WO2013085836A1 - Modulation mmw mise en œuvre optiquement - Google Patents

Modulation mmw mise en œuvre optiquement Download PDF

Info

Publication number
WO2013085836A1
WO2013085836A1 PCT/US2012/067559 US2012067559W WO2013085836A1 WO 2013085836 A1 WO2013085836 A1 WO 2013085836A1 US 2012067559 W US2012067559 W US 2012067559W WO 2013085836 A1 WO2013085836 A1 WO 2013085836A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
phase
mmw
modulation
signal
Prior art date
Application number
PCT/US2012/067559
Other languages
English (en)
Inventor
Richard Ridgway
Ronald Esman
Everett W. JACOBS
Original Assignee
Battelle Memorial Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute filed Critical Battelle Memorial Institute
Publication of WO2013085836A1 publication Critical patent/WO2013085836A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50577Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the phase of the modulating signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5165Carrier suppressed; Single sideband; Double sideband or vestigial

Definitions

  • the present disclosure relates to methods and systems for modulating millimeter wave signals. More specifically, this disclosure involves photonic devices operable to modulate optical millimeter wave (MMW) signals.
  • MMW optical millimeter wave
  • the present inventors have contemplated that signals in the THz spectrum (0.1 to 10 THz) may find significant utility in imaging and wireless applications.
  • the THz spectrum may provide high resolution imaging through walls, cargo containers, and other visible barriers. It is contemplated that modulation onto these high frequency signals can provide improved resolution and the ability to separate a desired target from clutter.
  • the THz spectrum may allow ultra high data transfer (10 Gb/s) for transmission of
  • Optical approaches for generating and modulating millimeter wave signals carry out modulation on an optical carrier, which can easily handle data rates in excess of 10 Gb/s.
  • these optical approaches have used on-off keying modulation schemes.
  • on-off keying modulation is not spectrally efficient and consumes a bandwidth of about 1 Hz for each bit/second of data rate.
  • 10 Gb/s (Gigabits/second) wireless data rates for millimeter wave carriers around 100 GHz typically occupy a bandwidth of 10 GHz.
  • US 201 1 /0122477 presents an approach where an electro-optic modulator is used to modulate a millimeter wave carrier in an effort to increase spectral efficiency of digital data transmission.
  • an optical processor is configured to direct an optical carrier from a laser source to a sideband generator, optical filter, and PSK (phase shift keying) modulator.
  • the sideband generator is configured as an electrooptic interferometer where an optical signal propagating in the input segment of the interferometer is divided into two equal parts, propagate down the two arms of the interferometer, and are recombined.
  • the optical filter selects the desired sidebands from the combined signals.
  • the phase shift keying (PSK) modulator comprises an optical splitter, an optical phase delay unit, two or more optical gates, and an optical combiner.
  • the optical splitter splits the optical MMW signal into two or more intermediate signals.
  • the optical phase delay unit adds a phase delay to the intermediate signal(s) such that each intermediate signal has a distinct phase relationship relative to the remaining intermediate signals.
  • the optical gates modulate each intermediate signal individually between a relatively high and a relatively low amplitude based on a control input. For example, In a QPSK
  • each of the four phases represents one of the four states of a 2 bit data input signal: 00, 01 , 10, and 1 1 and the control input to the optical gates is configured so that the appropriate intermediate signal is "gated on” and the remaining intermediate signals are “gated off.”
  • a second optical combiner combines the intermediate signals into a single, PSK-modulated optical MMW signal.
  • the present inventors have recognized that the technology presented in the publication does not permit modulation where the resulting millimeter wave can be controlled as a continuous function of the optical phase.
  • the technology merely provides for discrete, discontinuous manipulation of the millimeter wave, primarily because a common signal constructed from the combined sidebands is split into a plurality of parallel signals, which signals are then introduced to the phase delay unit.
  • the sidebands are kept apart and are routed through an optical phase modulator independently of each other.
  • the resulting MMW signal can be directly phase modulated in a continuous fashion by executing optical phase shifting before the optical sidebands are combined.
  • an optically implemented millimeter wave (MMW) modulation device comprising a waveguide architecture, a phase locked, monochromatic, mutually coherent optical signal source, a dual input optical phase modulator, a phase controller, and a post- modulation signal combiner.
  • the phase locked, monochromatic, coherent optical signal source is configured to generate two mutually coherent optical signals.
  • the dual input optical phase modulator comprises first and second optically distinct input waveguides that are configured for independent phase modulation.
  • the waveguide architecture of the phase modulation device is configured to direct each of the two mutually coherent optical signals to different ones of the first and second optically distinct input waveguides.
  • the phase controller is responsive to a digitally encoded input device and cooperates with the optical phase modulator to independently modulate the phase of the two mutually coherent optical signals in the optical phase modulator in response to data input to the digitally encoded input device.
  • the post- modulation optical signal combiner is configured to sum the two mutually coherent optical signals after the signals are independently phase-modulated in the optical phase modulator to generate a modulated optical MMW signal.
  • the optically implemented millimeter wave (MMW) modulation device comprises a laser source, a waveguide architecture, a sideband generator, an optical filter, a digitally encoded input device, a dual input optical phase modulator, a phase controller, a post-modulation signal combiner, an optical/electrical (O/E) converter, and a transmitting antenna.
  • the two mutually coherent optical sidebands are fed into the dual input optical phase modulator in a push-pull configuration where one phase is advanced and one phase is retarded.
  • the modulation of the optical MMW signal is linearly related to the optical phase modulation placed on the two mutually coherent optical sidebands.
  • Fig. 1 is a schematic representation of an optically implemented MMW phase modulation device according to one embodiment of the present disclosure
  • Fig. 2 is a detailed schematic illustration of one possible implementation of a phase modulator according to the present disclosure.
  • Fig. 3 is a schematic representation of an optically implemented MMW phase modulation device according to one alternative embodiment of the present disclosure.
  • Fig. 1 is a schematic representation of an optically implemented MMW phase modulation device according to one embodiment of the present disclosure.
  • the phase modulation device comprises a waveguide architecture that optically couples a sideband generator 10, an optical filter 20, a dual input optical phase modulator 30, a phase controller 40, and a post-modulation signal combiner 50.
  • the dual input optical phase modulator 30 is configured to modulate the phase of an optical MMW signal such that it is encoded with information representing a digital data input.
  • the optical MMW signal may be modulated in amplitude as well. Referring to the optical signal amplifier 60 and O/E converter 70 illustrated schematically in Fig.
  • the optical MMW signal may be amplified and converted to an electrical signal and wirelessly transmitted by an antenna 80.
  • the transmitted signal may be directly or indirectly routed to a receiver of an imaging system, data communication system, or other type of wireless MMW system.
  • the present disclosure has been drafted with the understanding that the particular configuration and operation of the sideband generator 10 and the optical filter 20 are beyond the scope of the present disclosure and can be readily gleaned from available teachings in the art.
  • the sideband generator 10 can be configured as an electro-optic interferometer.
  • the sideband generator 10 is overdriven with an RF or microwave signal at a frequency f to create sidebands on either side of the optical carrier ⁇ 0 .
  • the optical filter 20 presented in the form of, for example, an arrayed waveguide grating (AWG), selects two of the sidebands for further modulation by the dual input optical phase modulator 30, which may also be presented as an electro-optic modulator and comprises first and second optically distinct input waveguides 32, 34 configured for independent phase modulation.
  • AMG arrayed waveguide grating
  • the phase controller 40 is responsive to a digitally encoded input device 45 and cooperates with the optical phase modulator 30 to independently modulate the phase of two mutually coherent optical sidebands in the optical phase modulator 30 in response to data (0,1 ) that is input to the digitally encoded input device 45.
  • the design and operation of the dual input optical phase modulator 30 and phase controller 40 can be conveniently illustrated with collective reference to Figs 1 and 2.
  • the two optical signals are fed into the dual input optical phase modulator 30 in a push-pull configuration where one phase is advanced and one phase is retarded.
  • the two phase modulated signals are then summed using a post- modulation optical signal combiner 50 in the form of, for example, a Y-combining waveguide structure.
  • the resulting waveform can be represented by the following expression:
  • the first cosine term in the preceding equation represents the optical carrier signal while the second cosine term in the preceding equation represents the millimeter wave amplitude modulation that rides on the optical carrier.
  • the equation shows that the modulation of the optical MMW signal is linearly related to the optical phase modulation placed on the two mutually coherent optical sidebands. Accordingly, by positioning the optical phase modulator 30 to precede the combination of the optical sidebands, the modulation of the resulting millimeter wave will be linearly related to the optical phase.
  • the optical phase modulator is illustrated in Fig.
  • each arm includes its own dedicated pair of electrodes
  • a variety of alternative electrode configurations may be utilized to implement the concepts of the present disclosure including, for example, embodiments where the modulator in Fig. 2 is run with one electrode arm, in which case the driving voltage would need to be approximately twice that of the case where dual electrode arms are utilized.
  • the optically implemented MMW phase modulation device described herein can be used to implement a variety of phase modulation schemes including, but not limited to, Binary Phase Shift Keying (BPSK) with two phase states,
  • BPSK Binary Phase Shift Keying
  • Quadrature Phase Shift Keying with four phase states
  • M-PSK Multiple Phase Shift Keying
  • the modulated optical signal can be converted to a millimeter wave signal using a very high speed photodiode, such as a Uni-Traveling Carrier (UTC) Photodiode with a frequency response higher than the millimeter wave modulation signal.
  • UTC Uni-Traveling Carrier
  • the millimeter wave signal will have a phase characteristic dependent on the optical phase shift induced by the differential phase modulator.
  • Fig. 3 is presented to illustrate schematically that an intensity modulator 90, such as a Mach Zehnder interferometer, may be placed after the sideband combiner to permit modulation of the magnitude of the millimeter wave as well as the phase of the millimeter wave.
  • This combination of waveguide components can be used to implement Quadrature Amplitude Modulation (QAM) in the millimeter wave carrier.
  • QAM Quadrature Amplitude Modulation
  • the combination of the differential optical phase shifters and the Mach-Zehnder interferometer allows the optical-based system to generate both phase and intensity states in the resulting millimeter wave signal.
  • optical MMW signals are MMW signals in the optical domain
  • electric MMW signals are MMW signals in the electrical or electro-magnetic domain.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

L'invention concerne un dispositif de modulation d'ondes millimétriques (MMW) mis en œuvre optiquement comprenant une architecture de guide d'ondes, une source de signaux optiques mutuellement cohérents, monochromatique, à phase verrouillée, un modulateur de phase optique à entrées doubles, un contrôleur de phase et un combineur de signaux post-modulation. La source de signaux optiques mutuellement cohérents, monochromatique, à phase verrouillée est configurée pour générer deux signaux optiques mutuellement cohérents. Le modulateur de phase optique à entrées doubles comprend des premier et second guides d'ondes à entrées optiquement distinctes qui sont configurés pour une modulation de phase indépendante. L'architecture de guide d'ondes du dispositif de modulation de phase est configurée pour diriger chacun des deux signaux optiques mutuellement cohérents vers des guides d'ondes différents parmi les premier et second guides d'ondes à entrées optiquement distinctes. Le contrôleur de phase est sensible à un dispositif d'entrée codé numériquement et coopère avec le modulateur de phase optique pour moduler indépendamment la phase des deux signaux optiques mutuellement cohérents dans le modulateur de phase optique en réponse à une entrée de données sur le dispositif d'entrée codé numériquement. Le combineur de signaux optiques de post-modulation est configuré pour totaliser les deux signaux optiques mutuellement cohérents après que les signaux sont modulés en phase indépendamment dans le modulateur de phase optique pour générer un signal MMW optique modulé. L'invention concerne également des modes de réalisation additionnels.
PCT/US2012/067559 2011-12-09 2012-12-03 Modulation mmw mise en œuvre optiquement WO2013085836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161568815P 2011-12-09 2011-12-09
US61/568,815 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013085836A1 true WO2013085836A1 (fr) 2013-06-13

Family

ID=47470153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/067559 WO2013085836A1 (fr) 2011-12-09 2012-12-03 Modulation mmw mise en œuvre optiquement

Country Status (1)

Country Link
WO (1) WO2013085836A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450306A (zh) * 2015-12-03 2016-03-30 中国联合网络通信集团有限公司 毫米波的生成方法及rof系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252386A (ja) * 2003-02-21 2004-09-09 Japan Science & Technology Agency 光ミリ波・マイクロ波信号生成方法及びその装置
EP1727303A2 (fr) * 2005-05-23 2006-11-29 Fujitsu Limited Dispositif émetteur optique, dispositif récepteur optique et système de communication optique les comprenant
WO2008060715A1 (fr) * 2006-11-13 2008-05-22 Battelle Memorial Institute Source mmw à sélection de fréquence
US20080199124A1 (en) 2005-08-29 2008-08-21 Tadao Nagatsuma OPTICAL DEVICE FOR GENERATING AND MODULATING THz AND OTHER HIGH FREQUENCY SIGNALS
WO2010019765A1 (fr) * 2008-08-14 2010-02-18 Battelle Memorial Institute Procédés et systèmes destinés à moduler et à démoduler des signaux à ondes millimétriques

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004252386A (ja) * 2003-02-21 2004-09-09 Japan Science & Technology Agency 光ミリ波・マイクロ波信号生成方法及びその装置
EP1727303A2 (fr) * 2005-05-23 2006-11-29 Fujitsu Limited Dispositif émetteur optique, dispositif récepteur optique et système de communication optique les comprenant
US20080199124A1 (en) 2005-08-29 2008-08-21 Tadao Nagatsuma OPTICAL DEVICE FOR GENERATING AND MODULATING THz AND OTHER HIGH FREQUENCY SIGNALS
WO2008060715A1 (fr) * 2006-11-13 2008-05-22 Battelle Memorial Institute Source mmw à sélection de fréquence
WO2010019765A1 (fr) * 2008-08-14 2010-02-18 Battelle Memorial Institute Procédés et systèmes destinés à moduler et à démoduler des signaux à ondes millimétriques
US20110122477A1 (en) 2008-08-14 2011-05-26 Battelle Memorial Institute Methods and Systems for Modulating and Demodulating Millimeter-Wave Signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUE JUN MENG ET AL: "A SSB-based frequency doubling optical transmitter using cascaded mach-zehnder modulators", CONFERENCE ON LASERS AND ELECTRO-OPTICS. (CLEO 2003). TECHNICAL DIGEST. POSTCONFERENCE EDITION. BALTIMORE, MD, JUNE 1 - 6, 2003; [TRENDS IN OPTICS AND PHOTONICS. (TOPS)], WASHINGTON, WA : OSA, US, 6 June 2003 (2003-06-06), pages 1644 - 1646, XP031952064, ISBN: 978-1-55752-748-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450306A (zh) * 2015-12-03 2016-03-30 中国联合网络通信集团有限公司 毫米波的生成方法及rof系统
CN105450306B (zh) * 2015-12-03 2017-12-05 中国联合网络通信集团有限公司 毫米波的生成方法及rof系统

Similar Documents

Publication Publication Date Title
EP2197165B1 (fr) Genération efficace de signaux de type QAM
JP4646048B2 (ja) 単一側波帯信号光の生成方法および単一側波帯信号光の生成回路
US9419720B2 (en) Optical signal transmitter
EP1975693B1 (fr) Dispositif de modulation optique et procédé de modulation optique avec format de modulation changeable
AU2005317102B2 (en) Method and apparatus for bias and alignment control in an optical signal transmitter
WO2009008370A1 (fr) Circuit de modulation optique et système de transmission optique
US9337936B2 (en) Optical transmission apparatus, optical transmission method and program for optical transmission
WO2010000863A1 (fr) Modulateur optique de type i/q
US8948546B2 (en) Optical frequency shifter and optical modulator using the same
CN113098618B (zh) 一种双频段相位编码信号的光学生成方法
US8373921B2 (en) Methods and systems for modulating and demodulating millimeter-wave signals
JP4889661B2 (ja) 光マルチキャリア発生装置およびそれを用いた光マルチキャリア送信装置
JP5411538B2 (ja) 光マルチキャリア発生装置及び方法及び光マルチキャリア発生装置を用いた光マルチキャリア送信装置
JP2004140833A (ja) 光伝送システム
US8565614B2 (en) Spectrally efficient digital data transmission utilizing phase encoded MMW
JP2004070130A (ja) 光送信装置
WO2013085836A1 (fr) Modulation mmw mise en œuvre optiquement
JP6124259B2 (ja) 光変調器、光送信装置、偏波多重位相変調方法及びプログラム
JP5905356B2 (ja) 64qam光信号を生成する送信装置および方法
WO2014114329A1 (fr) Générateur de peigne optique
JP2020088598A (ja) 無線送信装置
JP2000122015A (ja) 光変調器
JP5905334B2 (ja) 16qam光信号を生成する送信装置および方法
JP2008261979A (ja) 光ssb変調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808978

Country of ref document: EP

Kind code of ref document: A1