, a-Glu or ⁇ -Glu; -XYZ is -CO(CH 2 ) 16 .
  • W in -WXYZ is a-Asp, ⁇ -Asp, a-Glu or ⁇ -Glu; -XYZ is -CO(CH 2 ) 18 .
  • W in -WXYZ is a-Asp, ⁇ -Asp, a-Glu or ⁇ -Glu;
  • -XYZ is cholesterol, bile acid (such as cholic acid, chenodeoxycholic acid, hepatobiliary acid, Taurocholic acid, deoxycholic acid, lithocholic acid).
  • [1] - [6] represent the number of cysteine.
  • a disulfide bond in the chain is formed by the structure of insulin, specifically: A disulfide bond is formed with C [4 ], a disulfide bond is formed by C [2 ] and C [6], and a ruthenium bond is formed by ⁇ [ 31 and [5] .
  • the structure of the compound is:
  • modified single chain compound of the invention is selected from the group consisting of
  • ⁇ ⁇ represents an ⁇ -amino group of an amino acid or an amino acid residue
  • ⁇ ⁇ represents an ⁇ -amino group of an amino acid or an amino acid residue, such as an ⁇ -amino group of a lysine side chain.
  • the hypoglycemic compound of the present invention can be provided in the form of a substantially zinc-free compound or a complex.
  • a zinc complex of the compound of the present invention wherein the compound of the present invention can form a hexamer, each hexamer can bind 2 ⁇ 2+ , 3 ⁇ 2+ or 4 ⁇ ⁇ 2+ .
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound according to the invention and a pharmaceutically acceptable carrier for the treatment of type 1 diabetes, 2 Type 2 diabetes and other conditions that cause hyperglycemia.
  • the insulin receptor binding analog according to the present invention can be used for the preparation of a pharmaceutical composition for the treatment of type 1 diabetes, type 2 diabetes, and other conditions which cause hyperglycemia.
  • a pharmaceutical composition for treating type 1 diabetes, type 2 diabetes and other conditions which cause hyperglycemia comprising a therapeutically effective amount of a compound according to the invention, An insulin or insulin analog having a rapid action effect, and a pharmaceutically acceptable carrier and additive are mixed.
  • compositions of the insulin analogs of the invention can be prepared using conventional techniques of the pharmaceutical industry, including dissolving and mixing the appropriate ingredients to provide the desired final product.
  • the insulin analog of the present invention is dissolved in a quantity of water having a volume slightly lower than the final volume of the composition to be prepared.
  • the volume of the solution is finally adjusted to the desired concentration with water.
  • the buffering agent is selected from the group consisting of sodium acetate, sodium carbonate, citrate, glycylglycine, histidine, glycine, lysine, arginine, sodium dihydrogen phosphate, phosphoric acid Disodium hydrogen, sodium phosphate and tris(hydroxyindenyl)-aminodecane, hydrazine-bis(hydroxyethyl)glycine, hydrazine-(hydroxyindole) decylglycine, malic acid, succinate, maleic acid, Fumaric acid, tartaric acid, aspartic acid or a mixture thereof.
  • Each of these specific buffers constitutes an alternative embodiment of the invention.
  • the formulation comprises a pharmaceutically acceptable preservative selected from the group consisting of phenol, o-nonanol, m-nonylphenol, p-nonylphenol, p-hydroxybenzoate, Ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, butyl p-hydroxybenzoate, 2-phenoxyethanol, benzyl alcohol, chlorobutanol, thimerosal, bromide, benzoic acid, imidate, Dichlorobenzonitrile, sodium dehydroacetate, chlorpheniramine, benzethonamine, chlorophenylglycine or a mixture thereof.
  • a pharmaceutically acceptable preservative selected from the group consisting of phenol, o-nonanol, m-nonylphenol, p-nonylphenol, p-hydroxybenzoate, Ethyl p-hydroxybenzoate, propyl p-hydroxybenzoate, butyl p-hydroxybenz
  • the concentration of the preservative is from 0.1 mg/mL to 20 mg/mL. In another embodiment of the invention, the concentration of the preservative is from 0.1 mg/mL to 5 mg/mL. In another embodiment of the invention, the concentration of the preservative is from 5 mg/mL to 10 mg/mL.
  • concentration of the preservative is from 0.1 mg/mL to 20 mg/mL. In another embodiment of the invention, the concentration of the preservative is from 0.1 mg/mL to 5 mg/mL. In another embodiment of the invention, the concentration of the preservative is from 5 mg/mL to 10 mg/mL.
  • the formulation further comprises an isotonicity agent selected from the group consisting of a salt (eg, sodium chloride), a sugar or sugar alcohol, an amino acid, a sugar alcohol (eg, glycerol, propylene glycol, 1, 3-propanediol) , 1, 3-butanediol), polyethylene glycol (eg PEG400) or a mixture thereof.
  • a salt eg, sodium chloride
  • a sugar or sugar alcohol eg, glycerol, propylene glycol, 1, 3-propanediol
  • 1, 3-butanediol 1, 3-butanediol
  • polyethylene glycol eg PEG400
  • Any sugar such as a monosaccharide, disaccharide, polysaccharide or water-soluble glucan, including, for example, sugar, glucose, mannose, sorbose, xylose, maltose, lactose, sucrose, trehalose, dextran, pullulan, Dextrin, cyclodextrin, soluble starch, hydroxyethyl starch and carboxymethyl cellulose-Na.
  • the sugar additive is sucrose.
  • Sugar alcohols are defined as C4-C8 hydrocarbons having at least one -OH group including, for example, mannitol, sorbitol, inositol, galactitol, dulcitol, xylitol, and arabitol.
  • the sugar alcohol additive is mannitol.
  • the saccharides or sugar alcohols may be used singly or in combination. There is no fixed limit to the amount used, as long as the sugar or sugar alcohol is dissolved in the liquid preparation and does not adversely affect the stabilization obtained by the method of the present invention.
  • the concentration of the sugar or sugar alcohol is from 1 mg/mL to 150 mg/mL.
  • the concentration of the isotonic agent is from 1 mg/mL to 50 mg/mL. In another embodiment, the concentration of the isotonic agent is from 1 mg/mL to 7 mg/mL. In another embodiment, the concentration of the isotonic agent is from 8 mg/mL to 24 mg/mL. In another embodiment, the concentration of the isotonic agent is from 25 mg/mL to 50 mg/mL.
  • concentration of the isotonic agent is from 1 mg/mL to 50 mg/mL. In another embodiment, the concentration of the isotonic agent is from 1 mg/mL to 7 mg/mL. In another embodiment, the concentration of the isotonic agent is from 8 mg/mL to 24 mg/mL. In another embodiment, the concentration of the isotonic agent is from 25 mg/mL to 50 mg/mL.
  • Typical isotonic agents are sodium chloride, mannitol, disulfoxide and glycerin.
  • Typical preservatives are phenol, m-nonylphenol, decyl hydroxybenzoate and benzyl alcohol.
  • surfactant examples include sodium acetate, glycylglycine, hydroxyethylpiperine. Qin ethanesulfonic acid (HEPES) and sodium phosphate.
  • HEPES Qin ethanesulfonic acid
  • ACN acetonitrile: acetonitrile
  • BOP benzotriazol-1-yloxytris(dimethylamino) phosphonium hexafluorophosphate: benzotriazole-tris(trimethylamino)-hexafluorophosphate (Carter condensate);
  • DCC ⁇ , ⁇ '-Dicyclohexylcarbodiimide: Cyclohexylcarbodiimide; DCM: dichlorodecane;
  • DEPBT 3-(Diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one:3-(diethoxyortanoyloxy)- 1, 2,3-benzotriazin-4-one;
  • DIC N, N'-Diisopropylcarbodiimide: N, N'-diisopropylcarbodiimide
  • DIPEA or DIEA
  • succinimide succinimide
  • TEA triethylamine: triethylamine
  • TFA trifluoroacetic acid trifluoroacetic acid
  • TFE 2,2,2-Trifluoroethanol trifluoroethanol
  • THF tetrahydrofuran tetrahydrofuran
  • TIS triisopropylsilane triisopropyl pit.
  • Linear polypeptides use Boc or Fmoc solid phase peptide synthesis. If Fmoc is used to synthesize a polypeptide having a C-terminal carboxyl group, a Wang resin is generally used; and a C-terminal amide is usually a Rink amide resin. If using Boc A chemically synthesized polypeptide having a C-terminal carboxyl group is generally selected from Pam resin; and a polypeptide having a C-terminal amide is usually selected from an MBHA resin.
  • the condensing agent and activator are DIC and HOBT, and other optional peptide bond condensing agents include BOP, HBTU, DEPBT and the like. A 5-fold excess of amino acids. The condensation time was 1 hour.
  • the Fmoc protecting group was removed with 50°/A3 ⁇ 4/DMF.
  • the Boc protecting group was removed using TFA.
  • the peptide bond condensation reaction was monitored with Ninhydrin (2,2-Dihydroxyindane-l, 3-dione) reagent.
  • the commonly used cleavage reagent is TFA.
  • the dry resin was placed in a shake flask, and an appropriate amount of TFA/TIS/H 2 0 (95:2.5:2.5, 10-25 mL/g resin) was added, and the lid was capped, and intermittent rotation was performed at room temperature. After 2 hours, the resin was filtered, and the resin was washed 2-3 times with a new TFA, and the filtrate was combined, and 8-10 volumes of ice diethyl ether was added dropwise. Finally, the precipitated polypeptide was collected by centrifugation.
  • the insulin-based single-chain compound is synthesized in two fragments.
  • a section of the insulin B chain fragment 1-18 was synthesized by Boc chemistry: EEEEEEM-[l-18]-COS-(CH 2 ) 2 CO-(Arg) 4 A.
  • S-tritylpropionic acid is used in the synthesis of the thioester residue.
  • the second segment includes all amino acids, C chain and A chain amino acids from B19Cys (corresponding to C[ 2] in the formula) to the C-terminus of the B chain.
  • the two peptides are solid phase synthesized, cleaved and purified by a general method.
  • the natural chemical ligation reaction is carried out in a buffer.
  • the buffer contains 6 M guanidine hydrochloride, 200 mM phosphate, 200 mM 4-carboxymethylthiophenol (MPAA, (4-carboxymethyl)thiophenol), 20 mM tris(2-decanoylethyl)phosphine ( TCEP, tris-(2-carboxyethyl)phosphine, pH 6.9, the polypeptide was dissolved at a molar ratio of 1 : 1 at a concentration of 2 mM. The reaction was detected by HPLC and purified.
  • Purified IGF (SH) 6 was dissolved in 0.5 M guanidine hydrochloride, 20 mM Tris, 8 mM cysteine, 1 mM cystine hydrochloride buffer, pH 7.8, peptide concentration 0.5 mg/mL. After HPLC showed that the folding was completed, the buffer was acidified to pH 3 with 0.1 N hydrochloric acid. The polypeptide was purified by preparative HPLC.
  • the first fragment EEEEEEMFVNQHLCGSHLVEALYLV- (COS- C3 ⁇ 4 C3 ⁇ 4-C0)-RRA was synthesized by Boc chemistry and the crude peptide was purified by RP-HPLC. Molecular weight calculated value 3419.9, mass spectrometry test molecular weight 3421.3.
  • the second fragment, CGERGFFYTPKTGSGSSSAAAPQTGIVEQCCTSICSLYQLENYCN was synthesized according to the general method. Molecular weight calculated value 4773.4., mass spectrometry test molecular weight 4775.0.
  • the first fragment 34 mg (10 ⁇ ) and the second fragment 48 mg (10 ⁇ ) were dissolved in buffer (5 mL).
  • the buffer contained 6 M guanidine hydrochloride, 200 mM phosphate, 200 mM 4-carboxypyridylbenzene, 20 mM tris(2-nonanoylethyl)phosphine, pH 6.9. The reaction was completed after 10 hours. The calculated molecular weight was 7703.6, and the molecular weight of the mass spectrum was 7704.2. The mixture was transferred to a size exclusion chromatography column with 0.5 M guanidine hydrochloride, 20 mM Tris, pH 7.8. The fraction containing the correct molecular weight of the polypeptide was collected, and 8 mM cysteine, 1 mM cystine hydrochloride buffer was added, and the polypeptide was folded after 2 hours. The buffer was acidified to pH 3 with 0.1 N hydrochloric acid and then purified by RP-HPLC. Molecular weight calculated value 7697.6, mass spectrometry test molecular weight 7699.5.
  • the polypeptide was dissolved in 70% citric acid (or 0.1 M hydrochloric acid), cyanogen bromide (30 times the amount) was added, and cultured at room temperature. After the completion of the HPLC reaction, most of the citric acid and cyanogen bromide were evaporated with nitrogen, diluted with 10% acetic acid, and then purified by RP-HPLC. Finally, the molecular weight of Compound I-2 was calculated to be 6791.7, and the molecular weight of the mass spectrum was 6792.3. Upon sequencing, the amino acid sequence of the compound is SEQ ID NO: 2.
  • insulin-based single chain compounds were synthesized in the same manner.
  • the insulin-based single-chain compound was synthesized by the above method, and the molecular weight of each compound was examined by mass spectrometry.
  • the structure of each compound was detected by sequencing, and the results were as follows:
  • I -12 molecular weight calculated value 6476.4, mass spectrometry molecular weight 6477.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 12;
  • I -16 molecular weight calculated value 6405.3, mass spectrometry molecular weight 6406.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 16;
  • I-21 Molecular weight calculated value 6362.3, mass spectrometry molecular weight 6362.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 21;
  • I-22 molecular weight calculated value 6378.3, mass spectrometry molecular weight 6379.1; sequenced The amino acid sequence of the compound is SEQ ID NO: 22;
  • I-29 molecular weight calculated value 6378.2, molecular weight test molecular weight 6379.5; sequenced, the amino acid sequence of the compound is SEQ ID NO: 29;
  • I-32 molecular weight calculated value 6295.1, mass spectrometry molecular weight 6296.0; sequenced The amino acid sequence of the compound is SEQ ID NO: 32;
  • I-33 molecular weight calculated value 6548.4, mass spectrometry molecular weight 6549.8; sequenced The amino acid sequence of the compound is SEQ ID NO: 33;
  • I-35 molecular weight calculated value 6777.7, mass spectrometry test molecular weight 6778.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 35;
  • I-37 molecular weight calculated value 6793.7, mass spectrometry molecular weight 6793.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 37;
  • I-38 molecular weight calculated value 6850.8, mass spectrometry test molecular weight 6851.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 38;
  • I-39 molecular weight calculated value 6845.8, mass spectrometry molecular weight 6846.6; sequenced The amino acid sequence of the compound is SEQ ID NO: 39;
  • I-42 molecular weight calculated value 6904.9, mass spectrometry molecular weight 6905.8; sequenced The amino acid sequence of the compound is SEQ ID NO: 42;
  • I-43 Molecular weight calculated value 6962.8, mass spectrometry molecular weight 6964.3; sequenced The amino acid sequence of the compound is SEQ ID NO: 43;
  • I-44 molecular weight calculated value 6856.8, mass spectrometry molecular weight 6858.5; sequenced The amino acid sequence of the compound is SEQ ID NO: 44;
  • I-46 molecular weight calculated value 6934.9, mass spectrometry molecular weight 6936.7; sequenced The amino acid sequence of the compound is SEQ ID NO: 46;
  • I-47 molecular weight calculated value 6746.7, mass test molecular weight 6747.0; sequenced The amino acid sequence of the compound is SEQ ID NO: 47;
  • I-49 molecular weight calculated value 6835.8, mass spectrometry molecular weight 6837.1; sequenced, the amino acid sequence of the compound is SEQ ID NO: 49;
  • I-57 molecular weight calculated value 6902.8 ; mass spectrometry test molecular weight 6903.5 by sequencing the amino acid sequence of the compound is SEQ ID NO: 57;
  • I-58 molecular weight calculated value 6861.8, mass spectrometry molecular weight 6863.1; sequenced, the amino acid sequence of the compound is SEQ ID NO: 58;
  • I-59 molecular weight calculated value 6930.9, mass spectrometry molecular weight 6932.6; sequenced The amino acid sequence of the compound is SEQ ID NO: 59;
  • I-60 molecular weight calculated value 8412.5, mass spectrometry molecular weight 8413.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 60;
  • I-62 molecular weight calculated value 6817.7, mass spectrometry molecular weight 6818.8; sequenced The amino acid sequence of the compound is SEQ ID NO: 62;
  • I-63 Molecular weight calculated value 7315.3, quality test molecular weight 7316.5; sequenced The amino acid sequence of the compound is SEQ ID NO: 63;
  • I-64 molecular weight calculated value 8745.7, molecular weight test molecular weight 8746.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 64;
  • I-65 molecular weight calculated value 6933.9, mass spectrometry molecular weight 6935.1; sequenced The amino acid sequence of the compound is SEQ ID NO: 65;
  • I-66 Molecular weight calculated value 6877.8, mass spectrometry test molecular weight 6879.3; sequenced The amino acid sequence of the compound is SEQ ID NO: 66;
  • I-67 molecular weight calculated value 6930.9, mass spectrometry molecular weight 6931.7; sequenced The amino acid sequence of the compound is SEQ ID NO: 67;
  • I-68 molecular weight calculated 6922.9, mass spectrometry molecular weight 6924.4; sequenced amino acid sequence of the compound That is SEQ ID NO: 68;
  • I-69 molecular weight calculated value 6975.9, mass spectrometry test molecular weight 6776.5; sequenced The amino acid sequence of the compound is SEQ ID NO: 69;
  • I-70 molecular weight calculated value 6821.7, mass spectrometry molecular weight 6823.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 70;
  • I-71 molecular weight calculated value 6809.7, mass spectrometry molecular weight 6810.8; sequenced The amino acid sequence of the compound is SEQ ID NO:71;
  • I-72 Molecular weight calculated value 6848.8, mass spectrometry molecular weight 6850.4; sequenced The amino group of the compound ⁇ !> column is SEQ ID NO: 72;
  • I-73 Molecular weight calculated value 8228.3, mass spectrometry test molecular weight 8230.1; sequenced The amino group of the compound is SEQ ID NO: 73;
  • I-74 molecular weight calculated value 6894.8, molecular weight test molecular weight 6896.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 74;
  • I-76 molecular weight calculated value 7788.7, molecular weight test molecular weight 7790.2; sequenced, the amino acid sequence of the compound is SEQ ID NO: 76;
  • I-77 molecular weight calculated value 7358.3, molecular weight test molecular weight 7360.8; sequenced The amino acid sequence of the compound is SEQ ID NO: 77;
  • I-78 molecular weight calculated value 7586.6, mass test molecular weight 7587.7; sequenced The amino acid sequence of the compound is SEQ ID NO: 78;
  • I-79 molecular weight calculated value 7142.2, mass spectrometry test molecular weight 7143.0; sequenced The amino acid sequence of the compound is SEQ ID NO: 79;
  • I-80 molecular weight calculated value 6208.1, mass spectrometry molecular weight 6209.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 80;
  • I-81 molecular weight calculated value 6756.7, mass spectrometry molecular weight 6757.8; sequenced The amino acid sequence of the compound is SEQ ID NO: 81;
  • I-82 molecular weight calculated value 7296.3, mass spectrometry molecular weight 7297.5; sequenced The amino acid sequence of the compound is SEQ ID NO: 82;
  • I-83 molecular weight calculated value 7455.4, mass transfer test molecular weight 7457.6; sequenced The amino acid sequence of the compound is SEQ ID NO: 83;
  • I-84 molecular weight calculated value 6812.6, mass spectrometry molecular weight 6813.8; sequenced The amino acid sequence of the compound is SEQ ID NO: 84;
  • I-85 molecular weight calculated value 6638.4, mass spectrometry molecular weight 6639.0; sequenced The amino acid sequence of the compound is SEQ ID NO: 85;
  • I-86 molecular weight calculated value 6846.8, mass spectrometry molecular weight 6848.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 86;
  • I-87 molecular weight calculated value 7136.1, mass transfer test molecular weight 7137.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 87;
  • I-89 molecular weight calculated value 6605.5, mass spectrometry test molecular weight 6606.8; sequenced, the amino acid sequence of the compound is SEQ ID NO: 89;
  • I-90 molecular weight calculated value 6837.8, mass spectrometry molecular weight 6839.1; sequenced, the amino acid sequence of the compound is SEQ ID NO: 90;
  • I-91 molecular weight calculated value 6770.7, mass spectrometry test molecular weight 6772.4; sequenced, the amino acid sequence of the compound is SEQ ID NO: 91;
  • I-92 molecular weight calculated value 6586.5, mass spectrometry test molecular weight 6587.7; sequenced The amino acid sequence of the compound is SEQ ID NO: 92;
  • I-93 molecular weight calculated value 6572.5, mass spectrometry molecular weight 6573.0; sequenced The amino acid sequence of the compound is SEQ ID NO: 93;
  • I-94 molecular weight calculated value 7008.0, mass spectrometry test molecular weight 7009.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 94;
  • I-95 molecular weight calculated value 6607.5, mass test molecular weight 6608.7; sequenced amino acid sequence of the compound is SEQ ID NO: 95;
  • I-96 molecular weight calculated value 7079.1, mass spectrometry molecular weight 7080.6; sequenced, the amino acid sequence of the compound is SEQ ID NO: 96;
  • I-97 molecular weight calculated value 6951.9, mass spectrometry molecular weight 6953.4; sequenced: the amino acid sequence of the compound is SEQ ID NO: 97;
  • I-98 molecular weight calculated value 8239.3, mass spectrometry molecular weight 8241.1; sequenced The amino acid sequence of the compound is SEQ ID NO: 98;
  • I-99 molecular weight calculated value 6322.1, shield test molecular weight 6322.7; sequenced The amino acid sequence of the compound is SEQ ID NO: 99;
  • I-101 molecular weight calculated value 6709.5, mass spectrometry molecular weight 6710.6; sequenced The amino acid sequence of the compound is SEQ ID NO: 101;
  • I-102 molecular weight calculated value 6235.0, mass spectrometry molecular weight 6235.9; sequenced The amino acid sequence of the compound is SEQ ID NO: 102;
  • I-103 molecular weight calculated value 7371.3, mass transfer test molecular weight 7372.5; sequenced The amino acid sequence of the compound is SEQ ID NO: 103;
  • I-104 molecular weight calculated value 7485.5, mass spectrometry molecular weight 7487.0; sequenced The amino acid sequence of the compound is SEQ ID NO: 104;
  • I-105 molecular weight calculated value 7752.7, mass spectrometry test molecular weight 7754.2; sequenced The amino acid sequence of the compound is SEQ ID NO: 105;
  • I-106 molecular weight calculated value 7387.3, mass spectrometry molecular weight 7388.7; sequenced The amino acid sequence of the compound is SEQ ID NO: 106;
  • I-109 molecular weight calculated value 7124.0, mass spectrometry test molecular weight 7124.8; sequenced, the amino acid sequence of the compound is SEQ ID NO: 109;
  • I-110 molecular weight calculated value 7640.7, molecular weight test molecular weight 7641.4; sequenced, the amino acid sequence of the compound is SEQ ID NO: 110;
  • I-111 molecular weight calculated value 7936.9, mass spectrometry molecular weight 7938.5; sequenced, the amino acid sequence of the compound is SEQ ID NO: 111;
  • I-112 molecular weight calculated value 6902.8, mass spectrometry molecular weight 6903.1; sequenced, the amino acid sequence of the compound is SEQ ID NO: 112;
  • I-114 molecular weight calculated value 7529.6, mass spectrometry test molecular weight 7531.8; sequenced, the amino acid sequence of the compound is SEQ ID NO: 114;
  • I-115 molecular weight calculated value 7041.0, mass spectrometry test molecular weight 7041.6; sequenced, the amino acid sequence of the compound is SEQ ID NO: 115;
  • I-116 molecular weight calculated value 7007.9, shield test molecular weight 7009.2; sequenced, the amino acid sequence of the compound is SEQ ID NO: 116;
  • I-117 molecular weight calculated value 7630.7, mass spectrometry test molecular weight 7631.9; sequenced, the amino acid sequence of the compound is SEQ ID NO: 117;
  • I-118 molecular weight calculated value 7421.3, mass spectrometry molecular weight 7423.3; sequenced, the amino acid sequence of the compound is SEQ ID NO: 118;
  • I-119 molecular weight calculated value 6965.9, mass spectrometry molecular weight 6967.0; sequenced, the amino acid sequence of the compound is SEQ ID NO: 119;
  • I-120 molecular weight calculated value 6375.3, molecular weight test molecular weight 6376.7; sequenced, the amino acid sequence of the compound is SEQ ID NO: 120;
  • I-121 molecular weight calculated value 6304.2, mass spectrometry molecular weight 6305.6; sequenced, the amino acid sequence of the compound is SEQ ID NO: 121;
  • I-122 molecular weight calculated value 6595.4, mass spectrometry test molecular weight 6597.8; sequenced, the amino acid sequence of the compound is SEQ ID NO: 122;
  • Hexadecandioic acid (5.72 g, 20 mmol) was dissolved in dry DMF (240 mL) and cooled with water. Add 2-mercapto-2-propanol ( 1.48 g, 20 mmol), DIC (2.7 g, 2.25 mL, 21.4 mmol), HOBT ( 2.88 g, 21.4 mmol). NMM ( 2.16 g, 2.34 mL, 21.4 mmol) > DMAP (244 mg, 2 mmol). The mixture was stirred at room temperature overnight. After adding 80 mL of water, acidified to pH 3, and extracted with ethyl acetate.
  • Fmoc-Glu-OtBu ( 4.25g, 10 mmol) was dissolved in DCM (30 mL), 3 g of 2-chlorotrityl chloride resin (sub. lmmol/g) was added, and DIPEA ( 1.29 g, 10 mmol, 1.74 mL). After the mixture was shaken for 5 minutes in the shaker, DIPEA (1.93 g, 15 mmol, 2.6 mL) was added. The mixture was shaken vigorously for 1 hour.
  • the NMR data is 'H-NMR (CDC1 3 ) ⁇ : 6.25 (d, lH), 4.53 (m, 1H), 2.42 (m, 2H), 2.21 (m, 4H), 1.92 (m, 1H), 1.58 (m, 4H) ; 1.47(s, 9H), 1.22-1.43 (m, 18H).
  • the NMR data are: 1H-NMR (CDC1 3 ) ⁇ : 6.17 (d, lH), 4.60 (m, 1H), 2.84 (s, 4H), 2.72 (m, 1H), 2.64 (m, 1H), 2.32 (m, 1H), 2.20 (m, 4H), 2.08 (m, 1H), 1.6 (m, 4H), 1.47 (s, 9H), 1.43 (s, 9H), 1.20-1.33 (m, 20H).
  • the first fragment EEEEEEMFVNQHLCGSHLVEALYLV- (COS-CH 2 CH 2 -CO)-RRA was synthesized by Boc chemistry. The molecular weight calculated was 3419.9, and the mass spectrum was tested to have a molecular weight of 3420.6. The crude peptide was purified by RP-HPLC. The molecular weight was calculated to be 4686.3, and the mass spectrum was tested to be 4687.5. The crude peptide was purified by RP-HPLC. The first fragment 34 mg ( ⁇ ) and the second fragment 47 mg ( ⁇ ) were dissolved in buffer (5 mL).
  • the buffer contained 6 M guanidine hydrochloride, 200 mM phosphate, 200 mM 4-carboxydecyl thiophenol, 20 mM tris(2-formylethyl) phosphine, pH 6.9.
  • the molecular weight calculated was 7913.9, and the mass spectrometry was 7915.7.
  • the mixture was transferred to a size exclusion chromatography column with 0.5 M guanidine hydrochloride, 20 mM Tris, pH 7.8.
  • the fraction containing the correct molecular weight of the polypeptide was collected and combined with 8 mM cysteine, 1 mM cystine hydrochloride buffer.
  • the buffer was acidified to pH 2 with 0.1 N hydrochloric acid and then purified by RP-HPLC.
  • the molecular weight calculated was 7610.5, and the mass spectrum was tested to have a molecular weight of 7611.2.
  • the polypeptide (78 mg) was dissolved in 100 mM Na 2 CO 3 (2 mL, pH 10) solution at room temperature.
  • tert-Butylhexadecandioyl-LG] u ( OSu ) -OtBu (6.5 mg) was dissolved in acetonitrile (2 mL) and added to a peptide solution. After stirring for 30 minutes, it was acidified with 50% acetic acid and purified on a RP-HPLC C5 column. Buffer A: 0.1% TFA in water, 10% acetonitrile; Buffer B: 0.1% TFA in water, 80% acetonitrile.
  • the polypeptide was dissolved in 70% citric acid (or 0.1 M hydrochloric acid), cyanogen bromide (30 times the amount) was added, and cultured at room temperature. After the completion of the HPLC reaction, most of the formic acid and cyanogen bromide were volatilized with nitrogen, diluted with 10% acetic acid, and then purified by RP-HPLC. Finally, the calculated molecular weight of II-2 was 7102.1, and the molecular weight of the mass spectrum was 7103.5.
  • the FV QHLCGSHLVEALYLVCGERGFFYTPTGKGSSSAAAPQTGIVEQC CTSICSLYQLENYCN was synthesized by the above method.
  • the molecular weight was calculated to be 6704.6, and the mass spectrum was tested to be 6706.3.
  • the polypeptide (67 mg, 10 ⁇ ) was dissolved in 100 mM Na 2 CO 3 (1 ml, pH 10) solution at room temperature.
  • Buffer A 0.1% TFA in water, 10% acetonitrile
  • Buffer B 0.1% TFA in water, 80% acetonitrile.
  • the molecular weight calculated was 7421.5, and the mass spectrum was tested to have a molecular weight of 7422.9. After analysis, the obtained compound was 11-24.
  • Fmoc-Glu-OBzl (4.59g, 10 mmol) was dissolved in DCM (30 mL), 3 g of 2-chlorotrityl chloride resin (sub. lmmol/g) was added, and DIPEA ( 1.29 g, 10 mmol, 1.74 mL). after 5 minutes the mixture was vibration shaker, was added DIPEA (1.93g, 15 mmol, 2.6 mL) 0 mixture was shaken vigorously for 1 hour.
  • HPLC grade sterol (2.4 mL) was added to the resin and mixed for 15 minutes.
  • the resin was filtered and washed with DCM (3 X 30 mL), DMF (2 X 30 mL), DCM (3 X 30 mL), decyl alcohol (3 X 30 mL) and dried in vacuo.
  • FVNQHLCGSHLVEALYLVCGERGFFYTPTGKGSSSAAAPQTGIVEQCC TSICSLYQLENYCN was synthesized by the above method. The molecular weight was calculated to be 6704.6, and the mass spectrum was tested to be 6705.9.
  • the polypeptide (67 mg, 10 ⁇ ) was dissolved in 100 mM Na 2 CO 3 (1 ml, pH 10) at room temperature.
  • Octadecandioyl-Glu(Glu(OSu)-OH)-OH was dissolved in acetonitrile (0.5 ml) and the peptide solution was added. After stirring for 30 minutes, it was acidified with acetic acid and purified on a RP-HPLC C5 column.
  • the polypeptide, mPEG20K-CHO, sodium cyanoborohydride (NaBH 3 CN) was dissolved in a pH 4.3 acetic acid solution (0.1 M NaCl, 0.2 M CH 3 COOH, 0.1 M Na 2 CO 3 ) in a 1:2:45 ratio.
  • the polypeptide concentration is 0.5-1 mg/mL.
  • the reaction was detected and purified by HPLC. The yield is about 55%.
  • the reductive alkylation reaction can selectively bind polyethylene glycol to the B1 position.
  • GIVEQCCTSICSLYQLENYCN and mPEG20K-CHO reductive alkylation reaction to give the product.
  • the mass spectrum of the compound was calculated by mass spectrometry to be 26201.0, and a broad peak was obtained by mass spectrometry with an intermediate molecular weight of 26206.3. After a small amount of compound was reduced by DTT and degraded by trypsin, the mass of GFFGSGSSSAAAPQT GIVEQCCTSICSLYQLENYCN was observed by liquid chromatography-mass spectrometry (calculated molecular weight 3737.2, mass spectrometry molecular weight 3738.5).
  • the polypeptide and mPEG20K-NHS molar ratio 2:1 were dissolved in 0.1N N,N-bis(2-hydroxyethyl)glycine solution (pH 10 ), and the peptide concentration was 0.5 mg/mL.
  • the reaction was carried out at room temperature for 1 hour and purified by HPLC. The yield was 56%.
  • the CN synthesis method is referred to I-2.
  • the polypeptide is reacted with mPEG20K-NHS according to the above acylation method to give the product.
  • mass spectrometry the molecular weight was calculated to be 26704.6, and the mass spectrometry gave a broad peak with an intermediate molecular weight of 26710.7.
  • FVNQHLCGSHLVEA LYLVCGER was observed by liquid phase color-protonation.
  • YCN is synthesized using the above natural chemical ligation method. The molecular weight calculated was 6778.6 and the mass spectrum was tested to be 6779.8.
  • the polypeptide (68 mg) was dissolved in DMF (3 mL) and Mal-dPEG 12 -NHS (8.7 mg) (quanta Biodesign) and triethylamine (30 L) were added. The reaction was stirred at room temperature for 2 hours. After evaporating the solvent under reduced pressure, the crude material was dissolved in 3 ⁇ 40/ACN (3:1) and purified by RP-HPLC. The maleimide polypeptide is dissolved in purified water at a peptide concentration of 10 mM.
  • Human albumin (665 mg) was added and incubated at 37 ° C for 30 minutes. It was then diluted to 5% human albumin with a 20 mM sodium phosphate solution containing 5 mM sodium octoate and 750 mM ammonium sulfate. Unreacted reagent, 0.05 M aqueous ammonium hydrogencarbonate solution was removed by gel filtration chromatography as an eluent. Purely obtained after vacuum freeze drying. After analysis, the molecular weight calculated value was 74001.7, the mass spectrometry test molecular weight was 74003.8, and the obtained compound was II-4.
  • II -1 molecular weight calculated value 6932.0, mass spectrometry test molecular weight 6933.8, after analysis, the synthesized substance is II -1 ;
  • II -7 molecular weight calculated value 7274.3, mass spectrometry test molecular weight 7275.5, after analysis, the synthesized substance is II -7;
  • EK Frandsen and RA Bacchus "New, simple insulin-receptor assay with universal application to solubilized insulin receptors and receptors in broken and intact cells.” Diabetes, 1987, 36, 3: 335-340) or the following method One. Unless otherwise stated, the method of preparation of the receptor is also used as a literature method using a human placental membrane. In general, 0.025 mg of placental membrane was used for the insulin receptor binding assay; 0.2 mg of placental membrane was used for the IGF-1 receptor binding assay.
  • the insulin standard and the starting concentration of the compound of the present invention are both ⁇ , and then the insulin and the compound of the present invention are diluted 3 times to obtain 7 different concentrations of the control and compound solutions (100 nM, 33.33). nM, l l.llnM, 3.70 nM, 1.23 nM, 0.41 nM, 0.13 nM, 0.04 nM).
  • the initial concentration of the compound is 500 nM.
  • the initial concentration of the IGF-1 standard is ⁇
  • the starting concentration of the compound of the present invention is ⁇
  • IGF-1 is diluted 3 times with the compound of the present invention to obtain 7 different Concentration control and compound solutions (1000 nM, 333.33 nM, ll ll lnM, 37.04 nM, 12.35 nM, 4.12 nM, 1.37 nM, 0.46 nM).
  • the initial concentration of the compound is 5000 nM.
  • IGF-1 or insulin receptor 125 I-IGF-1 (3-10 pM) or 125 1-insulin (3 pM) and a series of 3-fold diluted polypeptides added to buffer [100 mM Hepes, pH 8.0, 100 mM NaCl, 10 mM MgCl 2 , 0.5 % (w/v) BSA, 0.025 % (w/v) Triton X-100], total volume 200 ⁇ , at 4. C was cultured for 48 hours. The receptor and the receptor-bound polypeptide and ligand were precipitated with 0.2% gamma-globulin and 500 ⁇ 25 % (w/v) PEG 8000, and the radioactivity in the precipitate was measured. The concentration of the receptor is adjusted to 15-20% of the receptor binding to the ligand when no polypeptide is added.
  • the membrane-bound receptors used in the receptor binding assay were derived from BHK cells that highly expressed full length insulin or IGF-1 receptor. Equal amounts of transfected BHK cells (2000-5000) were evenly distributed in each well of a 96-well plate and cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% (v/v) fetal bovine serum for 24 hours. Receptor binding assays were performed. The cells were washed once with binding buffer (DMEM, containing 0.50% BSA, 20 mM Hepes, pH 7.8), and 400 L 125 I-IGF-l (6.5 pM) or 125 1-insulin (6.5 pM) was added and dissolved.
  • binding buffer DMEM, containing 0.50% BSA, 20 mM Hepes, pH 7.8
  • a series of 3-fold diluted peptides of the binding buffer At 16. C was cultured for 3 hours, and unbound polypeptide was aspirated with an aspirator and washed once with 1.2 ml of binding buffer. The cells were lysed in 500 ⁇ L of 1% (w/v) SDS, 100 mM NaCl, 25 mM Hepes (pH 7.8) and then measured. The number of cells should be adjusted so that 16-28% of the receptors bind to the ligand when no polypeptide is added.
  • IGF-1 receptor [Thr 59 ] IGF-l is used for tyrosine achiline (iodination). 125 I-IGF-1 (50-80 Ci/g, 50 fmol), human placental membrane (0.2 mg) and serial 3-fold diluted peptides were added to 0.2 ml of 0.1 M Hepes buffer, pH 8, containing 120 mM sodium chloride, 5 mM potassium chloride, 0.12 mM magnesium sulfate, and 0.1% bovine albumin, at 20. C was incubated for 1 hour. Samples were filtered using Whatman GF/F filters to isolate bound and unbound polypeptide compounds. The filter was previously treated with 0.1% polyethyleneimine.
  • the culture tubes and filters were washed 4 times with 2.5 ml of cold buffer without bovine albumin. In the absence of a placental membrane, less than 5% of the polypeptide compound is attached to the filter. In the absence of polypeptide competition, the placental membrane binds approximately 38% of the ligand. Non-specific binding to the placental membrane can be measured by adding an excess of non-iodinated [Thr 59 ] IGF-1 (0.3 ⁇ ) to the culture mixture. Non-specific binding typically accounts for 5% of the total binding of the ligand to the placental membrane.
  • Insulin receptor 125 1-insulin (30 nCi), serial 3-fold diluted polypeptide and placental membrane (0.025 mg) were incubated in 0.05 ml of the above buffer for 1 hour at 20 °C.
  • the sample was filtered through an EHWP filter, and the culture tube and filter were washed 4 times with 2.5 ml of cold buffer containing no bovine albumin.
  • less than 5% of the polypeptide compound is attached to the filter.
  • Non-specific binding to the placental membrane can be measured by adding an excess of non-iodinated insulin (1 ⁇ M) to the culture mixture.
  • Non-specific binding typically accounts for less than 1% of the total binding of the ligand to the placental membrane.
  • Specific binding percentage (binding amount - non-specific binding amount I total binding amount - non-specific binding amount) ⁇ 100.
  • the total bound amount of radiation is the total amount of radiation measured when no polypeptide is added.
  • the combined amount of radiation is the amount of radiation measured after the addition of the polypeptide.
  • IC 50 polypeptide compound using Origin software (OriginLab, Northampton, MA) is calculated.
  • Activity of the polypeptide relative to human insulin or IGF-1 standard IC 50 insulin or IGF-1 standard / IC 50 polypeptide.
  • mice 7-9 weeks old C57BL/6 male mice, with an average body weight of 20-25 g, were divided into 6 groups and banned 4 hours before the start of the experiment. Blood glucose was measured before the start of the experiment, and blood glucose was measured at various designated time points in the future.
  • the control group was saline, and the polypeptide was dissolved in physiological saline and injected subcutaneously. Observe the response of the mice throughout the experiment and record any abnormal behavior.
  • An insulin-based single-chain compound consisting of insulin A and B chains and ligated fragments, which binds to the insulin receptor close to the level of insulin, but also because the IGF-1C peptide is a key sequence that binds to the IGF-1 receptor.
  • Single-chain polypeptides bind much more strongly at the IGF-1 receptor than native insulin.
  • C2Tyr is a prominent amino acid residue in the crystal structure of IGF-1, indicating that it may be the key to binding to the IGF-1 receptor.
  • the insulin receptor activity is substantially retained, but the IGF-1 receptor activity is greatly reduced to achieve the desired effect.
  • the results show that the length of the C peptide does not necessarily require 12 amino acid residues.
  • the 3, 4, 5, and 6 amino acid residues at the C-terminus of the original IGF-1 can be deleted or replaced.
  • the removal of three amino acid residues PQT and four residues of APQT at the C-terminus of IGF-1 did not adversely affect the activity of the insulin receptor, but also reduced its IGF-1 receptor activity to insulin levels.
  • the 5 amino acid residues X111X112X113X114X115 at the C-terminus of the insulin B chain may have 1, 2, 3, 4 or all deletions. It does not reduce insulin receptor binding.
  • Further studies have shown that the IGF-1 C peptide is only one of a wide variety of ligation fragments. These data indicate that proper C-chain length, flexible C-strand conformation, and amino acid substitution at specific sites are important factors in increasing insulin receptor activity and reducing IGF-1 receptor binding.
  • PEGylation and fatty acid acylation are common methods for extending the duration of action of a polypeptide in vivo, but pegylation and fatty acid acylation generally greatly reduce biological activity. Therefore, it is sought to introduce a acylation site having an amino group such as lysine in addition to human insulin B29, and the acylation product has sufficient biological activity for the development of a long-acting polypeptide.
  • IR is an insulin receptor.
  • the delayed effect of the insulin analog of the present invention is also given in the experimental results.
  • Experiments were carried out with human insulin, compound ⁇ -2 and a negative control, and the amounts of insulin and II-2 were 70 nmol/kg, respectively.
  • the blood glucose concentration of the mice was monitored and the results are shown in Figure 1.
  • ⁇ -2 still has a significant blood sugar-suppressing effect within 5-10 hours after administration, but insulin has gradually lost its ability to inhibit blood sugar during this time.
  • Human insulin showed a typical V-shaped blood glucose lowering curve in the experiment.
  • the disadvantage of this blood glucose lowering curve is that the initial blood sugar drops too fast, which is easy to cause hypoglycemia, and later it is impossible to control blood sugar.
  • ⁇ -2 shows an L-type blood sugar lowering curve, blood sugar control is smooth and long-lasting, and the effect is significantly better than human insulin.
  • mice were monitored for changes in blood glucose levels after subcutaneous injection of three doses of II-17. The results are shown in Figure 2.
  • a dose of 11-17 as low as 25nmol/kg is sufficient to control blood glucose for at least 24 hours.
  • the dose was increased to 90 nmol/kg, the mice did not have a hypoglycemia. Therefore, II-17 is superior to human insulin in controlling blood sugar and safety.
  • mice were tested for blood glucose over time after subcutaneous injection of normal saline, human insulin, and II-11.
  • the results are shown in Figure 3. Similar to Figure 1, human insulin exhibits a typical V-shaped blood glucose lowering curve, while II -11 shows an L-shaped blood glucose lowering curve, which controls blood glucose for at least 24 hours, and is significantly better than human insulin.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供一种具有降血糖作用的化合物、组合物和该化合物或组合物在治疗糖尿病、高血糖症中的应用.本发明还提供治疗糖尿病、高血糖症等的方法,包括对需要的病患施用本发明的化合物或组合物。与现有的胰岛素及其类似物相比,本发明的化合物水溶性好,在体内的循环周期长,具有结合胰岛素受体的高活性,而对个体的毒性作用明显降低,并且制备容易。

Description

具有降血糖作用的化合物、 组合物及其用途 技术领域
本发明属于生物制药领域, 具体涉及具有降血糖作用的化合物、 组合物及它们的用途。 背景技术
胰岛素作为治疗糖尿病的特效和首选药物, 到目前为止已经历了三代的历史演变: 第一 代产品是从猪或牛等动物胰脏提取而来。 由于异源性过敏反应, 该类产品疗效较差。 第二代 产品为重组人胰岛素, 是从人类细胞中获取胰岛素基因, 然后将其插入酵母菌或大肠杆菌中 进行培养, 通过复杂的现代化生物基因技术生产而成。 第三代为胰岛素类似物, 是通过对人 的胰岛素进行结构修改获得, 包括速效胰岛素和长效胰岛素。
本世纪初美国的 NHANS研究、 欧洲的 CODE研究等大型临床研究表明, 对糖尿病及其 并发症越来越严格的控制, 使得糖尿病患者的高血压、 高血脂、 总胆固醇达标率越来越高, 而最根本的血糖达标率却不升反降, 主要问题在于现有的胰岛素药物仍然不能够很好地模拟 生理性胰岛素分泌模式。 因此, 开发在疗效、 抗免疫源、 治疗达标、 模拟生理分泌等方面都 有大幅度提高的新型胰岛素类似物将是改善糖尿病治疗效果的主要解决方法之一。
美国糖尿病学会(ADA ) 与欧洲糖尿病学会(EASD )指南均建议, 在生活方式干预和 口服降糖药物治疗后, 如果糖尿病患者的血糖控制仍然不理想, 应尽早开始胰岛素治疗, 而 且首选基础胰岛素与口服降糖药合用。 若此疗法仍不能控制血糖, 建议在此基础上在就餐时 加用速效胰岛素。
基础胰岛素用于维持空腹时的正常血糖分泌。很多代谢研究发现在正餐之间和夜晚时间, 保持基本胰岛素水平可以减少甘油三磷酯分解,抑制肝脏输出葡萄糖,使空腹血糖保持稳定, 从而降低整体血糖水平。 理想的基础胰岛素, 如长效胰岛素类似物, 应该能够模拟生理性胰 岛素分泌模式, 避免发生低血糖尤其是夜间低血糖, 不增加体重。
目前使用的最多的中长效胰岛素可以分为三大种类。 第一类是人胰岛素与锌离子或基础 鱼精蛋白形成的晶体的悬浮液, 例如 NPH胰岛素, lente胰岛素等。 这些胰岛素制剂的疗效 不稳定, 正逐渐被长效胰岛素类似物取代。
第二种是地特胰岛素 (detemir )。 它是十四烷酸链接至 B29赖氨酸的胰岛素类似物。 地 特胰岛素在注射后吸收緩慢。注射处的消失时间 T50%大约是 10小时。 它与血液中的白蛋白通 过 Β29位的脂肪酸结合, 然后从复合体中緩慢解离。 双六聚体化(Dihexamerization ), 六聚 体和二聚体与白蛋白结合都延长了地特胰岛素在注射处的留存时间。 地特胰岛素进入血液循 环后, 与白蛋白结合, 进一步延长了体内停留时间。
第三种是甘精胰岛素药物在 pH 3.0时溶解在制剂中, 而注射后当 pH上升到大约 7.4时 结晶。 注射位点的緩慢分解带来了延迟的效果。 但是吸收性质和药物动力学在人群中和个体 内变化都很大。
甘精胰岛素和地特胰岛素是目前市场上仅有的两种长效胰岛素类似物, 最长作用时间不 超过 24小时。 甘精胰岛素在胰岛素样生长因子 -1受体 (IGF-1R)上活性远高于天然人胰岛素。 因为胰岛素样生长因子 -1受体与多种癌症的发生密切相关, 所以一直有争议长期使用甘精胰 岛素是否会增加病人患癌症的风险。 地特胰岛素在人体内的生物活性大约是天然人胰岛素的 确 认 本 20%, 因此它的使用剂量是常规胰岛素剂量的 5倍, 这显著增加了生产和使用成本。
重组人胰岛素难以满足餐时胰岛素需求。 人胰岛素分子通常形成六聚体结构, 皮下注射 后逐渐解聚成二聚体, 进一步解离为单体才能透过毛细血管进入循环, 发挥降糖作用。 由于 存在解聚、 吸收过程, 重组人胰岛素在皮下注射后约 30分钟才起效, 达峰时间长, 作用持续 大约 6 ~ 7小时。 而且因个体差异, 注射相同剂量人胰岛素后最终进入循环的量也会有明显差 异。
人胰岛素的局限性带来两个不利后果。 一方面, 为保证降低餐后血糖, 糖尿病人必须在 餐前 30分钟皮下注射人胰岛素, 进餐时间提前易导致血糖控制不佳, 延后则易引起低血糖。 另一方面, 由于人胰岛素皮下注射后存在解聚和个体吸收差异, 最终进入循环的胰岛素量无 法精确预估, 容易造成胰岛素过量或不足。
速效胰岛素类似物 (如门冬胰岛素、 赖脯胰岛素等) 的研发正是为了弥补人胰岛素的不 足。 速效胰岛素类似物吸收快, 达峰时间短, 峰值更高, 峰浓度持续 1 - 3小时, 作用持续时 间为 3 ~ 5小时, 明显优于人胰岛素。但门冬胰岛素和赖脯胰岛素的起效时间大约是 20分钟, 对于糖尿病人来说仍然不够方便, 仍然有很大改进余地。
因此, 开发新型胰岛素类似物, 提高生物活性和生物利用度、 延长作用时间 (长效胰岛 素)或缩短起效时间 (速效胰岛素)、 改善水溶解度、 降低了用药时的个体差异、 更有效地防 止低血糖风险、 增加稳定性是胰岛素类药物开发的重要方向。 发明内容
本发明的目的是提供具有胰岛素活性、 能够与胰岛素受体高度结合、 具有降血糖作用的 化合物、 药物学可接受的组合物及其在降血糖中的应用。
本发明的第一个方面是提供一种具有降血糖作用的化合物,所述化合物的氨基酸序列为:
Xi07HLC[i]GSX1o8LVEALYLVC[2]GEXi09GFX110X11iX112X1i3Xn4Xn5-CL-GIVEQC[3]C[4]Xii6 SIC[5]SLYQLENYC[6]X117X118, 其中,
Xl07是苯 氨酸-缬氨酸-天冬酰胺-谷氨酰胺四肽、缬氨酸-天冬酰胺-谷氨酰胺三肽、天冬 酰胺-谷氨酰胺二肽、 或谷氨酰胺, 或是以赖氨酸或精氨酸取代上述二、 三、 四肽序列中任何 一个氨基酸残基后的序列, 或缺失; X1()8是组氨酸、 苯丙氨酸、 精氣酸或谷氨酰胺; X1Q9是 精氨酸、 丙氨酸、 谷氨酸或天冬氨酸; Xuo是苯丙氨酸、 酪氨酸或组氨酸; X„,是酪氨酸、 苯丙氨酸或缺失; X112是苏氨酸、 天冬酰胺、 谷氨酸、 天冬氨酸或缺失; X113是脯氨酸、 赖 氨酸、 谷氨酸、 天冬氨酸或缺失; X114是赖氨酸、 脯氨酸、 精氨酸、 谷氨酸、 天冬氨酸或缺 失; X115是苏氨酸或缺失; X116是苏氨酸、 组氨酸或精氨酸; X117是丙氨酸、 甘氨酸或天冬酰 胺; X118是赖氨酸、 精氨酸-赖氨酸二肽或缺失; CL是本文中所定义的连接片段。
在第二个方面, 本发明进一步提供一种具有降血糖作用的、 在多肽基础上进行修饰的化 合物, 以进一步提高所述化合物的溶解度、 稳定性、 体内循环作用时间等。 所述修饰是将修 饰侧链连接至本发明的化合物的 N-末端氨基酸残基的 α-氨基,或者连接至本发明的化合物中 存在的赖氨酸的 ε-氨基。 所述化合物的结构为:
X30oVNQHLC[i]GSHLVEALYLVC[2]GERGFX3oiX302X303X304X305X306GX3o7X308X309X3ioX3ii
X312X313X314 315X316 317Gr EQC[3]C[4]X318X319 320C[5]X32lLX322X323LX324X325YC[ ]X326X327'其 中,
X30o是苯丙氨酸或 UL-苯丙氨酸; X3()1是苯丙氨酸、 组氨酸或酪氨酸; X3o2是酪氨酸、 苯 2 001700
3
丙氨酸或缺失; X303是苏氨酸、 天冬酰胺、 谷氨酸、 天冬氨酸或缺失; X304是脯氨酸、 赖氨 酸、 谷氨酸、 天冬氨酸或缺失; X35是天冬氨酸、 谷氨酸、 脯氨酸、 精氨酸、 赖氨酸或缺失, 或通式(I )结构; X3o6是苏氨酸、 通式(I ) 结构或缺失; X3()7是赖氨酸、 丝氨酸、 丙氨酸、 甘氨酸、 通式(I )结构或缺失; X3Q8是甘氨酸、 通式(I )结构或缺失; X3G9是赖氨酸、 甘氨 酸、 丝氨酸、 通式(I )结构或缺失; X31Q是赖氨酸、 甘氨酸、 丝氨酸、 通式(I )结构或缺失; x311是赖氨酸、 甘氨酸、 丝氨酸、 丙氨酸、 通式(I )结构或缺失; x312是赖氨酸、 精氨酸、 丙氨酸、 脯氨酸、 甘氨酸、 通式(I )结构或缺失; x313是甘氨酸、 丙氨酸、 精氨酸、 赖氨酸、 谷氨酰胺、 脯氨酸、 通式(I )结构或缺失; x314是精數酸、 丙氨酸、 脯氨酸、 苏氨酸、 谷氨 酰胺、 甘氨酸、 通式(I )结构或缺失; x315是脯氨酸、 谷氨酰胺、 精氨酸、 甘氨酸或缺失或 通式(I ) 结构; x316是谷氨酰胺、 苏氨酸、 精氨酸、 甘氨酸或缺失或通式(I ) 结构; x317 是苏氨酸、 精氨酸、 赖氨酸或缺失; X318是苏氨酸、 组氨酸、 精氨酸或通式(I )结构; x319 是丝氨酸或通式(I ) 结构; X32Q是异亮氨酸或通式(I )结构; X32I是丝氨酸或通式(I )结 构; x322是酪氨酸或通式(I )结构; X323是谷氨酰胺或通式(I )结构; x324是谷氨酸或通式 ( I )结构; X325是天冬酰胺或通式(I )结构; x326是丙氨酸、 甘氨酸或天冬酰胺; x327是赖 氨酸、 精氨酸-赖氨酸二肽或缺失, 或为通式(I )结构; 当 X327为二肽时, 其中一个氨基酸 为通式(I )结构; UL和通式(I ) 结构如本文中所定义。
本发明的第三个方面是提供一种药物组合物, 由本发明的具有降糖作用的化合物和药物 学可接受的载体混合而成, 混合比例可以是大约 90/10%、 大约 80/20%、 大约 70/30%、 大约 60/40%、 大约 50/50%、 大约 40/60%、 大约 30/70%、 大约 20/80%或者大约 10/90%; 优选地, 所述组合物进一步包含速效胰岛素类似物; 所述速效胰岛素类似物可以是 AspB28人胰岛素、 LysB28ProB29人胰岛素或 LysB3GluB29人胰岛素。
本发明的第四个方面是提供本发明的化合物在制备治疗糖尿病或高血糖症等药物中的应 用。
本发明的第五个方面是提供一种治疗糖尿病或高血糖症等的方法, 包括对需要的病患施 用本发明的化合物或组合物。
与现有的胰岛素及其类似物相比, 本发明的化合物水溶性好, 具有结合胰岛素受体的高 活性, 毒副作用低, 制备容易。 修饰后的化合物在体内的循环时间明显延长。 附图说明
图 1是小鼠皮下注射生理盐水、 人胰岛素和本发明的 II -2化合物后血糖随时间变化值; 图 2是小鼠皮下注射生理盐水和本发明的 II -17化合物后血糖随时间变化值;
图 3是小鼠皮下注射生理盐水、 人胰岛素和本发明的 II -11化合物后血糖随时间变化值。
具体实施方式
定义及术语
除非另外说明, 下述定义适用于本发明全文。 未定义的术语可以根据行业内约定俗成的 定义理解。
"氨基酸"指任何同时包含氨基和羧基官能团的分子, α-氨基酸的氨基和羧基连接在同一 个碳原子上 (α碳)。 α碳可以有 1-2个有机取代基。 氨基酸包含 L和 D同分异构体和消旋混 0
4
合物。 如无特别说明, 本发明中多肽序列中的氨基酸残基都是 L同分异构体即 L-氨基酸, D- 氨基酸在氨基酸名称或缩写前加小写字母 "d"表示, 如 dK。
表达方式"可编码氛基酸 "或"可编码氨基酸残基"用于表示可以由核苷酸三联体编码的氨 基酸或氨基酸残基。
hGlu 为高谷氨酸;
-hGlu 为— HNCH(CO-)CH2CH2CH2COOH的 L同分异构体;
δ-hGlu 为 -H CH(COOH)CH2CH2CH2CO-的 L同分异构体;
a-Asp 为— H CH(CO-)CH2COOH的 L同分异构体;
β-Asp 为 -HNCH(COOH)C¾CO-的 L同分异构体;
a-Glu 为 -HNCH(CO-)CH2CH2COOH的 L同分异构体;
γ-Glu 为 -HNCH(COOH)CH2CH2CO-的 L同分异构体;
β-Ala 为— HN-CH2-CH2-COOH;
Sar为肌氨酸。
氨基酸残基可以用三字母氨基酸编码或者单字母氨基酸编码表示; 氨基酸表如下所示: 表一: 氨基酸名称及筒写
Figure imgf000005_0001
"天然胰岛素 "指来源于天然、 化学合成、 基因工程生产的哺乳动物胰岛素 (如人胰岛素, 牛胰岛素, 猪胰岛素等)。 人胰岛素包含 21个氨基酸组成的 A链和 30个氨基酸组成的 B链。 两条链通过 3条二硫键相连: A7和 B7、 A20和 B19、 A6和 AI L B7、 A7指的是天然胰岛 素 B链位置 7 (从 N端数起 )的氨基酸残基以及胰岛素 A链位置 7 (从 N端数起)的氨基酸 残基。
"胰岛素类似物"是修改过的胰岛素多肽的通称, 包括与天然胰岛素有同源序列的由 A链 和 B链组成的双链分子, 以及单链胰岛素类似物。 "胰岛素类似物,,具有天然胰岛素的部分、 全部或增强活性, 或者在体内或体外能够转化为具有天然胰岛素的部分、 全部或增强活性的 多肽, 例如比天然胰岛素增加、 减少或替换一个或多个氨基酸残基的多肽。 人、 动物乃至非 哺乳动物的胰岛素原、 前胰岛素原、 胰岛素前体、 单链胰岛素前体和类似物都称为"胰岛素类 似物"。 很多胰岛素类似物见诸于文献。 除非特别另外说明, "胰岛素类似物"广义包括天然胰 岛素和胰岛素类似物。
如无特殊说明,本申请中涉及的胰岛素指人胰岛素。人胰岛素 A链序列是 SEQ ID NO: 124 所示序列, 人胰岛素 B链序列是 SEQ ID NO: 125所示序列。 1700
5
化合物的氨基酸编号规则:
单链化合物指的是具有一般结构 B链 -CL-A链的多肽序列或修饰的多肽序列, 其中 B链 是胰岛素的 B链或类似物, A链是胰岛素的 A链或类似物, C L是连接 B链 C末端氨基酸残 基与 A链 N末端的肽链。
如无特殊说明, 本申请中以 A链或 B链位置说明的氨基酸, 如 A14、 B28等表示与胰岛 素的 A链或 B链相对应位置的氨基酸或其变化, 其中胰岛素的 A链或 B链的编号从 1开始。 胰岛素 A链和 B链序列分别见 SEQ ID NO: 124和 125。
化合物中半胱氨酸的编号:
为方便描述, 对本发明中的各化合物中的半胱氨酸进行编号, 分别为 Cn] ~C[6], 依次对 应所述单链化合物从 N端至 C端的 6个半胱氨酸。
本发明的化合物是基于胰岛素的结构, 因此本发明任何一个化合物的三级结构中都包含 二硫键, 且以与胰岛素相同的方式形成二硫键, 即, Cn] 和 C[4]形成二硫键, 。[2] 和。[6]形 成二硫键, C[3]和 C[5]形成二硫键。 本领域技术人员基于上述解释和公知常识完全可以理解并 知晓本发明中任何一个化合物的二硫键位置。
"修饰基团"
胰岛素类似物可以包含 1个或多个修饰基团。 修饰基团能够提供胰岛素类似物需要的特 征。 例如, 修饰基团可以降低胰岛素类似物在各种环境下 (如消化道, 血液) 的降解速率。 优选的修饰基团是那些允许胰岛素类似物保留相当胰岛素受体结合活性的基团。 优选的修饰 基团包括两性基团、 水溶性基团, 或者使胰岛素类似物比非修饰的类似物更低亲脂性、 更高 亲脂性、 更高水溶性的基团。 修饰基团可以包含可降解连接基。 例如 PAG; 可以包括易于水 解的连接基, 如丙交酯、 乙交酯、 碳酸、 酯、 氨基曱酸酯。 这种方法可以使聚合物降解成小 分子量片段。
修饰基团可以包括一个或多个亲水基团、 亲脂基团、 两性基团、 成盐基团、 间隔基团、 连接基团、 封端基团或这些基团的组合。 各种基团可以以共价键, 或以可水解或不可水解的 键连接在一起。 代表性亲水基团和亲脂基团介绍如下。
亲水基团
亲水基团的实例包括 PAG基团、 多糖、 聚山梨醇酯以及这些基团的组合物。
聚亚烷基二醇基团 (Polyalkylene Glycol, PAG ) 由多个亚烷基二醇单体组成。 在一个实 施例中, 所有单体是相同的 (例如聚乙二醇 (PEG )或聚丙二醇(PPG ) )。 在另一个实施例 中, 亚烷基二醇是不同的。 聚合体可以是无规共聚物(例如环氧乙烷和环氧丙烷的共聚物), 或者分枝或接枝共聚物。
本文使用的" PEG"或聚乙二醇指任何水溶性聚乙二醇或聚氧化乙烯。 聚乙二醇的化学结 构式为 -(CH2CH20)n-, 其中 n可以是从 2到 2000的整数。 PEG的一端通常是相对没有活性的 官能团, 如烷基或烷氧基等。 烷基包括饱和的直链或支链烃基。 烷氧基代表性的例子是曱氧 基、 乙氧基、 丙氧基(例如 1-丙氧基和 2-丙氧基)、 丁氧基(例如 1-丁氧基、 2-丁氧基和 2- 甲基 -2-丙氧基)、 戊氧基、 己氧基等。 使用曱氧基封端的 PEG 命名为 mPEG, 结构式 CH30(CH2CH20)n -, 但一般仍然称为 PEG。 PEG20K指分子量为 20,000聚乙二醇分子。
PEG另一端通常是活化官能团或者易于形成共价鍵的官能团, 例如氨基、 羧基、 羟基、 巯基、 ^等。 PEG-马来酰亚胺、 PEG-乙烯砜和 PEG-碘代乙酰基(CO-CH2-I )等可以与半胱 0
6
氨酸侧链的巯基 -SH反应形成稳定的共价键; PEG-NHS (琥珀酰亚胺) 可以与多肽 N末端 α 氨基或赖氨酸侧链氨基通过亲核取代反应 (酰化)接合; PEG-醛与多肽的氨基在还原剂 (如 氰基硼氢化钠)作用下可以通过还原性烷基化反应接合。
本发明中的 PEG分子可以是直链的、支链的、分叉的或哑铃状的 PEG。在一个实施例中, 支链 PEG可以用通式 R(-PEG-nOH)m表示, 其中 R (通常是多羟基的)是核心基团, 例如季 戊四醇、 糖、 赖氨酸或甘油。 m代表支链数, 可以是从 2起到核心基团附着位点最大数目, n 代表 PEG片段的数量, 每个支链上的 PEG片段的数量可以不等。 一般情况下, n是 2-1800 的整数。 在另一个实施例中, 支链 PEG可以用通式 (CH30-PEG-n)pR-Z表示, p等于 2或 3 , R是赖氨酸或甘油, Z代表可以进行反应的活化官能团。 在一个实施例中, 分叉 PEG用通式 PEG(-L-X)n表示, L是连接基, X是末端活化官能团。
PEG—般是多分散的,多^ I 旨数小于 1.05。 PEG基团也可以是单^:的。单分散指 PEG 具有单一的长度(分子量), 而不是各种长度(分子量) 的混合物。
糖基团
代表性糖基团包括, 但不局限于, 甘油、 单糖、 二糖、 三糖、 寡糖和多糖如淀粉、 糖原、 纤维素和 /或多糖树胶。 特别的单糖包括 C6及以上 (特别是 C6和 C8 )糖如葡萄糖、 果糖、 甘露糖、 半乳糖、 核酸糖或景天庚糖; 二糖和三糖包括含有二或三个单糖单元 (特别是 C5 至 C8 ) 的基团、 例如蔗糖、 纤维二糖、 麦芽糖、 乳糖和 /或蜜三糖。
其它亲水基团
生物适合的聚阳离子基团包括骨架或侧链上具有多个氨基的聚胺基团, 例如聚赖氨酸和 其它天然或合成的氨基酸构成的具有多个正电荷的氨基酸聚合物, 包括聚鸟氨酸、 聚精氨酸、 聚组氨酸, 非多肽聚胺如聚氨基苯乙烯、 聚氨基丙烯酸酯、 聚 -N曱基氨基丙烯酸酯、 季胺聚 合物等。 生物适合的聚阴离子基团包括骨架或侧链上具有多个羧基的基团, 如聚天冬氨酸、 聚谷氨酸等。 其它亲水基团包括天然或合成多糖, 如壳聚糖、 葡聚糖等。
聚阴离子生物粘附剂
某些亲水基团有潜在的生物粘附特性。 这样的例子可见于美国专利 US 6,197,346。 这些 具有多个羧基的聚合物显示生物粘附特性。 降解时显露出多个羧基的快速生物降解聚合物, 如乳酸羟基乙酸共聚物、 聚酐、 聚原酸酯, 也都是生物粘附剂。 这些聚合物可以把胰岛素类 似物投放到胃肠道。 聚合物降解时暴露出来的羧基可以牢固附着在胃肠道, 协助投放胰岛素 类似物。
亲脂基团
在一个实施例中, 修饰基团包括一个或多个亲脂基团。 亲脂基团可以是本领域人员众所 周知的, 包括但不限于: 烷基、 链烯基、 炔基、 芳基、 芳基烷基、 烷基芳香基、 脂肪酸、 胆 甾醇以及亲脂多聚物和低聚物。
烃基可以是饱和、 非饱和、 直链的、 支链的或环烃, 具有一个或多个碳原子。 在一个实 施例中, 烃基有 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24、 25、 26、 27、 28、 29、 30或更多的碳原子。 烃基可以是无取代、 或有 一个或者多个取代基, 这些取代基最好不会使结合物失去生物活性。
亲脂基团也可以是脂肪酸, 如天然的、 合成的、 饱和的、 不饱和的、 直链的或支链的脂 肪酸。 在一个实施例中, 脂肪酸有 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24或更多个碳原子。 结合 (Conjugation)策略
修饰基团与多肽的结合程度、 结合点的选择、 修饰基团的选择要根据需要而变化, 例如 使结合物在体内不易降解, 从而延长血浆半衰期。 例如胰岛素类似物修饰后具有一个、 两个、 三个、 四个或更多修饰基团。 结合部位可能包括一个氨基酸残基, 比如赖氨酸残基。 在一个 实施例中, 胰岛素结合物是单结合物。 在另一个实施例中, 胰岛素结合物是多结合物。 在另 一个实施例中, 胰岛素结合物是单结合物、 双结合物、 三结合物、 四结合物等的混合物。 修 饰基团可以相同, 也可以不同。 当胰岛素结合物具有多个修饰基团时, 一个或多个修饰基团 最好通过可水解键与胰岛素结合物相连而其它一个或多个修饰基团最好通过不可水解键与胰 岛素结合物相连。 或者, 所有修饰基团都通过可水解键与胰岛素结合物相连, 但各个修饰基 团在体内的水解速率有快有慢。
理想的结合策略是使结合物具有原胰岛素类似物部分或全部生物活性。 优选的结合部位 包括 N末端 α氨基和赖氨酸侧链氨基另外可以通过在单链化合物的连接片段或 Α链、 Β链嵌 入具有氨基或銃基的天然或非天然數基酸残基来创造其它结合位点。
修饰基团与胰岛素类似物可以通过可水解键(如酯, 碳酸, 可水解氨基曱酸酯)结合。 可水解键使胰岛素结合物具有前药的效果。 如果希望修饰基团与胰岛素结合物没有活性, 比 如修饰基团的结合部位在胰岛素类似物对胰岛素受体结合区, 前药策略就是优选方法。 当一 个或多个修饰基团在一段时间内从胰岛素结合物脱离, 从而释放出活性胰岛素类似物, 使用 可水解键能够提供延时释放或緩释的效果。
在一个实施例中, 胰岛素类似物通过非水解键(如酰胺键, 醚键)与修饰基团相连。 必 要时, 非水解鍵有助于延长胰岛素结合物在血浆中的循环时间。
胰岛素同系物可以通过各种亲核官能团与修饰基团相连, 包括但不局限于, 亲核羟基或 氨基。 例如丝氨酸、 苏氨酸、 酪氨酸具有亲核羟基, 组氨酸、 赖氨酸或胰岛素类似物 A链、 B链 N-末端都具有亲核氨基。 胰岛素同系物也可以通过自由巯基 -SH与修饰基团相连, 例如 形成疏酯、 硫醚、 磺胺键。
分子量较小的多肽化合物在血浆中的循环时间短的一个重要因素就是肾清除。 增加多肽 化合物分子量直至超过肾清除临界点, 可以显著降低肾清除率, 延长多肽在体内作用时间。 常用的方法是使多肽与天然或合成大分子形成可水解或不可水解键。生物大分子包括白蛋白、 多糖、 抗体(如 IgG )等。 血管中 70%的白蛋白是疏基白蛋白 ( mercaptalbumin ), 其半胱氨 酸 -34的侧链琉基是血浆中活性最强的琉基。胰岛素类似物可以通过一个一端带有马来酖亚胺 等活化官能团的连接基与其反应生成胰岛素-白蛋白结合物。 连接基本身可以是长链脂肪酸或 PEG分子。 具体实例可以参照 Bioconjugate Chem. 2005, 16, 1000-1008。 合成大分子包括聚乙 二醇和葡聚糖。 另一种方式是脂肪酸酰化, 将在酰化胰岛素类似物部分讨论。
近年来出现了以蛋白酶 sortase催化使两个分子通过酰胺键结合的方法。 Sortase是一种介 导革兰阳性细菌细胞壁与表面蛋白共价结合的转肽酶, 主要存在于革兰阳性细菌中。 对 GeneBank CDS 和 NCBI资料库的蛋白序列分析显示, sortase家族包括 150多种蛋白序列, 其中 Staphylococcus aureus sortase A (SrtA或 SrtAStaph) 是目前研究最多的同种型 ( isoform )。 有多篇文献揭示 SrtA催化的转肽反应的分子机制。 SrtA识别包含 LPXTG( Leu-Pro-X-Thr-Gly ) 基序的底物, 其 184位的半胱氨酸作为亲核基团攻击 LPXTG基序中的肽键 Thr-Gly, 由此产 生一个酰基 -酶中间体。 苏氨酸羧基的硫酯中间体通过与底物的低聚甘氨酸(在 S. aureus中是 支链脂质 II的前体交连桥的五甘氨酸 (Gly5))的氨基基团发生亲核反应, 产生新的连接产物。 另一相关的■Str^ptococciw /^ogew y sortase 可以接受由两个丙氨酸构成的亲核基团, 但 aureus酶不能。 这种 sortase (SrtAstrep) 切断 LPXTA基序中的肽键 Thr-Ala, 允许以丙氨酸为 基础的亲核基团。 SrtAstrep 也可以识别 LPXTG 基序, 但活性较低。 LPXTA基序不会被 SrtAStaph切断。 为简单起见, 以下方法论述均以 SrtAStaph为例, 但 SrtAstrep等同种型也可以用 相同或相似的方法。
SrtA对 LPXTG基序和 N端带有自由氨基的甘氨酸重复( a-Glyn) 高度专一。 X位可以 是除半胱氨酸和色氨酸以外(尚未测试) 的所有天然氨基酸。 尽管有实验表明 N端带有一个 甘氨酸的多肽能够参与 sortase催化的转肽反应, N端带有两个或两个以上的甘氨酸的底物可 以达到最大反应效率。 Sortase辅助连接 ( Sortase mediated ligation )一项主要应用就是将非 天然功能团引入蛋白或多肽。 非天然功能团可以是小分子、 合成多肽或蛋白、 聚合物等。 这 些功能团与 LPXTG或 a-Glyn 融合而成的分子都可以成为 SrtA的底物。具体方法和反应条件 可以参照、† 关文献 (: δ口 Tsukiji 等, "Sortase-Mediated Ligation: A Gift from Gram-Positive Bacteria to Protein Engineering", ChemBioChem, 2009,10,787-798; Popp等, "Sortase-catalyzed transformations that improve the properties of cytokines", PNAS, 2011 , 108 , 3169-3174 )。
SrtA能够在胰岛素类似物上引入非天然功能团, 具体策略要根据胰岛素类似物的结构而 定。 对于双链胰岛素类似物,一^:较少影响生物活性的结合位点是 B链的 N端或 A链、 B链 的 C端。 如果结合位点是 B链的 N端, 那么胰岛素 B链的 N端最好引入多个甘氨酸, 如 GGGGG-胰岛素 B链,而要引入的修饰基团如 PEG、长链脂肪酸或白蛋白等的 C端要有 LPXTG 基序, 比如 PEG -LPATGGGG、 白蛋白 -LPETGGG或脂肪酸 LPGTGGGGG等。 如果结合位点 是 A或 B链的 C端, 那么 A或 B链的 C端氨基酸序列要包含 LPXTG基序, 比如可以变为 胰岛素 A-LPATGGGGG或胰岛素 B-LPGTGGGG等, 而要引入的修饰基团如 PEG、 长链脂肪 酸或白蛋白等的 N端要有一个或多个甘氨酸, 如 GGG-PEG、 GGGG-长链脂肪酸、 GGGGG- 白蛋白等。 对于单链胰岛素类似物, 最容易的结合位点是 B链的 N端或 A链的 C末端, 方 法和双链类似物基本相同。 单链化合物(基于胰^素的单链化合物)
在哺乳动物中, 胰岛素在胰腺中的胰岛的 β细胞中合成。胰岛素原是含有 86个氨基酸的 的单链前体,构造为: Β链 -ArgArg-C肽 -LysArg-A链。 C肽是由 31个氨基酸组成的"连接肽"。 Arg-Arg和 Lys-Arg是蛋白水解酶作用使 C肽从 A和 B链中分裂的分裂点, 已知蛋白水解酶 是激素原转化酶(PC1和 PC2 ),以及外型蛋白酶羧肽酶5。胰岛素原的这些改变移去了 C肽, 剩余的 B链和 A链通过二硫鍵结合在一起。
胰岛素的双链结构使得胰岛素具有多种构象。 胰岛素具有相当大的构象变化的潜能, 对 这些变化的限制明显地降低胰岛素受体对配体的亲合力。 封闭 GlyAl的氨基端同样消弱受体 结合能力。 胰岛素原与胰岛素受体亲和力只有胰岛素的 1-2%。
目前还不清楚 C肽在胰岛素原折叠中的作用。 在不同动物种类中 C肽的长度在 26-38个 氨基酸之间变化。 在 B链 -C肽( B-C )和 C肽 -A链( C-A )连接处的二元氨基酸残基是保守 的, 并认为对于胰岛素保守性的需要是最小的。 胰岛素的三维结构显示 A链和 B链可以通过 比 31个氨基酸的 C肽小很多的连接肽结合。
胰岛素分子内在的物理和化学稳定性是糖尿病的胰岛素疗法的先决条件, 也是胰岛素构 象、 可应用的胰岛素给药方法以及药物制剂的保存期限和保存条件的基础。 在胰岛素给药时 1700 使用溶液使得胰岛素分子暴露于多种因素, 如升高的温度、 气-液-固相间变化和剪切力, 可 能导致胰岛素分子不可恢复的构象变化, 如原纤化作用。 这与注射泵中的胰岛素溶液关系密 切, 因为无论是外用还是植入, 都将胰岛素分子暴露于这些因素以及来自泵长期移动过程中 的产生剪切力中。 因此, 当使用注射泵作为胰岛素递送系统时, 原纤维化作用是一个很大的 问题。 此外, 胰岛素的溶解度受多种因素影响, 并在 pH4.2-6.6的范围内明显降低。 pH沉降 区通常给配方带来限制。
因此, 胰岛素的稳定性和可溶性是目前胰岛素治疗的重要因素。 本发明致力于这些问题, 通过在 B和 A链之间引入 C肽提供稳定的单链化合物,降低分子柔性并同时减少原纤维化倾 向, 限制或修改 pH沉降区, 从而为制剂和配方提供更广阔的选择。 此外, 目前基因工程生 然后胰¾素前体被酶切后生成双链胰岛 ^:。 如果直接生产单链胰岛素类似物, 则大大简化了 生产过程, 降低了成本。
作为胰岛素家族的成员, 胰岛素样生长因子 -1 ( IGF-1 )是具有 70个氨基酸残基的单链 肽, 包含 A、 B、 C和 D域。 IGF-1的 A域和 B域的基本结构与胰岛素的 A链和 B链高度相 似, 分别有 52%和 45%同源性。 它们的三维结构也非常相似。
IGF-1的 C域在胰岛素受体结合中作用很小。 去掉全部的 IGF-1 C域, 用 4个甘氨酸组 成的桥取代, 导致胰岛素受体结合力与野生型相比增加两倍, 而将 IGF-1 C域加至胰岛素 B 链的 C末端引起胰岛素受体亲合力与野生型相比减少 3.5倍。 由胰岛素和 IGF-1 C域组成的 单链胰岛素 /IGF-1混合体的胰岛素结合力与天然人胰岛素没有显著差异。 有意思的是, IGF-1 CII混合体对 IR-A和 IR-B都具有增加的亲合力, 而 IGF-2 CI具有较弱的亲合力, 显示 C域 决定 IR结合特异性。
IGF-1中 Tyr31对于保持 IGF-1的受体高亲合力至关重要,但是它似乎阻碍与胰岛素受体 结合, 因为当酪氨酸被丙氨酸取代, 导致了很小但明显的人胎盘胰岛素受体结合的双倍增加。
连接片段
发明人在研究中发现, 通过连接片段将胰岛素分子的双链连接形成的单链化合物, 同样 具有胰岛素活性, 并且具有易制备、 提供更多的多肽修饰位点等优势。
连接片段 CL是 6-60个氨基酸组成的肽序列, 其中每一个氨基酸都独立选自甘氨酸、 丙 氨酸、 丝氨酸、 苏氨酸、 脯氨酸。 适用的连接片段 CL具有三点特征: 第一, 连接片段需要适 当的长度。 当 B链为 30个氨基酸全长时, 连接片段长度最好不少于 6个氨基酸; 当 B链为 25个氨基酸时, 连接片段长度最好不少于 10个氨基酸。 连接片段长度短于上述氨基酸数目, 或者长于 60个氨基酸时, 单链类似物的胰岛素受体结合能力有降低趋势; 第二, 连接片段最 好没有二级结构, 空间构象可以灵活变化; 第三, 连接片段本身没有生物活性, 但可以提供 多肽修饰位点, 如酰化、 糖基化等。
用以上方法设计的连接片段 CL可以通过氨基酸残基取代和插入包含 1个或 1个以上天冬 氨酸、 谷氨酸、 精氨酸、 赖氨酸、 半胱氨酸或天冬酰胺。 CL可以包括 1、 2、 3、 4个天冬氨 酸、 谷氨酸、 精氨酸或赖氨酸以调节多肽序列的电荷平衡, 改善溶解度。 该序列可以包括 1、 2、 3、 4、 5个天冬酰胺和相同数量的丝氨酸或苏氨酸,从而组成构成 N糖基化所需的 N-X-S/T 共有序列 (X为可编码的天然氨基酸)。 进一步地, 该肽还可以包含 1、 2、 3或 4个赖氨酸或 半胱氨酸, 其侧链氨基或巯基可以与脂肪酸、 聚乙二醇、 白蛋白等天然或合成的修饰基团通 过水解键或非水解键相连, 从而使修饰后的胰岛素分子具有不同的物理、 化学和生物特性。 根据一种实施方式, CL的 C末端氨基酸可以选自由甘氨酸-赖氨酸、 甘氨酸-精氨酸、 精 氨酸-精氨酸、 赖氨酸-赖氨酸、 精氨酸-赖氨酸、 赖氨酸-精氨酸、 脯氨酸-谷氨酰胺-苏氨酸、 脯氨酸-谷氨酰胺-赖氨酸、 或脯氨酸-谷氨酰胺 -精氨酸组成的组。 根据一种实施方式, 0_的。 末端氨基酸选自赖氨酸或精氨酸。
在具体的实施方式中, CL可以是以下多肽片段的全部或部分序列, 或者与以下多肽片段 有 1 , 2或 3个氨基酸残基的差异, 或者与以下多肽片段有 70%、 80%、 90%类似, 或者是以 下多肽片段的全部或部分序列的 1、 2、 3、 4或 5次重复序列:
(GASPGGSSGS)„GR, 其中 n是 1、 2、 3、 4或 5; GSSGSSGPGSSR; GSSGSGSSAPQT;
GSGGAPSRSGSSR; GSPAGSPTSTGR; GGSGGSGGR; GSSPATSGSPQR; GASSSATPSPQR; GSGSSSRAPPSAPSPQR; GSSSESPSGAPQT; GAGTPASGSAPGR; GSSPSGGSSAPQT;
GSTSSTARSPGR; GAGPSGTASPSR; GSSTPSGAPQT; SSSSAPPPSAPSPSRAPQR;
GSGSSSAAAPQT ; GSGSSSAAPQT ; GASPGTSSTSGR ; GSGSSSAPQT ; GSGSSSRRA ;
GSPAGSPTSTSR; GSGPSSATPASR; GSGSSSRGR; GSGPSTRSAPQR; GPETPSGPSSAPQT;
GAGSSSRAPPPSAPSPSRAPGPSAPQR; GSGSSAGR; GASSPSTSRPGR; GSSSGSSGSPSGR; GSSPSASTGTGR; GAGSSSAPSAPSPSRAPGPSAPQR; GSGSGSGR; GSPSSPTRGSAPQT;
GASTSSRGAPSR; GSGSSSAGR; GPSGTSTSAPGR; GAGSSSAPQT; SSSSAPSAPSPSRPQR;
GSGASSPTSPQR; GAGGSGSGR; GSSPATSATPQT; GAGSSSAPPPSAPSPSRAPGPSAPQR;
GASTSPSRPSGR; GSTAGSRTSTGR; GSTAGSRTSPQR; GSGTATSGSPQT; GASSSATSASGR;
GAGSATRGSASR; GSSSRSPSGSGR; SSSSAPPPSAPSPSRAPGPSAPQR; GSSPSG SSSPGR; GSPAGSPSSSAGSSASASPASPGR; GSPAGSPSSSAGSSASASPASGPGSSSAPSAGSPGR;
RREAEDGGGPGAGSSQRK; GGGSGGGR; RRGGGPGAGSSQRK; RGGGPGAGSSQRK;
SSSAPPPSAPSPSRAPGPSPQR; SAASSSASSSSASSASAGR; GAGGPSSGAPPPSPQT;
GSGSSGGR; GAGSPAAPASPAPAPS AGR; SSSAPSPSRSPGPSPQR; SSSAPSAPSPSPQR;
GSGSSSRRAPQT; SSSSAASAASASSSASGR; SSSRAPPSAPSPQR; GGPSSGAPPPSR; SSSSGAPPPGR; GPSSGAPSR; GPSSGAPQT; GGPSSGAPPPSPQT; SSSAPPPSAPSPSRAPQT;
GAGPSSGAPPPSPQT; GGGGAPQT; GAGGPSSGAPPPQT; GGPSSGAPPPSPSPSRPGPSPQR;
SSASSASSSSAGR; GAGSSR; SSASSSAASSSASSSASGR; SSSGAPPPSPSRAPGPSPQR;
GSGSASRGR ; SSSSAASSASGR ; SASASASASSASSGR ; SASSPSPSAPSSPSPAS ;
GPSSPSPSAPSSPSPASPSSGR ; SSSAPPPASPSPSRAPGPQR ; SASASASASASSAGR ; GSGASSRGR ; GSGAAPASPAAPAPS AGR; GGPSSGAPPPSGR ; SSPSASPSSPASPSSGR ;
GAPASPAPSAPAPAAPSGR; GPSSPSPSAPSSPSPASPSSAPQT; SSASSASSSSSASAGR;
SAPSSPSPSAPSSPSASPSGR ; SSSAPPPSAPSPSAPQR ; GASSPSPSAPSSPSPASGR ;
SSPSAPSPSSPASPSSGR; GAGPAAPSAPPAASPAAPSAGR; SSSSPSAPSPSSPASPSPSSAPQR;
GSGSSR; GSGSSSAR; GSGSSSGR; GSGAPQR; SSSSAPSAPSPSRAPGPSPAPQR; GSGSSSR; GSGSSAPQT ; GGGGAPQR ; GSGSSSAAR ; GSGSSAAPQR ; SSSSRRAPQR ;
SSSGSGSSAPQR; SSGSGSSSAPQR; GSGSSSRS; SSSSRAPQR; GASPGGSSGSGR;
GSGSSSAAAPQR; GAGSSSAAAPQR; GAGSSSAAAPQT; GSSGGSGR; GAGGGSSGR;
GSGSSGSR ; GSGSSSSR ; GSGSGGGR ; GAGSSGR ; GSGSSGR ;
SSSSRAPPPSAPSPSRAPGPSAPQR; GGGSSR; GSGSSSAAPQR; GASPGGSSGSSR; GSGSSSRSGR ; GTGPSSATPASR ; GAGPSGTASPSS ; SSSSAPSAPSPSRAPQR ; GSPSSPTRGSAT ; GPETPSGPSSAT ; GSSPATSGTPQT ;
GSGSSSRAPPPSAPSPSRAPGPSPAPQR; GSSTPSGAGPQT; GSGSSSRAPPPSAPSPSRAPQR; GSPAGSPSSSAGSSASASPASGPGSSSAPSAGSPAR; GAGSSSRAPPPSAPSPSRAPGPSPQR; GSGSSSRAPPSAPSAPQR; GSTAGSRTSTAR; GSSPSGRSSSPAR; SSASSASSSSSAASAGR; GSSSGSSGSPSAR ; SSSAPSPSRAPGPSPQR ; GAGSSSRAPPPSAPSPSRAPQR ; GSPAAPAPASPAAPAPSAGR; SSSAPSAPSPSAPQR; GGPSSGAPPPSPSPSRPGPSDTPPQR; SASASASASASASSASSGR ; SASSPSPSAPSSPSPASGR ; SASASASASASASSAGR ; SSPSASPSSPASPSPSSGR; GAPASPAPAAPSAPAPAAPSGR; GAGSPAAPAPASPAPAPSAGR; SSSRAPPPSAPSPSAPQT; GASPAAPSAPPAASPAAPSAGR; SSSAPPPSPSRAPGPSPQR; SSPSAPSPSSPASPSPSSGR; SSSSGPSSGAPPPSGR; GSSSRSPSGSPR; GGGPGAGSSPQR。
基于上述内容, 本发明提供一种具有降血糖效果的单链的化合物, 所述化合物根据胰岛 素的结构进行改造, 所述化合物的结构为:
X107HLC [!] GSXjQsLVEALYLVC^GEXiogGFXnQXniXinXinXiHXns-CL-GIVEQC jC^jXneS IC[5]SLYQLENYC[6]X117X„8, 其中,
X1Q7是苯丙氨酸-缬氨酸-天冬酰胺-谷氨酰胺四肽、 缬氨酸-天冬酰胺-谷氨酰胺三肽、 天冬 酰胺-谷氨酰胺二肽、 或谷氨酰胺, 或是以赖氨酸或精氨酸取代上述二、 三、 四肽序列中任何 一个氨基酸残基后的序列, 或缺失; X1()8是组氨酸、 苯丙氨酸、 精氨酸或谷氨酰胺; Χπ)9是 精氨酸、 丙氨酸、 谷氨酸或天冬氨酸; X110是苯丙氨酸、 酪氨酸或组氨酸; Xm是酪氨酸、 苯丙氨酸或缺失; X112是苏氨酸、 天冬酰胺、 谷氨酸、 天冬氨酸或缺失; X113是脯氨酸、 赖 氨酸、 谷氨酸、 天冬氨酸或缺失; X114是赖氨酸、 脯氨酸、 精氨酸、 谷氨酸、 天冬氨酸或缺 失; X115是苏氨酸或缺失; X116是苏氨酸、 组氨酸或精氨酸; X117是丙氨酸、 甘氨酸或天冬酰 胺; X 是赖氨酸、 精氨酸-赖氨酸二肽或缺失; CL结构如本文中所定义的。
同样地, 在该化合物的三级结构中, 该单链中的半胱氨酸形成二疏键, 具体为: Cn] 和 C[4]形成二 键, Cm 和 C[6]形成二硫键, C[3]和。[5]形成二硫键。
需要特别指出的是, X108、 X109、 X 、 X 、 X 的氨基酸残基关系到化合物是否像人胰 岛素一样产生自联( self association )。人胰岛素一般通过自联形成六聚体存储在胰岛 β细胞中。 重组人胰岛素分子皮下注射后逐渐由六聚体解聚成二聚体, 进一步解离为单体才能透过毛细 血管进入循环, 发挥降糖作用。 由于存在解聚、 吸收过程, 重组人胰岛素在皮下注射后起效 时间长( Brange等, "Monomelic insulins and their experimental and clinical implications" Diabetes Care, Vol 13 No.9, 923-54, 1990 )。 如果 X108是组氨酸, 那么有利于化合物在锌离子的协助下 形成六聚体结构。 如果 X1()8是天冬氨酸、 谷氨酸、 苯丙氨酸、 谷氨酰胺、 精氨酸等氨基酸残 基, 则无法形成稳定的六聚体结构。 如果 Χκ)9、 X112、 X113、 XU4等位点的氨基酸残基是天冬 氨酸或谷氨酸, 也不易形成稳定的自联。 因此, 如果 X108是非组氨酸氨基酸残基, 或 Xl09、
X 、 Xii3、 X 等位点的氨基酸残基之一或多个位点是天冬氨酸或谷氨酸, 则相应化合物更 易于以二聚体或单体形式存在, 皮下注射后快速进入血液, 可以达到在短时间内降低血糖的 效果。
在一种具体的实施方式中, 所述单链化合物的结构是:
FVNQHLCGSHLVEALYLVCGERGFFXi! d 12Χ! 13Xi "Xi i5-CL-GIVEQCCTSICSLYQLEN YCN, 其中,
x 是酪氨酸或缺失; x112是苏氨酸或缺失; x113是脯氨酸或缺失; x114是赖氨酸或缺失; XU5是苏氨酸或缺失; CL是本文中所定义的连接片段。
在进一步的实施方式中, 所述单链化合物的结构是:
FVNQHLCGSHLVEALYLVCGERGFFYTPKT-CL-GIVE(5CCTSICSLYQLENYCN。 根据这一方面的实施方式, 本发明的具有降血糖作用的单链化合物选自以下化合物: I -1:
FVN
YCN (SEQ ID NO:l );
I -2:
Figure imgf000013_0001
YCN ( SEQ ID NO:2 );
I -3:
FVN'
CN ( SEQ ID NO:3 );
1-4:
YCN ( SEQ ID NO:4 );
1-5:
F\
YCN ( SEQ ID NO:5 );
I -6:
FVNC YCN ( SEQ ID NO:6 );
1-7:
FVNi
( SEQ ID NO:7 );
1-8:
Figure imgf000013_0002
( SEQ ID NO:8 );
1-9:
( SEQ ID NO:9 );
I -10:
FVNQ
(SEQ ID NO: 10);
I -11:
FVNC
N (SEQ ID NO: 11 );
1-12:
FVNQHLCGSHLVEALYLVCGERGFFYTPKTGAGGGSSGRGIVEQCCTSICSLYQ LENYCN ( SEQ ID NO: 12); ■91- 1
;( ςζ-ON. αι 0HS ) Μ 入 N310A1S0IS丄 03AID¾SS0S£)丄: S3工入 ;ΜΕ)Ή30 ΛΊ入 lV3AlHS0 nHi)NAJ: S3- 1
αι 3S )
■^ζ- 1
■( ΖΖ-ΟΝ. (ΊΙ HS )
•zz- 1
'·( zz-OK ai 3S ) οε
■zz- 1 ί( 1ΖΌΝ ai 3S)
:( 03ΌΝ ai as )
N 入 3lC)AlS:)IS丄 C i)3AIE)¾SSS£)S£)丄 W丄人 ΜΟ 3£ ΛΊ入 lV3AlHS ):JlHi)NAd
:0 - 1 ■(61ΌΝ. αΐ 0HS)
oz
:61- 1
;(8iONai as)
:81- I
:( :ONai03S) 91
■L\- l
i(91ONai HS)
:91- 1 01
;(si Mai as) •si- 1
:(W:ONaii)3S)
■n- 1
■( £I Nai 3S)
£1
00/.l00/Zl0ZN3/13d 98/.980/£lOI OAV '·( 6£ΌΝ 010HS ) ND入
:6£- 1
;( 8£ΌΝ αΐ 0HS ) Ν。入
:8ε- 1
;( ίί-ΟΝ. αΐ 0HS ) 入 ■Li- 1
■(9ί-ΟΚ αΐ 3S) NDA
:9ε- 1
;( SCON αΐ 03S ) N 入
■S£- 1 ί( ^εΌΝ σι 0HS )
1
:( £-ΟΗ αι HS )3Ίί)入 丄: D 03AI£mi)dV¾SSSSaNLUJO¾3£)C)A人 WHAlHSD HH Aii
: εε- 1 οζ
■( Ζ£-ΟΝ. αι 3S )
:^ε- 1
■( KOMai03S) Ν3Ίί)入 ISDIS丄: i)3AI£)¾DS SSSDS£)人 JJEa3£OA AlV3AlHSDCnH0NAiI SI
:l£- 1 οε:θΝ ai HS )
:οε- 1
■( 6Z-OK ai 0HS ) 01
:6 I
'·( ai 03S )
:8Z- 1
:( LZ-ON. ai 人 Μ3Ί0入 ISDIS丄 03AID¾i)dV¾SSSSdJD¾3 Al人 lV3AlHSE>:nH0MAd
■LZ- 1
;( 9ϋΌΝ ai 0HS ) a00/Zl0Z 3/X3d 98,980/εΐΟΖ OAV I -40:
CN ( SEQ ID NO:40 );
1-41:
FVNQ
YCN ( SEQ ID NO:41 );
1-42:
FVNQ YCN ( SEQ ID NO:42 );
I -43:
FVNQ YCN ( SEQ ID NO:43 );
I -44:
FVNQ]
NYCN ( SEQ ID NO:44 );
1-45:
FVNQ
NYCN ( SEQ ID NO:45 );
I -46:
YCN ( SEQ ID NO:46 );
1-47:
FVNQ YCN ( SEQ ID NO:47 );
I -48:
FVNQ]
SLYQLENYCN ( SEQ ID NO:48 ); I -49:
FVNQ YCN ( SEQ ID NO:49 );
I -50:
YCN ( SEQ ID NO: 50 );
I -51:
FVNC CN (SEQIDNO:51 );
1-52:
CN ( SEQ ID NO:52 );
I -53:
Figure imgf000017_0001
Q; ( ) ID N53CN SEO: Y
Figure imgf000018_0001
I -80:
( SEQ ID NO:80 );
1 -81 :
FVNQ
YCN ( SEQ ID NO:81 );
I -82:
FVNQ
QLENYCN ( SEQ ID NO: 82 );
I -83:
FVNQ
YQLENYCN ( SEQ ID NO:83 );
I -84:
FVNQ]
NYCN ( SEQ ID NO:84 );
I -85:
FVNQ CN ( SEQ ID NO:85 );
I -86:
CN ( SEQ ID NO: 86 );
I -87:
FVNQ]
QLENYCN ( SEQ ID NO: 87 );
I -88:
FVNQ]
SLYQLENYCN ( SEQ ID NO:88 );
I -89:
FVNQ
( SEQ ID NO:89 );
1 -90:
YCN ( SEQ ID NO:90 );
1 -91 :
FVNQ ID NO:91 );
I -92:
I -93: o
Figure imgf000020_0001
Q (O3 SE ID N:9 LYQLENYCN ( SEQ ID NO: 106 );
I -107:
FV Ql-
YQLENYCN ( SEQ ID NO: 107 );
I -108:
FVNQf
ENYCN (SEQ ID NO: 108 );
I -109:
FV Qi
YCN (SEQ ID NO: 109);
I -110:
SICSLYQLENYCN ( SEQ ID NO: 110 );
I -in:
TSICSLYQLENYCN ( SEQ ID NO:lll );
I -112:
FVNQH YCN (SEQ ID NO: 112);
I -113:
FV QI
SLYQLENYCN ( SEQ ID NO: 113 );
I -114:
FVNQI CSLYQLENYCN ( SEQ ID NO: 114 ); I -115:
FVNQP NYCN (SEQ ID NO:115);
I -116:
NYCN (SEQIDNO:116);
I -117:
FVNQI
SICSLYQLENYCN ( SEQ ID NO: 117 );
I -118:
YQLENYCN ( SEQ ID NO:118 );
I -119: ENYCN ( SEQ ID NO: 119 ); I -120:
( SEQ ID NO: 120 );
I -121 :
FVNQH
( SEQ ID NO: 121 );
I -122:
FVNQP
N ( SEQ ID NO: 122 );
I -123 :
FVNQH CN ( SEQ ID NO: 123 )。 修饰的化合物(基于胰岛素的化合物的修饰)
多肽化学家为了解决血浆中分子量小于 67kDa 的药物分子被肾脏快速清除的难题, 已经 使用了几种方法。 1、 注射部位建"仓,,( depot ); 2、 与血浆中的载体蛋白以非共价键联合以阻 止腎小球过滤; 3、 与载体蛋白以共价键连接; 4、 与大分子量修饰基团结合, 例如大分子量 PEG, 多糖等(如在本申请文件之前章节中公开的)。 "疏水窖藏" (hydrophobic depoting)大幅 度增加肽的疏水性以减少可溶性, 并使它在注射部分形成"仓"。 肽仓緩慢解离后, 多肽结合 至细胞膜和 /或全身的载体蛋白 (如白蛋白等)。 栽体蛋白分子量大于肾小球过滤最大分子量, 因此不易被肾脏清除, 可以在血浆中循环多日。 因此, 与载体蛋白结合的多肽不易被腎小球 过滤或被内膜上的蛋白酶降解。
脂肪酸一般通过三种方式延长多肽在体内作用时间。 第一, 脂肪酸能够在药物注射部位 与白蛋白以非共价键结合, 形成的多肽-脂肪酸 -白蛋白大分子结合物幹放緩慢; 第二, 多肽- 脂肪酸-白蛋白结合物的大分子量使腎清除率降低; 第三, 白蛋白为多肽提供保护, 不易被蛋 白酶降解。 第四, 脂肪酸减少多肽的免疫原性。 后三个特点与长链 PEG修饰的效果类似。 更 多的机理和实验支持可以参照 Biochem. J. (1995) 312, 725-731 ; Pharmaceutical Research, ( 2004 ), 21, 8, 1498-1504; Current Medicinal Chemistry ( 2009 ), 16 , 4399-4418; WO95/07931 ; Diabetes, Obesity and Metabolism, 2007, 9 , 290-299; Diabetes, 1997, 46, 637-642。
典型例子是糖尿病治疗多肽药物地特胰岛素 (detemir)和利拉鲁肽( liraglutide )。 它们利用 了基于脂肪酸修饰的疏水窖藏, 使体内作用时间延长(地特胰岛素 t1/2=14 小时)。 而未修饰 的胰岛素的作用时间仅有几个小时。
此外, 用聚乙二醇(PEG, 分子量不小于 20K )和人白蛋白等大分子修饰胰岛素, 也可 以达到和上述脂肪酸修饰类似的延长体内作用时间的效果。 因此, 在所有可以用脂肪酸酰化 的位点, 都可以用聚乙二醇或人白蛋白等大分子修饰。
本发明基于这样一种认识:本发明的具有降血糖作用的化合物的总体疏水性在该化合物的 体内功效方面起重要作用。 本发明进一步提供一种具有降血糖作用的、 在多肽基础上进行修 饰的化合物, 以进一步提高所述化合物体内循环作用时间。 所述修饰是将修饰侧链连接至本 发明的单链化合物的 N-末端氨基酸残基的 α-氨基、或连接至单链化合物中的赖氨酸的 ε-氨基。
本发明的修饰的化合物也可以基于胰岛素或其类似物进行修饰而形成。 在这一方面, 本 发明提供基于胰岛素的修饰的单链化合物, 所述化合物的结构是:
X300VNQHLC[i]GSHLVEALYLVC[2]GERGFX301X302 303X304 305X306GX307X308X309 310X311
X312X313X314X315X310 317GIVEQC[3]C[4] X31 gX319X320C[5]X32iLX322X323LX324X325Y [6]X326X327 ,其 中,
Χ30ο是苯丙氨酸或 苯丙氨酸; X3oi是苯丙氨酸、 组氨酸或酪氨酸; X302是酪氨酸、 苯 丙氨酸或缺失; X303是苏氨酸、 天冬酰胺、 谷氨酸、 天冬氨酸或缺失; X304是脯氨酸、 赖氨 酸、 谷氛酸、 天冬氨酸或缺失; X3Q5是天冬氨酸、 谷氨酸、 脯氨酸、 精氨酸、 赖氨酸或缺失, 或通式(I)结构; X3o6是苏氨酸、 通式(I)结构或缺失; X3()7是赖氨酸、 丝氨酸、 丙氨酸、 甘氨酸、 通式(I)结构或缺失; X3s是甘氨酸、 通式(I)结构或缺失; X3o9是赖氨酸、 甘氨 酸、 丝氨酸、 通式(I)结构或缺失; X31Q是赖氨酸、 甘氨酸、 丝氨酸、 通式(I)结构或缺失; X311是赖氨酸、 甘氨酸、 丝氨酸、 丙氨酸、 通式(I)结构或缺失; X312是赖氨酸、 精氨酸、 丙氨酸、 脯氨酸、 甘氨酸、 通式(I)结构或缺失; X313是甘氨酸、 丙氨酸、 精氨酸、 赖氨酸、 谷氨酰胺、 脯氨酸、 通式(I)结构或缺失; X314是精氨酸、 丙氨酸、 脯氨酸、 苏氨酸、 谷氨 酰胺、 甘氨酸、 通式(I)结构或缺失; X315是脯氨酸、 谷氨酰胺、 精氨酸、 甘氨酸或缺失或 通式(I) 结构; X316是谷氨酰胺、 苏氨酸、 精氨酸、 甘氨酸或缺失或通式 (I) 结构; x317 是苏氨酸、 精氨酸、 赖氨酸或缺失; X318是苏氨酸、 组氨酸、 精氨酸或通式(I)结构; x319 是丝氨酸或通式(I) 结构; X32Q是异亮氨酸或通式(I)结构; X321是丝氨酸或通式(I)结 构; X322是酪氨酸或通式(I)结构; X323是谷氨酰胺或通式(I)结构; X324是谷氨酸或通式
(I)结构; X325是天冬酰胺或通式(I)结构; x326是丙氨酸、 甘氨酸或天冬酰胺; x327是赖 氨酸、 精氨酸-赖氨酸二肽或缺失, 或为通式(I)结构; 当 x327为二肽时, 其中一个氨基酸 为通式(I)结构;
其中, 所述通 结构为:
Figure imgf000023_0001
UL是 -W-X-Y-Z 结构、 脂肪酸、 聚乙二醇、 白蛋白、 L„-ML结构、 氢原子或 Na-(Na-(HOOC(CH2)nCO)-Y-Glu)- , Na-(Na-(CH3(CH2)nCO)-Y-Glu)- , 其中 η是 8-20的整数, 如 8、 10、 12、 14、 16、 18或 20, Να表示氨基酸或氨基酸残基的 a-氨基, 或为通式(II)结构。 所述通式(Π)结构是:
Figure imgf000023_0002
J是 -W-X-Y-Z 结构、 Ln-Mt结构或氢原子。
ML是修饰基团, 包括但不局限于 -W-X-Y-Z、 脂肪酸、 聚乙二醇、 白蛋白、 IgGFc、 糖基 团等。 在本发明中, 是可选的连接基、 共价键或不存在。 可选的连接基包括但不局限于: 聚乙二醇、 长链脂肪酸或一个或多个聚乙二醇分子和长链脂肪酸分子通过共价键连接形成的 长链。 L„可以是 -NH-(CH2)n-£0-、 -NH-(CH2CH20)n-CH2-CO- , -NH-(CH2CH20)„-(CH2)r-CO-, n 是 1-20 的整数, r是 1-10 的整数; 在一种实施方式中, 是 -NH-(C¾CH20)2-CH2-CONH -(CH2CH20)2-CH2-CO-;在一种实施方式中, 是 -NH-iCHz^-C CHzCHzO CH nj- O-, nl、 n2、 η3分别是 1-16的整数; 在一种实施方式中, Ln是- NH-(CH2)nl-(OCH2CH2)„2-£0-, nl、 n2 分别是 1-16的整数。 在以上实施方式中, L„通过来自加下划线的羰基碳的键与多肽化合物的 氨基形成酰胺键, 另一端与 ML形成共价键。 在一种实施方式中, L„通过来自加下划线的羰 基碳的键与与多肽化合物的氨基形成酰胺键, 另一端与 -W-X-Y-Z形成酰胺键。
在本文中, -W-X-Y-Z结构是:
W是侧链具有羧基的 α-氨基酸残基,该残基以一个羧基与本发明中多肽化合物的 Ν-末端 氨基酸残基的 α-氨基或与多肽化合物的赖氨酸残基的 ε-氨基一起形成酰胺基;
或者 W是由 2、 3或 4个 α-氨基酸残基通过酰胺键连接起来的链, 该链通过酰胺键连接 至多肽化合物的 Ν-末端氨基酸残基的 α-氨基或多肽化合物的赖氨酸残基的 ε-氨基, W的氨基 酸残基选自具有中性侧链的氨基酸残基和侧链具有羧基的氨基酸残基组成的组,使得 W含有 至少一个在侧链具有羧基的氨基酸残基;
或者 W是从 X到多肽化合物的 Ν-末端氨基酸残基的 α-氨基或到多肽化合物的赖氨酸残 基的 ε-氨基的共价键;
X 是 -£0- 、 -CH(COOH)CO- 、 -N(CH2COOH)CH2CO- 、 -N(CH2COOH)CH2CON (CH2COOH)CH2CO- 、 -N(CH2CH2COOH)CH2CH2CO- 、 -N(CH2CH2COOH)CH2CH2CON(CH2CH2COOH)CH2CH2CO-、 -NHCH(COOH)(CH2)4NHCO-、 -N(CH2CH2COOH)CH2£0-或者 -N (CH2COOH)CH2CH2CO- , 其中
a)当 W是氨基酸残基或氨基酸残基链时, 上述 X通过由加下划线的羰基碳的键与 W中 的氨基形成酰胺键; 或者
b)当 W是共价键时, 上述 X通过来自加下划线的羰基碳的键与多肽化合物的 N-末端氨 基酸残基的 α-氨基或多肽化合物的赖氨酸残基的 ε-氨基形成酰胺键;
Υ是 -(CH2)m, 其中 m是 6-32的整数;
或包含 1、 2或 3个 -CH=CH-基团和多个 -CH2-基团的二价烃链, 所述多个 -CH2-基团的个 数满足烃链中的碳原子总数范围是 10-32;
或通式 - (CH2)VC6H4 (CH2) W-的二价烃链, 其中 V和 w是整数, 或者它们之一是零, 使得 V和 w总和的范围是 6-30; 且
Z是 -COOH、 -CO- Asp、 -CO-Glu、 -CO-Gly、 -CO-Sar、 -CH(COOH)2、 -N(CH2COOH)2、 -S03H、 -P03H或不存在; 条件是当 W是共价键且 X是 -CO-时, Z不是 -COOH。
侧链 -W-X-Y-Z的中 W可以是共价键。 另一方面, W可以是侧链具有羧基的 α-氨基酸残 基, 包括一共 4-10个碳原子。 W可以是由遗传密码子编码的 α-氨基酸残基。 例如, W可以 选自 a-Asp、 β-Asp, α-Glu和 γ-Glu组成的组。 W的其它选择例如是 α-hGlu或者 5-hGlu。
在另一个实施方式中, W是由两个 α-氨基酸残基组成的链, 其中一个 α-氨基酸残基具有 4-10个碳原子且侧链具有羧基, 而另一个具有 2-11个碳原子但没有自由羧基。 所述的没有自 由羧基的 α-氨基酸残基可以是中性的可编码的 α-氨基酸残基。根据这种实施方式的 W的例子 是: a-Asp-Gly、 Gly-a-Asp, β-Asp-Gly, Gly-P.Asp、 a-Glu-Gly, Gly-a-Glu、 y-Glu-Gly Gly-y-Glu> a-hGlu-Gly. Gly-a-hGlu δ-hGlu-Gly和 Gly-S-hGlu。 在另一个实施方式中, W是由两个 α-氨基酸残基组成的链, 两个 α-氨基酸残基分别具有 4-10个碳原子, 侧链上均具有羧基。 这些 α-氨基酸残基之一或两个可以是可编码的 α-氨基酸 残基。 根据这一实施方式的 W 的例子是: a-Asp-a-Asp、 a-Asp-a-Glu , a-Asp-a-hGlu、 a-Asp-P-Asp、 a-Asp-y-Glu、 a-Asp-6-hGlu、 β-Asp-a-Asp、 β-Asp-a-Glu、 β-Asp-a-hGlu、 β-Αβρ-β-Αβρ、 β-Asp-y-Glu、 -Asp-6-hGlu、 a-Glu-a-Asp、 a-Glu-a-Glu、 a-Glu-a-hGlu、 a-Glu-P-Asp a-Glu-y-Glu, a-Glu-5-hGlu, γ-Glu-a-Asp, γ-Glu-a-Glu, γ-Glu-a-hGlu, y-Glu-P_Asp、 γ-Glu-y-Glu ^ γ-Glu-S-hGlu、 a-hGlu-a- Asp、 a-hGlu-a-Glu、 a-hGlu-a-hGlu> a- hGlu-P-Asp、 a-hGlu-y-Glu, a-hGlu-S-hGlu、 δ-hGlu-a-Asp, 6-hGlu-a-Glu> 5-hGlu-a-hGlu, 6- hGlu-P-Asp, δ-hGlu-Y-Glu和 S-hGlu-5-hGlu。
在另一个实施方式中, W是由三个分别具有 4-10个碳原子的 a-氨基酸残基组成的链,该 链的氨基酸残基选自具有中性侧链的残基和侧链具有羧基的残基, 使得该链含有至少一个侧 链具有羧基的残基。 在一个实施方式中, 所述氨基酸残基是可编码的残基。
在另一个实施方式中, W是由四个分别具有 4-10个碳原子, a-氨基酸残基组成的链, 该 链的氨基酸残基选自具有中性侧链的残基和侧链具有羧基的残基, 使得该链含有至少一个侧 链具有羧基的残基。 在一个实施方式中, 所述氨基酸残基是可编码的残基。
在一个实施方式中, -W-X-Y-Z中的 W可以通过脲衍生物连接至赖氨酸残基的 ε-氨基。 侧链 -W-X-Y-Z中的 X可以是通式 -£0-的基团, 通过来自加下划线的羰基碳的键与 W中 的氨基形成酰胺键; 或当 W是共价键时, X通过来自加下划线的羰基碳的键与多肽化合物的 Ν-末端的 a-氨基或与多肽化合物中的赖氨酸残基的 ε-氨基形成酰胺键。
在进一步的实施方式中, 所述侧链 -W-X-Y-Z中的 X可以是通式 -CH(COOH)£0-的基团, 通过来自加下划线的羰基碳的键与 W中的氨基形成酰胺键; 或当 W是共价键时, X通过来 自加下划线的羰基碳的键与多肽化合物的 N-末端的 a-氨基或与多肽化合物中的赖氨酸残基 的 ε-氨基形成酰胺键。
在进一步的实施方式中,侧链 -W-X-Y-Z中的 X可以是通式 -N(CH2COOH)CH2£0-的基团, 通过来自加下划线的羰基碳的键与 W中的氨基形成酰胺键; 或当 W是共价键时, X通过来 自加下划线的羰基碳的键与多肽化合物的 N-末端的 a-氨基或与多肽化合物中的赖氨酸残基 的 ε-氨基形成酰胺键。
在进一步的实施方式中, 侧链 -W-X-Y-Z中的 X可以是通式 -N(CH2CH2COOH)CH2£0-的 基团, 通过来自加下划线的羰基碳的键与 W中的氨基形成酰胺键; 或当 W是共价键时, X 通过来自加下划线的羰基碳的键与多肽化合物的 N-末端的 a-氨基或与多肽化合物中的赖氨 酸残基的 ε-氨基形成酰胺键。
在进一步的实施方式中, -W-X-Y-Z中的 X可以是通式 -N(CH2COOH) CH2CH2£0-的基团, 通过来自加下划线的羰基碳的键与 W中的 形成酰胺键; 或当 W是共价键时, X通过来 自加下划线的羰基碳的键与多肽化合物的 N-末端的 a-氨基或与多肽化合物中的赖氨酸残基 的 ε-氨基形成酰胺键。
在进一步的 实施方式 中 , -W-X-Y-Z 中 的 X 可 以是通式 -N(CH2COOH) CH2CON(CH2COOH)CH2£0-的基团, 通过来自加下划线的羰基碳的键与 W中的氨基形成酰 胺键; 或当 W是共价键时, X通过来自加下划线的羰基碳的键与多肽化合物的 N-末端的 a- 氨基或与多肽化合物中的赖氨酸残基的 ε-氨基形成酰胺键。
在进一步的实施方式中, -W-X-Y-Z中的 X可以是通式 -N(CH2C¾COOH) C¾CH 0-的 基团, 通过来自加下划线羰基碳的键与 W中的氨基形成酰胺键; 或当 W是共价键时, X通 过来自加下划线的羰基碳的键与多肽化合物的 N-末端的 α-氨基或与多肽化合物中的赖氨酸 残基的 ε-氨基形成酰胺键。
在进一步的实施方式中 , -W-X-Y-Z 中的 X 可以是通式 -N(CH2CH2COOH) CH2CH2CON(CH2CH2COOH) CH2CH2£0-的基团,通过来自加下划线的羰基碳的键与 W中的 氨基形成酰胺键; 或当 W是共价键时, X通过来自加下划线的羰基碳的键与多肽化合物的 Ν-末端的 α-氨基或与多肽化合物中的赖氨酸残基的 ε-氨基形成酰胺键。
侧链 -W-X-Y-Z中的 Υ可以是通式 -(CH2)m基团, 其中 m是 6-32、 8-20、 12-20或 12-16 的整数。
在另一种实施方式中, -W-X-Y-Z中的 Y是包含 1、 2或 3个 -CH=CH-基团和多个 -CH2- 基团的二价烃链, 所述多个 -CH2-基团的个数满足烃链中的碳原子总数范围是 6-32、 10-32、 12-20或 12-16。
在另一种实施方式中, -W-X-Y-Z中的 Y是通式- (CH2)VC6H4 (CH2) w-的二价烃链, 其中 v 和 w是整数, 或者其中之一是零, 使得 V和 w总和的范围是 6-30、 10-20或 12-16。
在一种实施方式中, 侧链 -W-X-Y-Z中的 Z是 -COOH, 条件是当 W是共价键而 X是 -CO- 时, Z不是 -COOH。
在另一种实施方式中, -W-X-Y-Z 中的 Z 是 -CO-Asp、 -CO-Glu, -CO-Gly、 -CO-Sar、 -CH(COOH)2、 -N(CH2COOH)2、 -S03H或- P03H。
在进一步的实施方式中, -W-X-Y-Z中的 W是 a-Asp、 p-Asp> a-Glu或 γ-Glu; X是 -CO- 或者 -CH(COOH)CO-; Y是 -(CH2)m, 其中 m是 12-18的整数; Z是 -COOH -、 -CH(COOH)2或 不存在。
在另一种实施方式中, -W-X-Y-Z中的 W是 a-Asp、 β-Asp, a-Glu或 γ-Glu; -X-Y-Z是 -CO(CH2)„, 通过来自加下划线的羰基碳的键与 W中的氨基形成酰胺键, 其中 n是 10-20中 的整数。
在更具体的实施方式中, -W-X-Y-Z中的 W是 a-Asp、 β-Asp, a-Glu或 γ-Glu; -X-Y-Z是
-CO(CH2)14
在更具体的实施方式中, -W-X-Y-Z中的 W是 a-Asp、 β-Asp, a-Glu或 γ-Glu; -X-Y-Z是 -CO(CH2)16
在更具体的实施方式中, -W-X-Y-Z中的 W是 a-Asp、 β-Asp, a-Glu或 γ-Glu; -X-Y-Z是 -CO(CH2)18
在更具体的实施方式中, -W-X-Y-Z中的 W是 a-Asp、 β-Asp, a-Glu或 γ-Glu; -X-Y-Z是 胆固醇、 胆汁酸(如胆酸、 鹅脱氧胆酸、 肝胆酸、 牛磺胆酸、 脱氧胆酸、 石胆酸)。
上述化合物结构中, [1]- [6]表示半胱氨酸的编号。 本发明的单链化合物在三级结构中, 以胰岛素的结构方式形成链内的二硫键, 具体为: 。 和 C[4]形成二硫键, C[2]和 C[6]形成二硫 鍵, 〇[31[5]形成二硤键。
在一种具体的实施方式中, 所述化合物的结构为:
X3ooVNQHLC[1]GSHLVEALYLVC[2]GERGFFX302X303X3o4X305X306GX307X308X309X3i0X3iiX3 12X313X314X3i5X3i6X317GIVEQC[3]C[4〗TSIC[5〗SLYQLENYC[61NX327, 其中,
X300是苯丙氨酸或 UL_笨丙氨酸; X302是酪氨酸或缺失; X3Q3是苏氨酸或缺失; X34是脯 氨酸或缺失; X3G5是天冬氨酸、 脯氨酸、 精氨酸、 赖氨酸或缺失, 或通式(I )结构; X3()6是 苏氨酸、 通式(I )结构或缺失; X307是赖氨酸、 丝氨酸、 丙氨酸或通式(I )结构; X3o8是甘 氨酸或通式(I )结构; X3Q9是赖氨酸、 丝氨酸或通式(I )结构; X31Q是赖氨酸、 丝氨酸或通 式(I )结构; X311是赖氨酸、 丝氨酸、 丙氨酸或通式(I )结构; x312是赖氨酸、 精氨酸、 丙 氨酸、 脯氨酸或通式(I )结构; x313是甘氨酸、 丙氨酸、 精氨酸、 赖氨酸、 谷氨酰胺、 脯氨 酸或通式(I )结构; X314是精氨酸、 丙氨酸、 脯氨酸、 苏氨酸或谷氨酰胺或通式(I )结构; x315是脯氨酸、 谷氨酰胺、 精氨酸或缺失或通式(I )结构; x316是谷氨酰胺、 苏氨酸、 精氨 酸或缺失或通式(I )结构; X317是苏氨酸、 精氨酸、 赖氨酸或缺失; X327是通式(I )结构或 缺失; UL和通式(I ) 结构如本文中所定义。
在这个方面, 本发明的修饰的单链化合物选自:
II -1 :
FV QHLCGSHLVEALYLVCGERGFFYTPTGK[N£-( a-(HOOC(CH2)14CO)-Y-Glu)] GSSSRGRGIVEQCCTSICSLYQLENYCN;
II -2:
FVNQHLCGSHLVEALYLVCGERGFFYTPTGK[Ne-( a-(HOOC(CH2)I4CO)-Y-Glu)] GSSSAAAPQTGIVEQCCTSICSLYQLENYCN;
II -3:
FV QHLCGSHLVEALYLVCGERGFFYTPTGSGK[NE-( a-(HOOC(CH2),4CO)-Y- Glu)]SSAAAPQTGIVEQCCTSICSLYQLENYCN;
II -4:
F(Na-dPEG12-马来酰亚胺-白蛋白)V QHLCGSHLVEALYLVCGERGFFYTPDTGSGSSS
AAAPQTGIVEQCCTSICSLYQLENYCN;
II -5:
FVNQHLCGSHLVEALYLVCGERGFFYTPPTGSGSSK[Ne-(Na-(HOOC(CH2)14CO)-Y- Glu)] AAAPQTGIVEQCCTSICSLYQLENYCN;
II -6:
FVNQHLCGSHLVEALYLVCGERGFFYTPTGSGSSSAK[Ne-(Na-(HOOC(CH2)14CO) -y-Glu)]APQTGIVEQCCTSICSLYQLENYCN;
II -7:
FV QHLCGSHLVEALYLVCGERGFFYTPRTGSGSSSK[NE-(Na-(HOOC(CH2)i4CO) -y-Glu)]AAPQTGIVEQCCTSICSLYQLENYCN;
II -8:
FV QHLCGSHLVEALYLVCGERGFFGSGSSSK[Ne-(Na-(HOOC(CH2)14CO)-Y-Glu)] AAPQTGIVEQCCTSICSLYQLENYCN;
II -9:
FVNQHLCGSHLVEALYLVCGERGFFGSGSSSAK[N£-(Na-(HOOC(CH2)I4CO)-Y-Glu)] APQTGIVEQCCTSICSLYQLENYCN;
11 -10:
FVNQHLCGSHLVEALYLVCGERGFFGSGK[NE-(Na-(HOOC(CH2)14CO)-Y-Glu)]
SSAAAPQTGIVEQCCTSICSLYQLENYCN;
11 -11 : 入 N310A1S IS丄: 03ΛΙ0丄 0dWVSSSO(nI£>- -(Ο ¾3) ΟΟΗ) ,Ν)-ΗΝ-3(¾3)-$(θ¾3¾3)-03-3Ν]¾ΟΙ<ίΙλ^ίΙΟΉΗ03ΛΊΑΊν3ΛΊΗ803ΊΗ0ΚΛί
■ Ζ-11 ίΝ 人 人 丄 COi)3AID丄 0dWVSSSD[((niO-人) -N-niO-人 -(OC^ H OOH NhN O丄 d丄人; 人 lV3AlHSOCnH0NAd
: ε^-ιι
[(Wo-人 -(0 "(¾ ) OOH)-DM)-3N[]S)丄 d丄人 £)Ή3Ε ΛΊ入 lV3AlHS£)CnH0KAiI
HI
[(ni£>-人 -(O3"(¾ ) OOH)-DN)-3N] £)丄LL人 iHEmaO Al入 lV3AlHS£)CnH0NAiI
HI
'•NDANH10AlSDIS13303AIO"a0dVSSSO [(nio- -(o3 (¾3)300H)-„N)-3N]¾OIdIAJJO¾303AlAlV3AlHSODlH0NAJ
■ z-n 人 N310A S:)IS丄: δ3ΛΙ0丄 dVVVSSSOSO [(ηΐ£)-Ί-人 -(03"(¾:)) )OOH)-DN)-3N]:5W丄人 ΜΟΉ3£) ΛΊ入 lV3AlHSDCnH0NAd
:6ΐ-Π
A S IS丄:) 03AIE)li)dVVVSSS£)S£MiI£)¾3£)3AlA V3AlHSD nH0NA(¾(^£)3I-„N)d
:81-11
: N 人 N310A S IS丄 03 AID10dWV i0 O3d-3N)SSS£>SDl<i丄人: IdCraSE AlA VSAlHSOCHH NAil : L\- II
W 人 N3lt)AlS0IS丄 丄 0d WVSSS0S0JJ0¾H03AlAlV3AlHS031H NA[(ni0-l-L-(03 (¾D)300H)-I)N)-I)N]j
:91-11
: [(ηιο-λ-(θ3Η(¾3)300Η)-„Ν)-3Μ]-
: -π
:Ν ΑΝ3Ίί)人 IS IS丄 Όί)3ΛΙ£)丄 0d [(ηΐΟ-^-(θ3Η(¾3)300Η)-„Ν)-3Ν]¾88080λϋΟΉΗ03ΛΊΑΊν3ΛΊΗ803ΊΗ ΝΛί
w-ιι 人 N3]i)A S:)ISl 03AIO 丄 0dVS[(ni£)-人 -(0 )w(¾ ):)OOH)-nN)-3N]¾£)SD丄人 ^£)¾3Ε ΛΊ人 lV3AlHS£ HHi)NAd
:ei-n
'N 入 NT10A1S IS丄 03ΛΙΕ)丄 0dV [(nio-X-(o3^(¾D)300H)-DN)-3N]¾SSOSOiIJO¾HODAlAlVHAlHS031H MAiI
[(niO-^-(03,"(¾D)300H)-I)N)-3N]¾SOSOdJO¾30DAlAlV3AlHSODlH0NAd
Ll
00Z.100/Z10ZN3/X3d 98Z.980/CT0Z: OAV 其中 Να表示氨基酸或氨基酸残基的 α-氨基; Νε表示氨基酸或氨基酸残基的 ε-氨基, 例 如赖氨酸侧链的 ε-氨基。
可以以基本不含锌的化合物形式或辞的复合物形式提供本发明的具有降血糖作用的化合 物。 当提供本发明的化合物的锌复合物时, 其中本发明的化合物可以形成六聚体, 每个六聚 体可以结合 2个 Ζη2+, 3个 Ζη2+或 4个 Ζη2+。 药物组合物及用途
在本发明的另一方面中, 提供了一种药物组合物, 所述药物组合物包括治疗有效量的根 据本发明的化合物和制药学上可接受的栽体, 用于治疗 1 型糖尿病、 2型糖尿病和引起高血 糖症的其它情况。 根据本发明的胰岛素受体结合类似物可以用于治疗 1型糖尿病、 2型糖尿 病和引起高血糖症的其它情况的药物组合物的制备。
在本发明的另一方面中, 提供了一种治疗 1型糖尿病、 2型糖尿病和引起高血糖症的其 它情况的药物组合物, 所述药物组合物包括治疗有效量的根据本发明的化合物, 混合有具有 快速作用效果的胰岛素或胰岛素类似物, 及制药学上可接受的载体和添加剂。
可以使用制药工业的常规技术制备本发明胰岛素类似物的可注射组合物, 包括溶解和混 合适当组分而得到所需终产品。 因此, 按照一套操作步骤, 将本发明的胰岛素类似物溶于一 定量的水, 其体积稍低于待制备的组合物的最终体积。 如果需要, 加入防腐剂、 等渗剂和緩 沖剂。 如果有必要, 使用酸 (例如盐酸)或碱 (例如氢氧化钠)调节溶液的 ρΗ。 最终用水将溶液 的体积调节到所需浓度。
在本发明的另一个实施方案中, 緩冲剂选自乙酸钠、 碳酸钠、 拧檬酸盐、 甘氨酰甘氨酸、 组氨酸、 甘氨酸、 赖氨酸、 精氨酸、 磷酸二氢钠、 磷酸氢二钠、 磷酸钠和三(羟曱基) -氨基 曱烷、 Ν-二(羟乙基)甘氨酸、 Ν- (羟曱基) 曱基甘氨酸、 苹果酸、 琥珀酸盐、 马来酸、 富 马酸、 酒石酸、 天冬氨酸或其混合物。 这些具体緩冲剂中的每一种构成了本发明的备选实施 方案。
在本发明的另一个实施方案中, 所述制剂包含药学上可接受的防腐剂, 它选自苯酚、 邻- 曱酚、 间-曱酚、 对-曱酚、 对羟基苯曱酸曱酯、 对羟基苯曱酸乙酯、 对羟基苯曱酸丙酯、 对 羟基苯曱酸丁酯、 2-苯氧基乙醇、 苄醇、 氯丁醇、 硫柳汞、 溴硝丙二醇、 苯甲酸、 咪脲、 双 氯苯双胍己烷、 脱氢醋酸钠、 氯曱酚、 苄索氯胺、 氯苯甘醚或其混合物。 在本发明的另一个 实施方案中, 防腐剂的浓度为 0.1mg/mL-20mg/mL。 在本发明的另一个实施方案中, 防腐剂 的浓度为 0.1 mg/mL-5 mg/mL。 在本发明的另一个实施方案中, 防腐剂的浓度为 5mg/mL-10mg/mL. 这些具体防腐剂中的每一种构成了本发明的备选实施方案。 在药物组合 中应用防腐剂是本领域技术人员众所周知的。 参照 Remington: The Science and Practice of Pharmacy, 第 19版, 1995。
在本发明的另一个实施方案中, 所述制剂进一步包括等渗剂, 选自盐(例如氯化钠)、 糖 或糖醇、 氨基酸、 搭糖醇(例如甘油、 丙二醇、 1, 3-丙二醇、 1 , 3-丁二醇)、 聚乙二醇(例 如 PEG400 )或其混合物。 任何糖, 如单糖、 二糖、 多糖或水溶性葡聚糖, 包括例如果糖、 葡 萄糖、 甘露糖、 山梨糖、 木糖、 麦芽糖、 乳糖、 蔗糖、 海藻糖、 葡聚糖、 普鲁蓝、 糊精、 环 糊精、 可溶性淀粉、 羟乙基淀粉和羧曱基纤维素 -Na。 在一个实施方案中, 糖添加剂为蔗糖。 将糖醇定义为具有至少一个 -OH基团的 C4-C8烃, 包括例如甘露糖醇、 山梨醇、 肌醇、 半乳 糖醇、 卫矛醇、 木糖醇和阿拉伯糖醇。 在一个实施方案中, 该糖醇添加剂为甘露糖醇。 上述 糖类或糖醇类可以单独使用或组合使用。 对用量没有固定限制, 只要所述糖或糖醇溶于液体 制剂而且不会对使用本发明方法获得的稳定化作用产生不良影响即可。 在一个实施方案中, 糖或糖醇的浓度为 1 mg/mL-150 mg/mL。 在另一个实施方案中, 等渗剂的浓度为 lmg/mL-50mg/mL。 在另一个实施方案中, 等渗剂的浓度为 1 mg/mL-7 mg/mL。 在另一个实 施方案中, 等渗剂的浓度为 8 mg/mL-24 mg/mL。 在另一个实施方案中, 等渗剂的浓度为 25 mg/mL-50 mg/mL。 这些具体等渗剂中的每一种构成了本发明的备选实施方案。 在药物组合物 中应用等渗剂是本领域人员众所周知的。 参照 Remington: The Science and Practice of Pharmacy, 第 19版, 1995。
典型的等渗剂为氯化钠、 甘露糖醇、 二曱亚砜和甘油, 典型的防腐剂为苯酚、 间-曱酚、 对羟基苯曱酸曱酯和苄醇。
表面活性剂的实例包括乙酸钠、 甘氨酰甘氨酸、 羟乙基哌。秦乙磺酸(HEPES )和磷酸钠。 实施例
保护基:
Acm acetamidomethyl:乙醜胺甲基; Alloc或 AOC allyloxycarbonyl:蟑丙氧羰基; Bom, benzyloxymethyl:千氧曱基; 2-Br-Z, 2-bromobenzyloxycarbonyl:2-溪节氧羰基; tBu, t-butyl:叔丁 基; Bz, benzoyl:苯曱酰基; Bzl, benzyl:苄基; Boc:叔丁氧羰基; CHO formyl:曱酰基; cHx, cyclohexyl:环己基; Cbz或 Z benzyloxycarbonyl:千氧叛基; Cl-Z, 2-chlorobenzyloxycarbonyl :2- 氯苄氧羰基; Fm, 9-fluorenylmethyl:9-芴基曱基; Fmoc, 9-fluorenylmethoxycarbonyl:9-芴曱氧羰 基; Mtt, 4-methyltrityl:4-曱基三苯曱基; Npys, 3-nitro-2-pyridinesulfenyl:3-硝基 -2-吡啶亚磺酰 基; Pmc, (2,2,5,7,8-pentametylchroman-6-sulphonyl:2,2,5,7,8-五 曱 基 -6-羟基 色 满 ; Tos,4-toluenesulphonyl:对曱苯磺酰; Trt,tripheylmethyl:三苯曱基; Xan, xanthyl:吨基,氧 (杂)蒽基。
试剂和溶剂:
ACN, acetonitrile: 乙腈; BOP, benzotriazol- 1 -yloxytris(dimethylamino) phosphonium hexafluorophosphate:苯并三唑 - 三(三甲氨基) -六氟磷酸酯(卡特缩合剂); DCC, Ν,Ν'-Dicyclohexylcarbodiimide:二环 己基碳化二亚胺; DCM: 二氯曱烷; DEPBT, 3-(Diethoxyphosphoryloxy)-l,2,3-benzotriazin-4(3H)-one:3- (二乙氧基邻酰氧基)- 1 ,2,3-苯并三嗪 -4-酮; DIC, N,N'-Diisopropylcarbodiimide:N,N'-二异丙基碳二亚胺; DIPEA (或 DIEA) , diisopropylethylamine: 二异丙基乙胺; DMAP, 4-N,N-dimethylaminopyridine: 4-Ν,Ν二曱氨基 吡啶; DMF: Ν,Ν-二甲基曱酰胺; DMSO: 二曱亚砜; DTT, dithiothreitol:二硫苏糖醇; EDC 或 EDCI, 1 -ethyl-3-(3-dimethylaminopropyl)carbodiimide: 1 -乙基 -(3-二曱基氨基丙基)碳酰二亚 胺盐酸盐; EtOAc:乙酸乙酯; HBTU 0-( 1 H-benzotriazole- 1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate 苯 并 三 氮 唑 -Ν,Ν,Ν',Ν'- 四 甲 基 脲 六 氟磷 酸 盐 ; ΗΟΒΤ l-hydroxybenzotriazole:l-羟基-苯并-三氮唑; NMM, N-Methylmorpholine:N-甲基吗啉; NMP, N-methylpyrrolidinone: N-甲基吡咯烷酮; Piperidine:哌。定; Su succinimide:琥珀酰亚胺; TEA, triethylamine:三乙胺; TFA, trifluoroacetic acid三氟乙酸; TFE 2,2,2-Trifluoroethanol三氟代乙 醇; THF tetrahydrofuran 四氢呋喃; TIS triisopropylsilane三异丙基娃坑。
多肽化学合成方法
线性多肽使用 Boc或 Fmoc固相多肽合成法。 如果使用 Fmoc化学合成 C-末端是羧基的 多肽, 一般选用 Wang树脂; C-末端是酰胺的多肽通常选用 Rink amide树脂。 如果使用 Boc 化学合成 C-末端是羧基的多肽, 一般选用 Pam树脂; C-末端是酰胺的多肽通常选用 MBHA 树脂。缩合剂和活化剂是 DIC和 HOBT,其他可选肽键缩合剂包括 BOP、 HBTU、 DEPBT等。 氨基酸 5倍过量。缩合时间为 1小时。 Fmoc保护基用 50°/ A¾/DMF脱除。 Boc保护基用 TFA 脱除。 肽键缩合反应用茚三酮 (Ninhydrin, 2,2-Dihydroxyindane-l ,3-dione)试剂监测。
使用 Fmoc固相多肽合成法时, 通用氨基酸及保护基如下:
Fmoc-Cys(Trt)-OH、 Fmoc-Asp(OtBu)-OH、 Fmoc-Glu(OtBu)-OH、 Fmoc-His(Trt)-OH、 Fmoc-Lys(Boc)-OH 、 Fmoc-Asn(Trt)-OH 、 Fmoc-Gln(Trt)-OH 、 Fmoc-Arg(Pmc)-OH 、 Fmoc-Ser(tBu)-OH、 Fmoc-Thr(tBu)-OH> Boc-Trp(Boc)-OH、 Fmoc-Tyr(tBu)-OH。
固相 Fmoc化学合成多肽后, 常用的切割试剂是 TFA。 将干树脂放在一个摇瓶中, 加入 适当量 TFA/TIS/H20 ( 95:2.5:2.5, 10-25 mL/g树脂), 盖上盖子, 在室温下进行间歇式旋转 震荡。 2小时后抽滤树脂, 以新的 TFA清洗树脂 2-3次, 合并滤液, 滴加 8-10倍体积的冰乙 醚。 最后, 离心收集沉淀出来的多肽粗品。
使用 Boc固相多肽合成法时, 通用氨基酸和保护基如下:
Boc-Cys(4-MeBzl)-OH > Boc-Asp(OcHx)-OH、 Boc-Glu(OcHx)-OH、 Boc-His(Bom)-OH、 Boc-Lys(2-Cl-Z)-OH 、 Boc-Asn(Xan)-OH 、 Boc-Gln(Xan)-OH 、 Boc-Arg(Tos)-OH 、 Boc-Ser(Bzl)-OH、 Boc-Thr(Bzl)-OH、 Boc-Trp(CHO)-OH和 Boc-Tyr(2-Br-Z)-OH。
固相 Boc化学合成多肽后, 对于 PAM、 MBHA树脂, 一般采用 HF切割, 每 0.1毫摩尔 树脂加 5毫升 HF, 同时加入对曱苯酚、 对琉基苯酚或苯甲醚等试剂, 混合物在冰浴条件下搅 拌 1小时。 HF真空抽干后, 多肽用水乙醚沉淀, 离心收集沉淀, 经过 HPLC分离纯化, 冷冻 干燥得到最后产品。 单链化合物的合成
自然化学连接
文献方法 (Kent, S.B.H.等, "Comparative Properties of Insulin-like Growth Factor 1 (IGF-1) and [Gly7D-Ala]IGF-l Prepared by Total Chemical Synthesis." Angew. Chem. Int. Ed. 2008, 47, 1102 -1106)根据氨基酸序列进行部分改进。
基于胰岛素的单链化合物分成两个片段合成。一段用 Boc化学合成胰岛素 B链片段 1-18: EEEEEEM-[l-18]-COS- ( CH2 ) 2CO-(Arg)4A。 硫酯残基合成时用 S-三苯甲基 基丙酸。 第 二段包括从 B19Cys (对应于通式中的 C[2] )起到 B链 C末端全部氨基酸, C链和 A链氨基酸。 两段多肽用通用方法固相合成, 切割, 纯化。
自然化学连接反应在緩沖液中进行。緩冲液含 6 M胍盐酸盐, 200 mM磷酸盐, 200 mM 4- 羧甲基苯硫酚 (MPAA, (4-carboxymethyl)thiophenol ), 20 mM 三 (2-曱酰乙基)膦 ( TCEP, tris-(2-carboxyethyl)phosphine ), pH 6.9, 多肽按 1 : 1 摩尔比溶解, 浓度 2 mM。 反应用 HPLC 检测、 纯化。
纯化的 IGF (SH)6溶解于 0.5 M胍盐酸盐、 20 mM Tris、 8 mM 半胱氨酸、 1 mM胱氨酸 盐酸盐緩冲液, pH 7.8, 多肽浓度 0.5 mg/mL。 当 HPLC显示折叠完成后, 緩冲液用 0.1N盐 酸酸化至 pH 3。 多肽用制备 HPLC纯化。
化合物 I -2的合成:
I -2: YCN。
第一片段 EEEEEEMFVNQHLCGSHLVEALYLV- (COS- C¾ C¾-C0)-RRA用 Boc化学合 成, 粗肽用 RP-HPLC 纯化。 分子量计算值 3419.9, 质谱测试分子量 3421.3。 第二片段 CGERGFFYTPKTGSGSSSAAAPQTGIVEQCCTSICSLYQLENYCN按通用方法合成。 分子量 计算值 4773.4., 质谱测试分子量 4775.0。 第一片段 34 mg ( 10 μιηοΐ )和第二片段 48 mg ( 10 μηιοΐ )溶解于緩冲液(5 mL )。 緩冲液包含 6 M胍盐酸盐, 200 mM磷酸盐, 200 mM 4-羧曱 基苯疏盼, 20 mM三 (2-曱酰乙基)膦, pH 6.9。 10小时后反应完成。 分子量计算值 7703.6, 质 谱测试分子量 7704.2。 将混合物转移到尺寸排阻层析柱, 洗脱緩沖液是 0.5 M胍盐酸盐, 20 mM Tris, pH 7.8。 收取包含正确多肽分子量的部分, 合并后加入 8 mM 半胱氨酸, 1 mM胱 氨酸盐酸盐緩沖液, 2 小时后多肽折叠完毕。 将緩沖液用 0.1N 盐酸酸化至 pH 3 , 然后用 RP-HPLC纯化。 分子量计算值 7697.6, 质谱测试分子量 7699.5。
多肽溶解于 70%曱酸(或 0.1 M盐酸), 加入溴化氰(30倍量), 在室温下培养。 HPLC检 测反应完成后, 用氮气挥发大部分曱酸和溴化氰后, 用 10%醋酸稀释, 然后 RP-HPLC纯化。 最终, 化合物 I -2的分子量计算值 6791.7, 质谱测试分子量 6792.3。 经测序, 该化合物的氨 基酸序列即是 SEQ ID NO: 2。
以相同的方法合成其它基于胰岛素的单链化合物。
进一步确认化合物的结构, 尤其是三对二硫键的连接方式, 使用文献 (Chance 等, "The production of human insulin using recombinant DNA technology and a new chain combination procedure" ,Pept.: Synth., Struct., Funct., Proc. Am. Pept. Symp., 7th, 1981, Vol. 721, Issue 8, Page 721)中的 HPLC "指纹,, 分析法。 简而言之, 2 mg多肽样品溶于 0.2 ml 0.01N盐酸, 加入 0.8 ml含有 100 μg S. aureus V8蛋白酶的 0.05M NH4HC03,使 pH达到 7.9。在 37'C培养 24小时。 小部分样品加入 DTT培养 30分钟。 使用 LC-MS对比样品和标准品的各个片段的保留时间 ( retention time )和分子量确定二硫键和化合物的结构。 合成结果:
利用上述方法合成基于胰岛素的单链化合物, 通过质 i普检测各化合物的分子量, 通过测序 的方法检测各化合物的结构, 结果如下:
1 -1 : 分子量计算值 7038.0 , 质谱测试分子量 7038.2; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 1 ;
1 -3: 分子量计算值 6718.6 , 质谱测试分子量 6719.7; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 3;
1 -4: 分子量计算值 6846.8 , 质谱测试分子量 6848.1 ; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 4;
1 -5: 分子量计算值 6830.8, 质谱测试分子量 6829.9; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 5;
1 -6: 分子量计算值 6775.7, 质语测试分子量 6776.9; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 6;
1 -7: 分子量计算值 6635.6 , 质谙测试分子量 6536.8; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 7;
1 -8: 分子量计算值 6550.4 , 质谱测试分子量 6551.5; 经测序, 该化合物的氨基酸序列即 是 SEQIDNO: 8;
1-9: 分子量计算值 6621.5, 质谱测试分子量 6622.3; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO: 9;
I -10: 分子量计算值 6536.4, 质谱测试分子量 6538.0; 经测序, 该化合物的氨基酸序列 即是 SEQIDNO: 10;
I -11: 分子量计算值 6476.4, 质谱测试分子量 6477.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID ΝΟ:11;
I -12: 分子量计算值 6476.4, 质谱测试分子量 6477.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 12;
I -13: 分子量计算值 6465.3, 质谱测试分子量 6466.7; 经测序 该化合物的氨基酸序列 即是 SEQIDNO:13;
I -14: 分子量计算值 6465.3, 质谱测试分子量 6466.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 14;
I -15: 分子量计算值 6495.4, 质谱测试分子量 6495.9; 经测序 该化合物的氨基酸序列 即是 SEQIDNO:15;
I -16: 分子量计算值 6405.3, 质谱测试分子量 6406.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 16;
I -17: 分子量计算值 6405.3, 质谱测试分子量 6406.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 17;
I -18: 分子量计算值 6435.3, 质谱测试分子量 6436.5; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 18;
1-19: 分子量计算值 6435.3, 质谱测试分子量 6437.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 19;
I -20: 分子量计算值 6408.3, 质谱测试分子量 6409.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:20;
I -21: 分子量计算值 6362.3, 质谱测试分子量 6362.9; 经测序 该化合物的氨基酸序列 即是 SEQIDNO:21;
I -22: 分子量计算值 6378.3, 质谱测试分子量 6379.1; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:22;
I -23: 分子量计算值 6305.2, 质谱测试分子量 6306.5; 经测序 该化合物的氨基酸序列 即是 SEQIDNO:23;
I -24: 分子量计算值 6291.2, 质谱测试分子量 6292.6; 经测序 该化合物的氨基酸序列 即是 SEQIDNO:24;
1-25: 分子量计算值 6321.2, 质谱测试分子量 6422.4; 经测序 该化合物的氨基酸序列 即是 SEQIDNO:25;
I -26: 分子量计算值 6201.0, 质谱测试分子量 6202.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:26;
I -27 : 分子量计算值 6156.0: 质谱测试分子量 6157.1; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:27;
I -28: 分子量计算值 6348.2, 质谱测试分子量 6348.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:28;
I -29: 分子量计算值 6378.2, 质语测试分子量 6379.5; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:29;
I -30: 分子量计算值 6362.2, 质谱测试分子量 6363.4; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:30;
1 -31 : 分子量计算值 6281.1 , 质谱测试分子量 6280.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:31 ;
I -32: 分子量计算值 6295.1 , 质谱测试分子量 6296.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:32;
I -33: 分子量计算值 6548.4, 质谱测试分子量 6549.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:33;
1 -34: 分子量计算值 6241.1 , 质谱测试分子量 6242.3; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:34;
I -35: 分子量计算值 6777.7, 质谱测试分子量 6778.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:35;
I -36 : 分子量计算值 6793.7 质谱测试分子量 6795.0; 经测序 该化合物的氨基 ^^列 即是 SEQ ID NO:36;
I -37: 分子量计算值 6793.7, 质谱测试分子量 6793.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:37;
I -38: 分子量计算值 6850.8, 质谱测试分子量 6851.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:38;
I -39: 分子量计算值 6845.8, 质谱测试分子量 6846.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:39;
I -40: 分子量计算值 6902.9, 质谱测试分子量 6904.4; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:40;
I -41 : 分子量计算值 6916.7, 质谙测试分子量 6917.6; 经测序 该化合物的氨基 ^^列 即是 SEQ ID NO:41 ;
I -42: 分子量计算值 6904.9, 质谱测试分子量 6905.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:42;
I -43: 分子量计算值 6962.8, 质谱测试分子量 6964.3; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:43;
I -44: 分子量计算值 6856.8, 质谱测试分子量 6858.5; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:44;
I -45 : 分子量计算值 6890.8, 质谱测试分子量 6891.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:45;
I -46: 分子量计算值 6934.9, 质谱测试分子量 6936.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:46;
I -47: 分子量计算值 6746.7, 质旙测试分子量 6747.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:47;
I -48: 分子量计算值 7610.6, 质谱测试分子量 7612.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:48;
I -49: 分子量计算值 6835.8,质谱测试分子量 6837.1 ; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO:49;
I -50: 分子量计算值 6835.8 , 质 测试分子量 6836.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:50;
I -51 : 分子量计算值 6875.8, 质谱测试分子量 6876.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:51 ;
I -52: 分子量计算值 6859.8: 质谱测试分子量 6860.4; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:52;
I -53: 分子量计算值 6972.0: 质谱测试分子量 6973.8 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:53;
I -54 : 分子量计算值 7708.7 质谱测试分子量 7710.4 经测序 该化合物的氨基 ^^列 即是 SEQ ID NO:54;
I -55: 分子量计算值 6845.8: 质谱测试分子量 6846.9 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:55;
I -56: 分子量计算值 6875.8: 质语测试分子量 6876.2 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:56;
I -57: 分子量计算值 6902.8 ; 质谱测试分子量 6903.5 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:57;
I -58: 分子量计算值 6861.8,质谱测试分子量 6863.1; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO:58;
I -59: 分子量计算值 6930.9, 质谱测试分子量 6932.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:59;
I -60: 分子量计算值 8412.5, 质谱测试分子量 8413.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:60;
I -61 : 分子量计算值 6858.8 , 质语测试分子量 6860.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:61 ;
I -62: 分子量计算值 6817.7, 质谱测试分子量 6818.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:62;
I -63: 分子量计算值 7315.3 , 质 测试分子量 7316.5; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:63;
I -64: 分子量计算值 8745.7, 质语测试分子量 8746.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:64;
I -65: 分子量计算值 6933.9, 质谱测试分子量 6935.1 ; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:65;
I -66: 分子量计算值 6877.8, 质谱测试分子量 6879.3; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:66;
I -67: 分子量计算值 6930.9, 质谱测试分子量 6931.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:67;
I -68: 分子量计算值 6922.9, 质谱测试分子量 6924.4; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:68;
I -69: 分子量计算值 6975.9, 质谱测试分子量 6776.5; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:69;
I -70: 分子量计算值 6821.7, 质谱测试分子量 6823.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:70;
I -71 : 分子量计算值 6809.7, 质谱测试分子量 6810.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:71 ;
I -72 : 分子量计算值 6848.8, 质谱测试分子量 6850.4; 经测序 该化合物的氨基^ !>列 即是 SEQ ID NO:72;
I -73: 分子量计算值 8228.3, 质谱测试分子量 8230.1 ; 经测序 该化合物的氨基^^列 即是 SEQ ID NO:73;
I -74: 分子量计算值 6894.8, 质语测试分子量 6896.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:74;
I -75: 分子量计算值 7004.0, 质谱测试分子量 7005.5; 经测序 该化合物的氨基 ^^列 即是 SEQ ID NO:75;
I -76: 分子量计算值 7788.7, 质语测试分子量 7790.2; 经测序, ¾化合物的氨基酸序列即 是 SEQ ID NO:76;
I -77: 分子量计算值 7358.3, 质语测试分子量 7360.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:77;
I -78: 分子量计算值 7586.6, 质谙测试分子量 7587.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:78;
I -79: 分子量计算值 7142.2, 质谱测试分子量 7143.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:79;
I -80: 分子量计算值 6208.1 , 质谱测试分子量 6209.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:80;
I -81 : 分子量计算值 6756.7, 质谱测试分子量 6757.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:81 ;
I -82: 分子量计算值 7296.3, 质谱测试分子量 7297.5; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:82;
I -83: 分子量计算值 7455.4, 质傳测试分子量 7457.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:83;
I -84: 分子量计算值 6812.6, 质谱测试分子量 6813.8; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:84;
I -85: 分子量计算值 6638.4, 质谱测试分子量 6639.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:85;
I -86: 分子量计算值 6846.8, 质谱测试分子量 6848.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 86;
I -87: 分子量计算值 7136.1 , 质傳测试分子量 7137.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:87;
I -88: 分子量计算值 7472.6, 质谱测试分子量 7474.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:88;
I -89: 分子量计算值 6605.5, 质谱测试分子量 6606.8; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO :89;
I -90: 分子量计算值 6837.8,质谱测试分子量 6839.1 ; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO:90;
I -91 : 分子量计算值 6770.7, 质谱测试分子量 6772.4; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:91 ;
I -92: 分子量计算值 6586.5, 质谱测试分子量 6587.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:92;
I -93: 分子量计算值 6572.5, 质谱测试分子量 6573.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:93;
I -94: 分子量计算值 7008.0, 质谱测试分子量 7009.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:94;
I -95: 分子量计算值 6607.5, 质潘测试分子量 6608.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:95;
I -96: 分子量计算值 7079.1,质谱测试分子量 7080.6; 经测序, 该化合物的氨基酸序列即 是 SEQ ID NO:96;
I -97: 分子量计算值 6951.9, 质谱测试分子量 6953.4; 经测序: 该化合物的氨基酸序列 即是 SEQ ID NO:97;
I -98: 分子量计算值 8239.3 , 质谱测试分子量 8241.1 ; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:98;
I -99: 分子量计算值 6322.1, 盾谱测试分子量 6322.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:99;
I -100: 分子量计算值 7890.0, 质语测试分子量 7891.4; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 100;
I -101 : 分子量计算值 6709.5, 质谱测试分子量 6710.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 101 ;
I -102: 分子量计算值 6235.0,质谱测试分子量 6235.9; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 102;
I -103: 分子量计算值 7371.3 , 质傳测试分子量 7372.5; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:103;
I -104: 分子量计算值 7485.5, 质谱测试分子量 7487.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:104;
I -105: 分子量计算值 7752.7, 质谱测试分子量 7754.2; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 105;
I -106: 分子量计算值 7387.3, 质谱测试分子量 7388.7; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 106;
1 -107: 分子量计算值 7197.1 , 质谱测试分子量 7198.6; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO: 107;
I -108: 分子量计算值 7098.1, 质语测试分子量 7099.0; 经测序 该化合物的氨基酸序列 即是 SEQ ID NO:108;
I -109: 分子量计算值 7124.0, 质谱测试分子量 7124.8; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 109;
I -110: 分子量计算值 7640.7,质语测试分子量 7641.4; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 110;
I -111 : 分子量计算值 7936.9, 质谱测试分子量 7938.5; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:lll ;
I -112: 分子量计算值 6902.8 , 质谱测试分子量 6903.1 ; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 112;
1 -113: 分子量计算值 7669.7, 质谱测试分子量 7671.1; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 113;
I -114: 分子量计算值 7529.6, 质谱测试分子量 7531.8; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 114;
I -115: 分子量计算值 7041.0, 质谱测试分子量 7041.6; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 115;
I -116: 分子量计算值 7007.9, 盾谱测试分子量 7009.2; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:116;
I -117: 分子量计算值 7630.7, 质谱测试分子量 7631.9; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 117;
I -118: 分子量计算值 7421.3 , 质谱测试分子量 7423.3; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:118;
I -119: 分子量计算值 6965.9, 质谱测试分子量 6967.0; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:119;
I -120: 分子量计算值 6375.3, 质语测试分子量 6376.7; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 120;
I -121 : 分子量计算值 6304.2, 质谱测试分子量 6305.6; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 121 ;
I -122: 分子量计算值 6595.4, 质谱测试分子量 6597.8; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO:122;
I -123: 分子量计算值 6932.9, 质谱测试分子量 6934.1; 经测序, 该化合物的氨基酸序列 即是 SEQ ID NO: 123。 化合物的料
St化反应
叔丁基十六烷二酰基 -L-Glu(OSu)-OtBu制备
十六烷二酸(5.72 g, 20 mmol) 溶解于无水 DMF ( 240 mL ), 用水浴冷却。 逐次添加 2- 曱基 -2-丙醇( 1.48 g, 20mmol)、 DIC ( 2.7 g, 2.25 mL, 21.4 mmol), HOBT ( 2.88 g, 21.4 mmol). NMM ( 2.16g, 2.34 mL, 21.4 mmol) > DMAP ( 244 mg, 2 mmol)。 混合物在室温下搅拌过 夜。 加入 80 mL水, 酸化到 pH 3, 用乙酸乙酯萃取,有机层用 0.1 N HC1和饱和食盐水洗,硫 酸镁干燥后, 溶剂减压蒸发得到十六烷二酸一叔丁酯 (3.32g, 产率 47%)。 核磁共振数据为 'H-NMR(CDC13) δ: 2.35 (t,2H), 1.56-1.66 (m,4H), 1.44(s,9H), 1.21-1.35 (m,20H)。
Fmoc-Glu-OtBu ( 4.25g, 10 mmol) 溶解于 DCM ( 30 mL ), 力口到 3 克 2-CTC 树脂 ( 2-chlorotrityl chloride resin, sub. lmmol/g), 继续加入 DIPEA ( 1.29g, 10 mmol, 1.74 mL)。 混合物在摇动器振动 5分钟后, 再加入 DIPEA ( 1.93g, 15 mmol, 2.6 mL)。 混合物剧烈振动 1小时。
为了封住活性三苯曱游基,树脂中加入 HPLC级甲醇(2.4 mL ), 混合 15分钟。树脂过滤, 用 DCM (3 X 30 mL), DMF (2 X 30 mL), DCM (3 X 30 mL), 曱醇 (3 X 30 mL)清洗后,在真空中 干燥。
用哌啶脱除 Fmoc后, 3 g树脂 (3mmol) 与十六烷二酸一叔丁酯( 3.43 g, 10 mmol)加入 无水 DMF( 50 mL ),逐次加入 DIC ( 1.35 g, 1.12 mL, 10.7 mmol), HOBT ( 1.44 g, 10.7 mmol), DIPEA ( 1.3 g, 10 mmol, 1.74 mL)。在室温振动过夜后,树脂用 DMF (2 X 30 mL) 和 DCM (2 X 30 mL)清洗。
准备 AcOH/TFE/DCM ( 1 :1 :8 ) 的切割液 (20 mL/g树脂)。 树脂悬浮在一半的切割液, 室 温下放置 30分钟。 过滤树脂, 用另一半切割液洗涤树脂三次。 混合滤液加入 15倍体积的正 己烷, 旋蒸去除多余醋酸, 得到叔丁基十六烷二酰基 -L-GIu-OtBu。 核磁共振数据为 'H-NMR(CDC13) δ: 6.25(d,lH), 4.53(m, 1H), 2.42 (m, 2H), 2.21 (m,4H),1.92(m, 1H), 1.58 (m, 4H); 1.47(s, 9H), 1.22-1.43 (m, 18H)。
叔丁基十六烷二酰基 -L-Glu-OtBu ( lg, 1.9 mmol) 溶于无水 DMF/DCM (1 mL: 4 mL). 加 入 DCC ( 0.412 g, 2 mmol) 和 N-羟基丁二酰亚胺( 0.23 g, 2 mmol) 。 混合物在室温搅拌过 夜。 过滤混合物, 滤液用乙酸乙酯稀释, 用 0.1 N HC1和饱和食盐水洗涤, 硫酸镁干燥后, 减 压蒸发得到叔丁基十六烷二酰基 -L-Glu ( OSu ) -OtBu。 核磁共振数据为: 1H-NMR(CDC13) δ: 6.17 (d,lH), 4.60 (m, 1H), 2.84 (s, 4H), 2.72 (m, 1H), 2.64 (m, 1H), 2.32(m, 1H), 2.20 (m, 4H), 2.08 (m, 1H), 1.6 (m, 4H), 1.47(s, 9H), 1.43 (s, 9H), 1.20-1.33 (m, 20H)。
化合物 II -2的合成:
II -2: FVNQHLCGSHLVEALYLVCGERGFFYTPTGK[N£-(Na-(HOOC(CH2)14CO)-Y-Glu)] GSSSAAAPQTGIVEQCCTSICSLYQLENYCN。
第一片段 EEEEEEMFVNQHLCGSHLVEALYLV- (COS- CH2 CH2 -CO)-RRA用 Boc化学合 成。 分子量计算值 3419.9, 质谱测试分子量 3420.6。 粗肽用 RP-HPLC纯化。 成 分子量计算值 4686.3, 质谱测试分子量 4687.5。 粗肽用 RP-HPLC纯化。 第一片段 34 mg ( ΙΟμηιοΙ )和第二片段 47 mg ( ΙΟμηιοΙ )溶解于緩冲液(5 mL )。 緩冲液包含 6 M胍盐酸盐, 200 mM磷酸盐,200 mM 4-羧曱基笨硫酚, 20 mM三 (2-甲酰乙基)膦, pH 6.9。 分子量计算值 7913.9, 质谱测试分子量 7915.7。 将混合物转移到尺寸排阻层析柱, 洗脱緩沖液是 0.5 M胍 盐酸盐, 20 mM Tris, pH 7.8。收取包含正确多肽分子量的部分,合并后加入 8 mM 半胱氨酸, 1 mM 胱氨酸盐酸盐緩沖液。 多肽折叠完毕后, 将緩沖液用 0.1N 盐酸酸化至 pH 2,然后 RP-HPLC纯化。 分子量计算值 7610.5, 质谱测试分子量 7611.2。
室温下将多肽( 78 mg )溶于 100mM Na2C03 (2 mL, pH 10)溶液。叔丁基十六烷二酰基 -L-G】u ( OSu ) -OtBu (6.5 mg) 溶于乙腈(2 mL ), 加入多肽溶液。 搅拌 30分钟后, 用 50%醋酸酸 化, 上 RP-HPLC C5柱纯化。 緩沖液 A: 0.1%TFA水溶液, 10%乙腈; 緩冲液 B:0.1%TFA水 溶液, 80%乙腈。 初步纯化冻干后的多肽加入 TFA/TIS/H20 ( 95:2.5:2.5, 10mL ), 30分钟后真 空蒸发溶剂, 将粗产品溶于緩沖液 A并冻干。 使用 RP-HPLC C5柱纯化得到产物。 分子量计 算值 8008.0, 质谱测试分子量 8010.1。
多肽溶解于 70%曱酸(或 0.1 M盐酸), 加入溴化氰(30倍量), 在室温下培养。 HPLC检 测反应完成后, 用氮气挥发大部分甲酸和溴化氰后, 用 10%醋酸稀释, 然后 RP-HPLC纯化。 最终获得 II -2的分子量计算值 7102.1, 质谱测试分子量 7103.5。
少量化合物经 DTT 还原和胰蛋白酶降解后, 用液相色谱-质语联用观察到 FVNQHLCGSHLVEALYLVCGER(计算分子量 2487.9,质语测试分子量 2488.1 ), GFFYTPTGK [NE-(Na-(HOOC (CH2)14CO)-Y-G1U)]GSSSAAAPQTGIVEQCCTSICSLYQLENYCN (计算分子量 4638.3 , 质谱测试分子量 4639.6 )。 经分析, 合成的物质即是 11 -2。
OSu-CO-(CH2CH20)5-(CH2)2-NH-[Na-(HOOC (CH2)16 CO)-y-Glu]合成
十八烷二酸( 2.5g, 8.0 mmol ) 悬浮于 DCM ( 60 ml ), 加入三乙胺(1.16 ml, 8.3 mmol )并 用冰浴冷却。 在氮气环境中滴加氯曱酸苄基酯 ( 1.14 ml ), 再加入 DMAP(0.097g, 0.8 mmol)。 搅拌 30分钟后, 减压蒸发溶剂, 将粗品用硅胶柱纯化(乙酸乙酯: 庚烷 1 :7-1 :1 ), 蒸发溶剂 后得到十八烷二酸一苄酯( U2g, 35% )。
1H-NMR ( CDC13 ) δ: 7.35 (m, 5H), 5.11 (s, 2H), 2.35 (t, 4H), 1.63 (t, 4H), 1.30-1.22 (m, 24)。 十八烷二酸一苄酯 (0.8g, 2 mmol) 溶于 DMF ( 3 ml )和 DCM ( 3 ml ), 用冰浴冷却。 加入 DCC (0.408 g, 2 mmol)和 N-羟基丁二酰亚胺(0.23 g, 2 mmol)。 混合物在室温搅拌 24小时。 过滤混合物, 滤液用乙酸乙酯稀释, 用 0.1 N HC1和饱和食盐水洗涤, 硫酸镁干燥后, 减压蒸 发得到琥珀酰亚胺基一苄基十八烷二酸酯。
1H-NMR ( CDC13 ) δ: 7.35 (m, 5H), 5.11 (s, 2H), 2.83 (s, 4H), 2.60 (t, 2H), 2.35 (t, 2H),
1.80-1.60 (m, 4H), 1.40-1.20 (m, 24H)。
琥珀酰亚胺基一苄基十八烷二酸酯 (95 mg, 0.19 mmol)溶于 DMF(1.5 ml),加入 L-Glu-OBzl ( 49 mg, 0.21 mmol )和 DIEA(52 μΐ, 0.3 mmol),搅拌 16小时。减压蒸发溶剂 ,加入乙酸乙酯, 用 0.1N HCK 饱和食盐水洗涤, 硫酸镁干燥后减压蒸发溶剂, 得到 BzlO-十八烷二酰基 -L-Glu-OBzl。
1H-NMR ( CDCI3 ) δ: 7.35(m, 5H), 6.22(d, 2H), 5.17(s, 2H), 5.11(s, 2H), 4.71 (m, 1H), 2.37 (m, 4H), 2.22(m, 3H), 1.98 (m, 1H), 1.63 (m, 4H), 1.31-1.20 (m, 24H)。
BzlO-十八烷二酰基 -L-Glu-OBzl(110 mg, 0.18 mmol)溶于 DMF ( 1 ml )和 DCM ( 1 ml ), 用水浴冷却。 加入 DCC (41 mg, 0.2 mmol) 和 N-羟基丁二酰亚胺 (23 mg, 0.2 mmol)。 混合物 在室温搅拌 12小时。 过滤混合物, 滤液用乙酸乙酯稀释, 用 0.1 N HC1和饱和食盐水洗涤, 硫酸镁干燥后, 减压蒸发得到 BzlO-十八烷二酰基 -L-Glu(OSu)-OBzl。
Ή-NMR ( CDC13 ) δ: 7.36(m, 5H), 6.40(d, 2H), 5.19(s, 2H), 5.11(s, 2H), 4.75(m, 1H), 2.82(s, 4H), 2.68(m, 1H), 2.59(m, 1H), 2.35(t, 2H), 2.19(t, 2H), 1.62(m, 4H), 1.32-1.21(m, 24H)。
BzlO-十八烷二酰基 -L-Glu(OSu)-OBzl(72mg,0.1 mmol)和 H2N-(CH2)2-(OC¾CH2)5COOH (31mg, O.lmmol)溶于 DMF/DCM(0,5 ml: 1.5tnl),加入 DIEA(26 L, 0.15 mmol), 搅拌 16小时。 减压蒸发溶剂, 加入乙酸乙酯, 用 0.1N HC1、 饱和食盐水洗涤, 硫酸锬干燥后减压蒸发溶剂, 得到 3-[2-[2-[2-[2-[2-[[5-苄氧基 -4-[(18-苄氧基 -18-氧代-十八烷酰基)氨基] -5-氧代- 戊酰基]氨 基 ] 乙 氧 基 ] 乙 氧 基 ] 乙 氧 基 ] 乙 氧 基 ] 乙 氧 基 ] 丙 酸 ( 3-[2-[2-[2-[2-[2-[[5-benzyloxy-4-[(18-benzyloxy-18-oxo-octadecanoyl)amino]-5-oxo- pentanoyl] amino] ethoxy] ethoxy] ethoxy] ethoxy] ethoxy]propanoi c acid )。 计算分子量 915.2 , 测试分子量 916.5。
3-[2-[2-[2-[2-[2-[[5-苄氧基 -4-[(18-苄氧基 -18-氧代-十八烷酰基)氨基] -5-氧代-戊酰基]氨基] 乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]丙酸 (91mg, O.lmmol)溶于 DMF( 1 ml )和 DCM( 1 ml ), 用水浴冷却。 加入 DCC (24.7mg,0.12 mmol) 和 N-羟基丁二酰亚胺 (13.8 mg, 0.12 mmol). 混 合物在室温搅拌 12小时。 过滤混合物, 滤液用乙酸乙酯稀释, 用 0.1 N HC1和饱和食盐水洗 涤, 硫酸镁干燥后, 减压蒸发得到苯曱基 18-[[1-苄氧羰基- 4-[2- [2-[2- [2-[2-[3-(2,5-二氧代吡 咯烷 -1-yl)氧 -3-氧代-丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氨基 -氧代-丁基]氨基] -I8-氧 代-硬脂酸盐 (benzyl 18-[[ 1 -benzyloxycarbonyl- 4-[2- [2-[2- [2-[2-[3-(2,5-dioxopyrrolidin-l-yl) oxy-3 -oxo-propoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethylamino]-4-oxo-butyl]amino] - 18-oxo-octadec anoate )。 计算分子量 1012.2, 测试分子量 1013.1。
苯曱基 18-[[1-苄氧羰基- 4-[2- [2-[2- [2-[2-[3-(2,5-二氧代吡咯烷 -1-yl)氧 _3-氧代-丙氧基]乙 氧基]乙氧基]乙氧基]乙氧基]乙氨基 ]-4-氧代-丁基]氨基 ]-18-氧代-硬脂酸盐 (5 lmg, 0.05mmol) 溶于曱醇 /丙酮 /0.1% TFA, 加入 Pd/C, 在氮气环境下室温搅拌 5小时, 通过硅藻土过滤, 从庚 烷中沉淀并蒸发残余溶剂, 得到 18- [[ 羧基 -4-[2-[2-[2-[2- [2-[3-(2,5-二氧代吡咯烷- yl)氧 -3- 氧代-丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氨基 ]4-氧代-丁基]氨基] -18-氧代-硬脂酸 ( 18-[[l-carboxy-4-[2-[2-[2-[2- [2-[3-(2,5- dioxopyrrolidin- 1 -yl)oxy-3 -oxo-propoxy] ethoxy] ethoxy] ethoxy] ethoxy] ethyl amino] -4-oxo-butyl] amino]- 18-oxo-octadecanoic acid )。 计算分子量 832.0, 测试分子量 833.4。 结构如下所示:
Figure imgf000041_0001
11-24合成
用上述方法合成 FV QHLCGSHLVEALYLVCGERGFFYTPTGKGSSSAAAPQTGIVEQC CTSICSLYQLENYCN。 计算分子量 6704.6, 质谱测试分子量 6706.3。 室温下将多肽(67 mg, 10 μηιοΐ)溶于 100mM Na2CO3 (1 ml, pH 10)溶液。 18-[[1-羧基 -4-[2-[2-[2-[2- [2-[3-(2,5-二氧代吡 咯烷 -1-yl)氧 -3-氧代-丙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氨基 ] 氧代-丁基]氨基] -I8-氧 代-硬脂酸 (9.2 mg, 11 μιηοΐ)溶于乙腈(0.5 ml ), 加入多肽溶液。 搅拌 30分钟后用醋酸酸化, 上 RP-HPLC C5柱纯化。緩沖液 A: 0.1%TFA水溶液, 10%乙腈; 缓冲液 B:0.1%TFA水溶液, 80%乙腈。 分子量计算值 7421.5, 质谱测试分子量 7422.9。 经分析, 所得化合物即 11-24。
十八烷二酰基 -Glu(Glu(OSu)-OH)-OH的制备
Fmoc-Glu-OBzl ( 4.59g, 10 mmol) 溶解于 DCM ( 30 mL ), 力口到 3 克 2-CTC 树脂 ( 2-chlorotrityl chloride resin, sub. lmmol/g), 继续加入 DIPEA ( 1.29g, 10 mmol, 1.74 mL). 混合物在摇动器振动 5分钟后, 再加入 DIPEA ( 1.93g, 15 mmol, 2.6 mL)0 混合物剧烈振动 1小时。
为了封住活性三苯甲游基, 树脂中加入 HPLC级曱醇(2.4 mL ), 混合 15分钟。 树脂过 滤,用 DCM (3 X 30 mL), DMF (2 X 30 mL), DCM (3 X 30 mL), 曱醇 (3 X 30 mL)清洗后,在真 空中干燥。
用哌啶脱除 Fmoc后, 3 g树脂 (3mmol) 与 BzlO-十八烷二酰基 -L-Glu-OBzl( 6.24g, 10 mmol) 加入无水 DMF ( 50 mL ), 逐次加入 DIC ( 1.35 g, 1.12 mL, 10.7 mmol), HOBT ( 1.44 g, 10.7 mmol), DIPEA ( 1.3 g, 10 mmol, 1.74 mL)。 在室温振动过夜后, 树脂用 DMF (2 X 30 mL) 和 DCM (2 X 30 mL)清洗。
准备 AcOH/TFE/DCM ( 1 :1:8 ) 的切割液 (20 mL/g树脂)。 树脂悬浮在一半的切割液, 室 温下放置 30分钟。 过滤树脂, 用另一半切割液洗涤树脂三次。 混合滤液加入 15倍体积的正 己烷,旋蒸去除多余醋酸。 BzlO-十八烷二酰基 -Glu(Glu-OBzl)-OBzl溶于 DMF ( 3 ml )和 DCM ( 3 ml ),用冰浴冷却。加入 DCC (618 mg, 3 mmol) 和 N-hydroxysuccinimide (345 mg, 3 mmol). 混合物在室温搅拌 12小时。 过滤混合物, 滤液用乙酸乙酯稀释, 用 0.1 N HC1和饱和食盐水 洗涤, 碗酸镁干燥后, 减压蒸发得到 BzlO-十八烷二酰基 -Glu(Glu(OSu)-OBzl)-OBzl。
BzlO-十八烷二酰基 -Glu(Glu(OSu)-OBzl)-OBzl溶于甲醇 /丙酮 /0.1% TFA,加入 Pd/C,在 氮气环境下室温搅拌 5小时, 通过硅藻土过滤, 从庚烷中沉淀并蒸发残余溶剂得到十八烷二 酰基 -Glu(Glu(OSu)-OH)-OH。 计算分子量 669.8, 质谱测试分子量 670.3。
11-23合成
用上述方法合成 FVNQHLCGSHLVEALYLVCGERGFFYTPTGKGSSSAAAPQTGIVEQCC TSICSLYQLENYCN。 计算分子量 6704.6, 质谱测试分子量 6705.9。 室温下将多肽( 67 mg, 10 μιηοΐ)溶于 lOOmM Na2C03 (1 ml, pH 10)。十八烷二酰基 -Glu(Glu(OSu)-OH)-OH溶于乙腈( 0.5 ml ),加入多肽溶液。搅拌 30分钟后用醋酸酸化,上 RP-HPLC C5柱纯化。緩冲液 A: 0.1%TFA 水溶液, 10%乙腈 緩冲液 B:0.1%TFA水溶液, 80%乙腈。 分子量计算值 7259.3 , 质谱测试 分子量 7260.2。 经分析, 所得化合物即 11-23。 聚乙二醇化 ^ίΗΨ方法 (PEGylation)
a)还原烷基化 ( reductive alkylation )
多肽, mPEG20K-CHO, 氰基硼氢化钠 (NaBH3CN)按 1 :2:45 比例溶于 pH 4.3 醋酸溶液 ( O.lM NaCl, 0.2 M CH3COOH, 0.1M Na2CO3 )。 多肽浓度为 0.5-1 mg/mL。 反应用 HPLC检 测和纯化。 产率约 55%。 还原烷基化反应可以将聚乙二醇选择性地结合在 B1位。
11 -18的合成。
GIVEQCCTSICSLYQLENYCN, 和 mPEG20K-CHO还原烷基化反应得到产物。 用质谱检测, 该化合物分子量计算值 26201.0, 质谱测试得到一宽峰, 中间分子量 26206.3。 少量化合物经 DTT 还原和胰蛋白酶降解后, 用液相色谱 -质谱联用观察到 GFFGSGSSSAAAPQT GIVEQCCTSICSLYQLENYCN质量(计算分子量 3737.2, 质谱测试分子量 3738.5 ), 没有观 察到 FVNQHLCGSHLVEALYLVCGER质量(计算分子量 2487.9 ), 但质谱测试得到一宽峰, 中间分子量 22495.6, 证明 PEG结合位点是 Bl。 经分析, 合成的物质即是 11 -18。
b) NHS酯 (N-羟基丁二酰亚胺)酰化
多肽和 mPEG20K-NHS按摩尔比 2:1溶于 0.1N N,N-双 (2-羟乙基)甘氨酸溶液( pH 10 ), 多 肽浓度 0.5mg/mL。 反应在室温进行 1小时, 用 HPLC纯化。 产率 56%。
II -17合成:
CN合成方法参照 I -2。 多肽与 mPEG20K-NHS按上述酰化方法反应后得到产物。 用质谱检 测, 分子量计算值 26704.6, 质谱测试得到一宽峰, 中间分子量 26710.7。 少量化合物经 DTT 还原和胰蛋白酶降解后, 用液相色 i普-质诺联用观察到 FVNQHLCGSHLVEA LYLVCGER (计 算分子量 2487.9,质谱测试分子量 2489.0 ), GFFYTPTGSGSSK(N£-PEG 20K)AAAPQTGIVEQ CCTSICSLYQLENYCN (计算分子量 24240.8, 质谱测试得到一宽峰, 中间分子量 24247.6 ), 没有观察到分子量 22487.9, 证明 PEG结合位点是 C肽赖氨酸侧链。 经分析, 合成的物质即 是 11 -17。
II -4合成
YCN使用以上自然化学连接方法合成。 分子量计算值 6778.6, 质谱测试分子量 6779.8。 多肽 (68 mg) 溶于 DMF (3 mL), 加入 Mal-dPEG12-NHS (8.7 mg) ( Quanta Biodesign )和三乙胺 (30 L)。 反应在室温下搅拌 2小时。 减压挥发溶剂后, 粗品溶于 ¾0/ACN (3:1), 用 RP- HPLC 纯化。 马来酰亚胺多肽溶于纯净水, 多肽浓度 10 mM。 加入人白蛋白(665 mg ), 在 37 °C培 养 30分钟。 然后用含有 5 mM辛酸钠和 750 mM硫酸铵的 20 mM磷酸钠溶液稀释到 5%人 白蛋白。 用凝胶过滤层析法除去未反应的试剂, 0.05M碳酸氢铵水溶液作为洗脱液。 真空冷 冻干燥后得到纯品。 经分析, 分子量计算值 74001.7, 质谱测试分子量 74003.8, 所得的化合 物即是 II -4。
合成结果:
按照上述方法分别合成各基于胰岛素的修饰的化合物, 通过盾 i普检测各化合物的结构, 结 果如下:
II -1 : 分子量计算值 6932.0, 质谱测试分子量 6933.8 , 经分析, 合成的物质即是 II -1 ;
II -3: 分子量计算值 7102.1, 质傳测试分子量 7103.4, 经分析, 合成的物质即是 II -3;
II -5: 分子量计算值 7199.2, 质谱测试分子量 7200.9, 经分析, 合成的物质即是 II -5;
II -6: 分子量计算值 7118.1, 质谱测试分子量 7120.2, 经分析, 合成的物质即是 II -6;
II -7: 分子量计算值 7274.3, 质谱测试分子量 7275.5, 经分析, 合成的物质即是 II -7;
II -8: 分子量计算值 6655.6, 质錯测试分子量 6656.7, 经分析, 合成的物质即是 Π -8;
II -9: 分子量计算值 6655.6, 质语测试分子量 6657.3 , 经分析, 合成的物质即是 II -9;
II -10 : 分子量计算值 6639.6 质潘测试分子量 6640.4, 经分析 合成的物质即是 11 -10;
II -11 : 分子量计算值 6639.6, 质语测试分子量 6741.1, 经分析, 合成的物质即是 11 -11 ;
II -12 : 分子量计算值 6639.6 质语测试分子量 6740.8, 经分析, 合成的物质即是 Π -12;
II -13 : 分子量计算值 6674.7 质谱测试分子量 6676.0, 经分析, 合成的物质即是 11 -13;
II -14 : 分子量计算值 6731.7 质谱测试分子量 6732.5 , 经分析, 合成的物质即是 II -14;
II -15 : 分子量计算值 6726.7 质谱测试分子量 6728.2, 经分析, 合成的物质即是 II -15;
II -16 : 分子量计算值 6598.5 质 i普测试分子量 6599.6, 经分析, 合成的物质即是 Π -16;
II -19 : 分子量计算值 7088.1 质谱测试分子量 7089.7, 经分析, 合成的物质即是 II -19;
II -20 : 分子量计算值 6960.0 质谱测试分子量 6961.8, 经分析, 合成的物质即是 II -20;
II -21 : 分子量计算值 7086.1 质谱测试分子量 7086.9, 经分析, 合成的物质即是 II -21 ;
II -22 : 分子量计算值 6944.0, 质谱测试分子量 6945.1 , 经分析, 合成的物质即是 II -22。 受体结合分析
1、 125I-IGF-1 和 1251-胰岛素的制备
文献方法 ( Cresto等, "Preparation of biologically active mono-125I-insulin of high specific activity" , Acta Physiol Lat Am. 1981 , 31(l):13-24 ) 2、 化合物的受体结合分析
文献方法 ( E. K. Frandsen and R. A. Bacchus. "New, simple insulin-receptor assay with universal application to solubilized insulin receptors and receptors in broken and intact cells." Diabetes, 1987, 36, 3:335-340 )或下述方法之一。 如无特别说明, 受体制备方法亦如文献方 法, 使用人胎盘膜。 一般情况下, 胰岛素受体结合实验使用 0.025毫克胎盘膜; IGF-1受体结 合实验使用 0.2毫克胎盘膜。
在胰岛素受体结合分析实验中,胰岛素标准和本发明化合物的起始浓度均为 ΙΟΟηΜ,然后 将胰岛素和本发明化合物系列 3倍稀释,分别得到 7个不同浓度的对照和化合物溶液( 100nM、 33.33nM、 l l.llnM, 3.70nM、 1.23nM、 0.41nM、 0.13nM、 0.04nM )。 对于本发明中其胰岛 素受体的活性低于人胰岛素标准 10%的化合物, 化合物起始浓度为 500nM。 在 IGF-1受体结 合分析实验中, IGF-1标准的起始浓度为 ΙΟΟηΜ, 本发明化合物起始浓度为 ΙΟΟΟηΜ, 然后将 IGF-1与本发明化合物系列 3倍稀释,分别得到 7个不同浓度的对照和化合物溶液( 1000nM、 333.33nM、 l l l.l lnM, 37.04nM、 12.35nM、 4.12nM、 1.37nM、 0.46nM )。对于本发明中其 IGF-1 受体的活性低于 IGF-1标准 1%的化合物, 化合物起始浓度为 5000nM。 受体结合分析 ( 1 )
截断的水溶性受体
IGF-1或胰岛素受体, 125I-IGF-1 (3-10 pM)或 1251-胰岛素 (3 pM) 和系列 3倍稀释的多肽加 入緩冲液 [100 mM Hepes, pH 8.0, 100 mM NaCl, 10 mM MgCl2, 0.5 % (w/v) BSA, 0.025 % (w/v) Triton X-100],总体积 200μΙ^,在 4。C培养 48小时。受体及与受体结合的多肽和配体用 0.2 %γ- 球蛋白和 500μί 25 % (w/v) PEG 8000沉淀, 测量沉淀中的放射性。 受体的浓度要调节到在未 添加多肽的时候有 15-20%的受体与配体结合。
膜结合受体
受体结合分析使用的膜结合受体来自高度表达全长胰岛素或 IGF-1受体的 BHK细胞。等 量的转染 BHK细胞 (2000-5000)均匀分布在 96孔板的每一孔, 在包含 10% (v/v) 胎牛血清的 Dulbecco's改良的 Eagle's培养基 (DMEM)中培养 24小时后再进行受体结合分析。 细胞先用 结合缓沖液 (DMEM,含 0.50% BSA, 20 mM Hepes, pH 7.8) 洗一遍,加入 400 L125I-IGF-l (6.5 pM)或 1251-胰岛素 (6.5 pM)和溶于结合緩沖液的系列 3倍稀释的多肽。 在 16。C 培养 3小时, 未结合的多肽用吸引器吸出,用 1.2 ml 结合緩冲液洗一遍。细胞溶解于 500 μL 1% (w/v) SDS, 100 mM NaCl, 25 mM Hepes (pH 7.8) , 然后测量。 细胞数量要调整到未加多肽时有 16-28 % 的受体与配体结合。
受体结合分析( 2 )
IGF-1受体: [Thr59]IGF-l用于酪氨酸琪化反应 ( iodination )。 125I-IGF-1 (50-80 Ci/g, 50 fmol), 人胎盘膜 (0.2 mg)和系列 3倍稀释的多肽加入 0.2毫升 0.1 M Hepes緩沖液, pH 8, 包 含 120mM 氯化钠、 5mM 氯化钾、 0.12mM硫酸镁以及 0.1% 牛白蛋白, 在 20。C培养 1小 时。样品用 Whatman GF/F 过滤器过滤以分离结合与未结合的多肽化合物。过滤器预先用 0.1 % 聚乙烯亚胺处理。 培养管和过滤器用 2.5 毫升不含牛白蛋白的冷緩冲液洗 4遍。 没有胎盘膜 的情况下, 少于 5% 的多肽化合物附着在过滤器上。 在没有多肽竟争的条件下, 胎盘膜结合 大约 38% 的配体。 对胎盘膜非特异结合可以通过添加过量的非碘化 [Thr59] IGF-1 ( 0.3 μ Μ) 到培养混合物来测量。 非特异结合通常占配体与胎盘膜结合总量的 5%。 胰岛素受体: 1251-胰岛素 (30 nCi)、 系列 3倍稀释的多肽和胎盘膜 (0.025 mg)在 0.05 毫 升上述緩冲液中, 20°C培养 1小时。 样品用 EHWP过滤器过滤, 培养管和过滤器用 2.5 毫升 不含牛白蛋白的冷緩沖液洗 4遍。 没有胎盘膜的情况下, 少于 5% 的多肽化合物附着在过滤 器上。对胎盘膜非特异结合可以通过添加过量的非碘化胰岛素( 1 μ Μ )到培养混合物来测量。 非特异结合通常占配体与胎盘膜结合总量的 1%以下。
特异结合百分比 = (结合放射量 -非特异结合放射量 I全部结合放射量-非特异结合放射量) χ 100。 全部结合放射量是未添加多肽时测得的放射总量。 结合放射量是添加多肽后测得的放 射量。 多肽化合物的 IC50使用 Origin软件 (OriginLab, Northampton, MA)计算。 多肽相对于人 胰岛素或 IGF-1标准的活性 =IC50胰岛素或 IGF-1标准 /IC50多肽。
3、 动物实验
7-9周龄 C57BL/6雄性小鼠, 平均体重 20-25g, 6只分为一组, 在实验开始前 4小时禁 食。 实验开始前测量血糖, 并在以后各个指定时间点取样测量血糖。 对照组是生理盐水, 多 肽溶解在生理盐水中, 皮下注射。 观察小鼠在实验全过程的反应, 记录任何异常行为。
实验结果:
通过对本发明的基于胰岛素的化合物与胰岛素受体的结合力进行实验来检测这些化合物 的生物活性,使用天然胰岛素作为胰岛素受体结合力的基准( 100% )和天然 IGF-1作为 IGF-1 受体结合力的基准(100% )。 得到的结果分别见表 2和表 3。
以胰岛素 A和 B链及连接片段组成的基于胰岛素的单链化合物, 与胰岛素受体的结合力 接近胰岛素的水平, 但由于 IGF-1C肽是与 IGF-1 受体结合的关键序列, 也导致单链多肽在 IGF-1受体上的结合力远高于天然胰岛素。 C2Tyr在 IGF-1晶体结构中是非常突出的一个氨基 酸残基, 显示可能是与 IGF-1受体结合的关键。 酪氨酸被丝氨酸或丙氨酸取代后, 胰岛素受 体活性基本保留, 但大幅度降低了 IGF-1 受体活性, 达到预期的效果。 另外, 结果显示, C 肽的长度不一定需要 12个氨基酸残基。 原 IGF-1 C末端的 3、 4、 5、 6个氨基酸残基都是可 以缺失或被替换的。尤其是 IGF-1 C末端去除 3个氨基酸残基 PQT和 4个残基 APQT不但对 胰岛素受体的活性没有负面影响, 而且使其 IGF-1 受体活性降低到胰岛素的水平。 进一步的 研究发现, 在保留 C肽的长度是 12个氨基酸残基的情况下, 胰岛素 B链 C末端的 5个氨基 酸残基 X111X112X113X114X115可以有 1个、 2个、 3个、 4个或全部缺失, 而不会降低胰岛素受 体结合力。进一步研究表明, IGF-1 C肽仅仅是很多种连接片段中的一个选择。这些数据说明, 适当的 C链长度、 灵活的 C链空间构象和特定位点的氨基酸取代是提高胰岛素受体活性, 降 低 IGF-1受体结合力的重要因素。
表 2: 未经修饰的基于胰岛素的单链化合物的生物活性结果
IGF-1R IGF-1R IGF-1R 化合物 IR( % ) 化合物 IR ( % ) 化合物 IR( % )
( % ) ( % ) ( % )
I -1 114 29.0 I -42 59 0.4 I -83 73 0.3
I -2 96 1.5 I -43 54 0.6 I -84 64 <0.1
I -3 107 0.9 I -44 53 0.5 I -85 60 <0.1
1 -4 103 1.4 1 -45 56 0.7 I -86 87 <0.1
I -5 92 1.7 I -46 48 0.3 I -87 76 0.2
I -6 95 1.3 1 -47 51 0.3 I -88 46 <0.1
1 -7 90 1.6 I -48 85 0.4 1 I -89 91 <0.1 I -8 89 0.9 I -49 57 0.7 I -90 63 0.2
I -9 85 1.0 I -50 65 0.8 I -91 82 <0.1
I -10 76 1.0 I -51 49 0.6 I -92 54 0.3
I -11 72 0.8 I -52 56 0.4 I I -93 57 0.4
I -12 66 0.7 I -53 51 0.5 I -94 69 0.2
I -13 85 0.7 I -54 89 0.3 I -95 92 <0.1
I -14 73 0.6 I -55 52 0.4 I -96 81 0.2
I -15 68 0.4 I -56 58 0.3 1 I -97 75 <0.1
I -16 53 0.6 I -57 53 0.5 I -98 73 <0.1
I -17 60 0.4 I -58 66 0.4 I -99 75 <0.1
I -18 59 0.5 I -59 49 0.5 I -100 86 0.2
I -19 47 0.3 I -60 55 0.2 I -101 83 <0.1
I -20 52 0.3 I -61 46 0.1 I -102 85 0.2
I -21 44 0.2 I -62 50 0.3 1 I -103 76 <0.1
I -22 65 0.3 I -63 88 0.3 I -104 78 <0.1
I -23 53 0.2 I -64 63 0.2 I -105 61 <0.1
I -24 41 0.2 I -65 59 0.3 I -106 90 <0.1
I -25 72 0.3 I -66 91 0.3 I -107 77 0.2
I -26 97 0.7 I -67 76 0.4 I -108 86 <0.1
I -27 102 0.4 I -68 78 0.2 I -109 47 <0.1
I -28 99 0.6 I -69 54 0.2 I I -110 44 <0.1
I -29 90 0.6 I -70 60 0.6 I -111 49 <0.1
I -30 93 0.5 I -71 58 0.5 I -112 91 <0.1
I -31 98 0.8 I -72 69 0.5 1 I -113 60 <0.1
I -32 95 1.0 I -73 86 0.2 I -114 62 <0.1
I -33 82 0.9 I -74 85 0.2 I -115 85 <0.1
I -34 86 1.1 I I -75 77 0.3 I -116 73 <0.1
I -35 87 1.2 I -76 70 0.1 I -117 48 <0.1
I -36 89 0.7 I -77 83 0.2 I -118 81 <0.1
I -37 97 0.8 I -78 42 0.3 I -119 76 0.2
I -38 92 0.5 I -79 61 0.2 I -120 83 0.2
I -39 61 0.4 I -80 53 0.4 I -121 57 0.1
I -40 65 0.4 I -81 57 0.4 I -122 85 <0.1
I -41 58 0.3 I -82 85 <0.1 I -123 79 0.3 其中, IR表示胰岛素受体, IGF-1R表示 IGF-1受体。
聚乙二醇化和脂肪酸酰化是延长多肽体内作用时间的常用方法,但聚乙二醇化和脂肪酸酰 化一般大幅度降低生物活性。 因此寻找人胰岛素 B29之外新的能够引入赖氨酸等具有氨基的 酰化位点, 而酰化产物具有足够的生物活性对于开发长效多肽具有重要意义。
实验证明, Bl、 单链化合物的连接片段、 A22修饰后都保留了相当的胰岛素受体活性。 由于在受体结合实验中要使用牛白蛋白以减少蛋白非特异性结合, 但酰化多肽上的脂肪酸能 够与白蛋白结合(这也是脂肪酸延长作用时间的机理), 从而降低了实验中多肽有效浓度, 因 此酰化多肽的受体结合数据显得较低。 过去 30年的大量动物实验表明, 胰岛素类似物的体外 活性与体内活性没有明确的对应关系。 体外活性显著低于人胰岛素的类似物在体内与人胰岛 素的活 'f生基本 ί目当 (参照 Volund等 "In vitro and in vivo potency of insulin analogs designed for clinical use", Diabetic Medicine, 1991, 8:839-47; Ribel等 "Equivalent in vivo biological activity of insulin analogs and human insulin despite different in vitro potencies", Diabetes, 39, 1033-39, 1990 )。发明人的动物实验数据也表明聚乙二醇化和脂肪酸酰化多肽的体内实际活性要优于胰 岛素对照。
表 3: 修饰的基于胰岛素的单链化合物的生物活性
Figure imgf000047_0001
其中, IR是胰岛素受体。
实验结果中还给出了本发明的胰岛素类似物的延时效果。 以人胰岛素、 化合物 Π -2和阴 性对照分别做实验, 胰岛素和 II -2 的用量分别为 70nmol/kg。 监控小鼠的血糖浓度, 结果见 图 1。 Π -2在给药后的 5-10小时内依然具有明显的抑制血糖效果, 但胰岛素在这个时间内已 经渐渐失去抑制血糖能力。 人胰岛素在实验中表现出典型的 V字型降血糖曲线。 这种降血糖 曲线的缺点在于初期血糖下降过快, 容易造成低血糖, 而后期又无法控制血糖。 Π -2显示出 L型降血糖曲线, 血糖控制平稳而且持久, 效果显著优于人胰岛素。
在另外一个实验中, 小鼠皮下注射 3种剂量的 II -17后监控血糖浓度变化, 结果见图 2。
11 -17剂量低至 25nmol/kg就足以平稳控制血糖至少 24小时。 而当剂量加大到 90nmol/kg后, 小鼠也没有出现血糖低谷。 因此, II -17在控制血糖和安全性方面都优于人胰岛素。
在另外一个实验中,小鼠皮下注射生理盐水、人胰岛素和 II -11后检测血糖随时间变化值, 结果见图 3。 与图 1类似, 人胰岛素表现出典型的 V字型降血糖曲线, 而 II -11显示出 L型降 血糖曲线, 平稳控制血糖至少 24小时, 效果显著优于人胰岛素。
以上三个实验证明, 以聚乙二醇或脂肪酸修饰本发明中的胰岛素类似物, 能够改善胰岛 素类似物的治疗效果和药物动力学特征。

Claims

1 、 一种具有 降血糖效果 的单链化合物 , 所述化合物 的 结构 为 : Xi^HLCnjGSXjogLVEALYLVCpjGEX^gGFXnoXniXmXinXiHXiis-CL-GIVEQC^jC^XneSICfs ]SLYQLENYC[6]X117X118, 其中,
X107是苯丙氨酸-缬氨酸-天冬酰胺-谷氨酰胺四肽、 缬氨酸-天冬酰胺-谷氨酰胺三肽、 天冬 酰胺-谷氨酰胺二肽、 或谷氨酰胺, 或是以赖氨酸或精氨酸取代上述二、 三、 四肽序列中任何 一个氨基酸残基后的序列, 或缺失; X1()8是组氨酸、 苯丙氨酸、 精氨酸或谷象酰胺; X1()9是 精氨酸、 丙氨酸、 谷氨酸或天冬氨酸; X11()是苯丙氨酸、 酪氨酸或组氨酸; XU1是酪氨酸、 苯丙氨酸或缺失; X112是苏氨酸、 天冬酰胺、 谷氨酸、 天冬氨酸或缺失; X113是脯氨酸、 赖 氨酸、 谷氨酸、 天冬氨酸或缺失; X 是赖氨酸、 脯氨酸、 精氨酸、 谷氨酸、 天冬氨酸或缺 失; x115是苏氨酸或缺失; x116是苏氨酸、 组氨酸或精氨酸; x117是丙氨酸、 甘氨酸或天冬酰 胺; X118是赖氨酸、 精氨酸-赖氨酸二肽或缺失; CL是连接片段。
2、 根据权利要求 1所述的化合物, 其特征在于, 所述化合物的结构为:
FVNQHLCGSHLVEALYLVCGERGFFXmX X XiwX -CL-GIVEQCCTSICSLYQLENY CN, 其中,
Xm是酪氨酸或缺失; X 是苏氨酸或缺失; Χ113是脯氨酸或缺失; X114是赖氨酸或缺失; X 是苏氨酸或缺失; CL是连接片段。
3、 根据权利要求 2所述的化合物, 其特征在于, 所述化合物的结构为:
FVNQHLCGSHLVEALYLVCGERGFFYTPKT-CL-GIVEQCCTSICSLYQLENYCN。
4、根据权利要求 1-3任一项所述的化合物, 其特征在于, 所述连接片段 是 6-60个氨基 酸的肽序列, 其中每一个氨基酸都独立选自甘氨酸、 丙氨酸、 丝氨酸、 苏氨酸、 脯氨酸。
5、 根据权利要求 4所述的化合物, 其特征在于, 所述连接片段 CL包含 1个或 1个以上天 冬氨酸、 谷氨酸、 精氨酸、 赖氨酸、 半胱氨酸或天冬酰胺。
6、 根据权利要求 5所述的化合物, 其特征在于, 所述连接片段 CL是以下多肽片段的全 部或部分序列, 或者与以下多肽片段有 1、 2或 3个氨基酸残基的差异, 或者与以下多肽片段 有 70%、 80%、 90%类似, 或者是以下多肽片段的全部或部分序列的 1、 2、 3、 4或 5次重复 序列:
(GASPGGSSGS)„GR, 其中 n是 1、 2、 3、 4或 5; GSSGSSGPGSSR; GSSGSGSSAPQT; GSGGAPSRSGSSR; GSPAGSPTSTGR; GGSGGSGGR; GSSPATSGSPQR; GASSSATPSPQR;
GSGSSSRAPPSAPSPQR; GSSSESPSGAPQT; GAGTPASGSAPGR; GSSPSGGSSAPQT;
GSTSSTARSPGR; GAGPSGTASPSR; GSSTPSGAPQT; SSSSAPPPSAPSPSRAPQR;
GSGSSSAAAPQT ; GSGSSSAAPQT ; GASPGTSSTSGR; GSGSSSAPQT ; GSGSSSRRA;
GSPAGSPTSTSR; GSGPSSATPASR; GSGSSSRGR; GSGPSTRSAPQR; GPETPSGPSSAPQT; GAGSSSRAPPPSAPSPSRAPGPSAPQR; GSGSSAGR; GASSPSTSRPGR; GSSSGSSGSPSGR;
GSSPSASTGTGR; GAGSSSAPSAPSPSRAPGPSAPQR; GSGSGSGR; GSPSSPTRGSAPQT;
GASTSSRGAPSR; GSGSSSAGR; GPSGTSTSAPGR; GAGSSSAPQT; SSSSAPSAPSPSRPQR;
GSGASSPTSPQR; GAGGSGSGR; GSSPATSATPQT; GAGSSSAPPPSAPSPSRAPGPSAPQR;
GASTSPSRPSGR; GSTAGSRTSTGR; GSTAGSRTSPQR; GSGTATSGSPQT; GASSSATSASGR; GAGSATRGSASR; GSSSRSPSGSGR; SSSSAPPPSAPSPSRAPGPSAPQR; GSSPSGRSSSPGR; GSPAGSPSSSAGSSASASPASPGR; GSPAGSPSSSAGSSASASPASGPGSSSAPSAGSPGR; RREAEDGGGPGAGSSQRK; GGGSGGGR; RRGGGPGAGSSQRK; RGGGPGAGSSQRK; SSSAPPPSAPSPSRAPGPSPQ ; SAASSSASSSSASSASAG ; GAGGPSSGAPPPSPQT; GSGSSGGR; GAGSPAAPASPAPAPS AGR; SSSAPSPSRSPGPSPQR; SSSAPSAPSPSPQR ; GSGSSSRRAPQT; SSSSAASAASASSSASGR; SSSRAPPSAPSPQR; GGPSSGAPPPSR; SSSSGAPPPGR; GPSSGAPSR; GPSSGAPQT; GGPSSGAPPPSPQT; SSSAPPPSAPSPSRAPQT; GAGPSSGAPPPSPQT; GGGGAPQT; GAGGPSSGAPPPQT; GGPSSGAPPPSPSPSRPGPSPQR; SSASSASSSSAGR; GAGSSR; SSASSSAASSSASSSASGR ; SSSGAPPPSPSRAPGPSPQR; GSGSASRGR ; SSSSAASSASGR ; SASASASASSASSGR ; SASSPSPSAPSSPSPAS ; GPSSPSPSAPSSPSPASPSSGR ; SSSAPPPASPSPSRAPGPQR ; SASASASASASSAGR ; GSGASSRGR ; GSGAAPASPAAPAPSAGR; GGPSSGAPPPSGR ; SSPSASPSSPASPSSGR ; GAPASPAPSAPAPAAPSGR; GPSSPSPSAPSSPSPASPSSAPQT; SSASSASSSSSASAGR; SAPSSPSPSAPSSPSASPSGR ; SSSAPPPSAPSPSAPQR ; GASSPSPSAPSSPSPASGR ; SSPSAPSPSSPASPSSGR; GAGPAAPSAPPAASPAAPSAGR; SSSSPSAPSPSSPASPSPSSAPQR; GSGSSR; GSGSSSAR; GSGSSSGR; GSGAPQR; SSSSAPSAPSPSRAPGPSPAPQR; GSGSSSR; GSGSSAPQT ; GGGGAPQR ; GSGSSSAAR ; GSGSSAAPQR ; SSSSRRAPQR ; SSSGSGSSAPQR; SSGSGSSSAPQR; GSGSSSRS; SSSSRAPQR; GASPGGSSGSGR; GSGSSSAAAPQR; GAGSSSAAAPQR; GAGSSSAAAPQT; GSSGGSGR; GAGGGSSGR; GSGSSGSR ; GSGSSSSR ; GSGSGGGR ; GAGSSGR ; GSGSSGR ; SSSSRAPPPSAPSPSRAPGPSAPQR; GGGSSR; GSGSSSAAPQR; GASPGGSSGSSR; GSGSSSRSGR ; GTGPSSATPASR ; GAGPSGTASPSS ; SSSSAPSAPSPSRAPQR ; GSPSSPTRGSAT ; GPETPSGPSSAT ; GSSPATSGTPQT ;
GSGSSSRAPPPSAPSPSRAPGPSPAPQR; GSSTPSGAGPQT; GSGSSSRAPPPSAPSPSRAPQR; GSPAGSPSSSAGSSASASPASGPGSSSAPSAGSPAR; GAGSSSRAPPPSAPSPSRAPGPSPQR; GSGSSSRAPPSAPSAPQR; GSTAGSRTSTAR; GSSPSGRSSSPAR; SSASSASSSSSAASAGR; GSSSGSSGSPSAR ; SSSAPSPSRAPGPSPQR ; GAGSSSRAPPPSAPSPSRAPQR ; GSPAAPAPASPAAPAPSAGR; SSSAPSAPSPSAPQR; GGPSSGAPPPSPSPSRPGPSDTPPQR; SASASASASASASSASSGR ; SASSPSPSAPSSPSPASGR ; SASASASASASASSAGR ; SSPSASPSSPASPSPSSGR; GAPASPAPAAPSAPAPAAPSGR; GAGSPAAPAPASPAPAPSAGR; SSS APPPSAPSPSAPQT; GASPAAPSAPPAASPAAPSAGR; SSSAPPPSPSRAPGPSPQR; SSPSAPSPSSPASPSPSSGR; SSSSGPSSGAPPPSGR; GSSSRSPSGSPR; GGGPGAGSSPQR。
7、 根据权利要求 1所述的化合物, 其特征在于, 所述化合物选自 SEQ ID NO:卜 SEQ ID NO: 123所示的化合物。
8、 一种具有降血糖作用的化合物, 所述化合物的结构是:
X3ooVNQHLC[1]GSHLVEALYLVC[2]GERGFX30iX302X303X304X305X306GX307X308X309X3ioX3i i
X312X313X314 315X316 317GIVEQC[3]C[4] X318X319X32oC[5〗X321LX322X323LX324X325YC[6]X326X327,其 中,
X30o是笨丙氨酸或 UL-苯丙氨酸; X3( 1是苯丙氨酸、 组氨酸或酪氨酸; X3o2是酪氨酸、 苯 丙氨酸或缺失; X3c3是苏氨酸、 天冬酰胺、 谷氨酸、 天冬氨酸或缺失; X3G4是脯氨酸、 赖氨 酸、 谷氨酸、 天冬氨酸或缺失; X3Q5是天冬氨酸、 谷氨酸、 脯氨酸、 精氨酸、 赖氨酸或缺失, 或通式(I)结构; X36是苏氨酸、 通式(I)结构或缺失; X37是赖氨酸、 丝氨酸、 丙氨酸、 甘氨酸、 通式(I)结构或缺失; Χ是甘氨酸、 通式(I)结构或缺失; Χ3ο9是赖氨酸、 甘氨 酸、 丝氨酸、 通式(I)结构或缺失; X31Q是赖氨酸、 甘氨酸、 丝氨酸、 通式(I)结构或缺失; X3U是赖氨酸、 甘氨酸、 丝氨酸、 丙氨酸、 通式(I)结构或缺失; X312是赖氨酸、 精氨酸、 丙氨酸、 脯氨酸、 甘氨酸、 通式(I)结构或缺失; x313是甘氨酸、 丙氨酸、 精氨酸、 赖氨酸、 谷氨酰胺、 脯氨酸、 通式(I)结构或缺失; x314是精氨酸、 丙氨酸、 脯氨酸、 苏氨酸、 谷氨 酰胺、 甘氨酸、 通式(1)结构或缺失; x315是脯氨酸、 谷氨酰胺、 精氨酸、 甘氨酸或缺失或 通式(I)结构; X316是谷氨酰胺、 苏氨酸、 精氨酸、 甘氨酸或缺失或通式(I)结构; x317 是苏氨酸、 精氨酸、 赖氨酸或缺失; X31S是苏氨酸、 组氨酸、 精氨酸或通式(I) 结构; x319 是丝氨酸或通式(I) 结构; X32Q是异亮氨酸或通式(I)结构; X321是丝氨酸或通式(I) 结 构; x322是酪氨酸或通式(I)结构; x323是谷氨酰胺或通式(I)结构; x324是谷氨酸或通式
(I)结构; X325是天冬酰胺或通式(I)结构; x326是丙氨酸、 甘氨酸或天冬酰胺; ¾27是赖 氨酸、 精氨酸-赖氨酸二肽或缺失, 或为通式(I)结构; 当 x327为二肽时, 其中一个氨基酸 为通式(I)结构;
其中, 所述通式(I) 结构为:
Figure imgf000050_0001
UL是 -W-X-Y-Z 结构、 脂肪酸、 聚乙二醇、 白蛋白、 L„-ML结构、 氢原子或 Na-(Na-(HOOC(CH2)nCO)-y-Glu)- Na-( a-(CH3(CH2)nCO)-y-Glu)- , 其中 η是 8-20的整数, 如 8、 10、 12、 14、 16、 18或 20, Να表示氨基酸或氨基酸残基的 a-氨基, 或为通式(II)结构。 所述通式(II)结构是:
Figure imgf000050_0002
J是 -W-X-Y-Z 结构、 Ln-ML结构或氢原子。
9、 根据权利要求 8所述的化合物, 其特征在于, 所述化合物的结构是:
X300VNQHLC[1]GSHLVEALYLVC[2]GERGFFX302X303X3o4X305X306GX307X3o8X309X3ioX3iiX3 i2X313X314X315X316X3nGIVEQC[3〗C[4]TSIC[5〗SLYQLENYC[6iNX327, 其中,
X300是苯丙氨酸或 UL-苯丙氨酸; X3o2是酪氨酸或缺失; X303是苏氨酸或缺失; 04是脯 氨酸或缺失; X3Q5是天冬氨酸、 脯氨酸、 精氨酸、 赖氨酸或缺失, 或通式(I)结构; X306是 苏氨酸、 通式(I)结构或缺失; X3o7是赖氨酸、 丝氨酸、 丙氨酸或通式(I)结构; X3o8是甘 氨酸或通式(I)结构; X3Q9是赖氨酸、 丝氨酸或通式(I)结构; X31o是赖氨酸、 丝氛酸或通 式(I )结构; X311是赖氨酸、 丝氨酸、 丙氨酸或通式(I )结构; x312是赖氨酸、 精氨酸、 丙 氨酸、 脯氨酸或通式(I )结构; x313是甘氨酸、 丙氨酸、 精氨酸、 赖氨酸、 谷氨酰胺、 脯氨 酸或通式(I )结构; X314是精氨酸、 丙氨酸、 脯氨酸、 苏氨酸或谷氨酰胺或通式(I )结构; x315是脯氨酸、 谷氨酰胺、 精氨酸或缺失或通式(I )结构; x316是谷氨酰胺、 苏氨酸、 精氨 酸或缺失或通式(I )结构; X317是苏氨酸、 精氨酸、 赖氨酸或缺失; X327是通式(I )结构或 缺失, 其中, UL和通式(I )如权利要求 8中所定义。
10、 根据权利要求 8所述的化合物, 其特征在于, 所述化合物选自:
II -1 :
FVNQHLCGSHLVEALYLVCGERGFFYTPTGK[NE-(Na-(HOOC(CH2)i4CO)-Y-Glu)] GSSSRGRGIVEQCCTSICSLYQLENYCN;
II -2:
FV QHLCGSHLVEALYLVCGERGFFYTPTGK[N£-( a-(HOOC(CH2)14CO)-y-Glu)] GSSSAAAPQTGIVEQCCTSICSLYQLENYCN;
II -3:
FVNQHLCGSHLVEALYLVCGERGFFYTPTGSGK[NE-(Na-(HOOC(CH2)14CO)-Y- Glu)]SSAAAPQTGIVEQCCTSICSLYQLENYCN;
II -4:
F(Na-dPEG,2-马来酰亚胺-白蛋白)VNQHLCGSHLVEALYLVCGERGFFYTPDTGSGSSS AAAPQTGIVEQCCTSICSLYQLENYCN;
II -5:
FVNQHLCGSHLVEALYLVCGERGFFYTPPTGSGSSK[N£-(Na-(HOOC(CH2)i4CO)-Y- Glu)]AAAPQTGIVEQCCTSICSLYQLENYCN;
II -6:
FV QHLCGSHLVEALYLVCGERGFFYTPTGSGSSSAK[N6~(Na-(HOOC(CH2)14CO) -y-Glu)]APQTGIVEQCCTSICSLYQLENYCN;
II -7:
FVNQHLCGSHLVEALYLVCGERGFFYTPRTGSGSSSK[NE-(Na-(HOOC(CH2)i4CO) -Y-Glu)]AAPQTGIVEQCCTSICSLYQLENYCN;
II -8:
FVNQHLCGSHLVEALYLVCGERGFFGSGSSSK[NE-(Na-(HOOC(CH2)i4CO)-Y-Glu)] AAPQTGIVEQCCTSICSLYQLENYCN;
II -9:
FVNQHLCGSHLVEALYLVCGERGFFGSGSSSAK[NE-( a-(HOOC(CH2)i4CO)-Y-Glu)] APQTGIVEQCCTSICSLYQLENYCN;
11 -10:
FV QHLCGSHLVEALYLVCGERGFFGSGK[NE-( a-(HOOC(CH2)14CO)-y-Glu)]
SSAAAPQTGIVEQCCTSICSLYQLENYCN;
11 -11 :
FV QHLCGSHLVEALYLVCGERGFFGSGSK[N£-(Na-(HOOC(CH2)14CO)-Y-Glu)]
S AAAPQTGIVEQCCTSICSLYQLENYCN;
Figure imgf000052_0001
入 人 1S IS丄 03ΛΙΟ丄 CWVWSSSD[(ni£)-人 -(009,(¾3) DOOH) -ηΝ)-Η ( :) (0¾ ¾ )-0 -3Μ £)1<Ι丄人 £)Ή3£ΌΛΊ入 lV3AlHSDCnH0NAd
■ Z-ll
: N 人 N310A1S IS丄 C 03AID丄 0<iVVVSSSO[((ni£)-人) ζί -Ν-ηΐΟ-人 -(OC^' HC OOH Nh biO丄 d丄人 iWCm3COAlAlV3AlHS£):yTH0NAJ
'•£2-11
: M 入 Mai A!S IS丄 ) 03AI0I。dSSS£) [ HO.人 -(CO"(¾:)) )OOH)-DN)-3N] C)丄 d丄人 JJD 3£OAlA!V3AlHS{) nH0NAJ
■ZZ- II 0£ : N 入 N3 0AlS ISlCO03AID 0d SSS£) [(W9-人 -(O W HD OOH NhM^SE)丄LL入 i!0 3COAlAlV3A HS0JlHiNAJ
HI
: 入 NEH AlS IS丄: Oi)3AID¾0dVSSS£) [(nio^-(03tI(¾D)DOOH)-DN)-3N]¾9IdXAJJO¾HODAlAlVHAlHSODlH0NAiI 1
HI
人 M3 0A1S IS丄: Όί)3ΛΙ£)丄 i VWSSSOSO
[(WD-T人 -(o w(¾D) OOH)-DN)-3N] Ll人 JI9¾3D AlA V3AlHS0:nHi)NAd
:6ΐ·Π 人 1S IS丄: Όδ3ΛΙ£丄 0dVWSSS9S)iKm30:DAlAlV3AlHS£)CnH0NA ( SOK d—DN):!
:81-Π
:N 入 N310A S IS丄:
AIOliMVW( (^03i-3N) SSE)S£)丄《I丄人: Μ£Η30:)ΛΊ入 Ίν3ΛΊΗ5£ ΊΗί) Λ:Ι : LV Π
ίΝ 入 Ν3 ζ)人 1SOIS丄 δΗΛΐαΐί SI WVSSSDSOJJO¾303AlAlV3AlHS031H A[(niO-l-^(03H(¾3)300H)-I)N)-DM]j
:91-11
'.[(η1ο-λ-(θ3 (¾3)300Η)-„Ν)-3Ν]-
: 人 N3li)AlS IS丄 0 03ΛΙΟ丄 i)dW
[ Ο-人 -(0 "(¾ ) OOH)-DN)-3N] SSE>SE)人 £>Ή3ΕΌΛΊΑ ν3Λ1Η5Ε>:ΠΗί)ΝΛίΙ 入 l^I^mS IS丄
丄 0dVS[(niO-人 -(0;Dw(¾ ) OOH)-DN)-3N]3£)S9丄人 3ίΚ^ί3£ ΛΊ人 lV3AlHS£>CHHi)MAd
•·ει-π
: N 入 N310A1S IS丄 0 03ΛΙΟ丄 tWWV
[(nio-A-(OD (¾D)300H)-DN)-3N]¾SSOSOJJ9¾HDDAlAlV3AlHS031H0NAj is
00Z.100/J10ZM3/X3d 98Z.980/£10Z OAV 11、一种药物组合物, 包括权利要求 1-10任一项所述的化合物和制药学上可接受的载体。
12、 根据权利要求 11 所述的药物组合物, 进一步包括速效胰岛素或胰岛素类似物和 /或 添力口剂。
13、根据权利要求 1-10任一项所述的化合物在制备治疗糖尿病或高血糖症的药物中的应 用。
14、一种治疗糖尿病或高血糖症的方法, 包括对需要的病患施用根据权利要求 1-10任一 项所述的化合物或权利要求 11-12任一项所述的药物组合物。
PCT/CN2012/001700 2011-12-15 2012-12-14 具有降血糖作用的化合物、组合物及其用途 WO2013086786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280061395.5A CN104114575B (zh) 2011-12-15 2012-12-14 具有降血糖作用的化合物、组合物及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110421619.6 2011-12-15
CN201110421619 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013086786A1 true WO2013086786A1 (zh) 2013-06-20

Family

ID=48611842

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/001700 WO2013086786A1 (zh) 2011-12-15 2012-12-14 具有降血糖作用的化合物、组合物及其用途
PCT/CN2012/001699 WO2013086785A1 (zh) 2011-12-15 2012-12-14 具有降血糖作用的化合物、组合物及其用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001699 WO2013086785A1 (zh) 2011-12-15 2012-12-14 具有降血糖作用的化合物、组合物及其用途

Country Status (2)

Country Link
CN (3) CN104114575B (zh)
WO (2) WO2013086786A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081891A1 (en) 2013-12-06 2015-06-11 Baikang (Suzhou) Co., Ltd Bioreversable promoieties for nitrogen-containing and hydroxyl-containing drugs
CN111518009A (zh) * 2019-02-01 2020-08-11 鲁南制药集团股份有限公司 一种脂肪酸衍生物及其合成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012029611A2 (pt) 2010-05-21 2017-07-25 Merrimack Pharmaceuticals Inc proteína de fusão biespecífica, composição farmacêutica, método de tratamento de dano ao tecido em um indivíduo, método de promoção da regeração ou sobrevivência do tecido em um indivíduo e molécula de ácido nucleico
GB201315335D0 (en) 2013-08-29 2013-10-09 Of Singapore Amino diacids containing peptide modifiers
CA3000742A1 (en) 2015-10-02 2017-04-06 Silver Creek Pharmaceuticals, Inc. Bi-specific therapeutic proteins for tissue repair
CA3122632A1 (en) 2018-12-11 2020-06-18 Sanofi Insulin conjugates
CN111349155B (zh) * 2018-12-24 2022-04-05 浙江和泽医药科技股份有限公司 一种胰高血糖素类似物及其制备方法和用途
WO2020236762A2 (en) * 2019-05-17 2020-11-26 Case Western Reserve University Variant single-chain insulin analogues
KR20220112817A (ko) * 2019-12-10 2022-08-11 사노피 설폰아미드 및 폴리펩티드의 콘주게이트를 형성하는 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016708A1 (en) * 1993-12-17 1995-06-22 Novo Nordisk A/S Proinsulin-like compounds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622932A (en) * 1995-05-05 1997-04-22 Eli Lilly And Company IGF-1 superagonists
US5789547A (en) * 1995-06-07 1998-08-04 Celtrix Pharmaceuticals, Inc. Method of producing insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) with correct folding and disulfide bonding
BR112012001363A2 (pt) * 2009-07-22 2016-11-08 Ipsen Pharma Sas análogo de igf-1, composição farmacêutica,e, método para tratar condições ou doenças mediadas pela ligação do receptor de igf-1

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016708A1 (en) * 1993-12-17 1995-06-22 Novo Nordisk A/S Proinsulin-like compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, J.K. ET AL.: "Preparation of a Novel Long Acting Human Insulin Analog, Chinese Doctoral Dissertations Full-text Database", MEDICINE AND HEALTH SCIENCES, 15 May 2008 (2008-05-15) *
SLIEKER,L.J. ET AL.: "Modifications in the B 10 and B26-30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor", DIABETOLOGIA, vol. 40, no. SUPPL., 1997, pages S54 - S61 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015081891A1 (en) 2013-12-06 2015-06-11 Baikang (Suzhou) Co., Ltd Bioreversable promoieties for nitrogen-containing and hydroxyl-containing drugs
CN111518009A (zh) * 2019-02-01 2020-08-11 鲁南制药集团股份有限公司 一种脂肪酸衍生物及其合成方法
CN111518009B (zh) * 2019-02-01 2023-06-23 鲁南制药集团股份有限公司 一种脂肪酸衍生物及其合成方法

Also Published As

Publication number Publication date
CN104114575A (zh) 2014-10-22
CN109180802A (zh) 2019-01-11
CN104011070A (zh) 2014-08-27
WO2013086785A1 (zh) 2013-06-20
CN104114575B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2013086786A1 (zh) 具有降血糖作用的化合物、组合物及其用途
RU2477286C2 (ru) АНАЛОГИ ГЛЮКАГОНА, ОБЛАДАЮЩИЕ ПОВЫШЕННОЙ РАСТВОРИМОСТЬЮ В БУФЕРАХ С ФИЗИОЛОГИЧЕСКИМ ЗНАЧЕНИЕМ pH
RU2128663C1 (ru) Производные полипептида, обладающие инсулинотропной активностью, фармацевтическая композиция, способы усиления действия инсулина, способы лечения диабета
EP3206710B1 (en) Incretin-insulin conjugates
TWI541023B (zh) 在生理ph緩衝液中呈現增強之溶解度及穩定性之升糖激素類似物
JP4044140B2 (ja) インスリン誘導体類とその使用
TWI489992B (zh) 醯胺系胰高血糖素超級家族之胜肽前驅藥物
KR102011924B1 (ko) 인슐린 저항성에 대한 개선된 펩티드 제약
JP6297969B2 (ja) 部位特異的モノpeg化エキセンジン類似体およびその調製方法
EP1575490A2 (en) Modified glucagon-like peptide-1 analogs
EP2851429A1 (en) Protein and protein conjugate for diabetes treatment, and applications thereof
US8716221B2 (en) Modified exendins and uses thereof
AU2004298424A1 (en) Novel GLP-1 compounds
JP2002506792A (ja) N末端修飾glp−1誘導体
BRPI0807728A2 (pt) co-agonistas de receptor glucagon/glp-1
TW201103556A (en) GIP receptor-active glucagon compounds
TW201010729A (en) GIP-based mixed agonists for treatment of metabolic disorders and obesity
TW200920404A (en) Glucagon antagonists
JP2004501162A (ja) グルカゴン様ペプチド−1類似体
JP2001524505A (ja) ポリエチレングリコール−grf結合体の部位特異的調製方法
JP2009024017A (ja) 長期持続性成長ホルモン放出因子誘導体
TW201127397A (en) Growth hormones with prolonged in-vivo efficacy
TW201119670A (en) Sugar chain adduct of antigenicity GLP-1 analogue
JP2022551233A (ja) 異なる構造のglp-1アナログペプチド修飾二量体およびその調製方法のii型糖尿病の治療における用途
KR20210126088A (ko) 지속성 glp-2 유사체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/10/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12857923

Country of ref document: EP

Kind code of ref document: A1