WO2013086664A1 - 高晶体莫来石-堇青石质高温工业陶瓷及其生产方法 - Google Patents

高晶体莫来石-堇青石质高温工业陶瓷及其生产方法 Download PDF

Info

Publication number
WO2013086664A1
WO2013086664A1 PCT/CN2011/002189 CN2011002189W WO2013086664A1 WO 2013086664 A1 WO2013086664 A1 WO 2013086664A1 CN 2011002189 W CN2011002189 W CN 2011002189W WO 2013086664 A1 WO2013086664 A1 WO 2013086664A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
accounts
weight
powder
composite matrix
Prior art date
Application number
PCT/CN2011/002189
Other languages
English (en)
French (fr)
Inventor
陈皇忠
Original Assignee
广东热金宝新材料科技有限公司
广东热金宝特种耐火材料实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东热金宝新材料科技有限公司, 广东热金宝特种耐火材料实业有限公司 filed Critical 广东热金宝新材料科技有限公司
Publication of WO2013086664A1 publication Critical patent/WO2013086664A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the invention belongs to the technical field of preparation of high-temperature industrial ceramics, and in particular relates to a production technology of a high-crystal mullite-cordierite high-temperature industrial ceramic-refractory kiln furniture, structural ceramics and structural materials.
  • High crystal mullite-cordierite high-temperature industrial ceramics- refractory kiln furniture, structural ceramics, structural materials with anti-flaking, high refractoriness, high operating temperature, low thermal expansion coefficient, good thermal shock resistance, high strength, oxidation resistance It has the advantages of long service life, and can be made into various shapes by pressing, extruding, pouring, rolling, beating and other forming methods. In addition to making various shaped kiln tools required by various industries, it can also The structural materials used in the furnaces of various industries (such as: hollow rims of kiln cars, hollow hangs of kiln roofs and kiln walls) can greatly reduce the fuel consumption of burned products and avoid falling defects. It has improved the quality of the products and is the first choice for the development of high-crystal mullite-cordierite high-temperature industrial ceramics, including refractory kiln furniture, structural ceramics and structural materials.
  • the object of the present invention is to provide a high crystal temperature with high anti-oxidation, anti-flaking, high refractoriness, high use temperature, low thermal expansion coefficient, good strength, low weight and excellent thermal stability.
  • the raw material formula will determine the material and material properties, and will have great influence on the process and technical problems that may occur in the implementation of the pilot and mass production; control the matrix phase to form a low melting point glass phase
  • the formation of the matrix phase is mostly or completely converted into a microcrystalline phase, and the number of crystals of mullite and cordierite in the product is increased to improve the high temperature flexural strength, thermal expansion coefficient, thermal shock stability and peeling resistance of the product. key.
  • the invention starts from the improvement of the raw material formula, the product molding process and the roasting process, and combines the equilibrium phase diagram of the MgO-Al 2 0 3 -Si0 2 system, the type and source of the raw materials, the physical and chemical properties of the expected product, the production cost, and the practical application.
  • Factors such as sex and innovation, after repeated trials, the main practice of the present invention is:
  • cordierite 2MgO ⁇ 2A1 2 0 3 ⁇ 5Si0 2
  • cordierite 2MgO ⁇ 2A1 2 0 3 ⁇ 5Si0 2
  • synthetic mullite (3A1 2 0 3 - 2Si0 2 ), high melting point, moderate thermal expansion coefficient; synthesis of mullite, calcined kaolin Its mullite interweaving network structure is excellent and does not contain free quartz phase.
  • Sillimanite and andalusite (AL 2 0 3 'Si0 2 ) are characterized by high purity, energy saving, no need to be calcined before use, and easy conversion to mullite. Therefore, the main crystalline phase materials composed of calcined kaolin, cordierite, synthetic mullite, sillimanite and andalusite are selected, and on this basis, experiments are repeatedly conducted to seek optimization of raw material formula and improvement of production process;
  • the raw materials of mullite and cordierite are rare in nature and have high purity. They all need to be artificially synthesized. The raw materials used in the synthesis are different, and there are big differences in mineral properties.
  • the sintered mullite and cordierite synthetic raw materials are the basic raw materials of the high-temperature industrial ceramics of the invention, and the natural raw materials are combined with the mullite and cordierite matrix phases, and 40-70% of the calcined kaolin and cordierite are simultaneously determined. Synthetic mullite, sillimanite, and andalusite to form a main crystalline phase material, with a ratio of 30-60% of the combined composite matrix material;
  • firing temperature range and firing curve is technology
  • the key is to carry out trial and error experiments with the preferred method, and conduct a large number of experiments and comprehensive comparative analysis on the relationship between firing temperature, firing curve, addition of microcrystalline nucleating dose, mineral phase composition of the product and performance index.
  • the relationship and technical basis, and finally find the optimal temperature range for the crystallization of the matrix phase composite crystallization synthesis reaction is 142 (TC -1430 ° C, while selecting the type and quantity of microcrystalline nucleating agent and devitrification temperature range, micro
  • the crystal nucleating agent type uses Zr02+V205 composite microcrystalline nucleating agent, Zr0 2 generally uses zirconium dioxide powder, zircon sand, zircon powder, etc.;
  • the high-crystal mullite-cordierite high-temperature industrial ceramics including refractory kiln furniture, structural ceramics and structural materials
  • the raw material ratio includes 40-80 parts by weight of the main crystalline phase material and 20-60 parts by weight
  • the total composition of the selected main crystalline phase material and the combined composite matrix material is up to 100 parts by weight, and then an appropriate amount of the composite microcrystalline nucleating agent is added, wherein:
  • the main crystalline phase material is calcined kaolin, cordierite, synthetic mullite, sillimanite and andalusite aggregate, wherein the calcined sorghum aggregate comprises 20-50% by weight of the main crystalline phase material, cordierite aggregate 5-20% by weight of the main crystalline phase material, 30 to 60% by weight of the main crystal phase material, and 8 to 10% by weight of the ore or sillimanite aggregate, the aggregate of the above-mentioned aggregate
  • the particle size is less than 0.71 mm;
  • Magnesium oxide mineral fine powder MgO component content is greater than 32%, fineness requirement is 325 mesh, magnesium oxide mineral fine powder accounts for 25-35 wt% of combined composite matrix material;
  • Al2O3 micropowder A1 2 0 3 component content is greater than 99.9%, particle size is less than 5 ⁇ ⁇ , and aluminum oxide micropowder accounts for 25-40 wt% of the combined composite matrix material;
  • Silica fine powder Si0 2 component content is greater than 99%, particle size is less than ⁇ ⁇ ⁇ , silica micropowder accounts for 2-10wt% of the combined composite matrix material;
  • Kaolin A1 2 0 3 component content is greater than 36%, Fe 2 0 3 component content is less than 0.8%, fineness is required to pass 325 mesh, kaolin accounts for 10-25 wt% of combined composite matrix material;
  • Ball soil A1 2 0 3 component content is more than 35%, Fe 2 0 3 component content is less than 1%, fineness requirement Through 325 mesh, the ball clay accounts for 25-40% by weight of the combined composite matrix;
  • a refractory powder containing MgO, A1 2 0 3 , and SiO 2 components obtained from magnesium oxide mineral fine powder, kaolin, silica fine powder, activated alumina fine powder, corundum fine powder for adjusting components, and fire resistance for the adjustment component
  • the powder fineness is required to pass through 500 mesh, and the refractory powder for the adjusting component accounts for 0-15% by weight of the combined composite matrix;
  • the refractory powder for the adjusting component, the MgO component occupies the total group of the refractory powder for the adjusting component 25-40 wt%, A1 2 3 3 component of the refractory powder component of the adjustment component is 35-45 wt%, and the SiO 2 component is 15-30 wt% of the total component of the refractory powder for the adjustment component. ;
  • the microcrystalline nucleating agent is a Zr0 2 +V 2 0 5 composite microcrystalline nucleating agent, the weight ratio of Zr0 2 to V 2 0 5 is 2-3:3-4, and the fineness is required to pass 500 mesh, composite micro
  • the crystal nucleating agent is 1.0-10% by weight of the total of the selected main crystalline phase material and the combined composite matrix material;
  • the production method includes batching, compounding, bundling, molding, drying, and firing.
  • the firing process a two-stage constant temperature firing method and a two-stage composite crystallization synthesis reaction are carried out, wherein:
  • the two-stage constant temperature firing method is: at 200 ° C, the constant temperature is kept for 10-15 hours; at 500 ° C, the constant temperature is kept for 10-15 hours;
  • the two-stage composite crystallization synthesis reaction special strengthening treatment process is: heating up to the first stage high temperature constant temperature, in the first stage high temperature constant temperature 1100-1150 ° C, sintering at normal pressure for 10-15 hours; then heating up to the second thermostatic temperature section, the second section at a high temperature sintering temperature of 1420- 1430 ° C temperature, pressure 20-25 hours.
  • the ratio of raw materials is 40-80% calcined kaolin, cordierite, synthetic mullite, sillimanite and andalusite as the main phase material, with 20-60% combined composite matrix, and added to the composite
  • the nucleating agent (Zr0 2 +V 2 0 5 ) catalyzes the high degree of microcrystallization of the matrix, the high-temperature phase of the special zircon mullite, and the formation of a high-viscosity matrix phase, which greatly overcomes the low-temperature base shield liquid amount (5-10%). ), thus promoting the overall improvement of high temperature performance, and successful application;
  • the key to the sintering process is to carry out microcrystallization nucleation strengthening treatment at 1420 ° C-143 (TC high temperature, to form a low melting point glass phase by controlling the matrix phase, and further to convert most or completely of the matrix phase into Microcrystalline;
  • the product has high crystal structure after strengthening treatment, excellent oxidation resistance, high refractoriness, high use temperature, low thermal expansion coefficient, high compressive strength, low specific gravity and heat stability. Excellent qualitative properties, anti-flaking properties, high temperature flexural strength;
  • the core of the technology is the micro-crystallization nucleation strengthening treatment (142 (between TC - 1430 °C).
  • the firing curve is divided into two parts: the low-temperature two-stage constant temperature treatment of the roasting process, and the high-temperature two-stage composite crystallization synthesis reaction.
  • the treatment not only causes the nucleation of the product to form early during the sintering process, but also increases the nucleation skeleton and reduces the shrinkage rate. Further, after further crystallization, the number of crystals of mullite and cordierite in the product is greatly increased, and the crystal structure forms an interlaced network structure.
  • the molding process uses high-crystal mullite-cordierite high-temperature industrial ceramics, such as pressing, extrusion, casting, rolling, beating, etc., to produce refractory kiln furniture, structural ceramics, structural materials, and simple processes. Low cost, suitable for large-scale production.
  • the product of the invention has high crystal structure, excellent oxidation resistance, high refractoriness, high use temperature, low thermal expansion coefficient, high compressive strength, low specific gravity, excellent thermal stability, anti-flaking performance, high high temperature flexural strength,
  • the utility model has the advantages of long service life; the process of the invention has the advantages of single process, low cost and suitable for large-scale production, and is suitable for preparation of refractory kiln furniture, structural ceramics and structural materials.
  • a high-crystal mullite-cordierite high-temperature industrial ceramic comprising a refractory kiln furniture, a structural ceramic and a structural material, the raw material comprising 40-80 parts by weight of the main crystalline phase material and 20-60 parts by weight of the combined composite matrix
  • the total composition of the selected main crystalline phase material and the combined composite matrix material is up to 100 parts by weight, and then an appropriate amount of composite microcrystalline nucleating agent is added, wherein:
  • the main crystalline phase material is calcined kaolin, cordierite, synthetic mullite, sillimanite and andalusite aggregate, wherein the calcined kaolin aggregate accounts for 20-50% by weight of the main crystalline phase material, and the cordierite aggregate accounts for the main crystal. 5-20% by weight of the phase material, the synthetic mullite aggregate accounts for 30-60% by weight of the main crystalline phase material, and the andalusite or sillimanite aggregate accounts for 1-10% by weight of the main crystalline phase material, and the aggregate particle size Less than 0.71mm;
  • the composite matrix material is:
  • Fine powder containing magnesium oxide mineral The content of MgO component is more than 32%, the fineness is required to pass through 325 mesh, and the fine powder of magnesium oxide mineral accounts for 25-35 wt% of the composite composite material. ; Al2O3 micropowder: A1 2 0 3 component content is greater than 99.9%, particle size is less than 5 ⁇ ⁇ , and aluminum oxide tri-powder powder accounts for 25-40 wt% of the combined composite matrix material;
  • Silica micropowder Si0 2 component content is greater than 99%, particle size is less than 1 ⁇ ⁇ , and silica micropowder accounts for 2-10 wt% of the combined composite matrix material;
  • Kaolin A1 2 0 3 component content is greater than 36%, Fe 2 0 3 component content is less than 0.8%, fineness is required to pass 325 mesh, kaolin accounts for 10-25 wt% of combined composite matrix material;
  • Ball soil A1 2 0 3 component content is greater than 35%, Fe 2 0 3 component content is less than 1%, fineness is required to pass 325 mesh, ball soil accounts for 25-40wt% of combined composite matrix material;
  • a refractory powder containing MgO, A1 2 0 3 , and Si0 2 components obtained by containing oxidized beauty mineral fine powder, kaolin, silica powder, activated alumina fine powder, corundum fine powder for adjusting components, and the adjusting component
  • the refractory powder has a fineness of 500 mesh, and the refractory powder for the adjusting component accounts for 0-15% by weight of the combined composite matrix; the refractory powder for the adjusting component, the MgO component occupies the refractory powder for the adjusting component 25-40% by weight of the total component, the A1 2 0 3 component accounts for 35-45 wt% of the total component of the refractory powder for the conditioning component, and the SiO 2 component accounts for 15% of the total component of the refractory powder for the conditioning component. 30wt%;
  • the microcrystalline nucleating agent is a Zr0 2 +V 2 0 5 composite microcrystalline nucleating agent, the weight ratio of Zr0 2 to V 2 0 5 is 2.5:3.5, and the fineness requirement is 500 mesh, the composite microcrystalline nucleating agent 4.2 wt% of the total mass of the selected main crystalline phase material and the combined composite matrix material;
  • the two-stage constant temperature firing method is: 200 ° C, constant temperature holding 10-15 hours; 500 At °C, the temperature is kept for 10-15 hours;
  • the two-stage composite crystallization synthesis reaction special strengthening treatment process is: heating up to the first stage high temperature constant temperature, in the first stage high temperature constant temperature 1100-1150 ° C, sintering at normal pressure for 10-15 hours; then heating up to the second The section is heated at a high temperature and is sintered at a temperature of M - 1430 ° C in the second stage at a high temperature of 20 to 25 hours under normal pressure.
  • the main products of the invention include refractory kiln furniture, high temperature industrial ceramics, kiln structural materials; refractory slabs such as kiln furniture, hollow slabs and kiln ceilings, kiln walls, kiln hollow structural materials,
  • the main features are excellent anti-flaking performance, high temperature flexural strength and thermal shock stability, and uniform economic and practicality.
  • the purpose of the product is as follows:
  • Refractory board Mainly used for fine porcelain, daily porcelain, ash porcelain, semi-ceramic, fine ceramics, purple sand, casserole, light porcelain, glazed mosaic, square brick, sanitary ware (small), glass-ceramic (The products such as small crystallization treatment and art deco glass (surface shape treatment) are fired in tunnel kiln, roller kiln and shuttle kiln;
  • hollow board Mainly used for the sanitary ware and glass-ceramic decorative board, solar enamel, daily-use ceramics and other products.
  • the hollow board is suitable for rapid firing of ceramic appliance products, and has the advantages of reducing weight by half of the solid board and saving energy, increasing the weight of the board surface, being difficult to be deformed at high temperature, and having a longer service life;
  • the product mainly replaces the traditional kiln refractory brick for building kiln, and completely changes the traditional kiln design concept and material method, the main feature is to effectively prevent The problem of the quality of the burned product caused by slag and peeling, and the energy saving is remarkable, the construction is convenient, and the grade of the kiln is improved.
  • the main production equipments of the invention include: mill, double shaft mixer, vacuum mud machine, real powder pump, disc screen feeder, triaxial vacuum extruder, automatic cutting machine, high temperature shuttle kiln, scraping Flattening thick machine, polishing edge line and chamfering, 5T ball mill, 1500T automatic press, dust removal equipment, testing equipment, power distribution facility, drying car, cold working cutting machine, filter press, plunger pump, 10T slow speed pulper Etc., the devices are sold on the market.
  • the production processes such as pressing, extrusion, pouring, rolling, and beating in the production process are existing ceramic molding processes.

Abstract

一种高晶体莫来石-堇青石质高温工业陶瓷及其生产方法,原料包括40-80重量份的主晶相材料和20-60重量份的结合复合基质料,以及适量的复合微晶成核剂;焙烧工艺包括二段恒温烧成法和二段复合晶化合成反应特立强化处理工艺。

Description

高晶体莫来石-堇青石质高温工业陶瓷及其生产方法 技术领域
本发明属于高温工业陶瓷制备技术领域, 具体地说, 是涉及一种高晶 体莫来石-堇青石质高温工业陶瓷一一耐火窑具、 结构陶瓷、 结构材料的生 产技术。
背景技术
近年来, 全球经济向一体化方向发展, 我国经济快速发展, 人民生活 水平不断提高, 对陶瓷类产品的品种和质量的要求越来越高, 促进了国内 电子、 磁性材料、 陶瓷、 建材、 新能源、 微晶玻璃等行业的蓬勃发展。 随 着新材质陶瓷的研究开发成功和陶瓷类产品的更新换代, 生产厂家在产品 的烧结工艺、 生产装备方面也不断进行改进, 对高温工业陶瓷、 耐火窑具、 炉窑结构材料提出了更高的要求, 传统的粘土质、 高铝质、 熔融石英石质、 氧化硅结合碳化硅盾及普通堇青石质耐火窑具和窑炉耐火制品已无法满足 使用要求, 开发适应高品质被烧产品烧成用的高抗氧化、 抗剥落、 耐火度 高、 使用温度高、 热膨胀系数低、 强度好、 重量低、 热稳定性优异的较长 使用寿命的高晶体莫来石 -堇青石质高温工业陶瓷一一耐火窑具、 结构陶 瓷、 结构材料已成为一种发展趋势。 高晶体莫来石-堇青石质高温工业陶瓷 一一耐火窑具、 结构陶瓷、 结构材料具有抗剥落、 耐火度高、 使用温度高、 热膨胀系数低、 热震稳定性好、 高强度、 抗氧化、 使用寿命长等优点, 并 可采用压制、 挤出、 浇注、 滚压、 捣打等多种成型方式制成各种形状的产 品, 除制作各行业需要的各种异型窑具外, 还可以制作用于各行业炉窑的 结构材料(如: 窑车中空边围砖、 窑顶和窑墙的中空吊挂件), 使用后能大 幅度降低被烧产品燃料消耗, 同时能避免落脏缺陷, 提高了产品质量, 是 研发高晶体莫来石 -堇青石质高温工业陶瓷, 包括耐火窑具、 结构陶瓷、 结 构材料的首选项目。
目前,国内有少数科研机构和厂家将高晶体莫来石-堇青石质高温工业 陶瓷 "耐火窑具、 结构陶瓷、 结构材料" 生产技术列为主要研究项目进行 开发, 但因产品配方、 原料质量、 生产条件、 生产工艺、 质量控制等方面 存在着不足, 仍停留在试验阶段, 未能找到关键实现大规模生产高晶体莫 来石 -堇青石质高温工业陶瓷, 包括耐火窑具、 结构陶瓷、 结构材料的突破 Π。
发明内容
本发明的目的在于针对上述问题, 提供一种高抗氧化、 抗剥落、 耐火 度高、 使用温度高、 热膨胀系数低、 强度好、 重量低、 热稳定性优异的较 长使用寿命的高晶体莫来石 -堇青石质高温工业陶瓷一一耐火窑具、结构陶 瓷、 结构材料及其工艺简单、 成本低、 适合大规模生产的生产方法。
本发明的技术原理: 耐火制品生产中, 原料配方将决定材质、 材性, 且对中试、 大规模生产的实施中可能出现的工艺技术问题影响极大; 控制 基质相生成低熔点的玻璃相的形成,使基质相大部份或完全转化为微晶相, 提高制品中莫来石、 堇青石的晶体数量, 则是提高制品高温抗折强度、 热 膨胀系数、 热震稳定性和抗剥落性能的关键。 基于此, 本发明从改进原料 配方、 产品成型工艺和焙烧工艺入手, 结合 MgO-Al203-Si02系平衡相图、 原料种类及来源、 预期生成物的物化性能、 生产成本、 工艺实用性和创新 性等因素, 经反复试验, 本发明的主要做法是:
1 )、根据原料特性及 MgO-Al203-Si02系平衡相图选定基础原料: 堇青 石 ( 2MgO · 2A1203 · 5Si02 )是晶相熔点约 1470°C , 其热膨胀系数低(在 RT-100CTC条件下, α =1.1-2.6 10-6/°C ); 合成莫来石 ( 3A1203 - 2Si02 ), 熔点高, 热膨胀系数适中; 合成莫来石、 煅烧高岭土其莫来石交织网络结 构优异, 且不含游离石英相。 硅线石、 红柱石 (AL203 ' Si02 ) 具有高纯 度、 节能、 使用前无须煅烧、 容易向莫来石转化等特点。 故选取以煅烧高 岭土、 堇青石、 合成莫来石、 硅线石、 红柱石组成主晶相材料, 并在此基 础上反复进行试验探索, 寻求原料配方的优化和生产工艺的改进;
2 )、 确定原料种类及配比: 莫来石、 堇青石原料在自然界中极少原生 高纯度, 均需人工合成, 合成时所用原料不同, 在矿物特性上有较大差异。 经反复比较, 采用烧结莫来石, 堇青石合成原料为本发明高温工业陶瓷的 基础原料, 并用天然原料组合莫来石及堇青石基质相, 同时确定了 40-70% 以煅烧高岭土、 堇青石、 合成莫来石、 硅线石、 红柱石组成主晶相材料, 配以 30-60%的结合复合基质料的配比范围;
3 )、 明确烧成温度范围及烧成曲线: 烧成温度范围及烧成曲线是技术 关键, 釆用优选法进行反复试验, 对烧成温度、 烧成曲线、 添加微晶成核 剂量、 制品的矿物相组成和性能指标等的相互关系进行大量的试验和综合 对比分析, 寻找它们之间的关系和技术依据, 最终找到对基质相复合晶化 合成反应特立强化处理最佳温度范围为 142(TC -1430°C , 同时选择微晶成 核剂种类及数量及失透温度范围, 微晶成核剂种类选用 Zr02+V205 复合 微晶成核剂, Zr02—般选用二氧化锆粉末、 锆英砂、 锆英粉等;
4 )、 改进成型工艺: 在生产工艺方面, 除考虑温度、 原料组成、 颗粒 级配、 微晶成核剂量、 矿物相组成、 性能指标外, 根据不同生产成型方式 制订不同成型工艺路线。 对过量载重、 变形、 平整度、 微小裂纹等质量问 题迅速予以改进, 并形成稳定的原料及配方、 混料、 捆料、 成型、 干燥、 烧成、 成品检测等一系列技术工艺制度, 奠定了大规模生产的工艺技术基 础。
本发明, 所述高晶体莫来石 -堇青石质高温工业陶瓷, 包括耐火窑具、 结构陶瓷和结构材料, 原料配比包括 40-80重量份的主晶相材料和 20-60 重量份的结合复合基质料, 所选主晶相材料、 结合复合基质料的总组份达 到 100重量份, 再加入适量的复合微晶成核剂, 其中:
1 )、 主晶相材料为煅烧高岭土、 堇青石、 合成莫来石、 硅线石、 红柱 石骨料, 其中, 煅烧高呤土骨料占主晶相材料 20-50wt%, 堇青石骨料占主 晶相材料的 5-20wt%, 莫来卡特骨料占主晶相材料的 30-60wt%, 红柱石或 硅线石骨料占主晶相材料的 l-10wt%, 上述骨料的粒径小于 0.71mm;
2 )、 结合复合基质料为:
含氧化镁矿物细粉: MgO成份含量大于 32%, 细度要求通过 325目, 氧化镁矿物细粉占结合复合基质料的 25-35wt%;
三氧化二铝微粉: A1203成份含量大于 99.9%, 粒径小于 5 μ ιη, 三氧 化二铝微粉占结合复合基质料的 25-40wt%;
二氧化硅微粉: Si02成份含量大于 99%, 粒径小于 Ι μ ηι, 二氧化硅 微粉占结合复合基质料的 2-10wt%;
高岭土: A1203成份含量大于 36%, Fe203成份含量小于 0.8%, 细度要 求通过 325目, 高岭土占结合复合基质料的 10-25wt%;
球土: A1203成份含量大于 35%, Fe203成份含量小于 1%, 细度要求 通过 325目, 球土占结合复合基质料的 25-40wt%;
调整成份用的由含氧化镁矿物细粉、 高岭土、 二氧化硅微粉、 活性氧 化铝微粉、 刚玉微粉获得的含 MgO、 A1203、 Si02成份的耐火粉末, 所述 调整成份用的耐火粉末细度要求通过 500目, 所述调整成份用的耐火粉末 占结合复合基质料的 0-15wt%; 所述调整成份用的耐火粉末中, MgO成份 占所述调整成份用的耐火粉末总组份的 25-40wt%, A1203成份占所述调整 成份用的耐火粉末总组份的 35-45wt%, Si02成份占所述调整成份用的耐火 粉末总组份的 15-30wt%;
3 )微晶成核剂为 Zr02+V205复合微晶成核剂, Zr02与 V205的重量比 为 2-3:3-4, 细度要求通过 500目, 复合微晶成核剂为上述所选主晶相材料 和结合复合基质料的总量的 1.0-10wt%;
本发明, 所述生产方法包括配料、 混料、 捆料、 成型、 干燥和烧成。 在烧成过程中, 包括二段恒温烧成法和二段复合晶化合成反应特立强化处 理工艺, 其中:
二段恒温烧成法为: 200°C时, 恒温保温 10-15小时; 500°C时, 恒温 保温 10-15小时;
二段复合晶化合成反应特立强化处理工艺为:升温至第一段高温恒温, 在第一段高温恒温 1100-1150°C的温度, 常压下烧结 10-15小时; 再升温至 第二段高温恒温,在第二段高温恒温 1420- 1430°C的温度,常压下烧结 20-25 小时。
本发明与现有技术相比, 其有益效果及创新点主要体现在:
1、 原料配比以 40-80%的煅烧高岭土、 堇青石、 .合成莫来石、 硅线 石、 红柱石为主晶相材料, 配以 20-60%的结合复合基质料, 同时加入复合 晶核剂 (Zr02+V205 )催化增强基质高度微晶化, 特立锆莫来石高温相, 高粘度基质相生成, 极大地克服了低温基盾液相量(5-10% ), 从而推动了 高温性能全面提高, 得以成功应用;
2、 烧结工艺的关键是在 1420°C-143(TC高温对制品进行微晶化成核强 化处理, 通过控制基质相生成低熔点的玻璃相, 并进一步使基质相的大部 份或完全转化为微晶体; 制品经强化处理后呈高晶体结构, 抗氧化性能优 异、 耐火度高、 使用温度高、 热膨胀系数低、 抗压强度高、 比重低、 热稳 定性优异、 抗剥落性能、 高温抗折强度高;
3、 技术核心是微晶化成核强化处理( 142(TC -1430°C之间进行) 的烧 成曲线, 分为焙烧工艺低温分二段恒温处理, 高温二段复合晶化合成反应 特立强化处理, 不仅使制品在烧结过程中晶核形成早, 晶核骨架增加, 收 缩率减少, 而且进一步晶化后, 制品中莫来石、 堇青石的晶体数量大大增 加, 使晶体结构形成交织网络结构。 开发的高晶体莫来石-堇青石质高温工 业陶瓷 "耐火窑具、 结构陶瓷、 结构材料" 具有耐高温 (火焰温度〉 1600 。C ),荷重软化点高( > 1450°C , T0.6 ), 1250°C时高温抗折强度高( 17Mpa), 25-1000°C膨胀系数 3.0(10-61^) ,热震稳定性优异、 高温抗折强度高、 抗剥 落性能、 工艺简化、 可靠、 成本低、 轻质高强、 节能环保等特点;
4、 成型工艺釆用压制、 挤出、 浇注、 滚压、 捣打等成型工艺生产高晶 体莫来石-堇青石质高温工业陶瓷 "耐火窑具、 结构陶瓷、 结构材料,,, 工 艺简单, 成本低, 适合大规模生产。
本发明的制品, 具有高晶体结构, 抗氧化性能优异、 耐火度高、 使用 温度高、 热膨胀系数低、 抗压强度高、 比重低、 热稳定性优异、 抗剥落性 能、 高温抗折强度高、 使用寿命长的优点; 本发明的工艺, 具有工艺筒单、 成本低、 适合大规模生产的优点, 适用于耐火窑具、 结构陶瓷、 结构材料 制备。
具体实施方式
一种高晶体莫来石 -堇青石质高温工业陶瓷, 包括耐火窑具、 结构陶瓷 和结构材料, 制备的原料包括 40-80重量份的主晶相材料和 20-60重量份 的结合复合基质料, 所选主晶相材料和结合复合基质料的总组份达到 100 重量份, 再加入适量的复合微晶成核剂, 其中:
1 )主晶相材料为煅烧高岭土、 堇青石、 合成莫来石、 硅线石、 红柱石 骨料, 其中, 煅烧高岭土骨料占主晶相材料 20-50wt%, 堇青石骨料占主晶 相材料的 5-20wt%, 合成莫来石骨料占主晶相材料的 30-60wt%, 红柱石或 硅线石骨料占主晶相材料的 l-10wt%, 上述骨料的粒径小于 0.71mm;
2 ) 结合复合基质料为:
含氧化镁矿物细粉: MgO成份含量大于 32%, 细度要求通过 325目, 氧化镁矿物细粉占结合复合基质料的 25-35wt°/。; 三氧化二铝微粉: A1203成份含量大于 99.9%, 粒径小于 5 μ πι, 三氧 化二铝微粉占结合复合基质料的 25-40wt%;
二氧化硅微粉: Si02成份含量大于 99%, 粒径小于 1 μ ηι, 二氧化硅 微粉占结合复合基质料的 2-10wt%;
高岭土: A1203成份含量大于 36%, Fe203成份含量小于 0.8%, 细度要 求通过 325 目, 高岭土占结合复合基质料的 10-25wt%;
球土: A1203成份含量大于 35%, Fe203成份含量小于 1%, 细度要求 通过 325目, 球土占结合复合基质料的 25-40wt%;
调整成份用的由含氧化美矿物细粉、 高岭土、 二氧化硅^!粉、 活性氧 化铝微粉、 刚玉微粉获得的含 MgO、 A1203、 Si02成份的耐火粉末, 所述 调整成份用的耐火粉末细度要求通过 500目, 所述调整成份用的耐火粉末 占结合复合基质料的 0-15wt%; 所述调整成份用的耐火粉末中, MgO成份 占所述调整成份用的耐火粉末总组份的 25-40wt%, A1203成份占所述调整 成份用的耐火粉末总组份的 35-45wt%, Si02成份占所述调整成份用的耐火 粉末总组份的 15-30wt%;
3 ) 微晶成核剂为 Zr02+V205复合微晶成核剂, Zr02与 V205的重量比 为 2.5:3.5, 细度要求通过 500目, 复合微晶成核剂为上述所选主晶相材料 和结合复合基质料的总质量的 4.2wt%;
上述原料经混料、 捆料、 成型、 干燥后, 烧成为成品。 在烧成过程中, 包括二段恒温烧成法和二段复合晶化合成反应特立强化处理工艺, 其中: 二段恒温烧成法为: 200°C时, 恒温保温 10-15小时; 500°C时, 恒温 保温 10-15小时;
二段复合晶化合成反应特立强化处理工艺为:升温至第一段高温恒温, 在第一段高温恒温 1100-1150°C的温度, 常压下烧结 10-15小时; 再升温至 第二段高温恒温,在第二段高温恒温 M - 1430°C的温度,常压下烧结 20-25 小时。
本实施例所述产品的主要技术参数请见表 1。
表 1 :
Figure imgf000007_0001
体积密度 g/cm3 > 2.00
显气孔率% < 26 膨胀系数 ( 20°C~1000°C ) lo 1 < 3.0
荷重软化点 ( T0.6 ) °C > 1450 常温抗压强度 MPa > 20
1250°C高温抗折强度 MPa > 17
热震稳定性
A1203 43.0% 化学成份 Si02 46.0%
MgO 6.0%
单层使用 1360°C 在隧道窑中
多层使用 1300 °C 最高工作温度
在梭式窑中 多层使用 1300°C (耐火板为例) °C
单层使用 1360°C 在辊道窑中
多层使用 1300°C 本发明的主要产品包括耐火窑具、 高温工业陶瓷、 炉窑结构材料; 如 窑具类的耐火板、 中空板和炉窑吊顶、 窑墙、 窑车中空结构材料, 其主要 特点是抗剥落性能、 高温抗折强度和热震稳定性能优异, 经济性和实用性 统一。 产品的用途如下:
①、 耐火板: 主要用于细瓷、 日用瓷、 骨灰瓷、 半瓷、 精陶、 紫砂、 砂锅煲、 轻质瓷、 彩釉马赛克、 广场砖、 卫生洁具(小型)、 微晶玻璃(小 型晶化处理)、 艺术装饰玻璃(表面形状处理)等产品在隧道窑、 辊道窑和 梭式窑的烧成;
②、 中空板: 主要用于卫生洁具和微晶玻璃装饰板、 太阳能坩埚、 日 用陶瓷等制品的烧成。 中空板适用于陶瓷器具产品的快速烧成, 具有重量 比实心板减轻一半并节能、 板面承重量增加、 高温下不易变型、 使用寿命 更长的优点; ③、 炉窑吊顶、 窑墙、 窑车中空结构材料: 产品主要替代传统烧成炉 窑筑砌用的耐火砖, 并彻底改变传统炉窑设计的理念和用材方法, 主要特 点是能有效地防止掉渣、 剥落引起的被烧产品质量问题, 而且节能显著、 施工方便、 提高炉窑档次。
本发明主要生产设备包括: 磨粉机、 双轴搅拌机、 真空练泥机、 真粉 泵、 圆盘筛式给料机、 三轴真空挤出机、 自动切坯机、 高温梭式窑、 刮平 定厚机、 抛光磨边线及倒角、 5T球磨机、 1500T自动压机、 除尘设备、 检 测设备、 配电设施、 干燥车、 冷加工切割机械、 压滤机、 柱塞泵、 10T慢 速存浆机等, 所述设备在市场上均有销售。 生产工艺中的压制、 挤出、 浇 注、 滚压、 捣打等生产工艺为现有陶瓷成型工艺。

Claims

权 利 要 求
1、 一种高晶体莫来石 -堇青石质高温工业陶瓷, 包括耐火窑具、 结构 陶瓷和结构材料, 原料包括 40-80重量份的主晶相材料和 20-60重量份的 结合复合基质料, 所选主晶相材料和结合复合基质料的总组份达到 100重 量份, 再加入适量的复合微晶成核剂, 其中:
1 )主晶相材料为煅烧高岭土、 堇青石、 合成莫来石、 硅线石、 红柱石 骨料, 其中, 煅烧高岭土骨料占主晶相材料 20-50wt%, 堇青石骨料占主晶 相材料的 5-20wt%, 合成莫来石骨料占主晶相材料的 30- 60wt%, 红柱石或 硅线石骨料占主晶相材料的 l-10wt%, 上述骨料的粒径小于 0.71mm;
2 )结合复合基质料为:
含氧化镁矿物细粉: MgO成份含量大于 32%, 细度要求通过 325 目, 氧化镁矿物细粉占结合复合基质料的 25- 35wt%;
三氧化二铝微粉: A1203成份含量大于 99.9%, 粒径小于 5 μ πι, 三氧 化二铝微粉占结合复合基质料的 25-40wt%;
二氧化硅微粉: Si02成份含量大于 99%, 粒径小于 Ι μ ιη, 二氧化硅 微粉占结合复合基质料的 2- 10wt%;
高岭土: A1203成份含量大于 36%, Fe203成份含量小于 0.8%, 细度要 求通过 325目, 高岭土细粉占结合复合基质料的 10-25wt%;
球土: A1203成份含量大于 35%, Fe203成份含量小于 1%, 细度要求 通过 325目, 球土细粉占结合复合基质料的 25-40wt%;
调整成份用的由含氧化镁矿物细粉、 高岭土、 二氧化硅微粉、 活性氧 化铝微粉、 刚玉微粉获得的含 MgO、 A1203、 Si02成份的耐火混合粉体, 所述调整成份用的耐火混合粉体细度要求通过 500目, 所述调整成份用的 耐火粉末占结合复合基质料的 0-15wt%; 所述调整成份用的耐火粉末中, MgO成份占所述调整成份用的耐火粉末总组份的 25-40wt%, A1203成份占 所述调整成份用的耐火粉末总组份的 35-45wt%, Si02成份占所述调整成份 用的耐火粉末总组份的 15-30wt%;
微晶成核剂为 Zr02+V205复合微晶成核剂, Zr02与 V205的重量比为 2-3:3-4, 细度要求通过 500目, 复合微晶成核剂为上述所选主晶相材料和 结合复合基质料的总量的 1.0-10wt%;
上述原料经混料、 捆料、 成型、 干燥后, 烧成为成品。
2、 一种高晶体莫来石-堇青石质高温工业陶瓷的生产方法, 原料包括 40-80重量份的主晶相材料和 20-60重量份的结合复合基质料,所选主晶相 材料和结合复合基质料的总组份达到 100重量份, 再加入适量的复合微晶 成核剂, 其中:
1 )主晶相材料为煅烧高岭土、 堇青石、 合成莫来石、 硅线石、 红柱石 骨料, 其中, 煅烧高岭土骨料占主晶相材料 20-50wt%, 堇青石骨料占主晶 相材料的 5-20wt%, 合成莫来石骨料占主晶相材料的 30-60wt%, 红柱石或 硅线石骨料占主晶相材料的 l-10wt%, 上述骨料的粒径小于 0.71mm;
2 ) 结合复合基质料为:
含氧化镁矿物细粉: MgO成份含量大于 32%, 细度要求通过 325目, 氧化镁矿物细粉占结合复合基质料的 25-35wt%;
三氧化二铝^粉: A1203成份含量大于 99.9%, 粒径小于 5 μ ηι, 三氧 化二铝微粉占结合复合基质料的 25-40wt%;
二氧化硅微粉: Si〇2成份含量大于 99%, 粒径小于 Ι μ ηι, 二氧化硅 微粉占结合复合基质料的 2-10wt%;
高岭土: A1203成份含量大于 36%, Fe203成份含量小于 0.8%, 细度要 求通过 325目, 高岭土细粉占结合复合基质料的 10-25wt%;
球土: A1203成份含量大于 35%, Fe203成份含量小于 1%, 细度要求 通过 325目, 球土细粉占结合复合基质料的 25-40wt%;
调整成份用的由含氧化镁矿物细粉、 高岭土、 二氧化硅微粉、 活性氧 化铝微粉、 刚玉微粉获得的含 MgO、 A1203、 Si02成份的耐火混合粉体, 所述调整成份用的耐火混合粉体细度要求通过 500目, 所述调整成份用的 耐火粉末占结合复合基质料的 0-15wt%; 所述调整成份用的耐火粉末中, MgO成份占所述调整成份用的耐火粉末总组份的 25-40wt%, A1203成份占 所述调整成份用的耐火粉末总组份的 35-45wt%, Si02成份占所述调整成份 用的耐火粉末总组份的 15-30wt%;
微晶成核剂为 Zr02+V205复合微晶成核剂, Zr02与 V205的重量比为 2-3:3-4, 细度要求通过 500目, 复合微晶成核剂为上述所选主晶相材料和 结合复合基质料的总量的 1.0-10wt%;
原料经混料、 捆料、 成型、 干燥后, 烧成为成品, 在烧成过程中, 包 括二段恒温烧成法和二段复合晶化合成反应特立强化处理工艺, 其中: 二段恒温烧成法为: 200°C时, 恒温保温 10-15小时; 50CTC时, 恒温 保温 10-15小时;
二段复合晶化合成反应特立强化处理工艺为:升温至第一段高温恒温, 在第一段高温恒温 1100-1150°C的温度, 常压下烧结 10-15小时; 再升温至 第二段高温恒温,在第二段高温恒温 1420- 1430 °C的温度,常压下烧结 20·25 小时。
PCT/CN2011/002189 2011-12-15 2011-12-26 高晶体莫来石-堇青石质高温工业陶瓷及其生产方法 WO2013086664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110422262.3 2011-12-15
CN 201110422262 CN102491773B (zh) 2011-12-15 2011-12-15 高晶体莫来石-堇青石质高温工业陶瓷及其生产方法

Publications (1)

Publication Number Publication Date
WO2013086664A1 true WO2013086664A1 (zh) 2013-06-20

Family

ID=46183643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/002189 WO2013086664A1 (zh) 2011-12-15 2011-12-26 高晶体莫来石-堇青石质高温工业陶瓷及其生产方法

Country Status (2)

Country Link
CN (1) CN102491773B (zh)
WO (1) WO2013086664A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130524B (zh) * 2013-03-22 2014-11-26 北京创导工业陶瓷有限公司 节能型轻质堇青石-莫来石窑具材料、窑具及其制备方法
CN104788083B (zh) * 2015-04-09 2016-08-03 景德镇晶达新材料有限公司 一种多晶硅还原炉用高抗热震性氧化铝陶瓷环及制备方法
CN105272188B (zh) * 2015-10-09 2017-10-27 广东热金宝新材料科技有限公司 一种高晶体针状交织结构的低铝莫来石的制备方法
CN105272317A (zh) * 2015-11-19 2016-01-27 长兴县新宏信耐火材料有限公司 一种红柱石--莫来石复合材料砖的制备方法
CN105294128A (zh) * 2015-11-19 2016-02-03 长兴县新宏信耐火材料有限公司 一种红柱石--莫来石复合材料砖
CN106365622A (zh) * 2016-08-31 2017-02-01 酒泉中横新材料科技有限责任公司 一种以红柱石为原料制备节能墙材的方法
CN106396653A (zh) * 2016-08-31 2017-02-15 徐美兰 一种以红柱石为原料的节能墙材
CN108424016B (zh) * 2017-02-14 2021-08-06 西南科技大学 一种结构工程用高性能轻骨料
CN109851325A (zh) * 2019-01-21 2019-06-07 福建省威尔陶瓷股份有限公司 一种高耐热陶瓷制品及其制备方法
CN114014666B (zh) * 2021-11-05 2022-10-25 洛阳理工学院 一种协同处置固废水泥窑的烟室部位用耐火浇注料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283073A (ja) * 1995-04-11 1996-10-29 Ngk Insulators Ltd 窯道具
CN1415575A (zh) * 2002-10-25 2003-05-07 周季楠 堇青石质窑具的制造方法
CN1785909A (zh) * 2005-12-09 2006-06-14 陈文杨 高晶体结构堇青石-莫来石质窑具、窑炉耐火制品及焙烧工艺
CN101519304A (zh) * 2009-02-19 2009-09-02 中国科学院上海硅酸盐研究所 堇青石-莫来石复相材料的原位反应烧成的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239840B (zh) * 2007-02-05 2010-07-28 山东理工大学 膨胀珍珠岩陶瓷水洗球的制备方法
CN101955366B (zh) * 2010-10-26 2012-07-04 揭东县热金宝新材料科技有限公司 高性能大面积耐火中空棚板窑具及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283073A (ja) * 1995-04-11 1996-10-29 Ngk Insulators Ltd 窯道具
CN1415575A (zh) * 2002-10-25 2003-05-07 周季楠 堇青石质窑具的制造方法
CN1785909A (zh) * 2005-12-09 2006-06-14 陈文杨 高晶体结构堇青石-莫来石质窑具、窑炉耐火制品及焙烧工艺
CN101519304A (zh) * 2009-02-19 2009-09-02 中国科学院上海硅酸盐研究所 堇青石-莫来石复相材料的原位反应烧成的制备方法

Also Published As

Publication number Publication date
CN102491773A (zh) 2012-06-13
CN102491773B (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2013086664A1 (zh) 高晶体莫来石-堇青石质高温工业陶瓷及其生产方法
CN100358839C (zh) 高晶体结构堇青石-莫来石质窑具、窑炉耐火制品及焙烧工艺
CN101215176B (zh) 高强低导热节能耐火材料
CN100486932C (zh) 含纳米碳酸钙的高纯刚玉质浇注料及其制备方法
CN101423410B (zh) 一种复合结合硅质热修补料及其制备方法
WO2018006835A1 (zh) 一种具有双重孔结构的耐高温轻质绝热材料及其制备方法
CN101381240B (zh) 一种堇青石耐热/耐火材料的制备方法
CN112299833B (zh) 一种高强高韧莫来石陶瓷薄板及其制备方法
CN110028303B (zh) 一种利用普通日用陶瓷坯料制备的强化瓷及其制备方法
CN104326758A (zh) 一种炼铁热风炉的耐高温抗热震管道及其制备方法
CN101475396A (zh) 一种低膨胀耐热多孔陶瓷及其制备方法
CN105130468A (zh) 一种耐火保温材料及其制备方法
CN101323531A (zh) 一种玻璃窑热修补用熔融石英砖及其制造方法
CN111099901A (zh) 一种高抗热震性莫来石耐火砖及其生产方法
CN105481375A (zh) 一种节能耐火材料
CN113800880A (zh) 一种低密度拉长石质瓷质陶瓷板及其制备方法
CN114988894A (zh) 一种轻质抗热震莫来石堇青石质旋转管及其制备方法
CN106431434B (zh) 一种闭孔型矾土基莫来石材料及其制备方法
CN109160741B (zh) 一种直接烧结粉煤灰制备微晶玻璃的方法
CN108017397A (zh) 含石英砂的耐火砖及其制备方法
CN103224400B (zh) 一种能耐超高风温热风常期冲刷的高炉送风支管浇注料
CN103951444A (zh) 循环流化床锅炉风室用高抗热震性涂抹料及其生产工艺
CN110452009A (zh) 一种原位生成镁铝尖晶石晶须骨架多孔陶瓷的制备方法
CN114230141B (zh) 一种玻璃窑用高抗侵蚀唇砖及其制备方法
CN108675808A (zh) 一种新型工业窑炉用耐火材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877188

Country of ref document: EP

Kind code of ref document: A1