WO2013084330A1 - Optical wireless system, imaging device, and control device - Google Patents

Optical wireless system, imaging device, and control device Download PDF

Info

Publication number
WO2013084330A1
WO2013084330A1 PCT/JP2011/078371 JP2011078371W WO2013084330A1 WO 2013084330 A1 WO2013084330 A1 WO 2013084330A1 JP 2011078371 W JP2011078371 W JP 2011078371W WO 2013084330 A1 WO2013084330 A1 WO 2013084330A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
visible light
module
control device
Prior art date
Application number
PCT/JP2011/078371
Other languages
French (fr)
Japanese (ja)
Inventor
伸夫 長坂
重元 廣田
神藤 高広
泰章 今寺
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2011/078371 priority Critical patent/WO2013084330A1/en
Publication of WO2013084330A1 publication Critical patent/WO2013084330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical wireless system that performs wireless transmission using light, and an imaging device and a control device that perform data transmission using the optical wireless system.
  • the present invention has been made in view of the above-described problems, and an optical wireless system, an imaging device, and a control device that perform transmission of image data and a control command by optical wireless communication between the imaging device and the control device.
  • the purpose is to provide.
  • the optical wireless system according to claim 1 of the present application made in view of the above problems is an optical wireless system in which an imaging device and a control device are digitally interfaced by optical wireless.
  • the first optical module for transmitting image data with invisible light from the imaging device to the control device, and the control command from the control device to the imaging device has a data transfer rate higher than the data transfer rate with invisible light.
  • An optical wireless system is the optical wireless system according to the first aspect, wherein the imaging device includes a first light emitting module that emits invisible light and a second optical module among the first optical modules.
  • the second light receiving module that receives visible light and the invisible light emitted from the first light emitting module are guided in the direction of the first predetermined axis, and the visible light that enters along the first predetermined axis is And a first optical inductor that branches into two light receiving modules.
  • the control device also includes a second light emitting module that emits visible light among the second optical modules, a first light receiving module that receives invisible light among the first optical modules, and a visible light emitted from the second light emitting module.
  • a second light guide for guiding light in the direction of the second predetermined axis and branching invisible light entering along the second predetermined axis to the first light receiving module;
  • the optical axis alignment at the time of optical wireless is performed by aligning the first predetermined axis and the second predetermined axis so that visible light emitted from the second light emitting module is received by the second light receiving module. Is done.
  • the imaging device receives a control command from the control device and transmits image data to the control device through a digital interface using optical radio.
  • a light emitting module that emits invisible light that transmits image data
  • a light receiving module that receives visible light whose data transfer rate is lower than that of invisible light that transmits a control command, and an invisible light emitted from the light emitting module Is provided in the direction of a predetermined axis, and visible light that enters along the predetermined axis is branched to the light receiving module.
  • the control device receives image data from the imaging device and transmits a control command to the imaging device through a digital interface using optical wireless.
  • a light emitting module that emits visible light that transmits a control command
  • a light receiving module that receives invisible light having a higher data transfer rate than the visible light that transmits a control command, and a predetermined amount of visible light emitted from the light emitting module.
  • a light guide for guiding invisible light that is guided in the direction of the axis and enters along the predetermined axis to the light receiving module.
  • invisible light emitted from the first optical module is used for image data transmitted from the imaging device to the control device, and the image data is transmitted from the control device to the imaging device.
  • Visible light emitted from the second optical module is used as the control command.
  • image data with a large amount of data can be transmitted by non-visible light capable of transmitting at a high data transfer rate, and a control command with a small amount of data can be transmitted at a data transfer rate lower than that of non-visible light.
  • Visible light can be used.
  • the optical axis of the optical wireless system can be aligned using visible light used for a control command with a low data transfer rate. While properly using the first and second optical modules according to the amount of data, optical axis alignment in optical wireless communication can be performed by the second optical module that emits visible light.
  • a system can be efficiently constructed by using the second optical module for multiple functions.
  • visible light emitted from the second light emitting module provided in the control device is received by the second light receiving module provided in the imaging device. As described above, it can be performed by aligning the first predetermined axis that is the optical axis of the imaging device and the second predetermined axis that is the optical axis of the control device. In this case, since the light source is visible light emitted from the second light emitting module, the optical axes can be aligned while visually confirming.
  • optical wireless system described in the present application can be configured.
  • the optical axis of optical wireless communication can be adjusted by visible light while using invisible light and visible light properly according to the amount of data.
  • FIG. 1 is a perspective view showing an electronic component mounting apparatus configured by arranging two electronic component mounting machines to which an electronic component supply apparatus is attached, and is an apparatus to which the multiplexed communication system of the present invention can be applied.
  • It is a top view which shows a part of tape feeder of the electronic component supply apparatus shown in FIG. 1, and the tape-ized components sent out by the tape feeder.
  • It is a perspective view which shows the electronic component supply apparatus shown in FIG.
  • FIG. is sectional drawing which shows the tape feeder shown in FIG.
  • It is a block diagram which shows the control apparatus with which the electronic component mounting machine shown in FIG. 1 is provided.
  • It is a block diagram which shows the structure of the optical wireless apparatus with which an optical wireless system is equipped.
  • FIG. 1 shows an electronic component mounting apparatus (hereinafter, may be abbreviated as “mounting apparatus”) 10.
  • the figure is a perspective view in which a part of the exterior component of the mounting apparatus 10 has been removed.
  • the mounting apparatus 10 includes one system base 12 and two electronic component mounting machines (hereinafter, may be abbreviated as “mounting machines”) 16 arranged side by side adjacent to each other on the system base 12. In other words, the electronic component is mounted on the circuit board.
  • the direction in which the mounting machines 16 are arranged is referred to as an X-axis direction
  • a horizontal direction perpendicular to the direction is referred to as a Y-axis direction.
  • Each of the mounting machines 16 included in the mounting apparatus 10 mainly includes a mounting machine main body 24 configured to include a frame unit 20 and a beam unit 22 overlaid on the frame unit 20, and a circuit board in the X-axis direction.
  • a transport device 26 that transports and fixes the set position at a set position, a mounting head 28 that mounts an electronic component on a circuit board fixed by the transport device 26, and an X-axis mounted head 28 disposed on the beam unit 22.
  • a moving device 30 that moves in the direction and the Y-axis direction, and an electronic component supply device 32 that is disposed in front of the frame portion 20 and supplies electronic components to the mounting head 28 (hereinafter, may be abbreviated as “supply device”) It has.
  • the transport device 26 includes two conveyor devices 40 and 42, and the two conveyor devices 40 and 42 are parallel to each other and extend in the X-axis direction, so that the central portion in the Y-axis direction of the frame portion 20. It is arranged.
  • Each of the two conveyor devices 40 and 42 has a structure in which a circuit board supported by each conveyor device 40 and 42 is conveyed in the X-axis direction by an electromagnetic motor 44 (see FIG. 5). Further, each of the conveyor devices 40 and 42 has a substrate holding device 46 (see FIG. 5), and is configured to hold the circuit board in a fixed position.
  • the mounting head 28 is for mounting electronic components on the circuit board held by the transport device 26, and has a suction nozzle 50 for sucking the electronic components on the lower surface.
  • the suction nozzle 50 communicates with negative pressure air and a positive pressure air passage via a positive / negative pressure supply device 52 (see FIG. 5), and sucks and holds the electronic component at a negative pressure, so that a slight positive pressure is supplied. In this way, the held electronic component is detached.
  • the mounting head 28 includes a nozzle lifting device (see FIG. 5) 54 that lifts and lowers the suction nozzle 50 and a nozzle rotation device (see FIG. 5) 56 that rotates the suction nozzle 50 about its axis. It is possible to change the vertical position of the electronic component to be held and the holding posture of the electronic component.
  • the suction nozzle 50 is attachable to and detachable from the mounting head 28, and can be changed according to the size and shape of the electronic component.
  • the moving device 30 moves the mounting head 28 to an arbitrary position on the frame unit 20, an X-axis direction slide mechanism (not shown) for moving the mounting head 28 in the X-axis direction, and the mounting head. And a Y-axis direction slide mechanism (not shown) for moving 28 in the Y-axis direction.
  • the Y-axis direction slide mechanism has a Y-axis slider (not shown) provided in the beam portion 22 so as to be movable in the Y-axis direction, and an electromagnetic motor (see FIG. 5) 64 as a drive source.
  • the Y-axis slider can be moved to an arbitrary position in the Y-axis direction by the electromagnetic motor 64.
  • the X-axis direction slide mechanism has an X-axis slider 66 provided on the Y-axis slider so as to be movable in the X-axis direction, and an electromagnetic motor (see FIG. 5) 68 as a drive source.
  • the motor 68 enables the X-axis slider 66 to move to an arbitrary position in the X-axis direction.
  • the mounting head 28 is attached to the X-axis slider 66, so that the mounting head 28 can be moved to an arbitrary position on the frame unit 20 by the moving device 30.
  • the mounting head 28 can be attached to and detached from the X-axis slider 66 with a single touch, and can be changed to a different type of work head, such as a dispenser head.
  • the supply device 32 is disposed at the front end of the frame portion 20 as a base, and is a feeder-type supply device.
  • the supply device 32 accommodates a taped part 70 (see FIG. 2) in which electronic parts are taped and accommodated in a state in which the taped part 70 is wound around a reel 72, and is accommodated in each of the plurality of tape feeders 74.
  • a plurality of delivery devices (see FIG. 5) 75 for feeding out the taped component 70, and the electronic components are sequentially supplied from the taped component 70 to the supply position to the mounting head 28. .
  • the taped component 70 includes a carrier tape 82 in which a large number of receiving recesses 78 and feed holes 80 are formed at an equal pitch, an electronic component 84 received in the receiving recess 78, and a carrier tape 82.
  • the top cover tape 86 covers the housing recess 78 in which the electronic component 84 is housed.
  • the tape feeder 74 has a reel holding portion 88 for holding a reel 72 around which the taped component 70 is wound, and a taped component 70 drawn out from the reel 72 on the upper end surface. It is composed of a feeder main body 90 that is extended.
  • a sprocket 92 that engages with a feed hole 80 formed in the carrier tape 82 of the taped component 70 is built in the feeder main body 90, and the sprocket 92 is rotated.
  • the taped component 70 with the top cover tape 86 attached to the carrier tape 82 is sent out in the direction away from the reel 72 on the upper end surface of the feeder main body 90.
  • the accommodation recesses 78 in which the electronic components 84 are accommodated are sequentially released at the tip of the upper end surface of the feeder main body 90.
  • the electronic component 84 is taken out by the suction nozzle 50 from the opened accommodation recess 78.
  • the tape feeder 74 is detachable from a tape feeder mounting base (hereinafter sometimes abbreviated as “mounting base”) 100 fixedly provided at the front end of the frame portion 20.
  • the mounting base 100 includes a slide portion 102 provided on the upper surface of the frame portion 20 and a standing surface portion 106 erected on an end portion of the slide portion 102 on the side close to the conveying device 26.
  • a plurality of slide grooves 108 are formed in the slide portion 102 so as to extend in the Y-axis direction, and the lower edge portion of the feeder main body 90 of the tape feeder 74 is fitted into each of the plurality of slide grooves 108. It is possible to slide in the state.
  • the side wall surface by the side of the sending direction which is the sending direction of the taped component 70 of the feeder main body 90 is made to slide in the direction which approaches the standing surface part 106 in the state which fitted the lower edge part of the feeder main body 90. 110 is attached to the standing surface portion 106.
  • the tape feeder 74 is mounted on the mounting table 100.
  • the standing surface portion 106 is provided with a plurality of connector connecting portions 112 corresponding to the plurality of slide grooves 108.
  • the connector 114 is provided on the side wall surface 110 of the tape feeder 74 attached to the standing surface portion 106, and when the side wall surface 110 of the tape feeder 74 is attached to the standing surface portion 106, the connector 114 is connected to the connector 114.
  • the connection unit 112 is connected.
  • a pair of upright pins 116 are provided on the side wall surface 110 of the tape feeder 74 so as to sandwich the connector 114 in the vertical direction, and the connector connection portion 112 of the upright surface portion 106 of the mounting base 100 is connected in the vertical direction. Are fitted into a pair of fitting holes 118 formed so as to be sandwiched between the two.
  • a cover 120 is provided on the top of the mounting base 100 so as to be opened and closed.
  • the cover 120 is attached to the end portion on the front side of the beam portion 22 of the mounting machine 16 so as to be rotatable about an axis extending in the X-axis direction, and the closed position covering the mounting table 100 and the mounting table 100 are opened. It is possible to rotate between the open position.
  • the cover 120 is closed while the tape feeder 74 is mounted on the mounting base 100, the feeder main body 90 of the tape feeder 74 that is mounted is covered by the cover 120.
  • a display portion 124 provided with three display lamps 122 (only one is shown in the figure) is attached to the lower end portion of the cover 120, and the tape feeder 74 is attached to the attachment base 100.
  • the display unit 124 is positioned above the feeder main body 90.
  • a plurality of display units 124 are provided corresponding to the plurality of slide grooves 108, and the display lamps 122 of the plurality of display units 124 are turned on when the tape feeder 74 is mounted on the mounting base 100, It is used as a guide to which of the plurality of slide grooves 108 the tape feeder 74 should be attached.
  • the mounting machine 16 includes a mark camera (see FIG. 5) 130 and a parts camera (see FIGS. 1 and 5) 132.
  • the mark camera 130 is fixed to the lower surface of the X-axis slider 66 so as to face downward, and is moved by the moving device 30 so that the surface of the circuit board can be imaged at an arbitrary position. Yes.
  • the parts camera 132 is provided between the transport device 26 of the frame unit 20 and the supply device 32 in a state of facing upward, and images the electronic component sucked and held by the suction nozzle 50 of the mounting head 28. It is possible.
  • the image data obtained by the mark camera 130 and the image data obtained by the parts camera 132 are processed by the image processing device 134 (see FIG. 5), and information on the circuit board, the holding position of the circuit board by the board holding device 46. An error, a holding position error of the electronic component by the suction nozzle 50, and the like are acquired.
  • the mounting machine 16 includes a control device 140 as shown in FIG.
  • the control device 140 includes a controller 142 mainly composed of a computer having a CPU, ROM, RAM, etc., the electromagnetic motors 44, 64, 68, the substrate holding device 46, the positive / negative pressure supply device 52, the nozzle lifting / lowering device 54, the nozzle rotation.
  • a plurality of drive circuits 144 corresponding to each of the device 56 and the delivery device 75 and a plurality of control circuits 146 corresponding to each of the plurality of display lamps 122 provided in the plurality of display units 124 are provided.
  • the controller 142 is connected to a drive source such as a transfer device or a moving device via each drive circuit 144, and can control the operation of the transfer device, the moving device, or the like.
  • the controller 142 is connected to a plurality of display lamps 122 via each control circuit 146, and each of the plurality of display lamps 122 can be lit up in a controllable manner.
  • the plurality of display units 124 may be provided with various switches (not shown), and various control signals accompanying switch inputs are sent to the control circuits 146.
  • an image processing device 134 that processes image data obtained by the mark camera 130 and the part camera 132 is connected to the controller 142.
  • the mounting machine 16 With the configuration described above, it is possible to perform an electronic component mounting operation with the mounting head 28 on the circuit board held by the transport device 26. More specifically, the circuit board is first transported to the mounting work position by the transport device 26, and the circuit board is fixedly held at that position. Next, the mounting device 28 is moved onto the circuit board by the moving device 30, and the circuit board is imaged by the mark camera 130. By the imaging, the type of the circuit board and the holding position error of the circuit board by the transfer device 26 are acquired. An electronic component corresponding to the acquired type of circuit board is supplied by the tape feeder 74 of the supply device 32, and the mounting head 28 is moved by the moving device 30 to the supply position of the electronic component. Thereby, the electronic component is sucked and held by the suction nozzle 50 of the mounting head 28.
  • the mounting head 28 holding the electronic component is moved onto the parts camera 132 by the moving device 30, and the electronic component held by the mounting head 28 is imaged by the parts camera 132.
  • the holding position error of the electronic component is acquired by the imaging.
  • the moving device 30 moves the mounting head 28 to the mounting position on the circuit board, and the mounting head 28 rotates the mounting nozzle 50 based on the holding position error between the circuit board and the electronic component. Installed.
  • the optical wireless system of the present application can be applied to an electronic component mounting apparatus exemplified in the electronic component mounting apparatus 10 described above, an electronic component mounting apparatus, or an automatic machine that operates in various other production lines.
  • image data from the mark camera (see FIG. 5) 130 and the parts camera (see FIGS. 1 and 5) 132 is transmitted to the control device 140.
  • the control device 140 sends drive control data to the various electromagnetic motors 44, 64, 68 (see FIG. 5) and other movable devices by the drive circuit 144 to perform drive control. Further, lighting control data is sent by the control circuit 146 and lighting control of the display lamp 122 is performed.
  • data transmission is generally performed in a direction opposite to the above data transmission direction.
  • Various camera control signals are sent from the control device 140 to the mark camera 130 and the parts camera 132.
  • servo control data necessary for servo control such as torque information and position information of the servo motor and the like is fed back to the control device 140 from the electromagnetic motors 44, 64, 68 and other movable devices.
  • the drive circuit 144 controls the electromagnetic motors 44, 64, 68 and other movable devices.
  • the electromagnetic motors 44, 64, 68, other movable devices, the display unit 124, and the like are provided with various sensors and switches as necessary, according to the operation status of the various devices or artificially.
  • a sensor switch signal is transmitted to the control device 140 when the switch is pressed.
  • data and signals are transmitted and received bidirectionally between the control device 140 and peripheral devices.
  • Each of these data and signals has a unique data transfer rate, and the data transfer rate may vary greatly depending on the transmission direction. For example, between the mark camera 130 or the parts camera 132 and the control device 140, image data having a high data transfer rate is transmitted from the former to the latter, and a low data transfer rate is transmitted from the latter to the former. A camera control signal is transmitted. Further, between the electromagnetic motors 44, 64, 68 and other movable devices and the control device 140, a sensor switch signal having a low data transfer rate is transmitted from the former to the latter, and from the latter to the former. Servo control data at a high data transfer rate is transmitted.
  • drive control data and servo control data transmitted bidirectionally between the electromagnetic motors 44, 64, 68 and other movable devices and the control device 140 are not limited to image data, but are limited by control. Rapid processing may be required. Also, depending on the type of data, the data transfer rates may differ from each other. In addition, it is also possible that data is transmitted bidirectionally between the display unit 124 and the control device 140, and the data transfer rate of each data or signal is different.
  • the electronic component mounting apparatus 10 is a case where data and signals are transmitted bidirectionally, and has a high data transfer rate in one transmission direction and low-speed data transfer in the other transmission direction.
  • a rate an optical wireless system, an imaging device, and a control device that perform optical data transmission between the mark camera 130 or the parts camera 132 and the control device 140 will be described.
  • FIG. 6 is a diagram schematically showing a configuration when an optical wireless system is applied between the control device 140 and the camera 13X such as the mark camera 130 or the parts camera 132 in the electronic component mounting apparatus 10.
  • the control device 140 is controlled by a controller 142 configured by a computer system such as a PC.
  • the controller 142 is interfaced via the image board 140A.
  • the image board 140A is a board that interfaces with the camera 13X that receives image data and transmits a camera control signal.
  • the image board 140A receives an optical wireless signal 7A for image data and transmits an optical wireless signal 7B for a camera control signal via the optical wireless device 3.
  • the other end is provided with the optical wireless device 1 that transmits the optical wireless signal 7A and receives the optical wireless signal 7B.
  • the optical wireless device 1 is connected to the camera 13X.
  • the optical wireless signal 7A is a signal for transmitting image data captured by the camera 13X. Due to recent technological advances, camera digital interfaces are becoming faster year by year, and products having high-speed communication standards from 3 GBPS to over 21 GBP as data transfer rates have been proposed. Further, a forward error correction code such as a Reed-Solomon code is generally added as a means for detecting and correcting a data error associated with wireless transmission. These codes are added in addition to the actual image data. For this reason, in order to maintain the data transfer rate after adding such a code, further high-speed data transfer is required. Although the coding rate varies depending on the type of forward error correction code and the number of bits that can be corrected, depending on the case, a transfer rate of 1.5 to several times the actual image data may be required.
  • a forward error correction code such as a Reed-Solomon code
  • the light source such as a semiconductor laser used for the optical wireless signal 7A
  • an invisible light source having a wavelength of 850 nm, 1300 nm, 1500 nm, or the like. This is because by using these wavelengths, transmission in a band of 10 GBPS to 40 GBPS is possible, and it can be used as the optical wireless signal 7A.
  • the camera control signal is data for performing various settings and adjustments necessary for imaging with the camera 13X, such as adjustment of the position and angle of the shooting direction of the camera, area setting such as zoom, and gain setting such as exposure. This is because high speed is not required.
  • a visible light source having a wavelength of 650 nm or its vicinity as a light source such as a semiconductor laser used for the optical wireless signal 7B. This is because by using these wavelengths, transmission in a band up to 3 GBPS is possible, and it can be used as the optical wireless signal 7B.
  • FIG. 7 shows the configuration of the optical wireless devices 1 and 3.
  • the optical wireless device 1 includes an optical lens 11, a light guide 13, a non-visible light emitting module 15, a visible light receiving module 17, and a control unit 19.
  • the control unit 19 is an interface with the camera 13X, receives image data transferred from the camera 13X, sends the image data to the non-visible light emitting module 15, and responds to the camera control signal transferred from the visible light receiving module 17. 13X is controlled.
  • the image data transferred from the control unit 19 is converted into an optical signal generated by the blinking of the invisible light source by the invisible light emitting module 15 and transferred to the light guide 13.
  • the light guide 13 sends out the invisible light signal transferred from the invisible light emitting module 15 along the optical axis 7 for optical radio via the lens 11. Further, the visible light signal that has propagated from the control device 140 side along the optical axis 7 for optical radio is incident through the lens 11 and guided to the visible light receiving module 17 by the light guide 13.
  • the optical wireless device 3 includes an optical lens 31, a light guide 33, a visible light emitting module 35, a non-visible light receiving module 37, and a control unit 39.
  • the control unit 39 is an interface with the control device 140, receives a camera control signal transferred from the control device 140, sends it to the visible light emitting module 35, and controls image data transferred from the invisible light receiving module 37. Transfer to device 140.
  • the camera control signal transferred from the control unit 39 is converted by the visible light emitting module 35 into an optical signal resulting from the blinking of the visible light source, and transferred to the light guide 33.
  • the light guide 33 sends the visible light signal transferred from the visible light emitting module 35 along the optical axis 7 for optical radio via the lens 31.
  • the invisible light signal propagating from the camera 13X side along the optical axis 7 for optical radio is input through the lens 31 and guided to the invisible light receiving module 37 by the light guide 33.
  • image data that requires a high data transfer rate is propagated along the optical axis 7 via the light guide 13 by the invisible light emitted from the invisible light emitting module 15.
  • a camera control signal that does not require a high rate is propagated along the optical axis 7 via the light guide 33 by visible light emitted from the visible light emitting module 35.
  • both invisible light and visible light can propagate along the same optical axis 7 in the respective directions without interfering with each other due to different wavelengths of light.
  • the transmission of light to the optical axis 7 and the reception of light from the optical axis 7 are performed by the light guides 13 and 33. Adjustment of the optical axis alignment at this time easily identifies the light emission direction by visual observation. Can be done with visible light. If the optical axis is aligned with visible light, the optical axis of the invisible light can be simultaneously aligned with the same optical axis 7 by the function of the light guides 13 and 33. Even when one of the light sources is invisible light and cannot be viewed, the other light source is visible light, which can be easily confirmed visually.
  • image data requiring a high-speed data transfer rate transmitted from the camera 13X to the control device 140 is the invisible light emitting module 15. Is converted into invisible light and transmitted. Further, a camera control signal that is not required for a high-speed data transfer rate transmitted from the control device 140 to the camera 13X is converted into visible light by the visible light emitting module 35 and transmitted.
  • optical wireless communication can be performed by selecting invisible light or visible light.
  • the optical axis including the invisible light can be aligned by aligning the optical axis with visible light. It is not necessary to perform optical axis alignment for invisible light that cannot be seen, and optical axis alignment can be easily performed.
  • the mark camera 130, the parts camera 132, and the camera 13X are examples of imaging devices
  • the control device 140 is an example of a control device.
  • the invisible light emitting module 15 and the invisible light receiving module 37 are examples of the first optical module
  • the visible light emitting module 35 and the visible light receiving module 17 are examples of the second optical module.
  • the invisible light emitting module 15 is an example of a first light emitting module, and is an example of a light emitting module of an imaging device.
  • the visible light receiving module 17 is an example of a second light receiving module, and is an example of a light receiving module of the imaging apparatus.
  • the visible light emitting module 35 is an example of a second light emitting module, and is an example of a light emitting module of a control device.
  • the invisible light receiving module 37 is an example of a first light receiving module and an example of a light receiving module of a control device.
  • the light guide 13 is an example of a first light guide
  • the light guide 33 is an example of a second light guide.
  • the light guide 13 is an example of a light guide of the imaging apparatus
  • the light guide 33 is an example of a light guide of a control device.
  • the optical axis 7 is an example of a first predetermined axis and a second predetermined axis that are aligned with each other.
  • the present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the spirit of the present invention.
  • the present application is not limited to this. It is applied to optical wireless communication performed between an electromagnetic motor and other movable devices, a transport device 26, a mounting head 28, a moving device 30, a supply device 32, a display unit 124, and other devices not shown. be able to. That is, the data transmission rate of data transmitted bidirectionally differs greatly between these devices.
  • the present application can be similarly applied to the case where it is sufficient that one is transmitted at a high rate and the other is a low rate.
  • Optical wireless device 7 Optical axis 10: Electronic component mounting device 11, 31: Optical lens 13, 33: Light inductor 15: Invisible light emitting module 17: Visible light receiving module 19, 39: Control unit 35 : Visible light emitting module 37: Invisible light receiving module 44, 64, 68: Electromagnetic motor 122: Display lamp 124: Display unit 130: Mark camera 132: Parts camera 13X: Camera 140: Control device 140A: Image board 142: Controller 144: Drive circuit 146: Control circuit 7A: Optical wireless signal 7B: Optical wireless signal

Abstract

Provided are an optical wireless system that transmits image data and control commands between an imaging device and a control device using optical wireless communication, an imaging device, and a control device that comprise: a first optical module that uses invisible light to transmit image data from the imaging device to the control device; and a second optical module that uses visible light having a lower data transfer rate than the invisible light to transmit control commands from the control device to the imaging device. During optical wireless operation, the optical axis of the invisible light and the optical axis of the visible light are aligned. Image data comprising large amounts of data is transmitted using invisible light, which is capable of achieving a high-speed data transfer rate. Control commands comprising small amounts of data are transmitted using visible light, which is capable of achieving a data transfer rate lower than that of the invisible light. In addition, it is possible to carry out optical axis alignment for the optical wireless system using visible light.

Description

光無線システム、撮像機器、および制御機器Optical wireless system, imaging device, and control device
 本発明は、光を利用して無線伝送を行う光無線システム、光無線システムを用いてデータ伝送を行なう撮像機器および制御機器に関するものである。 The present invention relates to an optical wireless system that performs wireless transmission using light, and an imaging device and a control device that perform data transmission using the optical wireless system.
 従来より、テレビジョンカメラと映像装置との間の信号伝送に関する技術が開示されている。例えば、FA(Factory Automation)の分野に用いられるテレビジョンカメラと撮像された映像信号を処理する映像装置との間の信号伝送に関して、信号線の数を減らし、ケーブルの直径を細くして柔軟なケーブルを用いることができる信号伝送方法およびその方法を用いた装置を提供するものが開示されている(特許文献1、2など)。 Conventionally, techniques related to signal transmission between a television camera and a video device have been disclosed. For example, regarding signal transmission between a television camera used in the field of FA (Factory Automation) and a video apparatus that processes the captured video signal, the number of signal lines is reduced and the cable diameter is reduced to be flexible. A signal transmission method that can use a cable and a device that provides a device using the method are disclosed (Patent Documents 1 and 2, etc.).
特開2011-41310号公報JP2011-41310A 特開2007-116734号公報JP 2007-116734 A
 しかしながら、上記特許文献に例示される背景技術は、何れも、テレビジョンカメラと映像装置との間を有線ケーブルで接続することを前提とするものである。ケーブルの本数の削減やケーブル直径の細径化を図るものではあるものの、テレビジョンカメラと映像装置との間のデータ伝送は有線ケーブルを使用することに変わりはない。設置環境によっては、テレビジョンカメラと映像装置との間を光無線などの無線通信方式で接続することが好ましい場合もあるところ、上記の背景技術では、光無線通信で接続することに関しては何ら開示・示唆はない。光無線通信においてデータ伝送を確実に行う際の課題について何ら解決策を提供するものではない。 However, all of the background techniques exemplified in the above-mentioned patent documents are based on the assumption that the television camera and the video apparatus are connected by a wired cable. Although the number of cables is reduced and the cable diameter is reduced, data transmission between the television camera and the video apparatus still uses a wired cable. Depending on the installation environment, it may be preferable to connect the television camera and the video apparatus by a wireless communication method such as optical wireless. However, the above background art discloses nothing about the connection by optical wireless communication.・ There is no suggestion. It does not provide any solution for the problem in reliably performing data transmission in optical wireless communication.
 本発明は、上記の課題に鑑みてなされたものであり、撮像機器と制御機器との間で、画像データと制御指令との伝送を光無線通信により行なう光無線システム、撮像機器、および制御機器を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an optical wireless system, an imaging device, and a control device that perform transmission of image data and a control command by optical wireless communication between the imaging device and the control device. The purpose is to provide.
 上記課題を鑑みてなされた本願の請求項1に記載の光無線システムは、撮像機器と制御機器との間が光無線によりデジタルインターフェースされる光無線システムである。撮像機器から制御機器に向けて、画像データを非可視光で送信するための第1光モジュールと、制御機器から撮像機器に向けて、制御指令を非可視光によるデータ転送レートよりデータ転送レートが低い可視光で送信するための第2光モジュールとを備えている。光無線時には、非可視光の光軸と可視光の光軸とを一致させる。 The optical wireless system according to claim 1 of the present application made in view of the above problems is an optical wireless system in which an imaging device and a control device are digitally interfaced by optical wireless. The first optical module for transmitting image data with invisible light from the imaging device to the control device, and the control command from the control device to the imaging device has a data transfer rate higher than the data transfer rate with invisible light. A second optical module for transmitting with low visible light. At the time of optical wireless, the optical axis of invisible light is matched with the optical axis of visible light.
 また、請求項2に記載の光無線システムは、請求項1に記載の光無線システムにおいて、撮像機器は、第1光モジュールのうち非可視光を発光する第1発光モジュールと、第2光モジュールのうち可視光を受光する第2受光モジュールと、第1発光モジュールから発光される非可視光を第1の所定軸線の方向に導き、第1の所定軸線に沿って入光する可視光を第2受光モジュールに分岐する第1光誘導器とを備えている。また、制御機器は、第2光モジュールのうち可視光を発光する第2発光モジュールと、第1光モジュールのうち非可視光を受光する第1受光モジュールと、第2発光モジュールから発光される可視光を第2の所定軸線の方向に導き、第2の所定軸線に沿って入光する非可視光を第1受光モジュールに分岐する第2光誘導器とを備えている。そして、光無線の際の光軸合わせは、第2発光モジュールから発せられる可視光が第2受光モジュールに受光されるように、第1の所定軸線と第2の所定軸線との軸合わせをすることにより行なわれる。 An optical wireless system according to a second aspect is the optical wireless system according to the first aspect, wherein the imaging device includes a first light emitting module that emits invisible light and a second optical module among the first optical modules. The second light receiving module that receives visible light and the invisible light emitted from the first light emitting module are guided in the direction of the first predetermined axis, and the visible light that enters along the first predetermined axis is And a first optical inductor that branches into two light receiving modules. The control device also includes a second light emitting module that emits visible light among the second optical modules, a first light receiving module that receives invisible light among the first optical modules, and a visible light emitted from the second light emitting module. A second light guide for guiding light in the direction of the second predetermined axis and branching invisible light entering along the second predetermined axis to the first light receiving module; The optical axis alignment at the time of optical wireless is performed by aligning the first predetermined axis and the second predetermined axis so that visible light emitted from the second light emitting module is received by the second light receiving module. Is done.
 また、請求項3に記載の撮像機器は、光無線を用いたデジタルインターフェースにより、制御機器からの制御指令を受信すると共に制御機器に対して画像データを送信する。画像データを送信する非可視光を発光する発光モジュールと、制御指令を送信する非可視光に比してデータ転送レートが低い可視光を受光する受光モジュールと、発光モジュールから発光される非可視光を所定軸線の方向に導き、所定軸線に沿って入光する可視光を前記受光モジュールに分岐する光誘導器とを備えている。 Further, the imaging device according to claim 3 receives a control command from the control device and transmits image data to the control device through a digital interface using optical radio. A light emitting module that emits invisible light that transmits image data, a light receiving module that receives visible light whose data transfer rate is lower than that of invisible light that transmits a control command, and an invisible light emitted from the light emitting module Is provided in the direction of a predetermined axis, and visible light that enters along the predetermined axis is branched to the light receiving module.
 また、請求項4に記載の制御機器は、光無線を用いたデジタルインターフェースにより、撮像機器からの画像データを受信すると共に撮像機器に対して制御指令を送信する。制御指令を送信する可視光を発光する発光モジュールと、制御指令を送信する可視光に比してデータ転送レートが高い非可視光を受光する受光モジュールと、発光モジュールから発光される可視光を所定軸線の方向に導き、所定軸線に沿って入光する非可視光を受光モジュールに分岐する光誘導器とを備えている。 The control device according to claim 4 receives image data from the imaging device and transmits a control command to the imaging device through a digital interface using optical wireless. A light emitting module that emits visible light that transmits a control command, a light receiving module that receives invisible light having a higher data transfer rate than the visible light that transmits a control command, and a predetermined amount of visible light emitted from the light emitting module. A light guide for guiding invisible light that is guided in the direction of the axis and enters along the predetermined axis to the light receiving module.
 請求項1に記載の光無線システムでは、撮像機器から制御機器に向けて送信される画像データには第1光モジュールにより発光される非可視光を使用し、制御機器から撮像機器に向けて送信される制御指令には第2光モジュールにより発光される可視光を使用する。 In the optical wireless system according to claim 1, invisible light emitted from the first optical module is used for image data transmitted from the imaging device to the control device, and the image data is transmitted from the control device to the imaging device. Visible light emitted from the second optical module is used as the control command.
 これにより、データ量の大きな画像データは高速なデータ転送レートの伝送が可能な非可視光により送信することができ、データ量の小さな制御指令は非可視光より低いデータ転送レートの伝送が可能な可視光を使用することができる。更に、低いデータ転送レートの制御指令に使用される可視光を利用して光無線システムの光軸合わせを行なうことができる。データ量に応じて第1および第2光モジュールを使い分けながら、可視光を発光する第2光モジュールにより光無線通信における光軸合わせを行なうことができる。第2光モジュールを多機能に利用して効率よくシステムを構築することができる。 As a result, image data with a large amount of data can be transmitted by non-visible light capable of transmitting at a high data transfer rate, and a control command with a small amount of data can be transmitted at a data transfer rate lower than that of non-visible light. Visible light can be used. Further, the optical axis of the optical wireless system can be aligned using visible light used for a control command with a low data transfer rate. While properly using the first and second optical modules according to the amount of data, optical axis alignment in optical wireless communication can be performed by the second optical module that emits visible light. A system can be efficiently constructed by using the second optical module for multiple functions.
 また、請求項2に記載の光無線システムでは、光無線の際の光軸合わせは、制御機器に備えられる第2発光モジュールから発せられる可視光が撮像機器に備えられる第2受光モジュールに受光されるように、撮像機器の光軸である第1の所定軸線と制御機器の光軸である第2の所定軸線との軸合わせをすることにより行うことができる。この場合、光源が第2発光モジュールから発せられる可視光であるので、目視により確認をしながら光軸合わせを行なうことができる。 In the optical wireless system according to claim 2, in the optical wireless alignment, visible light emitted from the second light emitting module provided in the control device is received by the second light receiving module provided in the imaging device. As described above, it can be performed by aligning the first predetermined axis that is the optical axis of the imaging device and the second predetermined axis that is the optical axis of the control device. In this case, since the light source is visible light emitted from the second light emitting module, the optical axes can be aligned while visually confirming.
 また、請求項3に記載の撮像機器、および請求項4に記載の制御機器では、本願に記載の光無線システムを構成することができる。データ量に応じて非可視光と可視光とを使い分けながら、可視光により光無線通信の光軸合わせを行なうことができる。 Further, with the imaging device according to claim 3 and the control device according to claim 4, the optical wireless system described in the present application can be configured. The optical axis of optical wireless communication can be adjusted by visible light while using invisible light and visible light properly according to the amount of data.
電子部品供給装置が取り付けられた電子部品装着機が2台並べられて構成されている電子部品装着装置を示す斜視図であり、本発明の多重化通信システムを適用することが可能な装置である。1 is a perspective view showing an electronic component mounting apparatus configured by arranging two electronic component mounting machines to which an electronic component supply apparatus is attached, and is an apparatus to which the multiplexed communication system of the present invention can be applied. . 図1に示す電子部品供給装置のテープフィーダの一部および、そのテープフィーダによって送り出されるテープ化部品を示す平面図である。It is a top view which shows a part of tape feeder of the electronic component supply apparatus shown in FIG. 1, and the tape-ized components sent out by the tape feeder. 図1に示す電子部品供給装置を示す斜視図である。It is a perspective view which shows the electronic component supply apparatus shown in FIG. 図3に示すテープフィーダを示す断面図である。It is sectional drawing which shows the tape feeder shown in FIG. 図1に示す電子部品装着機の備える制御装置を示すブロック図である。It is a block diagram which shows the control apparatus with which the electronic component mounting machine shown in FIG. 1 is provided. 図1の電子部品装着装置に光無線システムを適用する場合の構成を模式的に示す図である。It is a figure which shows typically the structure in the case of applying an optical wireless system to the electronic component mounting apparatus of FIG. 光無線システムに備えられる光無線装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical wireless apparatus with which an optical wireless system is equipped.
 以下、本発明の実施形態として、図を参照しつつ詳しく説明する。初めに、本願の多重化通信システムを適用することが可能な例として、図1ないし図5を参照して、電子部品装着装置の構成について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, as an example to which the multiplexed communication system of the present application can be applied, the configuration of an electronic component mounting apparatus will be described with reference to FIGS. 1 to 5.
 図1に、電子部品装着装置(以下、「装着装置」と略す場合がある)10を示す。その図は、装着装置10の外装部品の一部を取り除いた斜視図である。装着装置10は、1つのシステムベース12と、そのシステムベース12の上に互いに隣接されて並んで配列された2つの電子部品装着機(以下、「装着機」と略す場合がある)16とを含んで構成されており、回路基板に電子部品を装着する作業を行うものとされている。なお、以下の説明において、装着機16の並ぶ方向をX軸方向とし、その方向に直角な水平の方向をY軸方向と称する。 FIG. 1 shows an electronic component mounting apparatus (hereinafter, may be abbreviated as “mounting apparatus”) 10. The figure is a perspective view in which a part of the exterior component of the mounting apparatus 10 has been removed. The mounting apparatus 10 includes one system base 12 and two electronic component mounting machines (hereinafter, may be abbreviated as “mounting machines”) 16 arranged side by side adjacent to each other on the system base 12. In other words, the electronic component is mounted on the circuit board. In the following description, the direction in which the mounting machines 16 are arranged is referred to as an X-axis direction, and a horizontal direction perpendicular to the direction is referred to as a Y-axis direction.
 装着装置10の備える装着機16の各々は、主に、フレーム部20とそのフレーム部20に上架されたビーム部22とを含んで構成された装着機本体24と、回路基板をX軸方向に搬送するとともに設定された位置に固定する搬送装置26と、その搬送装置26によって固定された回路基板に電子部品を装着する装着ヘッド28と、ビーム部22に配設されて装着ヘッド28をX軸方向およびY軸方向に移動させる移動装置30と、フレーム部20の前方に配設され装着ヘッド28に電子部品を供給する電子部品供給装置(以下、「供給装置」と略す場合がある)32とを備えている。 Each of the mounting machines 16 included in the mounting apparatus 10 mainly includes a mounting machine main body 24 configured to include a frame unit 20 and a beam unit 22 overlaid on the frame unit 20, and a circuit board in the X-axis direction. A transport device 26 that transports and fixes the set position at a set position, a mounting head 28 that mounts an electronic component on a circuit board fixed by the transport device 26, and an X-axis mounted head 28 disposed on the beam unit 22. A moving device 30 that moves in the direction and the Y-axis direction, and an electronic component supply device 32 that is disposed in front of the frame portion 20 and supplies electronic components to the mounting head 28 (hereinafter, may be abbreviated as “supply device”) It has.
 搬送装置26は、2つのコンベア装置40、42を備えており、それら2つのコンベア装置40、42は、互いに平行、かつ、X軸方向に延びるようにフレーム部20のY軸方向での中央部に配設されている。2つのコンベア装置40、42の各々は、電磁モータ44(図5参照)によって各コンベア装置40、42に支持される回路基板をX軸方向に搬送する構造とされている。さらに、コンベア装置40、42の各々は、基板保持装置46(図5参照)を有しており、所定の位置において回路基板を固定的に保持する構造とされている。 The transport device 26 includes two conveyor devices 40 and 42, and the two conveyor devices 40 and 42 are parallel to each other and extend in the X-axis direction, so that the central portion in the Y-axis direction of the frame portion 20. It is arranged. Each of the two conveyor devices 40 and 42 has a structure in which a circuit board supported by each conveyor device 40 and 42 is conveyed in the X-axis direction by an electromagnetic motor 44 (see FIG. 5). Further, each of the conveyor devices 40 and 42 has a substrate holding device 46 (see FIG. 5), and is configured to hold the circuit board in a fixed position.
 また、装着ヘッド28は、搬送装置26によって保持された回路基板に対して電子部品を装着するものであり、下面に電子部品を吸着する吸着ノズル50を有している。吸着ノズル50は、正負圧供給装置52(図5参照)を介して負圧エア、正圧エア通路に通じており、負圧にて電子部品を吸着保持し、僅かな正圧が供給されることで保持した電子部品を離脱する構造とされている。さらに、装着ヘッド28は、吸着ノズル50を昇降させるノズル昇降装置(図5参照)54および吸着ノズル50をそれの軸心回りに自転させるノズル自転装置(図5参照)56を有しており、保持する電子部品の上下方向の位置および電子部品の保持姿勢を変更することが可能とされている。なお、吸着ノズル50は、装着ヘッド28に着脱可能とされており、電子部品のサイズ、形状等に応じて変更することが可能とされている。 The mounting head 28 is for mounting electronic components on the circuit board held by the transport device 26, and has a suction nozzle 50 for sucking the electronic components on the lower surface. The suction nozzle 50 communicates with negative pressure air and a positive pressure air passage via a positive / negative pressure supply device 52 (see FIG. 5), and sucks and holds the electronic component at a negative pressure, so that a slight positive pressure is supplied. In this way, the held electronic component is detached. Furthermore, the mounting head 28 includes a nozzle lifting device (see FIG. 5) 54 that lifts and lowers the suction nozzle 50 and a nozzle rotation device (see FIG. 5) 56 that rotates the suction nozzle 50 about its axis. It is possible to change the vertical position of the electronic component to be held and the holding posture of the electronic component. The suction nozzle 50 is attachable to and detachable from the mounting head 28, and can be changed according to the size and shape of the electronic component.
 移動装置30は、その装着ヘッド28をフレーム部20上の任意の位置に移動させるものであり、装着ヘッド28をX軸方向に移動させるためのX軸方向スライド機構(図示省略)と、装着ヘッド28をY軸方向に移動させるためのY軸方向スライド機構(図示省略)とを備えている。Y軸方向スライド機構は、Y軸方向に移動可能にビーム部22に設けられたY軸スライダ(図示省略)と、駆動源としての電磁モータ(図5参照)64とを有しており、その電磁モータ64によって、Y軸スライダがY軸方向の任意の位置に移動可能とされている。また、X軸方向スライド機構は、X軸方向に移動可能にY軸スライダに設けられたX軸スライダ66と、駆動源としての電磁モータ(図5参照)68とを有しており、その電磁モータ68によって、X軸スライダ66がX軸方向の任意の位置に移動可能とされている。そして、そのX軸スライダ66に装着ヘッド28が取り付けられることで、装着ヘッド28は、移動装置30によって、フレーム部20上の任意の位置に移動可能とされている。なお、装着ヘッド28は、X軸スライダ66にワンタッチで着脱可能とされており、種類の異なる作業ヘッド、例えば、ディスペンサヘッド等に変更することが可能とされている。 The moving device 30 moves the mounting head 28 to an arbitrary position on the frame unit 20, an X-axis direction slide mechanism (not shown) for moving the mounting head 28 in the X-axis direction, and the mounting head. And a Y-axis direction slide mechanism (not shown) for moving 28 in the Y-axis direction. The Y-axis direction slide mechanism has a Y-axis slider (not shown) provided in the beam portion 22 so as to be movable in the Y-axis direction, and an electromagnetic motor (see FIG. 5) 64 as a drive source. The Y-axis slider can be moved to an arbitrary position in the Y-axis direction by the electromagnetic motor 64. The X-axis direction slide mechanism has an X-axis slider 66 provided on the Y-axis slider so as to be movable in the X-axis direction, and an electromagnetic motor (see FIG. 5) 68 as a drive source. The motor 68 enables the X-axis slider 66 to move to an arbitrary position in the X-axis direction. The mounting head 28 is attached to the X-axis slider 66, so that the mounting head 28 can be moved to an arbitrary position on the frame unit 20 by the moving device 30. The mounting head 28 can be attached to and detached from the X-axis slider 66 with a single touch, and can be changed to a different type of work head, such as a dispenser head.
 また、供給装置32は、ベースとしてのフレーム部20の前方側の端部に配設されており、フィーダ型の供給装置とされている。供給装置32は、電子部品がテーピング化されたテープ化部品(図2参照)70をリール72に巻回させた状態で収容する複数のテープフィーダ74と、それら複数のテープフィーダ74の各々に収容されているテープ化部品70を送り出す複数の送出装置(図5参照)75とを有しており、テープ化部品70から電子部品を装着ヘッド28への供給位置に順次供給する構造とされている。 The supply device 32 is disposed at the front end of the frame portion 20 as a base, and is a feeder-type supply device. The supply device 32 accommodates a taped part 70 (see FIG. 2) in which electronic parts are taped and accommodated in a state in which the taped part 70 is wound around a reel 72, and is accommodated in each of the plurality of tape feeders 74. And a plurality of delivery devices (see FIG. 5) 75 for feeding out the taped component 70, and the electronic components are sequentially supplied from the taped component 70 to the supply position to the mounting head 28. .
 テープ化部品70は、図2に示すように、多数の収容凹部78および送り穴80が等ピッチで形成されたキャリアテープ82と、収容凹部78に収容される電子部品84と、キャリアテープ82の電子部品84が収容された収容凹部78を覆うトップカバーテープ86とから構成されている。一方、テープフィーダ74は、図3に示すように、そのテープ化部品70が巻回されるリール72を保持するリール保持部88と、そのリール72から引き出されたテープ化部品70が上端面に延在させられるフィーダ本体90とから構成されている。 As shown in FIG. 2, the taped component 70 includes a carrier tape 82 in which a large number of receiving recesses 78 and feed holes 80 are formed at an equal pitch, an electronic component 84 received in the receiving recess 78, and a carrier tape 82. The top cover tape 86 covers the housing recess 78 in which the electronic component 84 is housed. On the other hand, as shown in FIG. 3, the tape feeder 74 has a reel holding portion 88 for holding a reel 72 around which the taped component 70 is wound, and a taped component 70 drawn out from the reel 72 on the upper end surface. It is composed of a feeder main body 90 that is extended.
 フィーダ本体90内部には、図4に示すように、テープ化部品70のキャリアテープ82に形成された送り穴80に係合するスプロケット92が内蔵されており、そのスプロケット92が回転させられることで、キャリアテープ82にトップカバーテープ86が貼着された状態のテープ化部品70が、フィーダ本体90の上端面において、リール72から離間する方向に送り出される。そして、剥離装置(図示省略)によって、キャリアテープ82からトップカバーテープ86が剥ぎ取られることで、フィーダ本体90の上端面の先端部において、電子部品84が収容された収容凹部78が順次解放され、その解放された収容凹部78から電子部品84が吸着ノズル50によって取り出される。 As shown in FIG. 4, a sprocket 92 that engages with a feed hole 80 formed in the carrier tape 82 of the taped component 70 is built in the feeder main body 90, and the sprocket 92 is rotated. The taped component 70 with the top cover tape 86 attached to the carrier tape 82 is sent out in the direction away from the reel 72 on the upper end surface of the feeder main body 90. Then, when the top cover tape 86 is peeled off from the carrier tape 82 by a peeling device (not shown), the accommodation recesses 78 in which the electronic components 84 are accommodated are sequentially released at the tip of the upper end surface of the feeder main body 90. The electronic component 84 is taken out by the suction nozzle 50 from the opened accommodation recess 78.
 また、テープフィーダ74は、フレーム部20の前方側の端部に固定的に設けられたテープフィーダ装着台(以下、「装着台」と略す場合がある)100に着脱可能とされている。装着台100は、フレーム部20の上面に設けられたスライド部102と、そのスライド部102の搬送装置26に近い側の端部に立設された立設面部106とから構成されている。スライド部102には、Y軸方向に延びるように複数のスライド溝108が形成されており、それら複数のスライド溝108の各々に、テープフィーダ74のフィーダ本体90の下縁部を嵌合させた状態でスライドさせることが可能とされている。そして、フィーダ本体90の下縁部を嵌合させた状態で立設面部106に接近させる方向にスライドさせることで、フィーダ本体90のテープ化部品70の送り出し方向である送出方向の側の側壁面110が立設面部106に取り付けられる。これにより、テープフィーダ74が装着台100に装着される。 Also, the tape feeder 74 is detachable from a tape feeder mounting base (hereinafter sometimes abbreviated as “mounting base”) 100 fixedly provided at the front end of the frame portion 20. The mounting base 100 includes a slide portion 102 provided on the upper surface of the frame portion 20 and a standing surface portion 106 erected on an end portion of the slide portion 102 on the side close to the conveying device 26. A plurality of slide grooves 108 are formed in the slide portion 102 so as to extend in the Y-axis direction, and the lower edge portion of the feeder main body 90 of the tape feeder 74 is fitted into each of the plurality of slide grooves 108. It is possible to slide in the state. And the side wall surface by the side of the sending direction which is the sending direction of the taped component 70 of the feeder main body 90 is made to slide in the direction which approaches the standing surface part 106 in the state which fitted the lower edge part of the feeder main body 90. 110 is attached to the standing surface portion 106. As a result, the tape feeder 74 is mounted on the mounting table 100.
 その立設面部106には、上記複数のスライド溝108に対応して、複数のコネクタ接続部112が設けられている。一方、立設面部106に取り付けられるテープフィーダ74の側壁面110には、コネクタ114が設けられたおり、テープフィーダ74の側壁面110が立設面部106に取り付けられた際に、コネクタ114がコネクタ接続部112に接続されるようになっている。また、テープフィーダ74の側壁面110には、コネクタ114を上下方向に挟むように1対の立設ピン116が設けられており、装着台100の立設面部106のコネクタ接続部112を上下方向に挟むように形成された1対の嵌合穴118に嵌合されるようになっている。 The standing surface portion 106 is provided with a plurality of connector connecting portions 112 corresponding to the plurality of slide grooves 108. On the other hand, the connector 114 is provided on the side wall surface 110 of the tape feeder 74 attached to the standing surface portion 106, and when the side wall surface 110 of the tape feeder 74 is attached to the standing surface portion 106, the connector 114 is connected to the connector 114. The connection unit 112 is connected. Further, a pair of upright pins 116 are provided on the side wall surface 110 of the tape feeder 74 so as to sandwich the connector 114 in the vertical direction, and the connector connection portion 112 of the upright surface portion 106 of the mounting base 100 is connected in the vertical direction. Are fitted into a pair of fitting holes 118 formed so as to be sandwiched between the two.
 また、装着台100の上部には、図4に示すように、カバー120が開閉可能に設けられている。カバー120は、装着機16のビーム部22の前方側の端部に、X軸方向に延びる軸線まわりに回動可能に取り付けられており、装着台100を覆う閉位置と、装着台100を開放する開位置との間で回動可能とされている。装着台100にテープフィーダ74が装着された状態で、カバー120が閉じられると、その装着されているテープフィーダ74のフィーダ本体90がカバー120によって覆われるようになっている。 Further, as shown in FIG. 4, a cover 120 is provided on the top of the mounting base 100 so as to be opened and closed. The cover 120 is attached to the end portion on the front side of the beam portion 22 of the mounting machine 16 so as to be rotatable about an axis extending in the X-axis direction, and the closed position covering the mounting table 100 and the mounting table 100 are opened. It is possible to rotate between the open position. When the cover 120 is closed while the tape feeder 74 is mounted on the mounting base 100, the feeder main body 90 of the tape feeder 74 that is mounted is covered by the cover 120.
 そのカバー120の下端部には、3個の表示ランプ122(図では1個のみ示されている)が設けられた表示部124が取り付けられており、装着台100にテープフィーダ74が装着された状態で、カバー120が閉じられると、その表示部124がフィーダ本体90の上方に位置するようになっている。なお、表示部124は、複数のスライド溝108に対応して、複数設けられており、それら複数の表示部124の表示ランプ122は、テープフィーダ74を装着台100に装着する際に点灯され、複数のスライド溝108のいずれにテープフィーダ74を装着すべきかを案内するものとして使用される。 A display portion 124 provided with three display lamps 122 (only one is shown in the figure) is attached to the lower end portion of the cover 120, and the tape feeder 74 is attached to the attachment base 100. When the cover 120 is closed in this state, the display unit 124 is positioned above the feeder main body 90. A plurality of display units 124 are provided corresponding to the plurality of slide grooves 108, and the display lamps 122 of the plurality of display units 124 are turned on when the tape feeder 74 is mounted on the mounting base 100, It is used as a guide to which of the plurality of slide grooves 108 the tape feeder 74 should be attached.
 また、装着機16は、マークカメラ(図5参照)130およびパーツカメラ(図1、5参照)132を備えている。マークカメラ130は、下方を向いた状態でX軸スライダ66の下面に固定されており、移動装置30によって移動させられることで、回路基板の表面を任意の位置において撮像することが可能となっている。一方、パーツカメラ132は、上を向いた状態でフレーム部20の搬送装置26と供給装置32との間に設けられており、装着ヘッド28の吸着ノズル50によって吸着保持された電子部品を撮像することが可能となっている。マークカメラ130によって得られた画像データおよび、パーツカメラ132によって得られた画像データは、画像処理装置134(図5参照)において処理され、回路基板に関する情報、基板保持装置46による回路基板の保持位置誤差、吸着ノズル50による電子部品の保持位置誤差等が取得される。 The mounting machine 16 includes a mark camera (see FIG. 5) 130 and a parts camera (see FIGS. 1 and 5) 132. The mark camera 130 is fixed to the lower surface of the X-axis slider 66 so as to face downward, and is moved by the moving device 30 so that the surface of the circuit board can be imaged at an arbitrary position. Yes. On the other hand, the parts camera 132 is provided between the transport device 26 of the frame unit 20 and the supply device 32 in a state of facing upward, and images the electronic component sucked and held by the suction nozzle 50 of the mounting head 28. It is possible. The image data obtained by the mark camera 130 and the image data obtained by the parts camera 132 are processed by the image processing device 134 (see FIG. 5), and information on the circuit board, the holding position of the circuit board by the board holding device 46. An error, a holding position error of the electronic component by the suction nozzle 50, and the like are acquired.
 さらに、装着機16は、図5に示すように、制御装置140を備えている。制御装置140は、CPU、ROM、RAM等を備えたコンピュータを主体とするコントローラ142と、上記電磁モータ44、64、68、基板保持装置46、正負圧供給装置52、ノズル昇降装置54、ノズル自転装置56、送出装置75の各々に対応する複数の駆動回路144と、複数の表示部124に設けられた複数の表示ランプ122の各々に対応する複数の制御回路146とを備えている。コントローラ142には、各駆動回路144を介して搬送装置、移動装置等の駆動源が接続されており、搬送装置、移動装置等の作動を制御することが可能とされている。また、コントローラ142には、各制御回路146を介して複数の表示ランプ122に接続されており、それら複数の表示ランプ122の各々を制御可能に点灯することが可能とされている。また、複数の表示部124には図示しない各種のスイッチが設けられる場合もあり、各制御回路146に対してスイッチ入力に伴う各種の制御信号が送られる。さらに、コントローラ142には、マークカメラ130およびパーツカメラ132によって得られた画像データを処理する画像処理装置134が接続されている。 Further, the mounting machine 16 includes a control device 140 as shown in FIG. The control device 140 includes a controller 142 mainly composed of a computer having a CPU, ROM, RAM, etc., the electromagnetic motors 44, 64, 68, the substrate holding device 46, the positive / negative pressure supply device 52, the nozzle lifting / lowering device 54, the nozzle rotation. A plurality of drive circuits 144 corresponding to each of the device 56 and the delivery device 75 and a plurality of control circuits 146 corresponding to each of the plurality of display lamps 122 provided in the plurality of display units 124 are provided. The controller 142 is connected to a drive source such as a transfer device or a moving device via each drive circuit 144, and can control the operation of the transfer device, the moving device, or the like. The controller 142 is connected to a plurality of display lamps 122 via each control circuit 146, and each of the plurality of display lamps 122 can be lit up in a controllable manner. The plurality of display units 124 may be provided with various switches (not shown), and various control signals accompanying switch inputs are sent to the control circuits 146. Further, an image processing device 134 that processes image data obtained by the mark camera 130 and the part camera 132 is connected to the controller 142.
 装着機16では、上述した構成によって、搬送装置26に保持された回路基板に対して、装着ヘッド28によって電子部品の装着作業を行うことが可能とされている。具体的に説明すれば、まず、搬送装置26によって、回路基板を装着作業位置まで搬送するとともに、その位置において回路基板を固定的に保持する。次に、移動装置30によって、装着ヘッド28を回路基板上に移動させ、マークカメラ130によって、回路基板を撮像する。その撮像により回路基板の種類、搬送装置26による回路基板の保持位置誤差が取得される。その取得された回路基板の種類に応じた電子部品を、供給装置32のテープフィーダ74によって供給し、その電子部品の供給位置に、装着ヘッド28を移動装置30によって移動させる。これにより、装着ヘッド28の吸着ノズル50によって電子部品が吸着保持される。 In the mounting machine 16, with the configuration described above, it is possible to perform an electronic component mounting operation with the mounting head 28 on the circuit board held by the transport device 26. More specifically, the circuit board is first transported to the mounting work position by the transport device 26, and the circuit board is fixedly held at that position. Next, the mounting device 28 is moved onto the circuit board by the moving device 30, and the circuit board is imaged by the mark camera 130. By the imaging, the type of the circuit board and the holding position error of the circuit board by the transfer device 26 are acquired. An electronic component corresponding to the acquired type of circuit board is supplied by the tape feeder 74 of the supply device 32, and the mounting head 28 is moved by the moving device 30 to the supply position of the electronic component. Thereby, the electronic component is sucked and held by the suction nozzle 50 of the mounting head 28.
 続いて、電子部品を保持した状態の装着ヘッド28を、移動装置30によってパーツカメラ132上に移動させ、パーツカメラ132によって、装着ヘッド28に保持された電子部品を撮像する。その撮像により電子部品の保持位置誤差が取得される。そして、移動装置30によって、装着ヘッド28を回路基板上の装着位置に移動させ、装着ヘッド28によって、回路基板および電子部品の保持位置誤差に基づいて装着ノズル50を自転させた後に、電子部品が装着される。 Subsequently, the mounting head 28 holding the electronic component is moved onto the parts camera 132 by the moving device 30, and the electronic component held by the mounting head 28 is imaged by the parts camera 132. The holding position error of the electronic component is acquired by the imaging. The moving device 30 moves the mounting head 28 to the mounting position on the circuit board, and the mounting head 28 rotates the mounting nozzle 50 based on the holding position error between the circuit board and the electronic component. Installed.
 さて、本願の光無線システムは、上記の電子部品装着装置10に例示される電子部品装着装置や電子部品の実装装置、あるいはその他の様々な製造ラインにおいて稼働する自動機などに適用することが可能なシステムである。上述したように、電子部品装着装置10では、マークカメラ(図5参照)130やパーツカメラ(図1、5参照)132からの画像データが制御装置140に伝送される。制御装置140からは、駆動回路144により各種の電磁モータ44、64、68(図5参照)やその他の可動装置に対して駆動制御データが送られ駆動制御が行われる。また、制御回路146により点灯制御データが送られ表示ランプ122の点灯制御が行われる。 The optical wireless system of the present application can be applied to an electronic component mounting apparatus exemplified in the electronic component mounting apparatus 10 described above, an electronic component mounting apparatus, or an automatic machine that operates in various other production lines. System. As described above, in the electronic component mounting apparatus 10, image data from the mark camera (see FIG. 5) 130 and the parts camera (see FIGS. 1 and 5) 132 is transmitted to the control device 140. The control device 140 sends drive control data to the various electromagnetic motors 44, 64, 68 (see FIG. 5) and other movable devices by the drive circuit 144 to perform drive control. Further, lighting control data is sent by the control circuit 146 and lighting control of the display lamp 122 is performed.
 また、図示はされていないが、上記のデータの伝送方向とは反対の方向にもデータの伝送が行われることが一般的である。制御装置140からは、マークカメラ130やパーツカメラ132に向けて各種のカメラ制御信号が送られる。また、電磁モータ44、64、68やその他の可動装置からは、サーボモータなどのトルク情報や位置情報等のサーボ制御に必要なサーボ制御データが制御装置140にフィードバックされる。これらの情報に基づいて駆動回路144により電磁モータ44、64、68やその他の可動装置の制御が行われる。また、電磁モータ44、64、68やその他の可動装置および表示部124等には、必要に応じて、各種のセンサやスイッチが設置されおり、各種装置の稼働状況に合わせて、あるいは人為的なスイッチの押下により制御装置140にセンサ・スイッチ信号が伝送される。 Although not shown, data transmission is generally performed in a direction opposite to the above data transmission direction. Various camera control signals are sent from the control device 140 to the mark camera 130 and the parts camera 132. In addition, servo control data necessary for servo control such as torque information and position information of the servo motor and the like is fed back to the control device 140 from the electromagnetic motors 44, 64, 68 and other movable devices. Based on these pieces of information, the drive circuit 144 controls the electromagnetic motors 44, 64, 68 and other movable devices. The electromagnetic motors 44, 64, 68, other movable devices, the display unit 124, and the like are provided with various sensors and switches as necessary, according to the operation status of the various devices or artificially. A sensor switch signal is transmitted to the control device 140 when the switch is pressed.
 電子部品装着装置10では、制御装置140とその周辺の機器との間で、双方向にデータや信号の送受信が行われる。これらのデータや信号は、それぞれに固有のデータ転送レートが設定されており、伝送方向によって大きくデータ転送レートが異なることがある。例えば、マークカメラ130やパーツカメラ132と制御装置140との間は、前者から後者に向けては高速なデータ転送レートの画像データが伝送され、後者から前者に向けては低速なデータ転送レートのカメラ制御信号が伝送される。また、電磁モータ44、64、68やその他の可動装置と制御装置140との間は、前者から後者に向けては低いデータ転送レートのセンサ・スイッチ信号が伝送され、後者から前者に向けては高速なデータ転送レートのサーボ制御データが伝送される。 In the electronic component mounting apparatus 10, data and signals are transmitted and received bidirectionally between the control device 140 and peripheral devices. Each of these data and signals has a unique data transfer rate, and the data transfer rate may vary greatly depending on the transmission direction. For example, between the mark camera 130 or the parts camera 132 and the control device 140, image data having a high data transfer rate is transmitted from the former to the latter, and a low data transfer rate is transmitted from the latter to the former. A camera control signal is transmitted. Further, between the electromagnetic motors 44, 64, 68 and other movable devices and the control device 140, a sensor switch signal having a low data transfer rate is transmitted from the former to the latter, and from the latter to the former. Servo control data at a high data transfer rate is transmitted.
 また、電磁モータ44、64、68やその他の可動装置と制御装置140との間で双方向に伝送される、駆動制御データやサーボ制御データは、画像データには及ばないものの制御上の制約から迅速な処理が必要とされる場合がある。また、データの種類によってはデータ転送レートが互いに異なる場合がある。この他にも、表示部124と制御装置140との間においても双方向に伝送が行われ、各々のデータや信号のデータ転送レートが異なることも考えられる。 In addition, drive control data and servo control data transmitted bidirectionally between the electromagnetic motors 44, 64, 68 and other movable devices and the control device 140 are not limited to image data, but are limited by control. Rapid processing may be required. Also, depending on the type of data, the data transfer rates may differ from each other. In addition, it is also possible that data is transmitted bidirectionally between the display unit 124 and the control device 140, and the data transfer rate of each data or signal is different.
 また、近年、電子部品装着装置10などの電子部品装着装置や電子部品の実装装置、あるいはその他の様々な製造ラインにおいて稼働する自動機などに関するFA分野では、可動部位へデータを伝送するためのワイヤーハーネスが可動に伴うワイヤーハーネスへの負荷のために断線等のトラブルが発生することがある。このトラブルを回避するために機器間を無線通信で接続してデータ伝送を行なうことが行われている。この場合、FA分野では製造工程での電磁環境や伝送すべきデータ量やデータ転送レートの高速性などに鑑み、電波ではなく光無線による通信を利用することが行われつつある。 In recent years, in the FA field related to electronic component mounting devices such as the electronic component mounting device 10, electronic component mounting devices, and automatic machines operating in various other production lines, wires for transmitting data to movable parts are used. Troubles such as disconnection may occur due to the load on the wire harness when the harness moves. In order to avoid this trouble, data transmission is performed by connecting devices by wireless communication. In this case, in the FA field, in view of the electromagnetic environment in the manufacturing process, the amount of data to be transmitted, and the high speed of the data transfer rate, communication using optical wireless instead of radio waves is being performed.
 以下の実施形態では、電子部品装着装置10において、双方向でデータや信号が伝送される場合であって、一方の伝送方向では高速なデータ転送レートを有し他方の伝送方向では低速なデータ転送レートを有するデータ伝送を行なう場合の例として、マークカメラ130やパーツカメラ132と制御装置140との間で光無線によりデータ伝送を行なう光無線システム、撮像機器、および制御機器について説明する。 In the following embodiment, the electronic component mounting apparatus 10 is a case where data and signals are transmitted bidirectionally, and has a high data transfer rate in one transmission direction and low-speed data transfer in the other transmission direction. As an example of performing data transmission having a rate, an optical wireless system, an imaging device, and a control device that perform optical data transmission between the mark camera 130 or the parts camera 132 and the control device 140 will be described.
 図6は、電子部品装着装置10におけるマークカメラ130やパーツカメラ132等のカメラ13Xと制御装置140との間に光無線システムを適用する場合の構成を模式的に示す図である。 FIG. 6 is a diagram schematically showing a configuration when an optical wireless system is applied between the control device 140 and the camera 13X such as the mark camera 130 or the parts camera 132 in the electronic component mounting apparatus 10.
 制御装置140は、PC等のコンピュータシステムで構成されるコントローラ142により制御される。コントローラ142は、画像ボード140Aを介してインターフェースされる。画像ボード140Aは、画像データを受信しカメラ制御信号を送信する、カメラ13Xとインターフェースをとるボードである。 The control device 140 is controlled by a controller 142 configured by a computer system such as a PC. The controller 142 is interfaced via the image board 140A. The image board 140A is a board that interfaces with the camera 13X that receives image data and transmits a camera control signal.
 画像ボード140Aは光無線装置3を介して、画像データ用の光無線信号7Aを受信しカメラ制御信号用の光無線信号7Bを送信する。他端には、光無線信号7Aを送信し光無線信号7Bを受信する光無線装置1を備えている。光無線装置1はカメラ13Xに接続されている。 The image board 140A receives an optical wireless signal 7A for image data and transmits an optical wireless signal 7B for a camera control signal via the optical wireless device 3. The other end is provided with the optical wireless device 1 that transmits the optical wireless signal 7A and receives the optical wireless signal 7B. The optical wireless device 1 is connected to the camera 13X.
 光無線信号7Aはカメラ13Xで撮像した画像データの伝送用の信号である。近年の技術進歩により、カメラ用ディジタルインターフェースは年々高速になってきており、データ転送レートとして3GBPSから21GBPを超えるものまでの高速な通信規格を有する製品が提案されている。また、無線化に伴うデータ誤りを検出・訂正する手段として、リード・ソロモン符号等の前方誤り訂正符号が付加されることが一般的である。これらの符号は、実画像データに加えて付加される。このため、こうした符号を付加した上でデータ転送レートを維持するために更なる高速なデータ転送が要求されている。前方誤り訂正符号の種類、また誤り訂正可能なビット数に応じて符号化率は異なるが、場合によっては、実画像データの1.5倍から数倍の転送レートが必要となる場合がある。 The optical wireless signal 7A is a signal for transmitting image data captured by the camera 13X. Due to recent technological advances, camera digital interfaces are becoming faster year by year, and products having high-speed communication standards from 3 GBPS to over 21 GBP as data transfer rates have been proposed. Further, a forward error correction code such as a Reed-Solomon code is generally added as a means for detecting and correcting a data error associated with wireless transmission. These codes are added in addition to the actual image data. For this reason, in order to maintain the data transfer rate after adding such a code, further high-speed data transfer is required. Although the coding rate varies depending on the type of forward error correction code and the number of bits that can be corrected, depending on the case, a transfer rate of 1.5 to several times the actual image data may be required.
 したがって、光無線信号7Aに使用する半導体レーザ等の光源は、例えば、波長が850nm、1300nm、1500nmなどの非可視光の光源を使用することが好適である。これらの波長を使用することにより10GBPSないし40GBPSの帯域での伝送が可能であり、光無線信号7Aとして使用することができるからである。 Therefore, as the light source such as a semiconductor laser used for the optical wireless signal 7A, it is preferable to use an invisible light source having a wavelength of 850 nm, 1300 nm, 1500 nm, or the like. This is because by using these wavelengths, transmission in a band of 10 GBPS to 40 GBPS is possible, and it can be used as the optical wireless signal 7A.
 一方、カメラ制御信号には高速性は要求されない。カメラ制御信号は、カメラの撮影方向の位置や角度の調整、ズーム等のエリア設定、および露出等のゲイン設定など、カメラ13Xにおける撮像時に必要とされる各種の設定や調整を行なうためのデータであり、高速性は要求されないからである。 On the other hand, high speed is not required for the camera control signal. The camera control signal is data for performing various settings and adjustments necessary for imaging with the camera 13X, such as adjustment of the position and angle of the shooting direction of the camera, area setting such as zoom, and gain setting such as exposure. This is because high speed is not required.
 したがって、光無線信号7Bに使用する半導体レーザ等の光源は、例えば、波長が650nmあるいはその近傍の可視光の光源を使用することが好適である。これらの波長を使用することにより3GBPSまでの帯域での伝送が可能であり、光無線信号7Bとして使用することができるからである。 Therefore, it is preferable to use, for example, a visible light source having a wavelength of 650 nm or its vicinity as a light source such as a semiconductor laser used for the optical wireless signal 7B. This is because by using these wavelengths, transmission in a band up to 3 GBPS is possible, and it can be used as the optical wireless signal 7B.
 図7には光無線装置1、3の構成を示す。光無線装置1は、光学レンズ11、光誘導器13、非可視光発光モジュール15、可視光受光モジュール17、および制御部19を備えている。制御部19は、カメラ13Xとのインターフェースであり、カメラ13Xから転送される画像データを受け非可視光発光モジュール15に送出するとともに、可視光受光モジュール17から転送されるカメラ制御信号に応じてカメラ13Xを制御する。制御部19より転送される画像データは、非可視光発光モジュール15により非可視光の光源の明滅による光信号に変換され光誘導器13に転送される。光誘導器13では非可視光発光ジュール15から転送された非可視光信号を、レンズ11を介して光無線用の光軸7に沿って送出する。また、制御装置140側から光無線用の光軸7に沿って伝搬してきた可視光信号は、レンズ11を介して入光され、光誘導器13により可視光受光モジュール17へと導かれる。 FIG. 7 shows the configuration of the optical wireless devices 1 and 3. The optical wireless device 1 includes an optical lens 11, a light guide 13, a non-visible light emitting module 15, a visible light receiving module 17, and a control unit 19. The control unit 19 is an interface with the camera 13X, receives image data transferred from the camera 13X, sends the image data to the non-visible light emitting module 15, and responds to the camera control signal transferred from the visible light receiving module 17. 13X is controlled. The image data transferred from the control unit 19 is converted into an optical signal generated by the blinking of the invisible light source by the invisible light emitting module 15 and transferred to the light guide 13. The light guide 13 sends out the invisible light signal transferred from the invisible light emitting module 15 along the optical axis 7 for optical radio via the lens 11. Further, the visible light signal that has propagated from the control device 140 side along the optical axis 7 for optical radio is incident through the lens 11 and guided to the visible light receiving module 17 by the light guide 13.
 同様に、光無線装置3は、光学レンズ31、光誘導器33、可視光発光モジュール35、非可視光受光モジュール37、および制御部39を備えている。制御部39は、制御装置140とのインターフェースであり、制御装置140から転送されるカメラ制御信号を受け可視光発光モジュール35に送出するとともに、非可視光受光モジュール37から転送される画像データを制御装置140に転送する。制御部39より転送されるカメラ制御信号は、可視光発光モジュール35により可視光の光源の明滅による光信号に変換され光誘導器33に転送される。光誘導器33では可視光発光ジュール35から転送された可視光信号を、レンズ31を介して光無線用の光軸7に沿って送出する。また、カメラ13X側から光無線用の光軸7に沿って伝搬してきた非可視光信号は、レンズ31を介して入光され、光誘導器33により非可視光受光モジュール37へと導かれる。 Similarly, the optical wireless device 3 includes an optical lens 31, a light guide 33, a visible light emitting module 35, a non-visible light receiving module 37, and a control unit 39. The control unit 39 is an interface with the control device 140, receives a camera control signal transferred from the control device 140, sends it to the visible light emitting module 35, and controls image data transferred from the invisible light receiving module 37. Transfer to device 140. The camera control signal transferred from the control unit 39 is converted by the visible light emitting module 35 into an optical signal resulting from the blinking of the visible light source, and transferred to the light guide 33. The light guide 33 sends the visible light signal transferred from the visible light emitting module 35 along the optical axis 7 for optical radio via the lens 31. The invisible light signal propagating from the camera 13X side along the optical axis 7 for optical radio is input through the lens 31 and guided to the invisible light receiving module 37 by the light guide 33.
 これにより、高速なデータ転送レートが必要な画像データは、非可視光発光モジュール15から発せられる非可視光により光誘導器13を介して光軸7に沿って伝搬される。同様に、高速なレートが必要とされないカメラ制御信号は、可視光発光モジュール35から発せられる可視光により光誘導器33を介して光軸7に沿って伝搬される。 Thus, image data that requires a high data transfer rate is propagated along the optical axis 7 via the light guide 13 by the invisible light emitted from the invisible light emitting module 15. Similarly, a camera control signal that does not require a high rate is propagated along the optical axis 7 via the light guide 33 by visible light emitted from the visible light emitting module 35.
 この場合、非可視光および可視光は共に、光の波長が異なる等の理由により互いに干渉することなく同じ光軸7をそれぞれの方向に伝搬することができる。光軸7への光の送出、および光軸7からの光の受光は、光誘導器13、33により行なわれるが、この時の光軸合わせの調整は、目視により簡単に発光方向を特定することができる可視光により行なうことができる。可視光により光軸合わせをすれば、光誘導器13、33の機能により、同時に非可視光の光軸も同じ光軸7に合わせることができる。一方の光源が非可視光であり目視できない光源である場合にも、他方の光源が可視光であるので、容易に目視による確認をすることができ好都合である。 In this case, both invisible light and visible light can propagate along the same optical axis 7 in the respective directions without interfering with each other due to different wavelengths of light. The transmission of light to the optical axis 7 and the reception of light from the optical axis 7 are performed by the light guides 13 and 33. Adjustment of the optical axis alignment at this time easily identifies the light emission direction by visual observation. Can be done with visible light. If the optical axis is aligned with visible light, the optical axis of the invisible light can be simultaneously aligned with the same optical axis 7 by the function of the light guides 13 and 33. Even when one of the light sources is invisible light and cannot be viewed, the other light source is visible light, which can be easily confirmed visually.
 以上、詳細に説明した通り、本実施形態によれば、光無線システムでは、カメラ13Xから制御装置140に向けて送信される高速データ転送レートが要求される画像データは、非可視光発光モジュール15により非可視光に変換されて伝送される。また、制御装置140からカメラ13Xに向けて送信される高速データ転送レートが要求されないカメラ制御信号は、可視光発光モジュール35により可視光に変換されて伝送される。 As described above in detail, according to the present embodiment, in the optical wireless system, image data requiring a high-speed data transfer rate transmitted from the camera 13X to the control device 140 is the invisible light emitting module 15. Is converted into invisible light and transmitted. Further, a camera control signal that is not required for a high-speed data transfer rate transmitted from the control device 140 to the camera 13X is converted into visible light by the visible light emitting module 35 and transmitted.
 データ転送レートに応じて、非可視光あるいは可視光を選択して光無線通信を行なうことができる。この場合、非可視光と可視光とは同じ光軸7に沿って伝搬されるので、可視光による光軸合わせを行えば、非可視光も含めて光軸を合わせることができる。目視できない非可視光についての光軸合わせを行なう必要はなく、光軸合わせを簡単に行うことができる。 Depending on the data transfer rate, optical wireless communication can be performed by selecting invisible light or visible light. In this case, since the invisible light and the visible light are propagated along the same optical axis 7, the optical axis including the invisible light can be aligned by aligning the optical axis with visible light. It is not necessary to perform optical axis alignment for invisible light that cannot be seen, and optical axis alignment can be easily performed.
 ここで、マークカメラ130、パーツカメラ132、およびカメラ13Xは撮像機器の一例であり、制御装置140は制御機器の一例である。また、非可視光発光モジュール15および非可視光受光モジュール37は第1光モジュールの一例であり、可視光発光モジュール35および可視光受光モジュール17は第2光モジュールの一例である。また、非可視光発光モジュール15は第1発光モジュールの一例であり、撮像装置の発光モジュールの一例である。また、可視光受光モジュール17は第2受光モジュールの一例であり、撮像装置の受光モジュールの一例である。また、可視光発光モジュール35は第2発光モジュールの一例であり、制御機器の発光モジュールの一例である。また、非可視光受光モジュール37は第1受光モジュールの一例であり、制御機器の受光モジュールの一例である。また、光誘導器13は第1光誘導器の一例であり、光誘導器33は第2光誘導器の一例である。また、光誘導器13は撮像装置の光誘導器の一例であり、光誘導器33は制御機器の光誘導器の一例である。また、光軸7は互いに光軸合わせのされた第1の所定軸線と第2の所定軸線の一例である。 Here, the mark camera 130, the parts camera 132, and the camera 13X are examples of imaging devices, and the control device 140 is an example of a control device. The invisible light emitting module 15 and the invisible light receiving module 37 are examples of the first optical module, and the visible light emitting module 35 and the visible light receiving module 17 are examples of the second optical module. The invisible light emitting module 15 is an example of a first light emitting module, and is an example of a light emitting module of an imaging device. The visible light receiving module 17 is an example of a second light receiving module, and is an example of a light receiving module of the imaging apparatus. The visible light emitting module 35 is an example of a second light emitting module, and is an example of a light emitting module of a control device. The invisible light receiving module 37 is an example of a first light receiving module and an example of a light receiving module of a control device. The light guide 13 is an example of a first light guide, and the light guide 33 is an example of a second light guide. The light guide 13 is an example of a light guide of the imaging apparatus, and the light guide 33 is an example of a light guide of a control device. The optical axis 7 is an example of a first predetermined axis and a second predetermined axis that are aligned with each other.
 尚、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
 例えば、本実施形態では、カメラ13Xと制御装置140との間の画像データとカメラ制御信号とのデータ伝送に係る場合を例示して説明したが、本願はこれに限定されるものではない。電磁モータやその他の可動装置、また、搬送装置26、装着ヘッド28、移動装置30、供給装置32、および表示部124など、あるいは図示されていないその他の機器間で行われる光無線通信に適用することができる。すなわち、これらの機器間で、双方向に伝送されるデータのデータ伝送レートが大きく異なる場合である。一方を高速なレートで伝送し他方を低速なレートであれば足りる場合にも本願は同様に適用することができる。
Needless to say, the present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the spirit of the present invention.
For example, in the present embodiment, the case of data transmission between the camera data and the camera control signal 140 between the camera 13X and the camera control signal has been described as an example, but the present application is not limited to this. It is applied to optical wireless communication performed between an electromagnetic motor and other movable devices, a transport device 26, a mounting head 28, a moving device 30, a supply device 32, a display unit 124, and other devices not shown. be able to. That is, the data transmission rate of data transmitted bidirectionally differs greatly between these devices. The present application can be similarly applied to the case where it is sufficient that one is transmitted at a high rate and the other is a low rate.
 1、3:光無線装置  7:光軸  10:電子部品装着装置  11、31:光学レンズ  13、33:光誘導器  15:非可視光発光モジュール 17:可視光受光モジュール  19、39:制御部  35:可視光発光モジュール  37:非可視光受光モジュール  44、64、68:電磁モータ  122:表示ランプ  124:表示部  130:マークカメラ  132:パーツカメラ  13X:カメラ  140:制御装置  140A:画像ボード  142:コントローラ  144:駆動回路  146:制御回路  7A:光無線信号  7B:光無線信号 1, 3: Optical wireless device 7: Optical axis 10: Electronic component mounting device 11, 31: Optical lens 13, 33: Light inductor 15: Invisible light emitting module 17: Visible light receiving module 19, 39: Control unit 35 : Visible light emitting module 37: Invisible light receiving module 44, 64, 68: Electromagnetic motor 122: Display lamp 124: Display unit 130: Mark camera 132: Parts camera 13X: Camera 140: Control device 140A: Image board 142: Controller 144: Drive circuit 146: Control circuit 7A: Optical wireless signal 7B: Optical wireless signal

Claims (4)

  1.  撮像機器と制御機器との間が光無線によりデジタルインターフェースされる光無線システムであって、
    前記撮像機器から前記制御機器に向けて、画像データを非可視光で送信するための第1光モジュールと、
    前記制御機器から前記撮像機器に向けて、制御指令を前記非可視光によるデータ転送レートよりデータ転送レートが低い可視光で送信するための第2光モジュールとを備え、
    前記光無線において、前記非可視光の光軸と前記可視光の光軸とは一致することを特徴とする光無線システム。
    An optical wireless system in which an imaging device and a control device are digitally interfaced by optical wireless,
    A first optical module for transmitting image data with invisible light from the imaging device to the control device;
    A second optical module for transmitting a control command with visible light having a data transfer rate lower than the data transfer rate with the invisible light from the control device to the imaging device;
    In the optical radio, the optical axis of the invisible light and the optical axis of the visible light coincide with each other.
  2.  前記撮像機器は、
    前記第1光モジュールのうち前記非可視光を発光する第1発光モジュールと、
    前記第2光モジュールのうち前記可視光を受光する第2受光モジュールと、
    前記第1発光モジュールから発光される前記非可視光を第1の所定軸線の方向に導き、前記第1の所定軸線に沿って入光する前記可視光を前記第2受光モジュールに分岐する第1光誘導器とを備え、
     前記制御機器は、
    前記第2光モジュールのうち前記可視光を発光する第2発光モジュールと、
    前記第1光モジュールのうち前記非可視光を受光する第1受光モジュールと、
    前記第2発光モジュールから発光される前記可視光を第2の所定軸線の方向に導き、前記第2の所定軸線に沿って入光する前記非可視光を前記第1受光モジュールに分岐する第2光誘導器とを備え、
    前記光無線の際の光軸合わせは、前記第2発光モジュールから発せられる前記可視光が前記第2受光モジュールに受光されるように、前記第1の所定軸線と前記第2の所定軸線との軸合わせをすることにより行なわれることを特徴とする請求項1に記載の光無線システム。
    The imaging device is
    A first light emitting module that emits the invisible light among the first optical modules;
    A second light receiving module for receiving the visible light among the second optical modules;
    The invisible light emitted from the first light emitting module is guided in a direction of a first predetermined axis, and the visible light entering along the first predetermined axis is branched to the second light receiving module. With a light inductor,
    The control device is
    A second light emitting module that emits the visible light of the second optical module;
    A first light receiving module that receives the invisible light in the first optical module;
    The visible light emitted from the second light emitting module is guided in the direction of a second predetermined axis, and the invisible light entering along the second predetermined axis is branched to the first light receiving module. With a light inductor,
    The optical axis alignment at the time of the optical wireless is performed between the first predetermined axis and the second predetermined axis so that the visible light emitted from the second light emitting module is received by the second light receiving module. The optical wireless system according to claim 1, wherein the optical wireless system is performed by aligning axes.
  3.  光無線を用いたデジタルインターフェースにより、制御機器からの制御指令を受信すると共に前記制御機器に対して画像データを送信する撮像機器であって、
    前記画像データを送信する非可視光を発光する発光モジュールと、
    前記制御指令を送信する前記非可視光に比してデータ転送レートが低い可視光を受光する受光モジュールと、
    前記発光モジュールから発光される前記非可視光を所定軸線の方向に導き、前記所定軸線に沿って入光する前記可視光を前記受光モジュールに分岐する光誘導器とを備えることを特徴とする撮像機器。
    An imaging device that receives a control command from a control device through a digital interface using optical wireless and transmits image data to the control device,
    A light emitting module for emitting invisible light for transmitting the image data;
    A light receiving module for receiving visible light having a data transfer rate lower than that of the invisible light for transmitting the control command;
    An imaging device comprising: a light guide that guides the invisible light emitted from the light emitting module in a direction of a predetermined axis and branches the visible light incident along the predetermined axis to the light receiving module. machine.
  4.  光無線を用いたデジタルインターフェースにより、撮像機器からの画像データを受信すると共に前記撮像機器に対して制御指令を送信する制御機器であって、
    前記制御指令を送信する可視光を発光する発光モジュールと、
    前記制御指令を送信する前記可視光に比してデータ転送レートが高い非可視光を受光する受光モジュールと、
    前記発光モジュールから発光される前記可視光を所定軸線の方向に導き、前記所定軸線に沿って入光する前記非可視光を前記受光モジュールに分岐する光誘導器とを備えることを特徴とする制御機器。
    A control device that receives image data from an imaging device and transmits a control command to the imaging device through a digital interface using optical wireless,
    A light emitting module for emitting visible light for transmitting the control command;
    A light receiving module that receives invisible light having a higher data transfer rate than the visible light for transmitting the control command;
    And a light guide for guiding the visible light emitted from the light emitting module in a predetermined axis direction and branching the invisible light entering along the predetermined axis to the light receiving module. machine.
PCT/JP2011/078371 2011-12-08 2011-12-08 Optical wireless system, imaging device, and control device WO2013084330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078371 WO2013084330A1 (en) 2011-12-08 2011-12-08 Optical wireless system, imaging device, and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078371 WO2013084330A1 (en) 2011-12-08 2011-12-08 Optical wireless system, imaging device, and control device

Publications (1)

Publication Number Publication Date
WO2013084330A1 true WO2013084330A1 (en) 2013-06-13

Family

ID=48573734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078371 WO2013084330A1 (en) 2011-12-08 2011-12-08 Optical wireless system, imaging device, and control device

Country Status (1)

Country Link
WO (1) WO2013084330A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135534A (en) * 1981-02-16 1982-08-21 Nec Corp Transmitter and receiver for space traveling light
JPH11155092A (en) * 1997-11-20 1999-06-08 Sony Corp Remote monitor device and image pickup system
JP2001320331A (en) * 2000-05-09 2001-11-16 Koito Ind Ltd Optical space transmitting device and image monitor using the same
JP2005109731A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Video transmission system and optical axis alignment method in video transmission system
JP2009253654A (en) * 2008-04-07 2009-10-29 Nec Corp Optical communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135534A (en) * 1981-02-16 1982-08-21 Nec Corp Transmitter and receiver for space traveling light
JPH11155092A (en) * 1997-11-20 1999-06-08 Sony Corp Remote monitor device and image pickup system
JP2001320331A (en) * 2000-05-09 2001-11-16 Koito Ind Ltd Optical space transmitting device and image monitor using the same
JP2005109731A (en) * 2003-09-29 2005-04-21 Sanyo Electric Co Ltd Video transmission system and optical axis alignment method in video transmission system
JP2009253654A (en) * 2008-04-07 2009-10-29 Nec Corp Optical communication system

Similar Documents

Publication Publication Date Title
US10342170B2 (en) Electronic component supply apparatus, reel apparatus, tape processing apparatus, and method for resupplying component stored tape
US20070124922A1 (en) Component mounting apparatus
WO2018179147A1 (en) Component mounting system
CN106068074B (en) Substrate conveying device and electronic component mounting device
WO2013047026A1 (en) Electronic component supply device
EP2964007B1 (en) Communication system and electronic component mounting device
JP5335109B2 (en) Feeder, electronic component mounting apparatus, and mounting method
JP6680545B2 (en) Work execution device and visible light communication system
EP2882113B1 (en) Electrical device
CN105283065B (en) Component mounting related device and component mounting related system
JP6205161B2 (en) Electronic component mounting equipment
WO2013084330A1 (en) Optical wireless system, imaging device, and control device
JP5310665B2 (en) Component mounting system and substrate transfer method in component mounting system
JPWO2013084330A1 (en) Optical wireless system, imaging device, and control device
JP5931918B2 (en) Multiplex communication system, transmission device, reception device, and processing device for electronic component mounting device
JP6189336B2 (en) Wireless communication system and electronic component mounting apparatus
WO2013171826A1 (en) Control system
JP6587658B2 (en) Optical wireless communication system and electronic component mounting apparatus
JP6131315B2 (en) Communication system and electronic component mounting apparatus
JP4805084B2 (en) Imaging control apparatus and surface mounter
JP7153835B2 (en) Component mounter
JP6267709B2 (en) Multiplexing communication system for mounting machine and mounting machine
JP5506583B2 (en) Component mounting method
JP4805085B2 (en) Lighting control device and surface mounter
CN105283060B (en) Component mounting association system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877121

Country of ref document: EP

Kind code of ref document: A1