WO2013081030A1 - 脊椎側弯症の評価システムおよび同システムに適用される評価用器具 - Google Patents

脊椎側弯症の評価システムおよび同システムに適用される評価用器具 Download PDF

Info

Publication number
WO2013081030A1
WO2013081030A1 PCT/JP2012/080860 JP2012080860W WO2013081030A1 WO 2013081030 A1 WO2013081030 A1 WO 2013081030A1 JP 2012080860 W JP2012080860 W JP 2012080860W WO 2013081030 A1 WO2013081030 A1 WO 2013081030A1
Authority
WO
WIPO (PCT)
Prior art keywords
scoliosis
unit
subject
evaluation system
dimensional data
Prior art date
Application number
PCT/JP2012/080860
Other languages
English (en)
French (fr)
Inventor
俊成 秋元
信幸 寺田
Original Assignee
学校法人 東洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 東洋大学 filed Critical 学校法人 東洋大学
Priority to JP2013547198A priority Critical patent/JP6132354B2/ja
Priority to US14/361,079 priority patent/US20140303522A1/en
Publication of WO2013081030A1 publication Critical patent/WO2013081030A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4566Evaluating the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4561Evaluating static posture, e.g. undesirable back curvature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone

Definitions

  • the present invention relates to a scoliosis evaluation system and an evaluation instrument applied to the system, and particularly to a scoliosis evaluation system and a system for quantitatively evaluating scoliosis at a simple and low cost. It is related with the evaluation instrument.
  • scoliosis Spine scoliosis
  • spinal column spine
  • the curvature of the spinal column is accompanied by twisting, and as the symptom progresses, the ribs overhang.
  • the high degree of curvature affects the internal organs such as respiratory and cardiovascular disorders due to chest compression and deformation.
  • Quantitative measurement is necessary to diagnose scoliosis.
  • quantitative measurement is indispensable for determining whether or not to perform surgery and evaluating how much the symptoms have been improved by treatment.
  • X-ray examination using an X-ray imaging apparatus is often used for the diagnosis of scoliosis.
  • X-ray examination is a technique in which the chest is imaged with X-rays, and the degree of curvature of the spinal column is measured by a doctor's judgment.
  • FIG. 11 shows an example of imaging using an X-ray imaging apparatus. As shown in FIG. 11, the lateral curvature of the spinal column can be grasped from the X-ray image.
  • CT Computer Tomography
  • a problem that it is difficult to apply to a small hospital or the like because the apparatus is expensive and large.
  • CT examination since the subject is photographed in a sleeping state, the state of the spine and ribs changes due to the influence of gravity and the like, and there is also a difficulty that the symptoms of scoliosis cannot be accurately evaluated.
  • similar to the X-ray inspection method there is a problem of human exposure.
  • Patent Document 1 As a biological strain detection apparatus that does not use an X-ray imaging apparatus or a CT apparatus, for example, a technique disclosed in Patent Document 1 can be cited.
  • This detection device has a measuring means composed of a first sensor and a second sensor. Each sensor is attached to the left and right upper arms of the living body, and measures the three-dimensional posture of the sensor itself. Then, in a state where the living body has finished the predetermined motion using both arms, the posture of the left and right arms of the living body is determined from the obtained data, and the muscles of the upper body are strong according to the difference in the posture of the left and right arms Determine the site.
  • the moire method is a method for three-dimensionally measuring the shape of the body surface using light interference fringes.
  • a moire image is acquired by the moire imaging device for the back of the subject (human body) H. Then, for the characteristic portions H1 to H6 whose degree of bending is to be measured, the height difference h between the left and right peaks is measured, and the degree of bending is evaluated based on the ratio to the shoulder width d.
  • this technique Unlike the measurement method using an X-ray imaging apparatus or CT apparatus, this technique has the advantage that it does not cause a problem of exposure due to examination and is non-invasive to the human body.
  • the apparatus applied to the moire method is large and expensive (for example, it may require a cost of 1 million yen or more).
  • the measured moire image is technically difficult to process by computer, and scoliosis is evaluated based on the moire image, and measurement is performed manually by a doctor or a technician. Therefore, there has been a problem that the inspection efficiency is low and the number of subjects per hour is limited.
  • the number of patients with scoliosis is very large (for example, there are data that there are about 20,000 to 40,000 children with idiopathic scoliosis alone in the country. Demanded outside.
  • the present invention provides a scoliosis evaluation system capable of performing quantitative evaluation of scoliosis with high accuracy in a simple and low cost, and an evaluation instrument applied to the system.
  • the purpose is that.
  • a three-dimensional data acquisition unit that captures the subject's back and acquires the three-dimensional data thereof, a feature part specification unit that specifies a feature part whose degree of curvature is to be measured for the subject's back,
  • An uneven state detection unit that detects an uneven state of the body surface in the horizontal direction based on the three-dimensional data, and a display unit that displays a detection result by the uneven state detection unit for the feature region specified by the feature region specifying unit
  • a scoliosis evaluation system a scoliosis evaluation system.
  • an evaluation instrument applied to the above scoliosis evaluation system wherein the horizontal plate portion is in contact with the horizontal surface of the subject's waist, and both sides of the subject's waist from the horizontal plate portion
  • An evaluation instrument comprising a pair of side plate portions that are in contact with each other.
  • a scoliosis evaluation system capable of performing quantitative evaluation of scoliosis with high accuracy at a simple and low cost, and an evaluation instrument applied to the system.
  • FIG. 1 is a block diagram showing a functional configuration of a scoliosis evaluation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a device configuration example of the evaluation system illustrated in FIG. 1.
  • FIG. 3 is an external view showing a three-dimensional sensor applied to the evaluation system shown in FIG.
  • FIG. 4 is a diagram for explaining the measurement principle of the three-dimensional sensor shown in FIG.
  • FIG. 5 is a diagram for explaining the measurement principle of the three-dimensional sensor shown in FIG.
  • FIG. 6 is a diagram for explaining the measurement principle of the three-dimensional sensor shown in FIG.
  • FIG. 7 is a flowchart showing a processing procedure of scoliosis evaluation processing executed by the evaluation system shown in FIG. FIG.
  • FIG. 8 is a diagram showing a display example of measurement results in the evaluation system shown in FIG.
  • FIG. 9 is an explanatory diagram showing measurement results of healthy subjects and scoliosis patients in the evaluation system shown in FIG.
  • FIG. 10 is a diagram showing a case of scoliosis.
  • FIG. 11 is an image showing a photographing example of a scoliosis patient by the X-ray imaging apparatus.
  • FIG. 12 is an explanatory diagram showing an example of the height difference in a state where the spinal column is twisted due to scoliosis.
  • FIG. 13 is a diagram illustrating an evaluation example of scoliosis using the moire method.
  • FIG. 14A is a front view illustrating a mounting state of the evaluation instrument
  • FIG. 14B is a schematic configuration diagram illustrating a schematic configuration of the evaluation instrument.
  • the scoliosis evaluation system S1 is a three-dimensional sensor (or three-dimensional camera) 100 that captures the back of the subject H and acquires the three-dimensional data.
  • Three-dimensional data acquisition means a characteristic part designating part 102 (characteristic part designating means) for designating a characteristic part whose degree of curvature is to be measured for the back of the subject H, and a characteristic part designated by the characteristic part designating part 102 About the uneven state of the body surface in the horizontal direction based on the three-dimensional data (uneven state detecting means), and a display monitor 200 (display) for displaying the detection result by the uneven state detecting unit 103 Means).
  • the display monitor 200 displays the peak positions of the unevenness acquired based on the detection result by the unevenness state detecting unit 103 together.
  • the evaluation system S1 includes a centerline detection unit 104 (centerline detection means) that detects the vertical centerline of the back of the subject H based on the three-dimensional data acquired by the three-dimensional sensor 100, and a characteristic part designation.
  • a left-right difference calculation unit 105 (left-right difference calculation means) is further provided for calculating the height difference between the left and right peak positions with the center line as a boundary for the feature portion designated by the unit 102.
  • the display monitor 200 is configured to display the calculation result by the left / right difference calculation unit 105 together.
  • the evaluation system S1 further includes a human body determination unit 106 (human body determination means) that determines whether or not the three-dimensional data relates to a human body based on the three-dimensional data acquired by the three-dimensional sensor 100. .
  • a human body determination unit 106 human body determination means
  • an automatic evaluation unit 107 that evaluates the degree of scoliosis of the subject H by comparison with a preset threshold value. (Evaluation means).
  • the display monitor 200 is configured to display the evaluation result by the automatic evaluation unit 107 together.
  • the feature site designation unit 102, the uneven state detection unit 103, the center line detection unit 104, the left / right difference calculation unit 105, the person determination unit 106, and the automatic evaluation unit 107 are computers configured by personal computers or the like. It is comprised by the program (software) performed with the apparatus 101.
  • FIG. 1 the program (software) performed with the apparatus 101.
  • the three-dimensional sensor 100 and the computer device 101 are connected via a USB cable or the like.
  • a TOF (time-of-flight) three-dimensional sensor can be applied as the three-dimensional sensor 100.
  • the TOF three-dimensional sensor actively irradiates near-infrared light (LED light) and measures the distance using the reflected light.
  • LED light near-infrared light
  • invisible light such as infrared light is pulse-modulated and irradiated within the angle of view, and the phase delay of this pulse is measured on the image sensor side to determine the reciprocal distance to the object.
  • This TOF type three-dimensional sensor has been an expensive device of about 5 to 10 million yen in the past, but nowadays, the price has been reduced and a camera of tens of thousands of yen or less has been developed.
  • a laser pattern projection type three-dimensional sensor can be applied.
  • a laser pattern projection type three-dimensional sensor 100 is used.
  • the laser pattern projection type three-dimensional sensor 100 irradiates a target object with an infrared pattern and acquires a distance image by triangulation.
  • a Kinect sensor (registered trademark of Microsoft Corporation) manufactured by Microsoft Corporation can be applied.
  • This Kinect sensor was initially a game machine sensor, but can also be connected to a computer device (personal computer) 101 via a USB terminal.
  • Kinect for Windows registered trademark
  • SDK Software Development Kit
  • This Kinect sensor is available for about 10,000 yen, and the cost of the evaluation system S1 can be reduced.
  • FIG. 3 shows the appearance of a three-dimensional sensor (Kinect sensor) 100.
  • the three-dimensional sensor 100 includes an infrared laser emitting unit 150, an RGB color image recognition camera 151, and a depth measurement infrared camera 152.
  • the three-dimensional sensor 100 includes an electric tilt mechanism and can swing 30 degrees in the vertical direction, and can be adjusted from the computer apparatus 101 side according to the height of the subject H and the like.
  • the 3D sensor 100 includes a 3-axis acceleration sensor, a 64 MB DDR2 SDRAM main memory, a signal processing dedicated processor, and the like.
  • a level can be provided in the three-dimensional sensor 100 to adjust the level or the like.
  • the evaluation system S1 includes a three-dimensional sensor 100 attached to a tripod 300 that can be height-adjusted (for example, height-adjustable within a range of 0.5 to 1.5 m), and a characteristic part.
  • a notebook personal computer 101 in which programs (software) capable of realizing functions such as a designation unit 102, an uneven state detection unit 103, a center line detection unit 104, a left / right difference calculation unit 105, a person determination unit 106, and an automatic evaluation unit 107 are installed. And can be configured.
  • the distance between the three-dimensional sensor 100 and the subject H is preferably about 1 to 2 m.
  • the infrared laser emitted from the infrared laser emission unit 150 (see FIG. 3) of the three-dimensional sensor 100 at a certain irradiation angle is reflected by the object 500 and is reflected by the depth measurement infrared camera 152 (FIG. 3). ) And detected.
  • the distance to the object 500 can be calculated from the angle between the base and both ends.
  • an image of the object 500 irradiated with the infrared laser is shown as (a). The light receiving angle is measured from the image.
  • the distance to the object 500 can be calculated from the angles of the base and both ends in the same manner.
  • the image of the object 500 irradiated with the infrared laser is shown as (b).
  • the light receiving angle is measured from the image.
  • a known optical pattern is irradiated in advance within the angle of view, and the three-dimensional structure of the object is determined from the geometric distortion of the pattern. Is restoring. For example, a method in which a light source is once diffused by a diffusion plate and then a projection pattern is generated using a transmission plate in which microlenses are arranged is applied.
  • the three-dimensional sensor 100 such as the Kinect sensor can acquire a moving image in addition to a still image. Even in the evaluation system S1 according to the present embodiment, scoliosis is evaluated based on still images in principle. However, the subject is allowed to perform a predetermined action, and the state is acquired as a moving image to comprehensively evaluate scoliosis. It is also possible to do this.
  • step S10 the back of the subject H is photographed by the three-dimensional sensor 100 to obtain three-dimensional measurement data.
  • the acquired three-dimensional measurement data is stored in a hard disk device, a memory, or the like included in the computer device 101.
  • step S11 based on the acquired three-dimensional measurement data, the human body determination unit 106 determines whether the three-dimensional measurement data is that of a human body.
  • the human body determination in step S11 can be realized by storing a pattern of the back of the human body in advance and performing pattern matching processing between the pattern and the three-dimensional measurement data.
  • subsequent processing can be automated. That is, by continuing the acquisition state of the three-dimensional measurement data by the three-dimensional sensor 100 and determining that the subject H is a human body when the subject H takes a predetermined posture with the back facing the three-dimensional sensor 100 side, It is possible to automatically shift to processing, and to perform inspection efficiently.
  • step S12 the acquired three-dimensional measurement data is subjected to a process for removing noise by a filter.
  • step S13 the background data is deleted from the three-dimensional measurement data.
  • step S14 the edge of the image is detected based on the three-dimensional measurement data, and the outline of the back of the subject H is acquired.
  • step S15 the center line detection unit 104 detects the center line of the back of the subject H (human body). Since this center line is a reference for evaluation by dividing the back of the subject H into left and right, how to detect the center line is important.
  • the vertical center line can be detected from the width of the back based on the outline of the back of the subject H acquired in step S14. More specifically, it is conceivable that the width at each position of the back of the subject H is acquired based on the outline, and for example, a predetermined position that is 1 ⁇ 2 of the width is connected as a center line.
  • the center line in the vertical direction may be detected based on the uneven state of the back of the subject H detected by the uneven state detecting unit 103.
  • the center line is formed by connecting a predetermined position that is substantially in the center and the bottom of the concave state in the data on the unevenness of the back. It is done.
  • the center line in the vertical direction may be detected by superimposing the X-ray image data of the back of the subject H to be imaged separately and the three-dimensional measurement data. That is, when it is difficult to grasp the center line with only the three-dimensional measurement data, or when more precise evaluation is desired, the vertical center line can be determined with reference to the X-ray image.
  • the vertical center line may be detected by superimposing the moire image data of the back of the subject H, which is separately photographed, and the three-dimensional measurement data. That is, when it is difficult to grasp the center line with only the three-dimensional measurement data, or when more precise evaluation is performed, the center line in the vertical direction can be determined with reference to the moire image.
  • a marker composed of a reflective tape or the like is attached in advance to the position of the spinal column of the subject H, and the position of the marker is detected from the photographed image of the RGB camera 151 (see FIG. 3) provided in the three-dimensional sensor 100 and the center A line may be determined.
  • step S16 the feature part designating unit 102 designates a feature part for which the degree of curvature of the back of the subject H is to be measured.
  • Specified feature parts can be specified automatically or manually by the operator.
  • the characteristic site is “seventh cervical vertebra”, and the position of the “seventh cervical vertebra” of the subject H is automatically detected based on the three-dimensional measurement data or the image captured by the RGB camera 151, and the position The degree of curvature may be measured.
  • “shoulder”, “waist”, etc. may be registered as characteristic parts and automatically measured.
  • an operator, a doctor, or the like of the scoliosis evaluation system S1 may operate a pointing device such as a mouse or a track pad to specify a site where the degree of curvature is to be measured as a feature site. good.
  • selection buttons such as “seventh cervical vertebra”, “shoulder”, and “lumbar” may be displayed on the display panel in advance, and the selection buttons may be selected with a pointing device to designate the characteristic part.
  • step S17 the uneven state detection unit 103 detects the uneven state of the body surface in the horizontal direction based on the three-dimensional measurement data for the feature portion specified in step S16, and the body surface based on the uneven state. The peak position of is detected.
  • step S18 a process of estimating each part of the back of the subject H based on the three-dimensional measurement data is performed.
  • lumbar part or a buttocks can be estimated and the site
  • step S19 the difference in height between the left and right peak positions with respect to the feature line designated in step S16 is calculated by the left / right difference calculation unit 105. Thereby, the twist condition of a characteristic part can be grasped
  • step S20 the measurement result is displayed on the display monitor 200, and the process is terminated.
  • the display format is not particularly limited, and any existing display format can be applied.
  • a plane graph display unit 601 an image processing result 602 indicating peak detection and the like, an analysis result 603 including images and numerical data, and a camera image 604 on the back of the subject H are displayed.
  • a three-dimensional data display unit may be provided to display the three-dimensional data with polygons, wire frames, or the like. Further, the viewpoint of the three-dimensional image may be switched by a button operation or a pointing device operation.
  • a function for printing the displayed images and data may be provided.
  • the operator or doctor of the scoliosis evaluation system S1 determines whether or not the subject H has a symptom of spondylosis or the degree of progression of spondylosis. Can be evaluated.
  • the automatic evaluation unit 107 can automatically evaluate whether or not the subject H has a spondylosis symptom or the degree of progression of the spondylosis.
  • the degree of scoliosis of the subject H can be evaluated by comparison with a preset threshold value based on at least one of the detection result by the unevenness state detection unit 103 and the calculation result by the left-right difference calculation unit 105.
  • FIG. 9 shows an example of measurement results.
  • FIG. 9A shows a measurement result for a healthy person
  • FIG. 9B shows a measurement result for a scoliosis patient.
  • an image 701 of the back of the subject (healthy person), an image processing result 702 indicating peak detection, and a plane graph 703 are displayed from the left side.
  • FIG. 9B an image 801 of the back of the subject (scoliosis patient), an image processing result 802 indicating peak detection, and a plane graph 803 are displayed from the left side.
  • a three-dimensional data display unit may be provided to display the three-dimensional data with polygons, wire frames, or the like.
  • the operator or doctor of the scoliosis evaluation system S1 determines the degree of progress of the scoliosis based on the measurement results displayed as shown in FIGS. 9 (a) and 9 (b).
  • the slope of the graph in the plane graph 803 exceeds a preset threshold, “a mild scoliosis symptom is observed” , “You may have moderate scoliosis symptoms, it seems to be necessary to observe”, “Severe scoliosis symptoms are seen and treatment such as surgery seems to be necessary”
  • a preset threshold “a mild scoliosis symptom is observed” , "You may have moderate scoliosis symptoms, it seems to be necessary to observe”, “Severe scoliosis symptoms are seen and treatment such as surgery seems to be necessary”
  • the data of the measurement result of the subject H includes personal information, it is desirable to set a password for browsing the data and manage it strictly.
  • Figures 10 to 12 are reference materials showing cases of scoliosis.
  • the symbol A shown in FIG. 10 indicates a curved portion in the spinal column.
  • the case as shown in FIG. 12 is twisted in the spine and ribs, and has a predetermined height difference h when viewed in a plane.
  • the uneven state of the body surface can be easily and accurately grasped in the case as shown in FIG. And scoliosis can be appropriately assessed.
  • This evaluation system S1 can be made smaller and lighter than conventional devices, so it can be carried around and measured at various locations. Moreover, since a particularly large space is not necessary, measurement in an examination room or the like is possible.
  • the body surface shape can be measured quantitatively.
  • the body surface shape was not performed quantitatively. If the body surface shape can be quantitatively evaluated, it is possible not only to determine the necessity of surgery and to evaluate improvement after surgery, but also to enable early detection and early treatment of medical conditions.
  • this evaluation system S1 since the measurement result is displayed on the spot, it can be used as a document for performing confirmation in the examination room, etc., and confirming with the patient or explaining the medical condition on the spot. Is improved.
  • a scoliosis evaluation system can be provided at low cost.
  • This evaluation system S1 can be provided as an evaluation system for scoliosis at a lower cost than conventional devices, and therefore the spread of the system can be expected. In particular, it is possible to detect early scoliosis and early treatment of younger spondylosis by applying it to health checkups conducted not only in hospitals but also in various schools.
  • the evaluation instrument 900 includes a horizontal plate portion 901 that is in contact with the horizontal surface of the waist portion of the subject H, and a pair of side plate portions 902 that are in contact with both sides of the waist portion of the subject H from the horizontal plate portion 901. ing.
  • a protrusion 903 having a predetermined height (for example, about 1 cm) is provided on the surface of the horizontal plate portion 901 on the three-dimensional sensor side.
  • side plate portion 902 may be configured to move in the left-right direction in accordance with the width of the waist of the subject H.
  • the evaluation instrument 900 having such a configuration it is possible to accurately measure the twisting standard of the characteristic parts such as the “seventh cervical vertebra” and “shoulder” described above. That is, by attaching the evaluation instrument 900 to the waist of the subject H in advance and acquiring the three-dimensional measurement data with the three-dimensional sensor 100, the horizontal plane data that is difficult to obtain from the human body is acquired from the evaluation instrument 900. Can do. Then, by using the three-dimensional measurement data of the horizontal plane acquired from the evaluation instrument 900 as a reference, it is possible to more accurately measure the twisting state of the characteristic part.
  • the three-dimensional measurement calibration can be performed by measuring the protrusion 903 provided on the horizontal plate portion 901 with the three-dimensional sensor 100.
  • the protrusion 903 by providing the protrusion 903, the three-dimensional shape of the protrusion 903 is measured, and the measurement result is compared with actual data. As a result, if the width, height, and length do not match, a correction coefficient is calculated and the measurement result is corrected. Further, the distortion of the lens of the three-dimensional sensor 100 can also be obtained and corrected from the rectangular shape or the like of the protrusion 903.
  • the degree of obesity or the like of the patient with scoliosis can be evaluated.
  • a process of emphasizing the unevenness of the body surface based on the three-dimensional measurement data may be performed so that the operator or doctor can more easily understand the unevenness state.
  • it may be displayed so as to make it easier for an operator or doctor to grasp the uneven state by performing a process of appropriately coloring the uneven surface of the body based on the three-dimensional measurement data.
  • the scoliosis evaluation system according to the present invention and the evaluation instrument applied to the system can be applied to quantitative evaluation of scoliosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 被験者の背部を撮影してその3次元データを取得する3次元センサ(100)、被験者の背部について湾曲の程度を測定すべき特徴部位を指定する特徴部位指定部(102)と、該特徴部位指定部で指定された特徴部位について、3次元データに基づいて水平方向の体表面の凹凸状態を検出する凹凸状態検出部(103)と、該凹凸状態検出部による検出結果を表示する表示モニタ(200)を備える。

Description

脊椎側弯症の評価システムおよび同システムに適用される評価用器具
 本発明は、脊椎側弯症の評価システムおよび同システムに適用される評価用器具に係り、特に簡易且つ低コストで脊椎側弯症の定量的な評価を行う脊椎側弯症の評価システムおよび同システムに適用される評価用器具に関するものである。
 脊椎側弯症(以下、単に「側弯症」と呼ぶ)は、脊柱(背骨)について側方への湾曲や捻じれを生じる病気であり、特に女性に多く発症する。
 脊柱の湾曲は、捻じれを伴うため、症状が進行すると肋骨の張り出しも生じる。また、高度の湾曲になると、腰背部痛に加え、胸郭の圧迫と変形による呼吸器障害や循環器障害など内臓にも影響を及ぼす。
 この側弯症の診断には、定量的な計測が必要である。特に、手術を行うか否かの判定や、治療によりどの程度症状が改善されたかの評価には定量的な計測が欠かせない。
 従来においては、側弯症の診断には、X線撮影装置を用いたX線検査法が多く用いられている。X線検査法は、X線で胸部を撮影し、脊柱の湾曲度を医師の判定により計測する手法である。図11にX線撮影装置を用いた撮影例を示す。図11に示すように、X線撮影画像により、脊柱の側方への湾曲度を把握することができる。
 しかし、一般的なX線検査法では、側方への湾曲度合いは判定できても、体表面の凹凸の程度は判定できないという難点があった。なお、被験者の側方など、多方向からX線撮影すれば凹凸の程度の判定も可能ではあるが、人体の被曝の問題もあるため、多方向からの複数回の撮影はできるだけ避けたいという要望がある。
 また、CT(Computed Tomography)装置を用いた計測も考えられるが、装置が高価で大型であるため、小規模の病院等への適用が難しいという問題がある。また、CT検査では、被験者が寝た状態で撮影されるため、重力の影響などで脊柱や肋骨の状態が変わってしまい、側弯症の症状を正確に評価できないという難点もあった。また、X線検査法と同様に、人体の被曝の問題もある。
 X線撮影装置やCT装置を用いない生体の歪み検出装置としては、例えば、特許文献1に開示の技術が挙げられる。
 この検出装置は、第1センサ及び第2センサから構成される測定手段を有する。各々のセンサは、生体の左右の上腕に取り付けられ、当該センサ自体の3次元的な姿勢を測定する。そして、生体が両腕を用いた所定動作を終えた状態において、得られたデータから、生体の左右の腕の姿勢を決定し、左右の腕の姿勢の差違に応じて、上半身の筋肉の強い部位を決定する。
特開2010-207399号公報
 しかしながら、上記特許文献1に係る生体の歪み検出装置は、側弯症の定量的な計測には適用することはできなかった。
 そのため、X線撮影装置やCT装置を用いない側弯症の検査方法としては、体表面の形状計測にモアレ法を適用した方法が用いられていた。
 モアレ法は、光の干渉縞を利用した体表面の形状を3次元的に計測する方法である。
 例えば、図13に示すように、被験者(人体)Hの背部について、モアレ撮像装置によってモアレ画像を取得する。そして、湾曲の程度を測定すべき特徴部位H1~H6について、左右ピークの高低差hを測り、肩幅dとの比によって湾曲の程度を評価する。
 この手法は、X線撮影装置やCT装置を用いた計測方法とは異なり、検査による被曝の問題を生じず、人体に対して非侵襲であるという長所がある。
 しかしながら、モアレ法に適用する装置は大掛かりでコストも嵩む(例えば、100万円以上のコストを要する場合も有る)という難点があった。
 また、計測されたモアレ画像はコンピュータ処理が技術的に難しく、モアレ画像に基づく側弯症の評価、医師や技師等の人による手作業で計測が行われている。そのため、検査効率が低く、時間当たりの被験者の数が制限されてしまうという問題があった。
 さらに、上述のように手作業による計測作業を含むため、計測を行う者の技量による計測誤差が大きく、検査精度が低いという問題もあった。
 一方、側弯症患者の数は非常に多く、(例えば、子供の特発性側弯症だけでも国内に約2~4万人存在するとのデータもある。それゆえ、検査効率および検査精度の向上が国内外で求められている。
 また、各種学校の身体検査等で容易に側弯症の検査を行うために、簡易な構成で且つ低コストな脊椎側弯症の評価システムの開発が要望されている。
 本発明は、上記の事情に鑑み、簡易且つ低コストで脊椎側弯症の定量的な評価を高精度で行うことのできる脊椎側弯症の評価システムおよび同システムに適用される評価用器具を提供することを目的としている。
 前記課題を解決するため、被験者の背部を撮影してその3次元データを取得する3次元データ取得部と、被験者の背部について湾曲の程度を測定すべき特徴部位を指定する特徴部位指定部と、前記特徴部位指定部で指定された特徴部位について、前記3次元データに基づいて水平方向の体表面の凹凸状態を検出する凹凸状態検出部と、前記凹凸状態検出部による検出結果を表示する表示部と、を備える脊椎側弯症の評価システムを提供する。
 また、上記の脊椎側弯症の評価システムに適用される評価用器具であって、被験者の腰部の水平方向の表面に接触される水平板部と、該水平版部から前記被験者の腰部の両側部に接触される一対の側板部と、を備える評価用器具を提供する。
 本発明によれば、簡易且つ低コストで脊椎側弯症の定量的な評価を高精度で行うことのできる脊椎側弯症の評価システムおよび同システムに適用される評価用器具を提供することができる。
図1は、本発明の一実施形態に係る脊椎側弯症の評価システムの機能構成を示すブロック図である。 図2は、図1に示した評価システムの装置構成例を示す図である。 図3は、図1に示した評価システムに適用される3次元センサを示す外観図である。 図4は、図3に示した3次元センサの計測原理を説明する図である。 図5は、図3に示した3次元センサの計測原理を説明する図である。 図6は、図3に示した3次元センサの計測原理を説明する図である。 図7は、図1に示した評価システムで実行される側弯症評価処理の処理手順を示すフローチャートである。 図8は、図1に示した評価システムにおける計測結果の表示例を示す図である。 図9は、図1に示した評価システムにおける健常者と側弯症患者の計測結果を示す説明図である。 図10は、側弯症の症例を示す図である。 図11は、X線撮像装置による側弯症患者の撮影例を示す画像である。 図12は、側弯症により脊柱に捻じれを生じた状態の高低差の例を示す説明図である。 図13は、モアレ法を用いた脊椎側弯症の評価例を示す図である。 図14(a)は、評価用器具の装着状態を示す正面図、図14(b)は、評価用器具の概略構成を示す概略構成図である。
 以下、本発明の一実施形態を添付図面に基づいて詳細に説明する。ここで、図面において同一の部材には同一の符号を付しており、また、重複した説明は省略されている。
 本実施形態に係る脊椎側弯症の評価システムS1は、図1のブロック図に示すように、被験者Hの背部を撮影してその3次元データを取得する3次元センサ(または3次元カメラ)100(3次元データ取得手段)と、被験者Hの背部について湾曲の程度を測定すべき特徴部位を指定する特徴部位指定部102(特徴部位指定手段)と、この特徴部位指定部102で指定された特徴部位について、前記3次元データに基づいて水平方向の体表面の凹凸状態を検出する凹凸状態検出部103(凹凸状態検出手段)と、この凹凸状態検出部103による検出結果を表示する表示モニタ200(表示手段)を備える。
 また、表示モニタ200は、凹凸状態検出部103による検出結果に基づいて取得される凹凸のピーク位置を併せて表示するようになっている。
 また、評価システムS1は、3次元センサ100で取得された3次元データに基づいて被験者Hの背部の垂直方向の中心線を検出する中心線検出部104(中心線検出手段)と、特徴部位指定部102で指定された特徴部位について、中心線を境にした左右のピーク位置の高低差を算出する左右差算出部105(左右差算出手段)とをさらに備えている。
 そして、表示モニタ200は、左右差算出部105による算出結果を併せて表示するようになっている。
 また、評価システムS1は、3次元センサ100で取得された3次元データに基づいて、当該3次元データが人体に関するものであるか否かを判定する人体判定部106(人体判定手段)をさらに備える。
 さらに、凹凸状態検出部103による検出結果および左右差算出部105による算出結果の少なくとも一方に基づいて、予め設定される閾値との比較によって、被験者Hの側弯症の程度を評価する自動評価部107(評価手段)を備える。
 そして、表示モニタ200は、自動評価部107による評価結果を併せて表示するようになっている。
 なお、本実施形態において、特徴部位指定部102、凹凸状態検出部103、中心線検出部104、左右差算出部105、人判定部106および自動評価部107は、パーソナルコンピュータ等で構成されるコンピュータ装置101で実行されるプログラム(ソフトウェア)で構成される。
 また、3次元センサ100とコンピュータ装置101とは、USBケーブル等を介して接続される。
 3次元センサ100としては、TOF(time-of-flight)の3次元センサを適用することができる。
 TOF方式の3次元センサは、アクティブに近赤外光(LED光)を照射し、その反射光を用いて距離を測定する。
 即ち、例えば赤外線などの不可視光をパルス変調して画角内に照射し、イメージ・センサ側でこのパルスの位相遅れを計測することで、対象物までの往復の距離を割り出す。
 このTOF方式の3次元センサは、従来においては500~1000万円程度もする高価な機器であったが、昨今は低廉化が進み数万円以下のカメラも開発されている。
 また、3次元センサ100として、レーザパターン投影方式の3次元センサを適用することができる。
 図2に示す構成例では、レーザパターン投影方式の3次元センサ100を用いている。
 レーザパターン投影方式の3次元センサ100は、赤外線パターンを対象物体に照射して三角測量により距離画像を取得している。
 より具体的には、レーザパターン投影方式の3次元センサ100としては、マイクロソフト社製のKinectセンサ(マイクロソフト社の登録商標)を適用することができる。このKinectセンサは、当初ゲーム機用のセンサであったが、コンピュータ装置(パーソナルコンピュータ)101にもUSB端子を介して接続可能である。
 そして、マイクロソフトリサーチ社が提供する「Kinect for Windows(登録商標) SDK(Software Development Kit)」を用いれば、C言語で記述したプログラムによりKinectセンサをコンピュータ装置101から制御することできる。
 このKinectセンサは、約1万数千円程度で入手可能であり、本評価システムS1の低コスト化を図ることができる。
 図3に、3次元センサ(Kinectセンサ)100の外観を示す。3次元センサ100は、赤外線レーザ発光部150と、RGBカラー映像認識用カメラ151と、奥行き測定用赤外線カメラ152とを搭載している。
 なお、この3次元センサ100は、電動チルト機構を備え、縦方向に30度首振りが可能になっており、被験者Hの身長等に合わせてコンピュータ装置101側から調整することができる。
 3次元センサ100の内部には3軸加速度センサ、64MBのDDR2 SDRAMメインメモリ、信号処理専用プロセッサ等が内蔵されている。
 より精密な測定を行う場合には、3次元センサ100に水準器を設けて、水平度等を調整するようにしてもよい。
 図2に示すように、本評価システムS1は、高さ調整可能(例えば、0.5~1.5mの範囲で高さ調整可能)な三脚300に取付けられた3次元センサ100と、特徴部位指定部102、凹凸状態検出部103、中心線検出部104、左右差算出部105、人判定部106および自動評価部107等の機能を実現可能なプログラム(ソフトウェア)をインストールしたノート型パーソナルコンピュータ101とで構成することができる。
 なお、3次元センサ100と被験者Hとの距離は、1~2m程度とするとよい。
 ここで、図4~図6を参照して、レーザパターン投影方式の3次元センサ100の計測原理について簡単に説明する。
 図4に示すように、3次元センサ100の赤外線レーザ発光部150(図3参照)から一定の照射角度で照射された赤外線レーザは、物体500に当たって反射され、奥行き測定用赤外線カメラ152(図3参照)に入射して検出される。この場合に、底辺と両端の角度から物体500までの距離を計算することができる。なお、赤外線レーザが照射された物体500の画像は(a)のように示される。また、受光角度は画像から計測する。
 また、図5に示すように、物体500が3次元センサ100側に移動した場合においても、同様に底辺と両端の角度から物体500までの距離を計算することができる。なお、赤外線レーザが照射された物体500の画像は(b)のように示される。また、受光角度は画像から計測する。
 上述のKinectセンサでは、図6(a)、6(b)に示すように、予め既知の光学パターンを画角内に照射し、そのパターンの幾何学的な歪み具合から対象物の3次元構造を復元している。例えば、光源を一度、拡散板で拡散させた後、マイクロレンズが並んだ透過板を使って投影パターンを作り出す方式などが適用される。
 なお、Kinectセンサ等の3次元センサ100は、静止画像のほかに、動画を取得することができる。本実施形態に係る評価システムS1においても、原則は静止画像に基づいて側弯症の評価を行うが、被験者に所定の動作をさせ、その状態を動画で取得して側弯症の評価を総合的に行うことも可能である。
 次に、図7のフローチャートを参照して、本実施形態に係る評価システムS1で実行される側弯症評価処理の処理手順について説明する。
 ステップS10では、3次元センサ100により被験者Hの背部を撮影して、3次元計測データを取得する。実際には、取得された3次元計測データは、コンピュータ装置101が備えるハードディスク装置やメモリ等に格納される。
 ステップS11では、人体判定部106によって、取得された3次元計測データに基づいて、当該3次元計測データが人体のものであるか否かが判定される。
そして、判定結果が「No」の場合にはステップS10に戻り、「Yes」の場合にはステップS12に移行する。
 ステップS11の人体判定は、具体的には、予め人体の背部のパターンを格納しておき、そのパターンと3次元計測データとのパターンマッチング処理等により実現することができる。このような人体判定を行うことにより、以降の処理を自動化することができる。即ち、3次元センサ100による3次元計測データの取得状態を継続し、被験者Hが3次元センサ100側に背部を向けて所定の姿勢をとった際に、人体であると判定することにより以降の処理に自動的に移行させることができ、効率的に検査を行うことができる。
 次いで、ステップS12では、取得された3次元計測データについてフィルタによりノイズを除去する処理を行う。
 ステップS13では、3次元計測データについて背景データを削除する処理を行う。
 ステップS14では、3次元計測データに基づいて、画像のエッジを検出して、被験者Hの背部の外形線を取得する。
 ステップS15では、中心線検出部104によって、被験者H(人体)の背部の中心線を検出する。この中心線は、被験者Hの背部を左右に分けて評価を行う基準となるので、中心線を如何にして検出するかは重要である。
 中心線の検出に仕方としては次のような手法が考えられる。
 ステップS14で取得された被験者Hの背部の外形線に基づく背部の幅から垂直方向の中心線を検出するようにできる。より具体的には、外形線に基づいて被験者Hの背部の各位置における幅を取得し、例えばその幅の1/2の所定位置を結んで中心線とすることが考えられる。
 また、凹凸状態検出部103で検出された被験者Hの背部の凹凸状態に基づいて垂直方向の中心線を検出するようにしても良い。即ち、人体の背部において脊柱の有る位置は、凹状態となっているため、背部の凹凸状態のデータにおいて略中央で凹状態の底となっている所定位置を結んで中心線とすることが考えられる。
 また、別途撮影される被験者Hの背部のX線撮影画像データと、3次元計測データとを重ね合わせて、垂直方向の中心線を検出するようにしても良い。即ち、3次元計測データのみでは中心線を把握し難い場合や、より精密な評価を行いたい場合には、X線撮影画像を参照して垂直方向の中心線を決定するようにできる。
 また、別途撮影される被験者Hの背部のモアレ画像データと、3次元計測データとを重ね合わせて、垂直方向の中心線を検出するようにしても良い。即ち、3次元計測データのみでは中心線を把握し難い場合や、より精密な評価を行う場合には、モアレ画像を参照して垂直方向の中心線を決定するようにできる。
 その他、例えば、被験者Hの脊柱の位置に反射テープ等で構成したマーカを予め貼付し、3次元センサ100が備えるRGBカメラ151(図3参照)の撮影画像でそのマーカの位置を検出して中心線を決定するようにしても良い。
 次いで、ステップS16では、特徴部位指定部102で、被験者Hの背部について湾曲の程度を測定すべき特徴部位を指定する。
 特徴部位の指定は、自動的に指定を行う場合と、操作者が手動で行う場合とが考えられる。
 例えば、予め測定すべき特徴部位に関するデータを登録し、そのデータに基づいて複数の被験者に対して、同じ特徴部位について湾曲の程度を測定するようにできる。より具体的には、例えば特徴部位を「第7頚椎」として、被験者Hの「第7頚椎」の位置を3次元計測データあるいはRGBカメラ151の撮影画像に基づいて自動的に検出し、その位置の湾曲の程度を測定するようにしても良い。同様に、「肩部」、「腰部」等を特徴部位として登録して自動的に測定を行うようにしても良い。
 また、脊椎側弯症の評価システムS1の操作者や医師等が、例えば、マウスやトラックパッド等のポインティングデバイスを操作して、湾曲の程度を測定すべき部位を特徴部位として指定するようにしても良い。また、予め「第7頚椎」、「肩部」、「腰部」等の選択ボタンを表示パネル上に表示し、その選択ボタンをポインティングデバイスで選択して特徴部位を指定するようにしても良い。
 次いで、ステップS17では、ステップS16で指定された特徴部位について、凹凸状態検出部103で、3次元計測データに基づいて水平方向の体表面の凹凸状態を検出し、その凹凸状態に基づいて体表面のピーク位置を検出する。
 これにより、従来のX線検査では把握できなかった側弯症による脊柱や肋骨等の捻じれ具合を容易に把握することができる。
 次いで、ステップS18では、3次元計測データに基づいて被験者Hの背部の各部位を推定する処理を行う。これにより、例えば、腰部や臀部の位置を推定して、その部位を捻じれの基準とすることができる。即ち、一般的に、腰部や臀部は略水平面を形成すると考えることができるので、この腰部や臀部を「第7頚椎」や「肩部」等の特徴部位の捻じれ具合の基準とすることができる。
 ステップS19では、ステップS16で指定された特徴部位について、前記中心線を境にした左右のピーク位置の高低差を左右差算出部105で算出する。これにより、特徴部位の捻じれ具合を把握することができる。
 ステップS20では、計測結果を表示モニタ200に表示して処理を終了する。
 表示形式は、特には限定されず、既存の表示形式の何れであっても適用することができる。
 図8に示した表示形式の例では、平面グラフ表示部601と、ピーク検出等を示す画像処理結果602と、画像および数値データからなる解析結果603と、被験者Hの背部のカメラ画像604が表示されている。また、図示は省略したが、3次元データ表示部を設け、3次元データをポリゴンやワイヤーフレーム等で表示するようにしてもよい。また、ボタン操作やポインティングデバイス操作により、3次元画像の視点等を切り換えるようにしてもよい。
 また、表示した画像やデータを印刷できる機能を設けてもよい。
 脊椎側弯症の評価システムS1の操作者や医師は、表示された計測結果に基づいて、被験者Hに脊椎側弯症の症状があるか否か、或いは、脊椎側弯症の進行度がどの程度であるか等を評価することができる。
 また、自動評価部107によって、被験者Hに脊椎側弯症の症状があるか否か、或いは、脊椎側弯症の進行度がどの程度であるか等を自動的に評価することもできる。
 即ち、凹凸状態検出部103による検出結果および左右差算出部105による算出結果の少なくとも一方に基づいて、予め設定される閾値との比較によって、被験者Hの側弯症の程度を評価することができる。
 図9に計測結果の例を示す。図9(a)は健常者についての計測結果を、図9(b)は側弯症患者の計測結果を示す。
 図9(a)においては、左側から被験者(健常者)の背部の画像701、ピーク検出等を示す画像処理結果702、平面グラフ703が表示されている。
 図9(b)においては、左側から被験者(側弯症患者)の背部の画像801、ピーク検出等を示す画像処理結果802、平面グラフ803が表示されている。
 なお、図示は省略したが、3次元データ表示部を設け、3次元データをポリゴンやワイヤーフレーム等で表示するようにしてもよい。
 そして、脊椎側弯症の評価システムS1の操作者や医師は、図9(a)、9(b)のように表示された計測結果に基づいて、脊椎側弯症の進行度がどの程度であるか等を総合的に評価する
 また、自動評価を行う場合には、例えば、平面グラフ803におけるグラフの傾きが予め設定された閾値を超えた際に、「軽度の側弯症の症状がみられます」、「中度の側弯症の症状がみられ、要観察と思われます」、「重度の側弯症の症状がみられ、手術等の治療が必要とおもわれます」等のメッセージを表示するようにしても良い。
 勿論、脊椎側弯症についての手術や各種治療の要否等の最終判断は、専門医によって行われることは言うまでもない。
 また、被験者Hの計測結果のデータ等は、個人情報を含むため、データの閲覧などにはパスワード等を設定し、厳重に管理されることが望ましい。
 図10~図12は、脊椎側弯症の症例を示す参考資料である。
 図10に示す符号Aは、脊柱において湾曲した箇所を示す。
 また、図12に示すような症例は、脊柱および肋骨に捻じれを生じ、平面で見た場合に所定の高低差hを有している。
 このような症例について、従来のX線検査法では、脊柱の湾曲具合は分かっても、体表面の凹凸状態が分からなかった。
 これに対して、本実施形態に係る脊椎側弯症の評価システムS1によれば、図12に示すような症例について、脊柱の湾曲程度に加えて、体表面の凹凸状態を容易且つ的確に把握することができ、脊椎側弯症を適切に評価することができる。
 以上述べたように、本発明の実施形態に係る脊椎側弯症の評価システムS1によれば、次のような効果を得ることができる。
(1)側弯症を簡易的に計測することができる。
 本評価システムS1は、従来の装置と比較して小型、軽量にすることができるため、持ち歩いて様々な場所での計測が可能になる。また、特に広いスペースも必要ではなくなるため、診察室などの中での計測が可能となる。
(2)体表面形状を定量的に計測することできる。
 側弯症の定量的な評価には、X線検査で計測した脊柱の曲がりが評価されているが、体表面形状の評価が定量的に行われていなかった。体表面形状を定量的に評価する事ができれば、手術の必要性の判断や手術後の改善評価が行えるようになるだけでなく、病状の早期発見、早期治療が可能となる。
(3)自然な状態で側弯症の症状を計測することができる。
 即ち、CTを利用した計測のように寝た状態での計測ではなく、自然に立った状態での評価が行えるため、実際に問題になっている位置の評価を正しく行うことが可能となる。
(4)その場で計測結果を確認することができる。
 本評価システムS1では、計測結果がその場で表示されるため、診察室等で計測を行った後、その場で患者を交えた確認や病状に対する説明等を行う資料として用いることができ、利便性が向上される。
(5)脊椎側弯症の評価システムを安価に提供することができる。
 本評価システムS1によれば、従来の装置と比較して安価に脊椎側弯症の評価システムとして提供が可能になるため、システムの普及が期待できる。特に病院等に限らず、各種学校などで行われる健康診断等に適用して、若年層の脊椎側弯症の早期発見、早期治療が可能となる。
 次に、図14を参照して、上述の脊椎側弯症の評価システムS1に適用される評価用器具900について説明する。
 評価用器具900は、被験者Hの腰部の水平方向の表面に接触される水平板部901と、この水平版部901から被験者Hの腰部の両側部に接触される一対の側板部902とを備えている。
 また、水平板部901の3次元センサ側の表面には、所定高さ(例えば、1cm程度)の突起部903が設けられている。
 なお、側板部902は、被験者Hの腰部の幅に合わせて、左右方向に移動できるように構成しても良い。
 このような構成の評価用器具900を用いた場合には、前述の「第7頚椎」や「肩部」等の特徴部位の捻じれ具合の基準を正確に計測することができる。即ち、評価用器具900を被験者Hの腰部に予め取り付けて、3次元センサ100で3次元計測データを取得することにより、人体からは精度が出難い水平面のデータを評価用器具900から取得することができる。そして、この評価用器具900から取得した水平面の3次元計測データを基準に用いることにより、特徴部位の捻じれ具合をより正確に計測することができる。
 また、水平板部901に設けられた突起部903を3次元センサ100で計測することにより、3次元計測のキャリブレーションを行うことができる。
 即ち、突起部903を設けることにより、突起部903の3次元形状を計測し、その計測結果と実際のデータを比較する。その結果、幅、高さ、長さが合わない場合には補正係数を算出して計測結果に補正を行う。また、突起部903が有する四角形の形状等から3次元センサ100のレンズの歪も求めて補正を行うこともできる。
 以上本発明の一実施形態を具体的に説明したが、本発明は当該実施形態に限定されるものではない。すなわち、本発明の技術的な範囲は、あくまでも請求の範囲の記載に従って解釈すべきであり、請求の範囲の記載技術と均等な技術および請求の範囲内でのすべての変更が含まれる。
 例えば、3次元センサ100で取得した3次元計測データに基づいて、脊椎側弯症患者等の矯正用具や車椅子用のクッションの設計を行うことができる。
 また、3次元センサ100で取得した3次元計測データと、体重計による体重データとに基づいて、椎側弯症患者等の肥満度等を評価することもできる。
 また、計測結果の表示について、3次元計測データに基づく体表面の凹凸を強調する処理を行なって、操作者や医師が凹凸状態をより把握し易くするようにしても良い。
 また、3次元計測データに基づく体表面の凹凸に適当な彩色を施す処理を行なって、操作者や医師が凹凸状態をより把握し易くするように表示しても良い。
 本発明による脊椎側弯症の評価システムおよび同システムに適用される評価用器具は、脊椎側弯症の定量的な評価に適用することができる。

Claims (14)

  1.  被験者の背部を撮影してその3次元データを取得する3次元データ取得部と、
     被験者の背部について湾曲の程度を測定すべき特徴部位を指定する特徴部位指定部と、
     前記特徴部位指定部で指定された特徴部位について、前記3次元データに基づいて水平方向の体表面の凹凸状態を検出する凹凸状態検出部と、
     前記凹凸状態検出部による検出結果を表示する表示部と、
     を備えることを特徴とする脊椎側弯症の評価システム。
  2.  前記表示部は、
     前記凹凸状態検出部による検出結果に基づいて取得される凹凸のピーク位置を併せて表示することを特徴とする請求項1に記載の脊椎側弯症の評価システム。
  3.  前記3次元データ取得部で取得された前記3次元データに基づいて前記被験者の背部の垂直方向の中心線を検出する中心線検出部と、
     前記特徴部位指定部で指定された特徴部位について、前記中心線を境にした左右のピーク位置の高低差を算出する左右差算出部と、をさらに備え、
     前記表示部は、前記左右差算出部による算出結果を併せて表示することを特徴とする請求項1または請求項2に記載の脊椎側弯症の評価システム。
  4.  前記3次元データ取得部は、TOF方式の3次元センサで構成されることを特徴とする請求項1から請求項3の何れかに記載の脊椎側弯症の評価システム。
  5.  前記3次元データ取得部は、レーザパターン投影方式の3次元センサで構成されることを特徴とする請求項1から請求項3の何れかに記載の脊椎側弯症の評価システム。
  6.  前記3次元データ取得部で取得された前記3次元データに基づいて、当該3次元データが人体に関するものであるか否かを判定する人体判定部をさらに備えることを特徴とする請求項1から請求項5の何れかに記載の脊椎側弯症の評価システム。
  7.  前記中心線検出部は、前記3次元データに基づいて前記被験者の背部の外形線を求め、当該外形線に基づく背部の幅から垂直方向の中心線を検出することを特徴とする請求項1から請求項6の何れかに記載の脊椎側弯症の評価システム。
  8.  前記中心線検出部は、前記凹凸状態検出部で検出された前記被験者の背部の凹凸状態に基づいて垂直方向の中心線を検出することを特徴とする請求項1から請求項6の何れかに記載の脊椎側弯症の評価システム。
  9.  前記中心線検出部は、別途撮影される前記被験者の背部のX線撮影画像データと、前記3次元データとを重ね合わせて、垂直方向の中心線を検出することを特徴とする請求項1から請求項6の何れかに記載の脊椎側弯症の評価システム。
  10.  前記中心線検出部は、別途撮影される前記被験者の背部のモアレ画像データと、前記3次元データとを重ね合わせて、垂直方向の中心線を検出することを特徴とする請求項1から請求項6の何れかに記載の脊椎側弯症の評価システム。
  11.  前記凹凸状態検出部による検出結果および前記左右差算出部による算出結果の少なくとも一方に基づいて、予め設定される閾値との比較によって、前記被験者の側弯症の程度を評価する評価部をさらに備えることを特徴とする請求項1から請求項10の何れかに記載の脊椎側弯症の評価システム。
  12.  前記表示部は、前記評価部による評価結果を併せて表示することを特徴とする請求項11に記載の脊椎側弯症の評価システム。
  13.  請求項1から請求項12の何れかに記載の脊椎側弯症の評価システムに適用される評価用器具であって、
     被験者の腰部の水平方向の表面に接触される水平板部と、
     前記水平板部から前記被験者の腰部の両側部に接触される一対の側板部と、
     を備えることを特徴とする評価用器具。
  14.  前記水平板部の3次元データ取得部側の表面には、所定高さの突起部が設けられていることを特徴とする請求項13に記載の評価用器具。
PCT/JP2012/080860 2011-11-29 2012-11-29 脊椎側弯症の評価システムおよび同システムに適用される評価用器具 WO2013081030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013547198A JP6132354B2 (ja) 2011-11-29 2012-11-29 脊椎側弯症の評価システムおよび同システムに適用される評価用器具
US14/361,079 US20140303522A1 (en) 2011-11-29 2012-11-29 Scoliosis evaluation system and evaluation apparatus applied to the same system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011260530 2011-11-29
JP2011-260530 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013081030A1 true WO2013081030A1 (ja) 2013-06-06

Family

ID=48535480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080860 WO2013081030A1 (ja) 2011-11-29 2012-11-29 脊椎側弯症の評価システムおよび同システムに適用される評価用器具

Country Status (3)

Country Link
US (1) US20140303522A1 (ja)
JP (1) JP6132354B2 (ja)
WO (1) WO2013081030A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248089A (ja) * 2012-05-31 2013-12-12 Kitasato Institute 側弯症スクリーニングシステム、これに使用する側弯症判定プログラム,及び端末装置
JP2016123590A (ja) * 2014-12-26 2016-07-11 オムロン株式会社 身体情報取得装置および身体情報取得方法
WO2017090083A1 (ja) * 2015-11-24 2017-06-01 エー・アンド・エー株式会社 測定装置、測定方法、及びプログラム
WO2017141958A1 (ja) * 2016-02-15 2017-08-24 学校法人慶應義塾 脊柱配列推定装置、脊柱配列推定方法及び脊柱配列推定プログラム
WO2017175761A1 (ja) * 2016-04-05 2017-10-12 国立大学法人北海道大学 側弯症診断支援装置、側弯症診断支援方法及びプログラム
JP2018068362A (ja) * 2016-10-24 2018-05-10 株式会社エーアンドエーシステム 測定装置、及び測定方法
KR101863648B1 (ko) * 2017-01-11 2018-06-04 대양의료기(주) 척추 측만 정도 측정 장치 및 방법
WO2021241140A1 (ja) * 2020-05-29 2021-12-02 株式会社日本医療機器開発機構 背部画像の読影支援装置、読影支援方法、及びプログラム
US11423574B2 (en) 2019-12-17 2022-08-23 Emma Ruccio Method and apparatus for detecting scoliosis
US11877717B2 (en) 2019-12-17 2024-01-23 Emma Ruccio Method and apparatus for detecting scoliosis

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171502B2 (ja) * 2013-04-04 2017-08-02 船井電機株式会社 プロジェクタおよびプロジェクタ機能を有する電子機器
AU2015234210B2 (en) * 2014-03-21 2017-07-06 Kinetisense Inc. Motion capture and analysis system for assessing mammalian kinetics
US9993177B2 (en) 2014-08-28 2018-06-12 DePuy Synthes Products, Inc. Systems and methods for intraoperatively measuring anatomical orientation
US10335241B2 (en) 2015-12-30 2019-07-02 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
US9554411B1 (en) 2015-12-30 2017-01-24 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
WO2017139556A1 (en) 2016-02-12 2017-08-17 Medos International Sarl Systems and methods for intraoperatively measuring anatomical orientation
CN105816182A (zh) * 2016-03-24 2016-08-03 西安交通大学 一种基于Kinect传感器的颈椎活动度测量方法
CA3022142A1 (en) * 2016-04-25 2017-11-02 Telefield Medical Imaging Limited Method and device for measuring spinal column curvature
WO2017209662A1 (en) * 2016-05-30 2017-12-07 Prismatic Sensors Ab X-ray imaging for enabling assessment of scoliosis
US10820835B2 (en) * 2016-09-12 2020-11-03 Medos International Sarl Systems and methods for anatomical alignment
RU177374U1 (ru) * 2017-01-17 2018-02-19 Общество с ограниченной ответственностью "Тардис" Устройство для измерения параметров человеческого тела
US11089975B2 (en) 2017-03-31 2021-08-17 DePuy Synthes Products, Inc. Systems, devices and methods for enhancing operative accuracy using inertial measurement units
WO2019106033A1 (en) 2017-11-28 2019-06-06 Sony Semiconductor Solutions Corporation Illumination device, time of flight system and method
EP3843629A4 (en) * 2018-08-28 2022-06-01 Technion Research & Development Foundation Limited DETECTION OF SPINE SHAPE BY OPTICAL SCAN
CN111803198B (zh) * 2020-08-07 2024-01-12 沈建雄 一种脊柱侧凸术中矫正装置
CN113951874B (zh) * 2021-10-25 2023-12-26 中国科学院长春光学精密机械与物理研究所 一种脊柱侧弯风险评估系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142838A (ja) * 1983-10-28 1985-07-29 吉澤 徹 脊柱側彎症の検診方法及びその装置
WO2004111948A2 (fr) * 2003-06-10 2004-12-23 Biospace Instruments Procede d’imagerie radiographique pour la reconstruction tridimensionnelle, dispositif et programme d’ordinateur pour mettre en œuvre ce procede
JP2011160824A (ja) * 2010-02-04 2011-08-25 Future Univ-Hakodate 脊椎湾曲症判定支援装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130042874A1 (en) * 2011-08-19 2013-02-21 Rebecca Gordon Kyphopad and methods thereof
US8784339B2 (en) * 2011-09-23 2014-07-22 Orthosensor Inc Spinal instrument for measuring load and position of load

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142838A (ja) * 1983-10-28 1985-07-29 吉澤 徹 脊柱側彎症の検診方法及びその装置
WO2004111948A2 (fr) * 2003-06-10 2004-12-23 Biospace Instruments Procede d’imagerie radiographique pour la reconstruction tridimensionnelle, dispositif et programme d’ordinateur pour mettre en œuvre ce procede
JP2011160824A (ja) * 2010-02-04 2011-08-25 Future Univ-Hakodate 脊椎湾曲症判定支援装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248089A (ja) * 2012-05-31 2013-12-12 Kitasato Institute 側弯症スクリーニングシステム、これに使用する側弯症判定プログラム,及び端末装置
JP2016123590A (ja) * 2014-12-26 2016-07-11 オムロン株式会社 身体情報取得装置および身体情報取得方法
WO2017090083A1 (ja) * 2015-11-24 2017-06-01 エー・アンド・エー株式会社 測定装置、測定方法、及びプログラム
US11331039B2 (en) 2016-02-15 2022-05-17 Keio University Spinal-column arrangement estimation-apparatus, spinal-column arrangement estimation method, and spinal-column arrangement estimation program
WO2017141958A1 (ja) * 2016-02-15 2017-08-24 学校法人慶應義塾 脊柱配列推定装置、脊柱配列推定方法及び脊柱配列推定プログラム
JP6280676B2 (ja) * 2016-02-15 2018-02-14 学校法人慶應義塾 脊柱配列推定装置、脊柱配列推定方法及び脊柱配列推定プログラム
JPWO2017141958A1 (ja) * 2016-02-15 2018-03-01 学校法人慶應義塾 脊柱配列推定装置、脊柱配列推定方法及び脊柱配列推定プログラム
WO2017175761A1 (ja) * 2016-04-05 2017-10-12 国立大学法人北海道大学 側弯症診断支援装置、側弯症診断支援方法及びプログラム
JPWO2017175761A1 (ja) * 2016-04-05 2019-02-14 国立大学法人北海道大学 側弯症診断支援装置、側弯症診断支援方法及びプログラム
US11179096B2 (en) 2016-04-05 2021-11-23 National University Corporation Hokkaido University Scoliosis diagnosis assistance device, scoliosis diagnosis assistance method, and program
JP2018068362A (ja) * 2016-10-24 2018-05-10 株式会社エーアンドエーシステム 測定装置、及び測定方法
KR101863648B1 (ko) * 2017-01-11 2018-06-04 대양의료기(주) 척추 측만 정도 측정 장치 및 방법
US11423574B2 (en) 2019-12-17 2022-08-23 Emma Ruccio Method and apparatus for detecting scoliosis
US11877717B2 (en) 2019-12-17 2024-01-23 Emma Ruccio Method and apparatus for detecting scoliosis
JP2021186241A (ja) * 2020-05-29 2021-12-13 株式会社日本医療機器開発機構 背部画像の読影支援装置、読影支援方法、及びプログラム
WO2021241140A1 (ja) * 2020-05-29 2021-12-02 株式会社日本医療機器開発機構 背部画像の読影支援装置、読影支援方法、及びプログラム

Also Published As

Publication number Publication date
JP6132354B2 (ja) 2017-05-24
US20140303522A1 (en) 2014-10-09
JPWO2013081030A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6132354B2 (ja) 脊椎側弯症の評価システムおよび同システムに適用される評価用器具
JP6334821B2 (ja) 医用イメージングのために患者をポジショニングするためのガイドシステム
US10111625B2 (en) Biopsy apparatus and operation method thereof
JP7098485B2 (ja) 撮像で使用する仮想位置合わせ画像
Ungi et al. Spinal curvature measurement by tracked ultrasound snapshots
CN110139607A (zh) 用于患者扫描设置的方法和系统
US10052032B2 (en) Stenosis therapy planning
EP2578155A1 (en) X-ray calibration device
US20150305825A1 (en) Image guided atlas correction
US20120253171A1 (en) Information processing apparatus, imaging system, information processing method, and program causing computer to execute information processing
CN115334973A (zh) 用于关联多成像模态中的关注区域的系统和方法
Uccheddu et al. A novel objective approach to the external measurement of pectus excavatum severity by means of an optical device
US11501460B2 (en) Magnetic resonance imaging system and method
US20210196213A1 (en) Dental image processing device, dental imaging system, dental image processing method, and program
Xu et al. Back shape measurement and three-dimensional reconstruction of spinal shape using one kinect sensor
CN105899145B (zh) 图像处理装置、图像处理方法和存储介质
CN105899144A (zh) 图像处理装置、图像诊断系统、图像处理方法和存储介质
US20200069971A1 (en) Position measurement device, treatment system including the same, and position measurement method
KR102085812B1 (ko) 촬영 이미지 기반의 건강상태 분석 및 정보 제공 방법, 그의 장치 및 그의 기록 매체
JP2021180904A (ja) 測定装置
JP2023538205A (ja) 画像の取得を最適化する撮像装置及び方法
WO2017090083A1 (ja) 測定装置、測定方法、及びプログラム
KR101852666B1 (ko) 인체 전신의 근육 및 골격 구조 측정 장치
JP2012147939A (ja) 画像処理装置
KR20170004514A (ko) 척추 측만증 분석시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547198

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14361079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853015

Country of ref document: EP

Kind code of ref document: A1