WO2013082952A1 - 发光装置及其应用的投影系统 - Google Patents

发光装置及其应用的投影系统 Download PDF

Info

Publication number
WO2013082952A1
WO2013082952A1 PCT/CN2012/080411 CN2012080411W WO2013082952A1 WO 2013082952 A1 WO2013082952 A1 WO 2013082952A1 CN 2012080411 W CN2012080411 W CN 2012080411W WO 2013082952 A1 WO2013082952 A1 WO 2013082952A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting
coherent
incoherent
astigmatism
Prior art date
Application number
PCT/CN2012/080411
Other languages
English (en)
French (fr)
Inventor
胡飞
李屹
杨毅
曹亮亮
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to US14/362,756 priority Critical patent/US9989202B2/en
Priority to KR1020147013849A priority patent/KR101766710B1/ko
Priority to EP12856400.2A priority patent/EP2787391B1/en
Priority to EP17192482.2A priority patent/EP3287842B1/en
Priority to JP2014543753A priority patent/JP6166270B2/ja
Publication of WO2013082952A1 publication Critical patent/WO2013082952A1/zh
Priority to US15/997,663 priority patent/US11035528B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a projection system for a light-emitting device and its application.
  • LEDs LEDs
  • LEDs Light Emitting Diode
  • semiconductor lasers are gradually entering the lighting and display market.
  • a color light source such as red, green or blue LED.
  • an excitation light source for wavelength conversion to excite a wavelength converting material (such as a phosphor) to generate excited light, and then use the excitation light or the excited light to synthesize white light.
  • LEDs As an example, traditional light sources based on wavelength conversion and LED chips generally have phosphors on LEDs. On the surface of the chip, the excited light that is scattered back through the phosphor layer back to the LED chip can be reflected by the LED chip and emitted from the phosphor side, thereby improving the light extraction efficiency.
  • the drawbacks are: LED The interaction between the heat generated by the chip and the heat emitted by the phosphor will reduce the luminous efficiency of the LED chip and the conversion efficiency of the phosphor, and even shorten the service life of the LED device.
  • the laser light source directly supplies color light. Since the laser light is strong coherent light, each pixel of the image displayed on the screen may have speckle due to coherence, so that the image cannot be displayed normally. Therefore, in laser display, a coherent device or method must be used to eliminate coherent speckle.
  • the astigmatism element is generally disposed on the surface of the laser light source, and the light emitted by the astigmatism element and emitted to the surface of the laser light source can be reflected by the surface of the laser light source and emitted from the astigmatism element side. Similarly, the interaction between the laser source and the heat emitted by the astigmatism element will reduce the luminous efficiency of the laser source and even shorten the life of the laser source.
  • U.S. Patent 7,070,300 B2 proposes a method for separating LEDs and phosphors, as shown in Figure 1. Shown. The excitation light from one or more of the LED light sources 102 is collimated by an optical collimation device 108, which is then used to reflect the excitation light to another collimation device 114. After focusing, it is projected onto the phosphor sheet 112, and the excited light from the phosphor sheet 112 is transmitted through the wavelength selective sheet 110. It is provided as an outgoing light of a light source. In this scheme, the wavelength selective sheet 110 is employed by using the difference in wavelength between the excitation light and the excited light.
  • the technical solution provided by the above patent is that when the phosphor is replaced by a diffuser for decoherence, since the coherent light and the scattered incoherent light have the same wavelength, the incoherent light emitted by the astigmatism element to the coherent light source The incident light path along the coherent light is retroreflected to the coherent light source, resulting in an incapable realization of the optical path output of the incoherent light. Therefore, the effect of improving the light extraction efficiency and reducing the heat of the coherent light source and the astigmatism element becomes a contradiction, and cannot be balanced. .
  • the technical problem to be solved by the present invention is to address the deficiencies of the above prior art, and to provide a projection system for a light-emitting device and an application thereof. While increasing the light extraction efficiency, most of the incoherent light emitted by the astigmatism element to the coherent light source does not return to the coherent light source along the incident light path of the coherent light, thereby reducing the influence between the laser light source and the heat emitted by the astigmatism element. .
  • the invention provides a light emitting device comprising:
  • a coherent light source for generating coherent light
  • An astigmatism element including opposing first and second surfaces for scattering coherent light from the coherent light source to produce incoherent light
  • a light guiding member on a side of the first surface of the light diffusing element for guiding the coherent light emitted by the coherent light source to be incident on the first surface of the light diffusing element to form a first light path, and guiding the partially incoherent portion of the first surface of the light diffusing element
  • the light is emitted by the first optical path, and the remaining incoherent light emitted from the first surface of the guiding astigmatism element is emitted by the second optical path, and the first optical path is separated from the second optical path;
  • the luminous flux of the incoherent light emitted by the first optical path is smaller than the luminous flux of the incoherent light emitted by the second optical path.
  • the invention also provides a projection system comprising the above described illumination device.
  • the present invention includes the following beneficial effects:
  • the coherent light is guided by the light guiding member to the light diffusing element by the first optical path, and guides most of the incoherent light from the first surface of the light diffusing element to be emitted from the second optical path separated from the first optical path as the outgoing light of the light emitting device, thereby While improving the light-emitting efficiency of the light-emitting device, most of the incoherent light emitted from the first surface of the light-scattering element is not returned to the coherent light source along the optical path of the coherent light, thereby reducing the heat of the incoherent light and the coherent light source. The effect between heat, thereby improving the luminous efficiency and service life of the coherent light source.
  • Figure 1 is a schematic view showing the structure of a light source that generates high-efficiency color light based on LEDs and phosphors;
  • FIG. 2 is a schematic structural view of an embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 10A is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 10B is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • a light emitting device including: a coherent light source for generating coherent light; and an astigmatism element including opposite first and second surfaces for scattering from a coherent Coherent light of the light source to generate incoherent light; a light guide on one side of the first surface of the light diffusing element for guiding the coherent light from the coherent light source to be incident on the first surface of the light diffusing element to form a first light path and to guide the astigmatism Part of the incoherent light emitted by the first surface of the element is emitted by the first optical path, and the remaining incoherent light emitted from the first surface of the guiding astigmatism element is emitted by the second optical path, and the first optical path is separated from the second optical path;
  • the luminous flux of the incoherent light emitted by the first optical path is less than the luminous flux of the incoherent light emitted by the second optical path.
  • the embodiment of the present invention utilizes the optical expansion of the coherent light source and the astigmatism element. The difference is that the incident light path of the coherent light can be introduced into the exit optical path of the light diffusing element by the light guiding member, while the light flux of the incoherent light guided by the first optical path guided by the light guiding member is less than that emitted by the second optical path.
  • the incoherent light flux causes most of the incoherent light emitted by the first surface of the astigmatism element (ie, most of the incoherent light emitted by the astigmatism element to the coherent light source) to exit from the second optical path without excessive escape from the first optical path, ie, It will return to the coherent light source along the incident light path of the coherent light, which reduces the influence between the coherent light source and the heat of the astigmatism element, thereby improving the luminous efficiency and service life of the coherent light source.
  • FIG. 2 is a schematic structural diagram of an embodiment of a light emitting device according to an embodiment of the present invention.
  • illumination device 100 includes a coherent light source 110 for generating coherent light, an astigmatism element 120 for scattering coherent light from coherent light source 110 and producing incoherent light.
  • the astigmatism element 120 includes opposing first and second surfaces 121, 122, and the light guide 140 is located on the first surface 121 of the astigmatism element.
  • the first surface 121 of the astigmatism element on one side is closer to the light guide 140 than the second surface.
  • the coherent light source 110 A laser diode is preferred.
  • the coherent light source can also be a light emitting diode or other kind of light source.
  • the coherent light from the coherent light source 110 can also be directed to the light guide 140 by a homogenizing device that can be homogenized and shaped. .
  • the homogenizing device can be a fly-eye lens array or a hollow or solid light guiding rod.
  • the scattering methods of astigmatism elements are mainly two kinds of body scattering and surface scattering.
  • the surface scattering astigmatism element scatters light by utilizing the microstructure of the transparent material to refract and reflect light, and is specifically divided into a single-sided microstructure and a double-sided microstructure astigmatism element.
  • the microstructure may be formed by sandblasting on the surface of the glass substrate, or formed by chemical etching on the surface, or may be formed by hot press forming on a plastic substrate.
  • the coherent light is incident from the microstructured surface of the astigmatism element (and the first surface is a microstructured surface) and exits from the plane of the astigmatism element, at which time the transmittance is relatively high.
  • Bulk scattering refers to the addition of small particles of different refractive index or opacity in the scattering body to achieve astigmatism.
  • the light guiding member 140 is provided with a light passing hole 130. And a second light reflecting element 140 located on a reflecting surface (not shown) outside the light passing hole.
  • the second light reflecting component 140 is specifically provided with a light passing hole 130.
  • a curved reflecting device of the reflecting surface, the second light reflecting element 140 It may also be a planar reflecting device, a zigzag reflecting device or other forms of curved reflecting device.
  • the light passing hole 130 is for transmitting the coherent light from the coherent light source 110 in a transmissive manner to the first surface of the light diffusing element 120.
  • 121 is formed to form a first optical path, and guides part of the incoherent light emitted by the first surface 121 of the astigmatism element 120 to be emitted by the first optical path; the second light reflecting element 140 The reflective surface is used to guide the remaining incoherent light from the first surface 121 of the diffusing element 120 to be emitted by the second optical path.
  • Incoherent light and astigmatism element reflected by the reflective surface of the second light reflecting element 140 The incoherent light emitted by the second surface 122 of 120 is emitted together as a light emitting device 100 The light is emitted, thereby improving the light-emitting efficiency of the light-emitting device.
  • An optical element may be disposed at the light exit end of the light emitting device for collecting, homogenizing, and shaping the incoherent light.
  • the second light reflecting element 140 passes through the light passing hole 130 And the reflecting surface separates the first optical path from the second optical path.
  • the first optical path passes from the astigmatism element 120 through the light passing hole 130 of the second light reflecting element 140 to the coherent light source 110; and the second optical path is from the astigmatism element 120 to the reflective surface of the second light reflecting element 140, and is redirected by the reflecting surface to deviate from the coherent light source 110 , thereby being separated from the first light path.
  • the incoherent light emitted by the second optical path does not return to the coherent light source along the first optical path while improving the light extraction efficiency of the light emitting device.
  • the astigmatism element 120 Since the amount of coherent light emitted by the coherent light source 110 is small, the astigmatism element 120 The scattered incoherent light has an approximate Lambertian distribution, and the etendue is much larger than that of the coherent light, so that the light-passing hole 130 of the second light-reflecting element 140 can be controlled.
  • the ratio of the area to the reflecting surface is a small value such that most of the incoherent light emitted by the first surface 121 of the diffusing element passes through the reflecting surface of the second light reflecting element 140. After the reflection, the exit is effectively utilized, and a small portion of the incoherent light will be lost from the light-passing hole 130, that is, the leakage loss ratio is within an acceptable range.
  • the second light reflecting element 140 The area of the light-passing aperture is less than or equal to 1/4 of the area of the reflective surface of the second light-reflecting element 140.
  • the coherent light is guided from the first optical path to the astigmatism element through the light passing hole 130 of the light guiding member 140. 120, guiding from the astigmatism element 120 through the reflective surface of the light guiding member 140 Most of the incoherent light of the first surface is emitted from the second optical path separated from the first optical path as the outgoing light of the light-emitting device, thereby causing the first surface 121 of the light-scattering element while improving the light-emitting efficiency of the light-emitting device.
  • FIG. 3 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the light emitting device 200 further includes a first light reflecting element 150 and a light collecting device 160.
  • First light reflecting element 150 astigmatism element 120
  • the incoherent light emitted by the second surface 121 is reflected toward the second light reflecting element 140 such that all of the incoherent light emitted by the light diffusing element exits to the second light reflecting element 140.
  • the astigmatism element 120 is an example of a light-transmitting type astigmatism element.
  • the first light-reflecting element 150 In order to cause all incoherent light emitted from the astigmatism element to be emitted to the second light-reflecting element 140, the first light-reflecting element 150 needs to be disposed in this embodiment. Incoherent light emitted by the second surface 122 of the reflective astigmatism element. In other embodiments, the first light reflecting element 150 may not be provided, but by the astigmatism element 120. The thickness such that the incoherent light generated after the first surface of the astigmatism element receives the coherent light cannot pass through the second surface of the astigmatism element, such that all incoherent light generated by the astigmatism element exits from the first surface of the astigmatism element to the second surface Light reflecting element 140.
  • the second light reflecting element 140 may be a hemispherical or hemispherical portion, the astigmatism element 120
  • the position at which the coherent light is incident is located at a first point near the hemispherical center, and the light entrance of the light collecting device 160 is located at a second point near the hemispherical center, the first point and the second point being about the hemisphere
  • the heart is symmetrical.
  • Coherent light source The coherent light emitted by 110 is incident through the light-passing aperture 130 to the astigmatism element 120, and the incoherent light from the second surface 122 of the astigmatism element 120 passes through the first light-reflecting element 150.
  • Second light reflecting element 140 The reflecting surface reflects most of the incoherent light to the light entrance of the light collecting device located near the second point of the hemispherical center, and the majority of the incoherent light is collected by the light collecting device 160 and emitted as the light emitting device 200. The outgoing light. At the same time, a small portion of the incoherent light from the astigmatism element 120 is transmitted through the light-passing aperture of the second light-reflecting element 140 to be lost.
  • the light passing hole 130 is an eccentric hole of the hemispherical second light reflecting element 140 such that the coherent light source 110 The emitted coherent light is incident perpendicularly to the astigmatism element 120, and when the astigmatism element 120 is detached from the first light reflecting element 150, the coherent light is reflected by the first light reflecting element 150 to the second light reflecting element 140. The light passing hole is returned to the coherent light source without being reflected to the reflecting surface of the second light reflecting element 140 and exiting to the light collecting device to injure the human eye.
  • the second light reflecting element 140 may also be a part of a semi-ellipsoidal or semi-ellipsoidal shape, the astigmatism element 120
  • the position at which the coherent light is incident is located at the first focus of the semi-ellipsoid, and the light entrance of the light collecting device 160 is located at the second focus of the semi-ellipsoid.
  • most of the incoherent light emitted by the astigmatism element passes through the second light reflecting element 140.
  • the reflecting surface is reflected and exits to the second focus of the semi-ellipsoid, and is collected by the light collecting device 160 and emitted as the outgoing light of the light emitting device 200.
  • the light hole 130 The eccentric hole of the semi-ellipsoidal second light reflecting element 140 is preferably such that the coherent light from the coherent light source 110 is incident perpendicularly to the astigmatism element 120.
  • the second light reflecting element 140 in this embodiment A reflective wall having an inner hollow structure with a light-passing aperture, the reflective wall comprising a reflective film plated on an inner wall thereof, the light-passing aperture being an opening in the reflective wall. It can be understood that the reflective film can also be plated on the outer wall of the reflective wall.
  • the light collecting member 160 in this embodiment is specifically a hollow light guiding rod.
  • the light collecting element 160 in the embodiment of the present invention A lens, a lens group, a hollow light guiding rod, a solid light guiding rod, a hollow composite concentrator or a solid composite concentrator or a combination thereof may also be employed.
  • FIG. 4 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the second light reflecting element 140 of the light emitting device 300 is a solid transparent body 330 having an outer curved surface plated with a reflective film 331, and the light passing hole 332 is the reflecting film.
  • a gap of 331 is 332.
  • the solid transparent body 330 preferably has a hemispherical or semi-ellipsoidal shape.
  • the thickness of the air gap between the astigmatism element 120 and the solid transparent body 330 is preferably less than 1% of the hemispherical radius. Or 1% of the semi-ellipsoid long semi-axis to more effectively improve the light-emitting brightness of the illuminating device.
  • FIG. 5 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • This embodiment and FIG. 3 The embodiment shown differs in that in the illumination device 400, the light-passing aperture 130 is a notch of the edge of the hemispherical or semi-ellipsoidal second light-reflecting element 140, the coherent light source 110 The emitted coherent light is incident from the gap to the astigmatism element 120.
  • the second light reflecting element 140 in this embodiment may also be a solid transparent body with an outer curved surface plated with a reflective film.
  • FIG. 13 is a schematic structural view of another embodiment of a light-emitting device according to an embodiment of the present invention.
  • This embodiment and FIG. 3 The illustrated embodiment differs in that, in illumination device 1200, second light reflecting element 140 is a zigzag reflecting device that includes two serrated faces 1301 and 1302. Each serrated face is part of a set of concentric spheres. Referring to the description in the embodiment of Fig. 3, the serrated faces 1301 and 1302 are known.
  • Each can function as a curved reflecting device, so the zigzag reflecting device can be regarded as a nested combination of a set of curved reflecting devices, so that the incoherent light emitted from the first surface of the astigmatism element has an arc shape
  • the reflector works the same.
  • the difference between the zigzag reflecting device and the curved reflecting device is that the zigzag reflecting light device occupies less space and is more compact.
  • FIG. 6 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • This embodiment and FIG. 3 The embodiment shown differs in that the second light reflecting element of the illumination device 500 is a planar reflecting means 540 with a light aperture 530 and a reflective surface located outside of the aperture 530.
  • Plane reflector 540 Reflecting the incoherent light emitted by the diffusing element such that the incoherent light exits at an angle to the coherent light.
  • this embodiment further includes a lens group 570 for the astigmatism element 120.
  • the emitted incoherent light is collected and collimated to the planar reflecting device 540, and most of the collimated incoherent light is reflected by the reflecting surface of the planar reflecting device 540 as the light emitting device 500.
  • the outgoing light More preferably, the projected area of the light-passing aperture 530 on the exit spot of the lens group 570 is less than or equal to 1/4 of the area of the exit spot to reduce the light-passing aperture 530.
  • the leaked incoherent light increases the light extraction efficiency of the illuminating device 500.
  • lens set 570 may be replaced with other light collecting devices mentioned above for use with astigmatism element 120.
  • the incoherent light emitted is collected and relayed to the planar reflector 540.
  • the light emitting device 500 The light exit end can also be optically collected for light collection, shimming and shaping, etc., and will not be described in detail in the present invention.
  • FIG. 7 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the light guiding member of the light emitting device 600 includes the third light reflecting member 630 and the third light reflecting member 630.
  • the outer transparent medium in the embodiment, the transparent medium is specifically air outside the third light reflecting element 630.
  • the third light reflecting element 630 is for guiding the coherent light source 110 in a reflective manner
  • the emitted coherent light is incident on the first surface of the astigmatism element 120 to form a first optical path, and the partially incoherent light emitted from the first surface of the astigmatism element 120 is guided by the first optical path; the third light reflecting element 630
  • the outer transparent medium guides the remaining incoherent light emitted from the first surface of the diffusing element 120 in a transmissive manner to be emitted from the second optical path, and the incoherent light emitted from the second optical path serves as the outgoing light of the light emitting device 600.
  • Light guide through The third light reflecting element 630 and the light transmitting medium separate the first optical path from the second optical path.
  • the embodiment further includes a lens group 570 for collecting and collimating the astigmatism element 120.
  • the incoherent light that is reflected and leaks improves the light-emitting efficiency of the light-emitting device 600.
  • the lens assembly 570 can also be replaced with other light collecting devices as mentioned above, which are located in the astigmatism element 120.
  • the third light reflecting element 630 is configured to collect and relay the incoherent light emitted by the first surface of the light diffusing element 120.
  • Light-emitting device 600 The light exit end can also be optically collected for light collection, shimming and shaping, etc., and will not be described in detail in the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the light emitting device 700 The light guiding member includes a second light reflecting member 140 having a light passing hole 130 and a reflecting surface outside the light passing hole, and the light passing hole transmits the coherent light emitted from the coherent light source 110 in a transmissive manner to the astigmatism element.
  • a first surface of 120 is formed to form a first optical path, and a portion of the incoherent light emitted from the first surface of the astigmatism element 120 is directed by the first optical path.
  • Figure 3 The embodiment shown differs in that the third light reflecting element 150 and the astigmatism element 120 are not provided in this embodiment.
  • the generated incoherent light emitted toward the second surface thereof directly exits the exiting light as the light emitting device from the second surface; and the reflective surface of the second light reflecting member 140 serves to guide the first surface of the diffusing element 120 in a reflective manner 121 the incoherent light emitted back to the first surface 121 of the astigmatism element 120, the incoherent light penetrating the astigmatism element and exiting from the second surface 122 of the astigmatism element 120 as a light emitting device Shoot light.
  • the second light reflecting element 140 The arc reflecting means having a light passing hole and a reflecting surface located outside the light passing hole has a hemispherical shape, and a position at which the astigmatism element 120 is incident by the coherent light is located at the center of the hemisphere. Astigmatism element 120 The incoherent light from the first surface exits to the second light reflecting element 140, and the reflecting surface of the second light reflecting element 140 reflects the majority of the incoherent light to the astigmatism element 120 located at the center of the sphere .
  • the embodiment further includes a light collecting device 160, the light entrance of the light collecting device 160 is located on one side of the second surface of the light diffusing element 120 (ie, the second surface 122 is opposite to the first surface 121 is closer to the light collecting means 160) for collecting the incoherent light emitted by the astigmatism element 120.
  • the second light reflecting element 140 in this embodiment A reflective wall having an inner hollow structure with a light-passing aperture, the reflective wall comprising a reflective film plated on an inner wall thereof, the light-passing aperture being an opening in the reflective wall.
  • the second light reflecting element 140 It may also be a zigzag reflecting device comprising at least two serrated faces, each of which is part of a set of concentric spherical faces, at which point the astigmatism elements may be located in the center of the concentric spherical surface.
  • FIG. 9 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the second light reflecting member of the light emitting device 800 is a solid transparent body 330 having an outer curved surface plated with a reflective film 331, and the light passing hole 332 is a notch of the reflecting film 331. 332.
  • the solid transparent body 330 is preferably hemispherical.
  • the embodiment further includes a lens group 570 disposed on the astigmatism element 120.
  • lens group 570 On one side of the second surface, incoherent light emerging through the astigmatism element is collimated through the lens group 570.
  • lens set 570 can be replaced with other forms of light collecting devices mentioned above.
  • the embodiment of the present invention improves the above embodiment, that is, the illuminating device further includes driving means for driving the astigmatism element such that the spot formed by the coherent light incident on the astigmatism element on the astigmatism element is along a predetermined path Acting on the astigmatism element, the temperature of the astigmatism element caused by the coherent light acting on the same position of the astigmatism element for a long time can be avoided, and the service life of the astigmatism element is improved.
  • the driving device may be a turntable, and the astigmatism element may be fixed on the turntable, and the astigmatism element moves circumferentially with the turntable, so that the light spot formed on the astigmatism element by the coherent light incident on the astigmatism element is circular Path acting on the astigmatism element .
  • the drive can also drive the astigmatism element for other forms of motion, such as linear movement.
  • FIG. 10A is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the illustrated embodiment is another reflective embodiment that has been modified based on the embodiment shown in FIG.
  • the light emitting device 900A of the present embodiment further includes a turntable 980, a light diffusing element 120 and a first light reflecting element. 150 are all in a ring shape coaxial with the turntable, placed on the turntable 980 and rotated.
  • the first light reflecting element 150 is located between the driving device 980 and the astigmatism element 120, and the first light reflecting element 150 It can also be part of the turntable 980.
  • the incoherent light reflected by the reflecting surface of the second light reflecting element 140 passes through the reel 980 and is collected by the light collecting device 160.
  • Light collecting device 160 It may also be located on an extension of the circumference of the wheel 980, i.e., the incoherent light reflected by the second light reflecting element is incident directly on the light collecting means 160 without passing through the wheel 980.
  • FIG. 10B is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the illustrated embodiment is another transmissive embodiment that has been modified based on the embodiment shown in FIG.
  • the light emitting device 900B of the present embodiment further includes a turntable 980 and an astigmatism element 120.
  • a ring that is coaxial with the turntable is placed on the turntable 980 and rotated.
  • the turntable 980 carries the astigmatism element 120
  • the area is made of a transparent material such that a portion of the incoherent light from the astigmatism element exits directly through the turntable 980 and another portion of the incoherent light passes through the second light reflecting element 140.
  • the reflective surface is reflected back to the astigmatism element and exits through the turntable 980 from the second surface.
  • a lens group 570 on one side of the second surface of the astigmatism element, lens group 570 The incoherent light is collimated and emerged.
  • a coherent light source includes at least two sub-light sources for generating at least two colors of light, respectively, and a light combining device, the light combining device generates light generated by the at least two sub-light sources Combined into a bundle of light, this is explained in detail below.
  • FIG. 11 is a schematic structural diagram of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the coherent light source 110 includes a first sub-light source 111 and a second sub-light source 112.
  • the first sub-light source is a laser diode that generates red light
  • the second sub-light source is a laser diode that generates green light
  • the illuminating device 1000 further includes a light combining device 114, and the light combining device 114 sets the first sub-light source 111
  • the light generated by the second sub-light source 112 is combined into a combined light, and the combined light is incident on the astigmatism element 120 through the light passing hole 130.
  • the light combining device 114 is a dichroic color piece that transmits red light to reflect green light, and the first sub-light source 111 The generated red coherent light is transmitted to the light passing hole 130 through the light combining device, and the green coherent light generated by the second sub-light source 112 is reflected by the light combining device to the light passing hole 130.
  • the light combining device 114 The dichroic color sheet that reflects the red light and transmits the green light may also reflect the red coherent light generated by the first sub-light source 111 to the light passing hole, and the second sub-light source 112 The generated green coherent light is transmitted to the light passing hole, thereby combining the red coherent light and the green coherent light into a combined light.
  • the coherent light source may further include a third sub-light source, such as a laser diode that generates blue coherent light; the light combining device may be a cross-shaped dichroic chip set for 1.
  • the coherent light generated by the second and third sub-light sources is combined into a bundle of light and guided to the clear aperture. 130; At this time, the illuminating device can emit white incoherent light composed of red, green and blue incoherent light.
  • the coherent light source 110 Both are light sources that produce a color of light (such as blue or yellow), and the illuminating device emits incoherent light of one color.
  • the invention can also be applied in scenarios where multiple color light sequences need to be emitted.
  • the present invention also provides another embodiment of a light-emitting device, the light-emitting device of the embodiment further comprising control means for respectively controlling the opening and closing and the light-emitting intensity of the two sub-light sources in the coherent light source.
  • FIG. 12 is a schematic structural view of another embodiment of a light emitting device according to an embodiment of the present invention.
  • the coherent light source 110 of the illumination device 1100 further includes a third sub-light source 113, which is a laser diode that produces blue coherent light.
  • Light combining device 114 is a dichroic patch set, and the dichroic patch set 114 includes dichroic patches 1141 and 1142 arranged in parallel. Dichroic color set 114
  • the light generated by the first, second, and third sub-light sources is merged into a combined light, and the combined light is incident on the light diffusing element 120 through the light passing hole 130.
  • the dichroic sheet 1141 reflects the first sub-light source 111
  • the generated red coherent light transmits the green coherent light generated by the second sub-light source 112, and the red and green coherent light are transmitted through the dichroic color film 1142; the dichroic color film 1142 reflects the third sub-light source 113 The resulting blue coherent light.
  • the illuminating device 1100 further includes a control device (not shown) for The opening and closing and the luminous intensity of the three sub-light sources in the coherent light source are respectively controlled.
  • the control device can control the three sub-light sources that generate the red, green, and blue coherent light to be sequentially turned on and off, so that the light emitting device sequentially emits red, green, and blue incoherent light; the control device can also control the generation of red, The sub-light sources of green and blue coherent light are simultaneously turned on, and the illuminating intensities of the three sub-light sources are periodically changed, so that the color of the combined light emitted by the light combining device changes periodically, so that the illuminating device emits a color that is periodically invariant. Light.
  • the present invention also provides a projection system including a light emitting device that can have the functions provided by the various embodiments described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Planar Illumination Modules (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种发光装置及其应用的投影系统,该发光装置(100)包括相干光源(110)、散光元件(120)以及光引导件(140)。该相干光源(110)用于产生相干光。该散光元件(120)包括相对的第一表面(121)与第二表面(122)的,并且该散光元件(120)用于散射来自相干光源(110)的相干光以产生非相干光。该光引导件(140)位于散光元件(120)第一表面(121)—侧,并且该光引导件(140)用于引导相干光源(110)发出的相干光入射到第一表面(121)上以形成第一光路,引导第一表面(121)发出的部分非相干光由第一光路出射,引导剩余非相干光由第二光路出射,并将第一光路与第二光路分离。由第一光路出射的非相干光的光通量少于由第二光路出射的非相干光的光通量。

Description

发光装置及其应用的投影系统
技术领域
本发明涉及投影技术领域,尤其涉及一种发光装置及其应用的投影系统。
背景技术
传统光源如荧光灯、白炽灯、超高性能灯或氙灯等难以做到高效率、长寿命。随着固态光源的发展,发光二极管( LED , Light Emitting Diode )和半导体激光器逐步走入照明和显示市场。
产生白光或色光的方式一般有两种:一种是直接利用色光光源如红、绿或蓝光 LED 来提供色光,或利用这些色光来合成白光;另一种是基于光波长转换用激发光源来激发波长转换材料(如荧光粉)产生受激发光,进而利用激发光或受激发光来合成白光。
以荧光粉为例,传统基于光波长转换及采用 LED 芯片的光源一般将荧光粉设在 LED 芯片表面,使穿透荧光粉层背向散射回 LED 芯片的受激发光能被 LED 芯片反射而从荧光粉侧出射,从而提高出光效率。其缺陷在于: LED 芯片发出的热与荧光粉发出的热之间互相影响,将降低 LED 芯片的发光效率和荧光粉的转换效率,甚至缩短 LED 器件的使用寿命。
上述缺陷在直接利用色光光源提供色光的方式中也同样存在。例如,利用激光光源直接提供色光,由于激光是强相干光,其在屏幕上显示的图像的每一个像素会出现由于相干产生的散斑,使图像无法正常显示。因此在激光显示中,必须使用消相干装置或方法来消除相干散斑。现有技术中,为了提高出光效率,一般将散光元件设在激光光源表面,使经散光元件散射后向激光光源表面发射的光线能被激光光源表面反射而从散光元件侧出射。同样,激光光源与散光元件发出的热之间互相影响,将降低激光光源的发光效率,甚至缩短激光光源的使用寿命。
为克服上述缺陷,美国专利 US 7,070,300 B2 提出一种分离 LED 和荧光粉的方法,具体如图 1 所示。将来自一个或多个 LED 光源 102 的激发光以光学准直装置 108 来准直,再利用波长选择片 110 来把这些激发光反射到另一个准直装置 114 进行聚焦后投射往荧光粉片 112 ,来自该荧光粉片 112 的受激发光透射所述波长选择片 110 而提供为光源的出射光。在该方案中,利用激发光和受激发光波长的不同,采用波长选择片 110 来分离激发光和受激发光的光路,使得在提高出光效率的同时,受激发光不会回射到 LED 芯片, LED 芯片产生的热和荧光粉产生的热不会互相影响,基本解决了上述传统技术所存在的问题。
上述专利提供的技术方案的不足之处在于,在将荧光粉换成散光片用于消相干时,由于相干光和散射后的非相干光波长相同,散光元件向相干光源发出的非相干光会沿着相干光的入射光路回射到相干光源,导致非相干光的光路输出无法实现,因此,提高出光效率与减小相干光源与散光元件的热之间的影响成为一对矛盾体,无法兼顾。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足之处,而提出一种 发光装置及其应用的投影系统 , 可使得提高出光效率的同时,散光元件向相干光源发出的大部分非相干光不会沿着相干光的入射光路回射到相干光源,从而降低激光光源与散光元件发出的热之间的影响 。
本发明提供了一种发光装置,包括:
相干光源,用于产生相干光;
包括相对的第一表面与第二表面的散光元件,用于散射来自相干光源的相干光以产生非相干光;
位于散光元件第一表面一侧的光引导件,用于引导相干光源发出的相干光入射到散光元件的第一表面上以形成第一光路,并引导散光元件的第一表面发出的部分非相干光由第一光路出射,引导散光元件的第一表面发出的剩余非相干光由第二光路出射,并将第一光路与第二光路分离;
并且,由第一光路出射的非相干光的光通量少于由第二光路出射的非相干光的光通量。
本发明还提供了一种投影系统,包括上述发光装置。
与现有技术相比,本发明包括如下有益效果:
本发明实施例中, 通过光引导件将相干光由第一光路引导至散光元件,并引导来自散光元件第一表面的大部分非相干光由与第一光路分离的第二光路出射作为发光装置的出射光,从而在提高了发光装置的出光效率的同时,使得散光元件第一表面发出的大部分的非相干光不会沿着相干光的光路回射到相干光源,减小了非相干光的热与相干光源的热之间的影响,从而提高了相干光源的发光效率及使用寿命。
附图说明
图 1 是 现有基于 LED 和荧光粉来产生高效色光的光源的结构 示意图 ;
图 2 是本发明实施例中发光装置的一个实施例的结构示意图 ;
图 3 是本发明实施例中发光装置的另一实施例的结构示意图;
图 4 是本发明实施例中发光装置的另一实施例的结构示意图
图 5 是本发明实施例中发光装置的另一实施例的结构示意图;
图 6 是本发明实施例中发光装置的另一实施例的结构示意图;
图 7 是本发明实施例中发光装置的另一实施例的结构示意图;
图 8 是本发明实施例中发光装置的另一实施例的结构示意图;
图 9 是本发明实施例中发光装置的另一实施例的结构示意图;
图 10A 是本发明实施例中发光装置的另一实施例的结构示意图;
图 10B 是本发明实施例中发光装置的另一实施例的结构示意图;
图 11 是本发明实施例中发光装置的另一实施例的结构示意图;
图 12 是本发明实施例中发光装置的另一实施例的结构示意图;
图 13 是本发明实施例中发光装置的另一实施例的结构示意图。
具体实施方式
为解决现有技术中的技术问题,本发明实施例提供一种发光装置,包括:相干光源,用于产生相干光;包括相对的第一表面与第二表面的散光元件,用于散射来自相干光源的相干光以产生非相干光;位于散光元件第一表面一侧的光引导件,用于引导相干光源发出的相干光入射到散光元件的第一表面上以形成第一光路,并引导散光元件的第一表面发出的部分非相干光由第一光路出射,引导散光元件的第一表面发出的剩余非相干光由第二光路出射,并将第一光路与第二光路分离;并且,由第一光路出射的非相干光的光通量少于由第二光路出射的非相干光的光通量。
考虑到经散光元件散射的非相干光具有近似朗伯分布的特点,而自相干光源入射散光元件的相干光具有较小的光学扩展量,本发明实施例利用相干光源与散光元件的光学扩展量的差异,能够通过光引导件将相干光的入射光路引入到散光元件的出射光路中的同时,限制光引导件引导的由第一光路出射的非相干光的光通量小于由第二光路出射的非相干光通量,使得散光元件的第一表面发出的大部分非相干光(即散光元件向相干光源发出的大部分非相干光)从第二光路出射而不会从第一光路过度逃逸,即不会沿着相干光的入射光路回射到相干光源,减小了相干光源与散光元件的热之间的影响,从而提高了相干光源的发光效率及使用寿命。
请参阅图 2 ,图 2 是本发明实施例中发光装置的一个实施例的结构示意图。如图 2 所示,本实施例中,发光装置 100 包括用于产生相干光的相干光源 110 、用于散射来自相干光源 110 的相干光并产生非相干光的散光元件 120 、以及光引导件 140 。散光元件 120 包括相对的第一表面 121 与第二表面 122 ,光引导件 140 位于散光元件的第一表面 121 一侧,即散光元件的第一表面 121 相对第二表面较为靠近光引导件 140 。
为使相干光源具有较小光学扩展量,相干光源 110 优选为激光二极管。相干光源也可以为发光二极管或其它种类的光源。也可通过可匀光和整形的匀光装置将相干光源 110 发出的相干光引导往光引导件 140 。匀光装置可以为复眼透镜阵列或空心或实心的导光棒。
散光元件的散射方式主要有体散射和面散射两种。面散射散光元件是利用透明材料表面的微结构对光线的折射和反射来散射光线,具体又分为单面微结构和双面微结构的散光元件。微结构可以在玻璃衬底的表面上喷砂形成,或在该表面上用化学腐蚀的方法形成,也可以在塑料衬底上用热压成型的方法形成。若采用单面微结构的散光元件,优选地,相干光从散光元件的微结构面入射(及第一表面为微结构面)并从散光元件的平面出射,此时透过率比较高。体散射则是指在散射体内掺加不同折射率或不透明的小颗粒来实现散光目的。
在本实施例中,光引导件 140 为带有通光孔 130 及位于通光孔外部的反射面(图中未标示)的第二光反射元件 140 。本实施例中,第二光反射元件 140 具体为带有通光孔 130 及反射面的弧形反射装置,第二光反射元件 140 也可以为平面反射装置、锯齿形反射装置或其它形式的曲面反射装置,这些优选形式将在下文中进行详细阐述,此处不作赘述。
通光孔 130 用于以透射方式引导相干光源 110 发出的相干光入射到散光元件 120 的第一表面 121 上以形成第一光路,并引导散光元件 120 的第一表面 121 发出的部分非相干光由第一光路出射;第二光反射元件 140 的反射面用于以反射方式引导散光元件 120 的第一表面 121 发出的剩余非相干光由第二光路出射。第二光反射元件 140 的反射面反射的非相干光与 散光元件 120 的第二表面 122 发出的非相干光一起出射作为发光装置 100 的出射光,从而提高发光装置的出光效率。可以在发光装置的光出射端设置一光学元件,用于对非相干光进行收集、匀光和整形等处理。
并且,第二光反射元件 140 通过其通光孔 130 及反射面将第一光路与第二光路分离,具体地,第一光路从散光元件 120 通过第二光反射元件 140 的通光孔 130 至相干光源 110 ;而第二光路从散光元件 120 至第二光反射元件 140 的反射面,并被该反射面改变方向而背离相干光源 110 ,从而与第一光路分离。通过分离第二光路与第一光路,使得在提高发光装置的出光效率的同时,由第二光路出射的非相干光不会沿着第一光路回射到相干光源。
由于相干光源 110 发出的相干光的光学扩展量较小,而散光元件 120 散射后的非相干光呈近似朗伯分布,光学扩展量较相干光而言大了很多,因此可以控制第二光反射元件 140 的 通光孔 130 与反射面的面积比例为一较小值,使得散光元件的第一表面 121 发出的大部分非相干光可经第二光反射元件 140 的反射面 反射后出射得到有效利用,小部分非相干光将从通光孔 130 漏出而被损耗掉,即漏出损耗的比例在一可接受范围内。优选地,第二光反射元件 140 的 通光孔的面积小于或等于第二光反射元件 140 反射面 面积的 1/4 。
与现有技术相比,本实施例中,通过光引导件 140 的通光孔 130 将相干光由第一光路引导至散光元件 120 ,通过光引导件 140 的反射面引导来自散光元件 120 第一表面的大部分非相干光由与第一光路分离的第二光路出射作为发光装置的出射光,从而在提高了发光装置的出光效率的同时,使得散光元件第一表面 121 发出的大部分的非相干光不会沿着相干光的光路回射到相干光源,减小了非相干光的热与相干光源的热之间的影响,从而提高了相干光源的发光效率及使用寿命。
请参阅图 3 ,图 3 是本发明实施例中发光装置的另一实施例的结构示意图。与图 2 所示实施例主要不同之处在于,本实施例中,发光装置 200 还包括第一光反射元件 150 和光收集装置 160 。第一光反射元件 150 将散光元件 120 的第二表面 121 发出的非相干光反射往第二光反射元件 140 ,从而使得散光元件发出的所有非相干光均出射往第二光反射元件 140 。本实施例是以散光元件 120 为透光型散光元件为例进行阐述的, 为了使散光元件发出的所有非相干光均出射往第二光反射元件 140 ,本实施例需要设置 第一光反射元件 150 以反射散光元件的第二表面 122 发出的非相干光。在其它实施例中,也可以不设置第一光反射元件 150 ,而 通过提高散光元件 120 的厚度,使得散光元件的第一表面接收相干光后产生的非相干光无法穿过散光元件的第二表面,使得散光元件产生的所有非相干光均从散光元件的第一表面出射往第二光反射元件 140 。
优选地,第二光反射元件 140 可呈半球形或半球形的一部分,散光元件 120 被相干光入射的位置位于靠近该半球形球心的第一点,光收集装置 160 的入光口位于靠近该半球形球心的第二点,第一点和第二点关于该半球形的球心对称。相干光源 110 发出的相干光通过通光孔 130 入射到散光元件 120 ,散光元件 120 的第二表面 122 发出的非相干光经第一光反射元件 150 反射后与散光元件的第一表面 121 发出的非相干光一起出射往第二光反射元件 140 。第二光反射元件 140 的反射面将大部分非相干光反射往位于靠近半球形球心的第二点的光收集装置的入光口,该大部分非相干光被光收集装置 160 收集并出射作为发光装置 200 的出射光。同时,小部分来自散光元件 120 的非相干光透射第二光反射元件 140 的通光孔而损耗。
优选地,通光孔 130 为半球形第二光反射元件 140 的偏心孔,以使得相干光源 110 发出的相干光垂直入射至散光元件 120 ,当散光元件 120 从第一光反射元件 150 脱落时,相干光会被第一光反射元件 150 反射至第二光反射元件 140 的通光孔而射回相干光源,而不会被反射至第二光反射元件 140 的反射面并出射至光收集装置而伤害人眼。
优选地,第二光反射元件 140 也可呈半椭球形或半椭球形的一部分,散光元件 120 被相干光入射的位置位于该半椭球形的第一焦点,光收集装置 160 的入光口位于半椭球形的第二焦点。此时,散光元件发出的大部分非相干光经第二光反射元件 140 的反射面反射后出射往该半椭球形的第二焦点处,并被光收集装置 160 收集并出射作为发光装置 200 的出射光。同理,通光孔 130 优选为半椭球形第二光反射元件 140 的偏心孔,以使得相干光源 110 发出的相干光垂直入射至散光元件 120 。
更具体地,本实施例中的 第二光反射元件 140 为带有通光孔的内空结构的反射壁,该反射壁包括镀设于其内壁的反射膜,该通光孔为该反射壁上的一开口。可以理解的是,反射膜也可以镀设在反射壁的外壁。
此外,本实施例中的光收集部件 160 具体为空心导光棒。事实上,本发明实施例中的光收集元件 160 也可以采用透镜、透镜组、空心导光棒、实心导光棒、空心复合型聚光器或实心复合型聚光器或它们的组合。
请参阅图 4 ,图 4 是 本发明实施例中发光装置的另一实施例的结构示意图。与图 3 所示实施例不同之处在于,本实施例中,发光装置 300 的第二光反射元件 140 为外曲面镀有反射膜 331 的实心透明体 330 ,通光孔 332 为该反射膜 331 的一缺口 332 。优选地,散光元件 120 与实心透明体 330 之间具有一空气隙(图未示),以提高发光装置的出光亮度。与图 3 实施例相同,实心透明体 330 优选为呈半球形或半椭球形,此时,散光元件 120 与实心透明体 330 之间的空气隙的厚度优选小于半球形半径的 1% 或半椭球长半轴的 1% ,以较有效地提高发光装置的出光亮度。
请参阅图 5 ,图 5 是 本发明实施例中发光装置的另一实施例的结构示意图。本实施例与图 3 所示实施例不同之处在于:发光装置 400 中,通光孔 130 为半球形或半椭球形第二光反射元件 140 的边缘的一缺口,相干光源 110 发出的相干光从该缺口入射至散光元件 120 。可以理解的是,本实施例中的第二光反射元件 140 也可以为外曲面镀有反射膜的实心透明体。
请参阅图 13 ,图 13 是本发明 实施例中发光装置的另一实施例的结构示意图。本实施例与图 3 所示实施例不同之处在于,发光装置 1200 中,第二光反射元件 140 为锯齿形反射装置 ,该锯齿形反射装置包括两个锯齿面 1301 和 1302 ,每一个锯齿面都是一组同心球面的一部分。参考图 3 实施例中的描述可知,锯齿面 1301 和 1302 都分别可以起到弧形反射装置的作用,因此锯齿形反射装置可以看作是一组弧形反射装置的嵌套组合,因此对于的散光元件的第一表面发出的非相干光具有和弧形反射装置相同的作用。锯齿形反射装置与弧形反射装置的区别在于,锯齿形反射光装置所占的空间更小,结构更紧凑。
请参阅图 6 ,图 6 是 本发明实施例中发光装置的另一实施例的结构示意图。本实施例与图 3 所示实施例不同之处在于,发光装置 500 的第二光反射元件为带有通光孔 530 及位于通光孔 530 外部的反射面的平面反射装置 540 。平面反射装置 540 反射散光元件发出的非相干光,使该非相干光由与相干光成一角度的方向出射。
由于非相干光呈近似朗伯分布,优选的,本实施例中还包括一透镜组 570 ,用于将散光元件 120 的发出的非相干光收集并准直出射至平面反射装置 540 ,该准直的非相干光的大部分被平面反射装置 540 的反射面反射而作为发光装置 500 的出射光。更优选的,通光孔 530 在透镜组 570 的出射光斑上的投影面积小于等于该出射光斑面积的 1/4 ,以减少从该通光孔 530 泄漏的非相干光,提高发光装置 500 的出光效率。可以理解的是,也可以用上文提到的其它光收集装置替代透镜组 570 ,用于将散光元件 120 发出的非相干光收集并中继至平面反射装置 540 。
此外,发光装置 500 的光出射端还可以用光学元件来进行光收集、匀光和整形等,在本发明中不作详细阐述。
请参阅图 7 ,图 7 是 本发明实施例中发光装置的另一实施例的结构示意图。本实施例与图 6 所示实施例不同之处在于,本实施例中,发光装置 600 的光引导件包括第三光反射元件 630 及位于第三光反射元件 630 外部的透光介质(本实施例中,透光介质具体为第三光反射元件 630 外部的空气)。第三光反射元件 630 用于以反射方式引导相干光源 110 发出的相干光入射到散光元件 120 的第一表面上以形成第一光路,并引导散光元件 120 的第一表面发出的部分非相干光由第一光路出射; 第三光反射元件 630 外部的透光介质以透射方式引导散光元件 120 的第一表面发出的剩余非相干光由第二光路出射,由第二光路出射的非相干光作为发光装置 600 的出射光。光引导件通过 第三光反射元件 630 及透光介质将第一光路与第二光路分离。
与图 6 实施例相同,优选地,本实施例还包括透镜组 570 ,用于收集并准直散光元件 120 的第一表面发出的非相干光。更优选地,第三光反射元件 630 在该透镜组的出射光斑上的投影面积小于等于该出射光斑面积的 1/4 ,以减少被第三光反射元件 630 反射而 泄漏的非相干光,提高发光装置 600 的出光效率。可以理解的是,也可以用上文提到的其它光收集装置替代透镜组 570 ,该光收集装置位于散光元件 120 与第三光反射元件 630 ,用于收集并中继散光元件 120 的第一表面发出的非相干光。 发光装置 600 的光出射端还可以用光学元件来进行光收集、匀光和整形等,在本发明中不作详细阐述。
请参阅图 8 ,图 8 是 本发明实施例中发光装置的另一实施例的结构示意图。本实施例中,发光装置 700 的光引导件包括带有通光孔 130 和位于通光孔外部的反射面的第二光反射元件 140 ,该通光孔以透射方式引导相干光源 110 发出的相干光入射到散光元件 120 的第一表面上以形成第一光路,并引导散光元件 120 的第一表面发出的部分非相干光由第一光路出射。与图 3 所示实施例不同的是,本实施例不设有第三光反射元件 150 ,散光元件 120 产生的向其第二表面发出的非相干光直接从第二表面出射作为发光装置的出射光;而第二光反射元件 140 的反射面用于以反射方式引导散光元件 120 的第一表面 121 发出的非相干光回射到散光元件 120 的第一表面 121 ,该非相干光穿透散光元件并从散光元件 120 的第二表面 122 出射作为发光装置的出 射光。
优选地,第二光反射元件 140 为带有通光孔及位于该通光孔外部的反射面的弧形反射装置,该弧形反射装置呈半球形,散光元件 120 被相干光入射的位置位于该半球形的球心。散光元件 120 的第一表面发出的非相干光出射往第二光反射元件 140 ,第二光反射元件 140 的反射面将该非相干光的大部分反射往位于球心的散光元件 120 。进一步地,本实施例中还包括光收集装置 160 ,该光收集装置 160 的入光口位于散光元件 120 的第二表面的一侧(即第二表面 122 相对于第一表面 121 更为靠近光收集装置 160 ),用于收集散光元件 120 出射的非相干光。
此外,更具体地,本实施例中的 第二光反射元件 140 为带有通光孔的内空结构的反射壁,该反射壁包括镀设于其内壁的反射膜,该通光孔为该反射壁上的一开口。可以理解的是, 第二光反射元件 140 也可以为锯齿形反射装置,该锯齿形反射装置包括至少两个锯齿面,且每个锯齿面都是一组同心球面的一部分,此时散光元件可以位于同心球面的球心。
请参阅图 9 ,图 9 是 本发明实施例中发光装置的另一实施例的结构示意图。本实施例与图 8 所示实施例的不同之处在于,发光装置 800 的第二光反射元件为外曲面镀有反射膜 331 的实心透明体 330 ,通光孔 332 为该反射膜 331 的一缺口 332 。实心透明体 330 优选为呈半球形,此时,散光元件 120 与实心透明体 330 之间可以具有一空气隙,该空气隙的厚度优选小于半球形半径的 1% 或半椭球长半轴的 1% ,以较有效地提高发光装置的出光亮度。
优选地,本实施例还包括透镜组 570 ,设置于散光元件 120 的第二表面的一侧,经散光元件出射的非相干光经该透镜组 570 准直出射。事实上,也可以用上文提到的其它形式的光收集装置替代透镜组 570 。
此外,本发明实施例对上述实施例进行了改进,即发光装置还包括驱动装置,用于驱动散光元件,以使得入射到该散光元件上的相干光在该散光元件上形成的光斑沿预定路径作用于该散光元件,从而可避免相干光长时间作用于散光元件的同一位置而导致的散光元件的温度过高,提高散光元件的使用寿命。优选地,驱动装置可以为一转盘,可以将散光元件固定于该转盘上,散光元件随该转盘做圆周运动,使得入射到该散光元件上的相干光在该散光元件上形成的光斑沿圆形路径作用于该散光元件 。当然,驱动装置也可以驱动散光元件作其它形式的运动,例如线性移动。
请参参阅图 10A ,图 10A 是本发明实施例中发光装置的另一实施例的结构示意图。图 10A 所示实施例是在图 3 所示实施例基础上进行改进后的另一反射式实施例。本实施例的发光装置 900A 还包括转盘 980 ,散光元件 120 与第一光反射元件 150 均呈与转盘同轴的环形,置于转盘 980 上并随之转动。第一光反射元件 150 位于驱动装置 980 和散光元件 120 之间,第一光反射元件 150 也可以为转盘 980 的一部分。经第二光反射元件 140 的反射面反射后的非相干光透过转轮 980 并被光收集装置 160 收集出射。光收集装置 160 也可位于转轮 980 盘面圆周的延长线上,即经第二光反射元件反射后的非相干光不经过转轮 980 而直接入射至光收集装置 160 。
请参参阅图 10B ,图 10B 是本发明实施例中发光装置的另一实施例的结构示意图。图 10B 所示实施例是在图 8 所示实施例基础上进行改进后的另一透射式实施例。本实施例的发光装置 900B 还包括转盘 980 ,散光元件 120 呈与转盘同轴的环形,置于转盘 980 上并随之转动。并且,转盘 980 承载有散光元件 120 的区域为透明材料制成,使得散光元件发出的部分非相干光直接透过转盘 980 出射,而另一部分非相干光经第二光反射元件 140 的反射面反射后回射至散光元件并从第二表面透过转盘 980 出射。本实施例中还包括透镜组 570 ,位于散光元件的第二表面的一侧,透镜组 570 将非相干光准直后出射。
此外,本发明还提供发光装置的另一实施例,即相干光源包括分别用于产生至少两种颜色光的至少两种子光源以及合光装置,该合光装置将该至少两种子光源产生的光合并为一束合光,以下对此进行详细阐述。
请参阅图 11 ,图 11 是 本发明实施例中发光装置的另一实施例的结构示意图。本实施例与图 10A 所示实施例的区别之处在于,发光装置 1000 中,相干光源 110 包括第一子光源 111 与第二子光源 112 ,第一子光源为产生红光的激光二极管,第二子光源为产生绿光的激光二极管;发光装置 1000 还包括合光装置 114 ,该合光装置 114 将第一子光源 111 与第二子光源 112 分别产生的光合为一束合光,该合光通过通光孔 130 入射至散光元件 120 。
具体地,本实施例中,合光装置 114 为透射红光反射绿光的二向色片,第一子光源 111 产生的红色相干光经合光装置透射至通光孔 130 ,第二子光源 112 产生的绿色相干光经合光装置反射至通光孔 130 。当然,合光装置 114 也可以为反射红光透射绿光的二向色片,并将第一子光源 111 产生的红色相干光反射至通光孔,将第二子光源 112 产生的绿色相干光透射至通光孔,从而将红色相干光与绿色相干光合为一束合光。
红色相干光与绿色相干光可以同时出射至通光孔 130 ,此时发光装置 1000 出射由红色非相干光与绿色非相干光组成的黄色非相干光。同理,在发光装置的另一实施例中,相干光源还可以包括第三子光源,例如产生蓝色相干光的激光二极管;合光装置可以为十字形二向色片组,用于将第一、第二、第三子光源产生的相干光合为一束合光并引导至通光孔 130 ;此时发光装置可以出射由红色、绿色与蓝色非相干光组成的白色非相干光。
上述各实施例中,相干光源 110 均为产生一种颜色光(如蓝色或黄色)的光源,发光装置出射一种颜色的非相干光。本发明也可以应用在需要出射多种颜色光序列的场景下。为此,本发明还提供发光装置的另一实施例,该实施例中的发光装置还包括控制装置,用于分别控制相干光源中的两种子光源的开启与关闭及发光强度。
请参阅图 12 ,图 12 是本发明 实施例中发光装置的另一实施例的结构示意图。本实施例与图 11 所示实施例的区别之处在于:发光装置 1100 的相干光源 110 还包括第三子光源 113 ,第三子光源 113 为产生蓝色相干光的激光二极管。合光装置 114 为二向色片组,二向色片组 114 包括平行设置的二向色片 1141 与 1142 。二向色片组 114 将第一、第二、第三子光源产生的光合为一束合光,该合光通过通光孔 130 入射至散光元件 120 。具体地,二向色片 1141 反射第一子光源 111 产生的红色相干光,透射第二子光源 112 产生的绿色相干光,该红色、绿色相干光均透射二向色片 1142 ;二向色片 1142 反射第三子光源 113 产生的蓝色相干光。
发光装置 1100 还包括控制装置(图未示),用于 分别控制相干光源中的三种子光源的开启与关闭及发光强度。例如,控制装置可以控制产生红色、绿色和蓝色相干光的三个子光源依序开启与关闭,从而使发光装置依序出射红色、绿色和蓝色非相干光;控制装置也可以控制产生红色、绿色和蓝色相干光的子光源同时开启,并控制三种子光源的发光强度均周期性变化,使得合光装置出射的合光的颜色周期性变化,从而发光装置出射颜色周期性变化的非相干光。
本发明还提供了一种投影系统,包括发光装置,该发光装置可以具有上述各实施例所提供的功能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (29)

  1. 一种发光装置,其特征在于,所述装置包括:
    相干光源,用于产生相干光;
    包括相对的第一表面与第二表面的散光元件,用于散射来自所述相干光源的相干光以产生非相干光;
    位于散光元件第一表面一侧的光引导件,用于引导所述相干光源发出的相干光入射到所述散光元件的第一表面上以形成第一光路,并引导所述散光元件的第一表面发出的部分非相干光由第一光路出射,引导所述散光元件的第一表面发出的剩余非相干光由第二光路出射,并将第一光路与第二光路分离;
    并且,由第一光路出射的非相干光的光通量少于由第二光路出射的非相干光的光通量。
  2. 根据权利要求 1 所述的发光装置,其特征在于,所述由第一光路出射的非相干光的光通量小于或等于由第二光路出射的非相干光的光通量的 1/4 。
  3. 根据权利要求 1 所述的发光装置,其特征在于,还包括第一光反射元件,位于散光元件的第二表面的一侧。
  4. 根据权利要求 3 所述的发光装置,其特征在于,所述光引导件包括带有通光孔及位于通光孔外部的反射面的第二光反射元件,该通光孔用于以透射方式引导所述相干光源发出的相干光入射到所述散光元件的第一表面上以形成第一光路,并引导所述散光元件的第一表面发出的部分非相干光由第一光路出射;第二光反射元件的反射面用于以反射方式引导所述散光元件的第一表面产生的剩余非相干光由第二光路出射。
  5. 根据权利要求 4 所述的发光装置,其特征在于,第二光反射元件为带有所述通光孔及反射面的平面反射装置。
  6. 根据权利要求 5 所述的发光装置,其特征在于,该发光装置还包括光收集装置,用于将所述散光元件发出的非相干光收集并中继至所述平面反射装置。
  7. 根据权利要求 6 所述的发光装置,其特征在于,所述光收集装置包括透镜组,该透镜组用于将所述散光元件发出的非相干光收集并准直至所述平面反射装置,所述通光孔在该透镜组的出射光斑上的投影面积小于等于该出射光斑面积的 1/4 。
  8. 根据权利要求 4 所述的发光装置,其特征在于,第二光反射元件为带有所述通光孔及反射面的弧形反射装置。
  9. 根据权利要求 8 所述的发光装置,其特征在于,所述弧形反射装置呈半球形或半球形的一部分,所述散光元件被相干光入射的位置位于靠近所述半球形球心的第一点;
    所述发光装置还包括光收集装置,该光收集装置的入光口位于靠近所述半球形球心的第二点,第一点和第二点关于所述半球形的球心对称。
  10. 根据权利要求 8 所述的发光装置,其特征在于,所述弧形反射装置呈半椭球形或半椭球形的一部分,所述散光元件被相干光入射的位置位于所述半椭球形的第一焦点;
    所述发光装置还包括光收集装置,该光收集装置的入光口位于所述半椭球形的第二焦点。
  11. 根据权利要求 9 或 10 所述的发光装置,其特征在于,所述通光孔为弧形反射装置的偏心孔,以使得所述相干光源发出的相干光垂直入射至所述散光元件。
  12. 根据权利要求 8 所述的发光装置,其特征在于,所述弧形反射装置的通光孔的面积小于或等于所述反射面面积的 1/4 。
  13. 根据权利要求 4 所述的发光装置,其特征在于,第二光反射元件为带有所述通光孔及反射面的锯齿形反射装置。
  14. 根据权利要求 3 所述的发光装置,其特征在于,所述光引导件包括第三光反射元件及位于第三光反射元件外部的透光介质,第三光反射元件用于以反射方式引导所述相干光源发出的相干光入射到所述散光元件的第一表面上以形成第一光路,并引导所述散光元件的第一表面发出的部分非相干光由第一光路出射;所述透光介质以透射方式引导所述散光元件的第一表面发出的剩余非相干光由第二光路出射。
  15. 根据权利要求 14 所述的发光装置,其特征在于,该发光装置还包括位于所述散光元件与第三光反射元件之间的光收集装置,用于收集并中继所述散光元件发出的非相干光。
  16. 根据权利要求 15 所述的发光装置,其特征在于,所述光收集装置包括透镜组,该透镜组用于收集并准直所述散光元件发出的非相干光,第三光反射元件在该透镜组的出射光斑上的投影面积小于等于该出射光斑面积的 1/4 。
  17. 根据权利要求 1 所述的发光装置,其特征在于,所述光引导件包括带有通光孔和位于通光孔外部的反射面的第二光反射元件,该通光孔以透射方式引导所述相干光源发出的相干光入射到所述散光元件的第一表面上以形成第一光路,并引导所述散光元件的第一表面发出的部分非相干光由第一光路出射;第二光反射元件的反射面用于以反射方式引导所述散光元件的第一表面产生的非相干光由第二光路回射到所述散光元件的第一表面。
  18. 根据权利要求 17 所述的发光装置,其特征在于,第二光反射元件为带有所述通光孔及反射面的弧形反射装置,该弧形反射装置呈半球形,所述散光元件被相干光入射的位置位于所述半球形的球心。
  19. 根据权利要求 18 所述的发光装置,其特征在于,该发光装置还包括光收集装置,该光收集装置的入光口位于散光元件的第二表面的一侧。
  20. 根据权利要求 17 所述的发光装置,其特征在于,第二光反射元件为带有所述通光孔及反射面的锯齿形反射装置。
  21. 根据权利要求 6 、 9 、 10 、 15 及 19 中任一项所述的发光装置,其特征在于,所述光收集装置包括透镜、透镜组、空心导光棒、实心导光棒、空心复合型聚光器或实心复合型聚光器。
  22. 根据权利要求 9-11 以及 18-19 中任一项所述的发光装置,其特征在于:所述弧形反射装置为带有通光孔的内空结构的反射壁,该反射壁包括镀设于其内壁的反射膜,该通光孔为该反射壁上的一开口。
  23. 根据权利要求 9-11 以及 18-19 中任一项所述的发光装置,其特征在于:所述弧形反射装置为外曲面镀有反射膜的带有通光孔的实心透明体,该通光孔为该反射膜的一缺口。
  24. 根据权利要求 23 所述的发光装置,其特征在于:所述散光元件与所述实心透明体之间具有一空气隙,该空气隙的厚度小于所述半椭球形的长半轴的 1% 或所述半球形的半径的 1% 。
  25. 根据权利要求 1 所述的发光装置,其特征在于:所述相干光源为激光二极管。
  26. 根据权利要求 1 所述的发光装置,其特征在于,所述相干光源包括分别用于产生两种颜色光的两种子光源以及合光装置,该合光装置将该两种子光源产生的光合并为一束合光。
  27. 根据权利要求 26 所述的发光装置,其特征在于,该发光装置还包括控制装置,用于分别控制所述两种子光源的开启与关闭及发光强度。
  28. 根据权利要求 1 至 27 中任一项所述的发光装置,其特征在于:该发光装置还包括驱动装置,用于驱动所述散光元件,以使得入射到该散光元件上的相干光在该散光元件上形成的光斑沿预定路径作用于该散光元件。
  29. 一种投影系统,其特征在于,包括如权利要求 1-28 中任意一项所述的发光装置。
PCT/CN2012/080411 2011-12-04 2012-08-21 发光装置及其应用的投影系统 WO2013082952A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/362,756 US9989202B2 (en) 2011-12-04 2012-08-21 Light emitting device with diffuser and light reflector
KR1020147013849A KR101766710B1 (ko) 2011-12-04 2012-08-21 발광장치 및 상기 발광장치가 응용되는 투영 시스템
EP12856400.2A EP2787391B1 (en) 2011-12-04 2012-08-21 Light emitting device and projection system adopting same
EP17192482.2A EP3287842B1 (en) 2011-12-04 2012-08-21 Light emitting device and projection system adopting same
JP2014543753A JP6166270B2 (ja) 2011-12-04 2012-08-21 発光デバイスおよびこれを用いた投影システム
US15/997,663 US11035528B2 (en) 2011-12-04 2018-06-04 Light emitting device with diffuser and light reflector and projection system having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110396392.4A CN102520570B (zh) 2011-12-04 2011-12-04 发光装置及其应用的投影系统
CN201110396392.4 2011-12-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/362,756 A-371-Of-International US9989202B2 (en) 2011-12-04 2012-08-21 Light emitting device with diffuser and light reflector
US15/997,663 Division US11035528B2 (en) 2011-12-04 2018-06-04 Light emitting device with diffuser and light reflector and projection system having the same

Publications (1)

Publication Number Publication Date
WO2013082952A1 true WO2013082952A1 (zh) 2013-06-13

Family

ID=46291540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080411 WO2013082952A1 (zh) 2011-12-04 2012-08-21 发光装置及其应用的投影系统

Country Status (6)

Country Link
US (2) US9989202B2 (zh)
EP (2) EP2787391B1 (zh)
JP (1) JP6166270B2 (zh)
KR (1) KR101766710B1 (zh)
CN (2) CN104880899B (zh)
WO (1) WO2013082952A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880899B (zh) 2011-12-04 2017-06-20 深圳市光峰光电技术有限公司 发光装置及其应用的投影系统
CN103969934B (zh) * 2013-02-05 2016-03-16 深圳市光峰光电技术有限公司 一种结构紧凑的光源系统
WO2016044549A1 (en) 2014-09-17 2016-03-24 Garrison Dental Solutions, Llc Dental curing light
US11067241B2 (en) * 2015-10-28 2021-07-20 Texas Instruments Incorporated Methods and apparatus for intrinsically safe laser sourced illumination
US10309601B2 (en) * 2015-11-27 2019-06-04 Mitsubishi Electric Corporation Light source device, lighting apparatus, and vehicle lamp device
JP6024841B1 (ja) * 2016-01-27 2016-11-16 株式会社リコー 照明装置、パターン照射装置およびシステム
DE102016205566A1 (de) * 2016-04-05 2017-10-05 Osram Gmbh Lichtemittierende baugruppe, anzeigevorrichtung, frontscheinwerfer eines kraftfahrzeugs und verfahren zum betreiben einer lichtemittierenden baugruppe
CN107329356B (zh) 2016-04-29 2020-08-21 中强光电股份有限公司 照明系统以及投影装置
WO2018008246A1 (ja) * 2016-07-07 2018-01-11 ソニー株式会社 プロジェクタ装置、制御方法
CN107885020A (zh) * 2016-09-30 2018-04-06 海信集团有限公司 一种激光光源及投影设备
CN106526874B (zh) * 2016-12-09 2023-07-07 深圳开立生物医疗科技股份有限公司 一种光耦合装置、光源系统及内窥镜系统
KR102674813B1 (ko) * 2016-12-19 2024-06-12 엘지전자 주식회사 광학장치 및 이를 구비하는 영상투사장치
CN106773481B (zh) * 2016-12-23 2018-10-09 海信集团有限公司 一种投影光源及投影设备
CN106681094B (zh) * 2016-12-23 2018-09-21 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN106707669B (zh) * 2016-12-23 2018-08-24 海信集团有限公司 一种荧光激发装置、投影光源及投影设备
CN106773482A (zh) * 2016-12-27 2017-05-31 海信集团有限公司 激光投影设备及其激光光源
USD810293S1 (en) 2017-01-20 2018-02-13 Garrison Dental Solutions, Llc Dental instrument
JP7058468B2 (ja) * 2017-02-09 2022-04-22 株式会社日立エルジーデータストレージ 映像表示装置、及び映像表示システム
JP2020516931A (ja) * 2017-04-06 2020-06-11 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,アズ リプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー スペックル低減装置
CN109752904B (zh) * 2017-11-07 2021-06-22 中强光电股份有限公司 荧光粉转轮及使用荧光粉转轮的投影装置
CN110095930A (zh) * 2018-01-31 2019-08-06 中强光电股份有限公司 照明系统及投影装置
WO2020018174A1 (en) * 2018-07-17 2020-01-23 The Trustees Of Princeton University System and method for shaping incoherent light for control of chemical kinetics
TWI795436B (zh) * 2018-09-06 2023-03-11 鴻海精密工業股份有限公司 固態光源裝置
TWI729723B (zh) * 2020-03-10 2021-06-01 台達電子工業股份有限公司 光源系統
CN113296342B (zh) * 2021-05-21 2024-03-12 光感(上海)科技有限公司 一种光学投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505435A1 (en) * 2003-08-05 2005-02-09 Sony International (Europe) GmbH Illumination unit having two discharge lamps for a projector
US7070300B2 (en) 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
US20090066916A1 (en) * 2007-09-06 2009-03-12 Microvision, Inc. Scanning laser projector with reduced laser power incident on the retina
CN101815376A (zh) * 2009-02-24 2010-08-25 北京中视中科光电技术有限公司 一种混合光源装置
CN102155639A (zh) * 2010-02-12 2011-08-17 日立民用电子株式会社 固体光源装置
CN102520570A (zh) * 2011-12-04 2012-06-27 深圳市光峰光电技术有限公司 发光装置及其应用的投影系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231303U (zh) 1985-07-15 1987-02-25
US4853542A (en) * 1987-06-08 1989-08-01 Nicolas J. Harrick Collecting hemispherical attachment for spectrophotometry
SU1624391A1 (ru) * 1988-12-15 1991-01-30 Научно-Производственное Объединение По Технологии Машиностроения "Цниитмаш" Устройство дл фокусировки лазерного излучени
US5309339A (en) * 1992-06-24 1994-05-03 The Schepens Eye Research Institute, Inc. Concentrator for laser light
US5414600A (en) * 1993-07-30 1995-05-09 Cogent Light Technologies, Inc. Condensing and collecting optical system using an ellipsoidal reflector
US7064498B2 (en) * 1997-08-26 2006-06-20 Color Kinetics Incorporated Light-emitting diode based products
US6926435B2 (en) * 2001-08-23 2005-08-09 Wavien, Inc. Led illumination engine using a reflector
JP3661688B2 (ja) * 2002-03-26 2005-06-15 セイコーエプソン株式会社 照明装置
JP4054594B2 (ja) * 2002-04-04 2008-02-27 日東光学株式会社 光源装置及びプロジェクタ
US6960872B2 (en) 2003-05-23 2005-11-01 Goldeneye, Inc. Illumination systems utilizing light emitting diodes and light recycling to enhance output radiance
JP4047266B2 (ja) * 2003-11-19 2008-02-13 株式会社小糸製作所 灯具
US7450194B2 (en) * 2004-03-04 2008-11-11 Nitto Denko Corporation Polarized interference recycling backlight module and liquid crystal display incorporating the same
JP2007200782A (ja) * 2006-01-27 2007-08-09 Ricoh Opt Ind Co Ltd 蛍光体光源およびその製造方法および光源装置および照明装置
US8636366B2 (en) * 2008-03-28 2014-01-28 Nec Display Solutions, Ltd. Lighting apparatus including a light source, a first mirror, and a second mirror disposed between the light source and the first mirror
JP4662185B2 (ja) 2008-05-15 2011-03-30 カシオ計算機株式会社 光源装置及びプロジェクタ
US8021008B2 (en) * 2008-05-27 2011-09-20 Abl Ip Holding Llc Solid state lighting using quantum dots in a liquid
JP2010170836A (ja) 2009-01-22 2010-08-05 Stanley Electric Co Ltd プロジェクタ型車両用前照灯
JP2011065979A (ja) * 2009-08-18 2011-03-31 Sharp Corp 光源装置
JP2011049338A (ja) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd 発光装置および光装置
JP5122542B2 (ja) * 2009-09-15 2013-01-16 シャープ株式会社 発光装置、照明装置および光検知器
JP4991834B2 (ja) * 2009-12-17 2012-08-01 シャープ株式会社 車両用前照灯
JP2011221502A (ja) * 2010-03-25 2011-11-04 Sanyo Electric Co Ltd 投写型映像表示装置および光源装置
CN102252169B (zh) * 2010-04-07 2013-04-17 深圳市光峰光电技术有限公司 高亮度激发方法及基于光波长转换的发光装置
US20110280033A1 (en) * 2010-05-17 2011-11-17 Sharp Kabushiki Kaisha Light-emitting device, illumination device, and vehicle headlamp
JP5487077B2 (ja) * 2010-10-29 2014-05-07 シャープ株式会社 発光装置、車両用前照灯および照明装置
US20120106126A1 (en) * 2010-11-01 2012-05-03 Seiko Epson Corporation Wavelength conversion element, light source device, and projector
JP6118260B2 (ja) * 2010-12-09 2017-04-19 フィリップス ライティング ホールディング ビー ヴィ 光を発生させる照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505435A1 (en) * 2003-08-05 2005-02-09 Sony International (Europe) GmbH Illumination unit having two discharge lamps for a projector
US7070300B2 (en) 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
US20090066916A1 (en) * 2007-09-06 2009-03-12 Microvision, Inc. Scanning laser projector with reduced laser power incident on the retina
CN101815376A (zh) * 2009-02-24 2010-08-25 北京中视中科光电技术有限公司 一种混合光源装置
CN102155639A (zh) * 2010-02-12 2011-08-17 日立民用电子株式会社 固体光源装置
CN102520570A (zh) * 2011-12-04 2012-06-27 深圳市光峰光电技术有限公司 发光装置及其应用的投影系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787391A4

Also Published As

Publication number Publication date
US20150062903A1 (en) 2015-03-05
US9989202B2 (en) 2018-06-05
US20190137054A1 (en) 2019-05-09
EP3287842B1 (en) 2018-10-03
JP2015508551A (ja) 2015-03-19
EP3287842A1 (en) 2018-02-28
CN102520570B (zh) 2015-05-27
EP2787391B1 (en) 2017-05-10
KR20140105717A (ko) 2014-09-02
CN102520570A (zh) 2012-06-27
KR101766710B1 (ko) 2017-08-09
JP6166270B2 (ja) 2017-07-19
CN104880899A (zh) 2015-09-02
EP2787391A1 (en) 2014-10-08
US11035528B2 (en) 2021-06-15
EP2787391A4 (en) 2015-12-23
CN104880899B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2013082952A1 (zh) 发光装置及其应用的投影系统
US7220005B2 (en) Projection type video display apparatus
TWI440956B (zh) 投影機光源裝置
TWI442165B (zh) 投影機光機裝置
TWI250312B (en) Illumination system with multiple lamps
JP2013101317A (ja) 照明装置およびそれを用いた投写型画像表示装置
WO2013029422A1 (zh) 光源、合光装置及带该光源的投影装置
TW201307986A (zh) 投影機光源裝置
JP6318606B2 (ja) 波長変換部材及びこの波長変換部材を有する光学系及びこの波長変換部材を有する光源装置及びこの光源装置を有する投影装置
JP2012008303A (ja) 光源装置及びそれを用いた投写型表示装置
TW201307985A (zh) 投影機光源裝置
WO2020134785A1 (zh) 激光光源及激光投影设备
JP2006337678A (ja) 投写型表示装置
JP2019039950A (ja) 波長変換素子、光源装置及びプロジェクター
TW201833655A (zh) 光源裝置
US9291332B2 (en) Light source unit capable of preventing deterioration of luminescent material layer, illuminating method of light source unit, and projector
US20070242231A1 (en) Illumination system and projection apparatus
US20220082847A1 (en) Collimator lens, light source device, and image display device
US9255692B2 (en) Light source unit capable of shining light of high in-plane uniformity, illuminating method of light source unit, and projector
JP2008090016A (ja) 照明装置及び投射型画像表示装置
JP2004326000A (ja) 照明装置および投射型表示装置
US11009644B2 (en) Optical system with diffusers and honeycomb condensers
JP5150469B2 (ja) 光学ユニットおよびそれを用いた投射型液晶表示装置
TWI681246B (zh) 散熱裝置與投影機
JP2005283918A (ja) 照明用光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147013849

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014543753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012856400

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012856400

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14362756

Country of ref document: US