WO2013080998A1 - 垂直軸型風車用軸受及び垂直軸型風力発電装置 - Google Patents

垂直軸型風車用軸受及び垂直軸型風力発電装置 Download PDF

Info

Publication number
WO2013080998A1
WO2013080998A1 PCT/JP2012/080722 JP2012080722W WO2013080998A1 WO 2013080998 A1 WO2013080998 A1 WO 2013080998A1 JP 2012080722 W JP2012080722 W JP 2012080722W WO 2013080998 A1 WO2013080998 A1 WO 2013080998A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical axis
bearing
ball
wind turbine
diameter
Prior art date
Application number
PCT/JP2012/080722
Other languages
English (en)
French (fr)
Inventor
浅生 利之
飯田 勝也
智幸 会田
勇樹 林
隆 咲山
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to EP12853037.5A priority Critical patent/EP2789865B1/en
Priority to US14/360,848 priority patent/US9797447B2/en
Priority to CN201280058026.0A priority patent/CN103958910B/zh
Publication of WO2013080998A1 publication Critical patent/WO2013080998A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a vertical axis wind turbine bearing and a vertical axis wind power generator.
  • a wind power generator using a flow of wind has been developed as a vertical axis fluid power generator that generates power using a fluid flow.
  • a vertical axis type wind power generator includes a shaft, a plurality of blades (windmills), a support, and a generator.
  • the plurality of blades are arranged at intervals around the central axis of the shaft body and are connected to the shaft body.
  • the support body supports the shaft body so as to be rotatable around the central axis via a bearing.
  • the power generator generates electric power by converting mechanical energy obtained by rotating the shaft body in the circumferential direction into electric energy.
  • a rotating mechanism to which vertical blades (blades) are connected extends in a vertical direction (a direction perpendicular to a horizontal plane) with respect to the ground. ing.
  • This rotation mechanism is supported rotatably with respect to the intermediate fixed shaft (support) via a pair of bearings (ball bearings).
  • the conventional vertical wind power generator has the following problems.
  • the shaft body is set to a diameter necessary for securing strength. Then, corresponding to the diameter of the shaft body, for example, a ball bearing distributed in the market such as 70XX series (JIS B 1512) is selected.
  • the ball bearing selected in this way has an excessive load rating (overspec). Further, since the load capacity (dynamic load rating or static load rating) of the ball bearing is large, the torque resistance is also increased. For this reason, there is a problem that the rotation of the shaft body (especially in the low wind speed region) is hindered to reduce the power generation efficiency, resulting in an inefficient windmill.
  • a first embodiment of a vertical axis wind turbine bearing according to the present invention is a bearing that rotatably supports a vertical axis of a vertical axis wind turbine, the ball diameter and the bearing so as to satisfy a desired starting torque and a rated load.
  • the curvature of the rolling groove is selected.
  • the curvature of the rolling groove is 54% or more and 100% or less in the first embodiment.
  • the diameter of the ball is 20% or less with respect to the vertical axis.
  • a rolling groove of the ball is formed on the outer peripheral surface of the vertical shaft.
  • An embodiment of a vertical axis wind power generator includes a windmill rotating around a central axis extending in a vertical direction, a shaft body arranged along the central axis and connected to the windmill, and a bearing.
  • a vertical shaft type fluid power generation apparatus comprising: a support body that rotatably supports the shaft body around the central axis; and a generator that generates electric power by the rotation of the shaft body.
  • a vertical axis wind turbine bearing according to any one of the first to fourth embodiments of the vertical axis wind turbine bearing.
  • 1 is an external view showing a vertical axis wind power generator according to a first embodiment of the present invention.
  • 1 is a side sectional view showing a vertical axis wind power generator according to a first embodiment of the present invention. It is a figure which shows the bearing which concerns on 1st embodiment of this invention. This is a graph of the relationship curve of rolling groove curvature and ball ratio to satisfy the required performance of the bearing. It is a sectional side view which shows the vertical axis type wind power generator and bearing which concern on 2nd embodiment of this invention.
  • FIG. 1 is an external view showing a vertical axis wind power generator 10 according to the first embodiment.
  • FIG. 2 is a side sectional view showing the vertical axis wind power generator 10.
  • a vertical axis wind power generator (vertical axis fluid power generator) 10 is obtained by a rotating mechanism 10A that rotates in response to wind (working fluid) W, and the rotating mechanism 10A.
  • a power generation mechanism 10B that converts mechanical energy into electrical energy.
  • the rotating mechanism 10A includes a windmill 1 that receives the wind W, a rotating shaft (shaft body) 2 connected to the windmill 1, and a casing (support) Body) 4.
  • the power generation mechanism 10B includes a generator 5 that generates electric power by converting mechanical energy obtained by rotating the rotating shaft 2 in the circumferential direction (around the central axis C) into electric energy.
  • the rotation mechanism 10A and the power generation mechanism 10B are disposed on an upper portion of a tower 6 that is erected on the ground F and extends in the vertical direction.
  • the windmill 1 is a so-called gyromill type windmill.
  • the windmill 1 has a plurality of blades 1A that are formed in a rectangular plate shape or a belt plate shape and extend in the vertical direction.
  • the plurality of blades 1 ⁇ / b> A are arranged around the central axis C of the rotating shaft 2 at equal intervals in the circumferential direction.
  • the plurality of blades 1A are connected to the rotary shaft 2 via a plurality of arms 1B that support them.
  • the blade 1A is formed in a shape that generates lift when receiving the wind W.
  • the wind turbine 1 rotates around the central axis C of the rotating shaft 2 by this lift.
  • the windmill 1 has no dependency on the wind direction.
  • the windmill 1 is set to be rotatable around the central axis C of the rotation shaft 2 with respect to the wind W from any direction.
  • the rotating shaft 2 to which the windmill 1 (blade 1A) is connected is arranged extending in the vertical direction so that the central axis C is perpendicular to the ground F.
  • the rotary shaft 2 is rotatably supported with respect to the casing 4 via the bearing 3.
  • a first end of an arm 1B having a rectangular plate shape or a strip plate shape is connected to the outer peripheral surface of the rotary shaft 2.
  • a plurality of arms 1B are provided to project radially outward. These arms 1 ⁇ / b> B are arranged at equal intervals in the circumferential direction of the rotating shaft 2.
  • the blade 1A is connected to the second end of the arm 1B.
  • a pair of arms 1B are provided in parallel to be spaced apart in the direction of the central axis C with respect to one blade 1A.
  • the rotating shaft 2 is rotatably supported with respect to the casing 4 by providing bearings 3 in the vicinity of the center portion and in the vicinity of the lower end portion thereof.
  • the bearing 3 includes radial bearings 13 that are separated from each other in the direction of the central axis C of the rotary shaft 2 and double-row angular bearings 14A and 14B.
  • the radial bearing 13 is disposed at the end of the rotating shaft 2 on the generator 5 side in the direction of the central axis C.
  • An inner ring 15 of the radial bearing 13 is fixed to the lower end side of the rotary shaft 2.
  • the double row angular bearings 14 ⁇ / b> A and 14 ⁇ / b> B are disposed on the wind turbine 1 side in the direction of the central axis C of the rotating shaft 2.
  • Inner rings 17 and 17 of the double row angular bearings 14 ⁇ / b> A and 14 ⁇ / b> B are fixed to the central portion of the rotary shaft 2.
  • the casing 4 is a multistage cylinder in which the upper part 4A on the windmill 1 side (first end side) is reduced in diameter than the lower part 4B on the tower 6 side (second end side) opposite to the windmill 1 side. Formed into a shape.
  • the lower end portion of the lower portion 4 ⁇ / b> B is connected to the upper end portion of the tower 6.
  • Outer rings 18 and 18 of angular bearings 14A and 14B are fixed to the inner peripheral surface of the upper portion 4A of the casing 4 on the upper end side.
  • An outer ring 16 of the radial bearing 13 is fixed to the inner peripheral surface of the upper portion 4A of the casing 4 on the lower end side.
  • the radial bearing 13 and the angular bearings 14A and 14B of the bearing 3 have a plurality of balls 7 having the same diameter. It has a plurality of balls 7 of the same diameter.
  • the vertical positions of the radial bearing 13 and the angular bearings 14A and 14B may be set opposite to the above.
  • the radial bearing 13 may be disposed on the wind turbine 1 side of the rotating shaft 2
  • the angular bearings 14 ⁇ / b> A and 14 ⁇ / b> B may be disposed on the generator 5 side of the rotating shaft 2.
  • Angular bearings 14A and 14B may be front-to-back or parallel to other than back-to-back.
  • the generator 5 generates electric power by converting the rotational force (mechanical energy) obtained by the rotation of the rotary shaft 2 into electric energy.
  • the generator 5 includes a magnet rotor 8 that is connected to the lower end of the rotating shaft 2 and rotates together with the rotating shaft 2, and a coil stator 9 that is disposed so as to surround the outer peripheral side of the magnet rotor 8.
  • the magnet rotor 8 connected to the rotary shaft 2 also rotates around the central axis C.
  • the magnet rotor 8 rotates on the same axis (center axis C) as the windmill 1 and the rotating shaft 2.
  • electromagnetic induction is generated between the magnet rotor 8 and the coil stator 9, and electric power is generated.
  • FIG. 3 is a view showing the bearing 3 according to the first embodiment. It is desired that the rotary shaft 2 of the vertical axis type wind power generator 10 rotates efficiently and lightly.
  • the bearing 3 used for the rotating shaft 2 is required to be supported so that the rotating shaft 2 rotates even when the wind turbine 1 receives wind W having a weak wind speed. For this reason, the bearing 3 (radial bearing 13, angular bearings 14A and 14B) needs to have as little starting torque and rotational torque as possible.
  • the bearing 3 that supports the rotating shaft 2 receives an external force (wind W received by the wind turbine 1) having a large fluctuation over a long period of time, it has a sufficient static load capacity (basic static load rating) and dynamics. It is necessary to have performance that satisfies the dynamic load capacity (basic dynamic load rating). Therefore, the bearing 3 needs to have a small rated torque while having a sufficient rated load.
  • the shape parameter that determines the rotational torque and the rated load has the following four items.
  • the diameter d1 of the rotating shaft 2 is almost inevitably determined (more than the minimum necessary diameter) from conditions (usage conditions) such as the maximum wind force received by the windmill 1. Since the inner diameter d of the bearing 3 is the same as the diameter d1 of the rotating shaft 2, it is almost inevitably determined.
  • the ball center diameter Dpw is derived by (1) determining the ball diameter Dw.
  • the number of balls z is derived by determining (1) the ball diameter Dw and (3) the ball center diameter Dpw. This is because the maximum number of balls B that can be placed on the track is physically determined. If the number of balls z is reduced, the load per ball B increases and the reliability decreases, which is not realistic.
  • the bearing 3 that satisfies the above-described conditions, the following procedure is performed. First, the performance required for the bearing 3 that supports the rotating shaft 2 is obtained from the specifications (use conditions) of the wind turbine 1. The load rating (basic dynamic load rating / basic static load rating) and starting torque required for the bearing 3 are obtained.
  • FIG. 4 is a graph showing a relationship curve between the ball ratio ⁇ and the rolling groove curvature ⁇ for the bearing 3 to satisfy the required performance.
  • FIG. 4 shows a case where the wind receiving area of the windmill 1 is 9 m2.
  • the wind condition is IEC 61400-2 class IV.
  • IEC 61400-2 a windmill having a wind receiving area of 2 m2 to less than 200 m2 is called a small windmill.
  • the vertical axis represents the ball ratio ⁇
  • the horizontal axis represents the rolling groove curvature ⁇ .
  • the vertical axis indicates (1) not the ball diameter Dw itself but the ratio of the ball diameter Dw to the diameter d1 of the rotating shaft 2 (ball ratio ⁇ ). Since the diameter d1 of the rotating shaft 2 is not necessarily designed to the minimum necessary size, the ball ratio ⁇ is used.
  • Ball ratio ⁇ Dw / d (ball diameter Dw, rotation shaft diameter d)
  • the bearing 3 needs to satisfy the rated load and the starting torque.
  • the bearing 3 must satisfy at least one of the basic dynamic load rating and the basic static load rating, and further satisfy the starting torque. More preferably, the bearing 3 is desired to satisfy all of the basic dynamic load rating, the basic static load rating, and the starting torque.
  • the bearing 3 is a vertical axis type wind turbine. It can be understood that it is suitable as a bearing used for the rotating shaft 2 of the power generation apparatus 10. Further, it is optimal for the bearing 3 that (1) the ball diameter Dw and (2) the rolling groove curvature ⁇ are plotted in the region I.
  • the ball diameter Dw is approximately 20% or less.
  • the ball diameter Dw is 10% to 15%.
  • the rolling groove curvature ⁇ is 54% to 100%.
  • (2) the rolling groove curvature ⁇ is 55% to 65%.
  • the ball diameter Dw exceeds 20%, it is difficult to satisfy both the rated load and the starting torque. If the ball diameter Dw is too large with respect to the diameter of the rotating shaft 2, the number of balls 7 that can be disposed on the bearing 3 is reduced, and the load per ball 7 becomes excessive, which is not realistic. . In general, a ball having a diameter that is too small or a large ball (especially 1 inch or more in diameter) has low marketability and increases costs. For this reason, the ball diameter Dw is preferably 20% or less.
  • the ball diameter Dw is less than 10%, it is difficult to satisfy both the rated load and the starting torque. For this reason, the ball diameter Dw is preferably 10% or more.
  • the rolling groove curvature ⁇ is less than 54%, it is difficult to satisfy both the rated load and the starting torque, as in the case where the ball diameter Dw is 10% or less. For this reason, the rolling groove curvature ⁇ is preferably 54% or more.
  • the rolling groove curvature ⁇ exceeds 100%, it is difficult to satisfy both the rated load and the starting torque as in the case where the ball diameter Dw exceeds 20%. For this reason, the rolling groove curvature ⁇ is preferably 100% or less.
  • the bearing 3 has a sufficient rated load because (i) the ball diameter Dw is small and (ii) the rolling groove curvature ⁇ is large. Rotational torque is small. Therefore, even when the windmill 1 receives the wind W having a weak wind speed, the rotating shaft 2 can rotate. Moreover, the windmill 1 can receive the external force (wind W which the windmill 1 receives) with a big fluctuation
  • FIG. 5 is a side sectional view showing the vertical axis wind power generator 20 and the bearing 23 according to the second embodiment. Differences from the vertical axis wind power generator 10 and the bearing 3 according to the first embodiment will be described, and descriptions of the same members and the like as the vertical axis wind power generator 10 and the bearing 3 will be omitted.
  • the rotary shaft 22 of the vertical axis wind power generator 20 is supported by a bearing 23.
  • the bearing 23 includes the above-described radial bearing 13 and angular bearings 24A and 24B.
  • a rolling groove 33 in which a plurality of balls 7 roll is formed in a portion where the double-row angular bearings 24A and 24B are provided.
  • Angular bearings 24A and 24B have only outer ring 28 and do not have an inner ring. For this reason, a rolling groove 33 on which the ball 7 rolls is formed on the outer peripheral surface of the rotating shaft 22.
  • the rolling groove 33 is formed in an annular shape extending along the circumferential direction on the outer peripheral surface of the rotating shaft 22.
  • the rolling groove 33 is formed in a semicircular shape that is recessed toward the central axis C side.
  • the vertical positions of the radial bearing 13 and the angular bearings 24A, 24B may be set opposite to the above-described form.
  • the radial bearing 13 may be disposed on the wind turbine 1 side of the rotating shaft 2, and the angular bearings 24 ⁇ / b> A and 24 ⁇ / b> B may be disposed on the generator 5 side of the rotating shaft 2.
  • Angular bearings 24A and 24B may be front-to-back or parallel to other than back-to-back.
  • the required performance of the bearing 23 that supports the rotary shaft 22 is the same as that of the bearing 3. Therefore, in order to design (adopt) the bearing 23 that satisfies the above-described conditions, the same procedure as that for designing (adopting) the bearing 3 may be performed.
  • the radial bearing 13 and the angular bearings 24A and 24B have different values for the radius d, the ball diameter Dw, the rolling groove radius R, the ball center diameter Dpw, and the number of balls z, it is necessary to design (adopt) them separately. is there.
  • the radius d of the angular bearings 24A and 24B is not the diameter d1 of the rotating shaft 22, but the diameter d2 of the portion where the rolling groove 33 is formed.
  • the bearing 23 has (i) a small ball diameter Dw and (ii) a large rolling groove curvature ⁇ , it has a sufficient rated load while having a rotational torque. Is small. Therefore, even when the windmill 1 receives the wind W having a weak wind speed, the rotating shaft 22 can rotate. Moreover, the windmill 1 can receive the external force (wind W which the windmill 1 receives) with a big fluctuation
  • the radial bearing does not have an inner ring and a rolling groove is formed on the rotating shaft 22.
  • the radial bearing and the angular bearing may have only an inner ring, and may have a rolling groove on the inner peripheral surface of the casing 4 (upper portion 4A) without an outer ring.
  • the rotary shafts 2 and 22 are not limited to an integral structure, and may be a case where a plurality of shaft members are connected.
  • the pair of arms 1B may not be parallel to each other in the central axis C direction.
  • the ball diameters of the radial bearing 13 of the bearings 3 and 23 and the angular bearings 14A, 14B, 24A, and 24B may be the same or different.
  • SYMBOLS 1 ... Windmill, 2 ... Rotating shaft (shaft body), 3 ... Bearing (vertical shaft type windmill bearing), 4 ... Casing (support body), 5 ... Generator, 7 ... Ball, 10 ... Vertical axis wind power generator , 13 ... radial bearing, 14A, 14B ... angular bearing, 20 ... vertical axis wind power generator, 22 ... rotating shaft (shaft), 23 ... bearing (bearing for vertical axis windmill), 24A, 24B ... angular bearing, 33 ... rolling groove, C ... central axis

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 垂直軸型風車の垂直軸を回転可能に支持する軸受において、所望の起動トルクと定格荷重を満たすように、ボール7の直径と転走溝の曲率が選定される。例えば、転走溝曲率は54%以上100%以下、ボール直径は垂直軸2に対する比率が20%以下である。

Description

垂直軸型風車用軸受及び垂直軸型風力発電装置
 本発明は、垂直軸型風車用軸受及び垂直軸型風力発電装置に関する。
 本願は、2011年11月29日に、日本に出願された特願2011-260317号に基づき優先権を主張し、その内容をここに援用する。
 流体の流れを利用して発電を行う垂直軸型流体発電装置として、例えば、風(作動流体)の流れを利用した風力発電装置が開発されている。このような垂直軸型風力発電装置は、軸体と、複数のブレード(風車)と、支持体と、発電機と、を備えている。
 複数のブレードは、軸体の中心軸回りに間隔をあけて配列されて、この軸体に接続される。支持体は、軸受を介して軸体を中心軸回りに回転可能に支持する。発電機は、軸体が周方向に回転することで得られる機械エネルギーを電気エネルギーに変換して電力を発電させる。
 例えば、特許文献1に記載された風力発電装置では、垂直翼(ブレード)が連結された回転機構(軸体)が、地面に対して鉛直方向(水平面に対して垂直な方向)に延設されている。この回転機構が、中間固定シャフト(支持体)に対して、一対のベアリング(玉軸受)を介して回転可能に支持されている。
特開2006-207374号公報
 しかしながら、従来の垂直風力発電装置においては、以下の課題がある。軸体は、強度確保に必要な直径に設定される。そして、この軸体の直径に対応して、例えば70XX系等(JIS B 1512)の市場に流通している玉軸受が選定される。ところが、このようにして選定された玉軸受では、定格荷重が過大(オーバースペック)となる。また、玉軸受の負荷容量(動定格荷重や静定格荷重)も大きいので、トルク抵抗も大きくなる。このため、軸体の回転(特に低風速域における回転)が阻害されて発電効率を低下させてしまい、効率の悪い風車になってしまうという問題がある。
 本発明は、トルク抵抗が小さく、軸体を円滑に回転させて、発電効率を高めることができる垂直軸型風車用軸受及び垂直軸型風力発電装置を提供することを目的とする。
 本発明の垂直軸型風車用軸受の第一実施態様は、垂直軸型風車の垂直軸を回転可能に支持する軸受であって、所望の起動トルクと定格荷重を満たすように、ボールの直径と転走溝の曲率が選定される。
 本発明の垂直軸型風車用軸受の第二実施態様は、第一実施態様において、前記転走溝の曲率は、54%以上100%以下である。
 本発明の垂直軸型風車用軸受の第三実施態様は、第一又は第二実施態様において、前記ボールの直径は、前記垂直軸に対する比率が20%以下である。
 本発明の垂直軸型風車用軸受の第四実施態様は、第一から第三実施態様のいずれかにおいて、前記垂直軸の外周面に、前記ボールの転走溝が形成される。
 本発明の垂直軸型風力発電装置の実施態様は、垂直方向に延びる中心軸回りに回転する風車と、前記中心軸に沿って配置されて前記風車が連結される軸体と、軸受を介して前記軸体を前記中心軸回りに回転可能に支持する支持体と、前記軸体の回転により電力を発電させる発電機と、を備えた垂直軸型流体発電装置において、前記軸受は、本発明の垂直軸型風車用軸受の第一から第四実施態様のいずれかの垂直軸型風車用軸受である。
 本発明によれば、トルク抵抗が小さく、軸体を円滑に回転させて、発電効率を高めることができる垂直軸型風車用軸受及び垂直軸型風力発電装置を実現することができる。
本発明の第一実施形態に係る垂直軸型風力発電装置を示す外観図である。 本発明の第一実施形態に係る垂直軸型風力発電装置を示す側断面図である。 本発明の第一実施形態に係る軸受を示す図である。 軸受の要求性能を満たすための転走溝曲率とボール比の関係曲線をグラフ化したものである。 本発明の第二実施形態に係る垂直軸型風力発電装置及び軸受を示す側断面図である。
(第一実施形態)
 図1は、第一実施形態に係る垂直軸型風力発電装置10を示す外観図である。図2は、垂直軸型風力発電装置10を示す側断面図である。
 図1、図2に示すように、垂直軸型風力発電装置(垂直軸型流体発電装置)10は、風(作動流体)Wを受けて回転する回転機構10Aと、回転機構10Aにより得られた機械エネルギーを電気エネルギーに変換する発電機構10Bと、を有している。
 回転機構10Aは、風Wを受ける風車1と、風車1に連結された回転軸(軸体)2と、軸受3を介して回転軸2を中心軸C回りに回転可能に支持するケーシング(支持体)4と、を備える。
 発電機構10Bは、回転軸2が周方向(中心軸C回り)に回転することで得られる機械エネルギーを電気エネルギーに変換して電力を発電させる発電機5を備えている。
 これら回転機構10A及び発電機構10Bは、地面Fに立設されて鉛直方向に延びるタワー(支柱)6の上部に配設されている。
 風車1は、所謂ジャイロミル型風車である。風車1は、矩形板状又は帯板状に形成されて鉛直方向に延びるブレード1Aを複数有する。複数のブレード1Aは、回転軸2の中心軸C回りに、周方向均等に間隔をあけて、配設される。複数のブレード1Aは、これらを支持する複数のアーム1Bを介して回転軸2に連結される。
 ブレード1Aは、風Wを受けると揚力を発生する形状に形成される。この揚力によって、風車1が回転軸2の中心軸C回りに回転する。
 風車1は、風向きに対して依存性がない。どの方向からの風Wに対しても、風車1は、回転軸2の中心軸C回りに回転可能に設定される。
 図2に示すように、風車1(ブレード1A)が連結される回転軸2は、中心軸Cが地面Fに対して垂直となるように、鉛直方向に延びて配設される。回転軸2は、軸受3を介してケーシング4に対して回転可能に軸支される。
 回転軸2の外周面には、矩形板状又は帯板状をなすアーム1Bの第一端が接続される。アーム1Bは、径方向外方へ向けて複数突設されている。これらアーム1Bは、回転軸2の周方向均等に間隔をあけて配設される。そして、アーム1Bの第二端に、ブレード1Aが連結される。1つのブレード1Aに対して、一対のアーム1Bが中心軸C方向に離間して平行に設けられる。
 回転軸2は、その中央部近傍と下端部近傍に軸受3が設けられることにより、ケーシング4に対して回転可能に支持される。軸受3は、回転軸2の中心軸C方向に互いに離間するラジアル軸受13と、複列のアンギュラ軸受14A,14Bとを備える。
 ラジアル軸受13は、回転軸2における中心軸C方向の発電機5側の端部に配設される。ラジアル軸受13の内輪15が、回転軸2の下端側に固設される。
 複列のアンギュラ軸受14A,14Bは、回転軸2における中心軸C方向のうちの風車1側に配設される。複列のアンギュラ軸受14A,14Bの内輪17,17が、回転軸2の中央部に固設される。
 ケーシング4は、風車1側(第一端側)である上側部分4Aが、風車1側とは反対のタワー6側(第二端側)である下側部分4Bよりも縮径された多段筒形に形成される。ケーシング4は、下側部分4Bの下端部がタワー6の上端部に連結される。
 ケーシング4の上側部分4Aの内周面には、上端側に、アンギュラ軸受14A,14Bの外輪18,18が固設される。ケーシング4の上側部分4Aの内周面には、下端側に、ラジアル軸受13の外輪16が固設される。
 軸受3のラジアル軸受13とアンギュラ軸受14A,14Bは、同一直径の複数のボール7を有する。同一直径の複数のボール7を有する。
 ラジアル軸受13とアンギュラ軸受14A,14Bとの上下位置は、前述とは反対に設定されてもよい。ラジアル軸受13が回転軸2の風車1側に配設され、アンギュラ軸受14A,14Bが回転軸2の発電機5側に配設されてもよい。
 アンギュラ軸受14A,14B同士は、背面合わせ以外の正面合わせや並列合わせであってもよい。
 ケーシング4の下側部分4Bの内部には、発電機5や制御部(不図示)等が収容される。
 発電機5は、回転軸2の回転によって得られる回転力(機械エネルギー)を電気エネルギーに変換して電力を発電するものである。発電機5は、回転軸2の下端に連結されて回転軸2とともに回転するマグネットロータ8と、マグネットロータ8の外周側を取り囲むように配設されたコイルステータ9と、を備えている。
 風車1が風Wを受けて回転軸2を中心軸C回りに回転させると、回転軸2に連結されたマグネットロータ8も中心軸C回りに回転する。マグネットロータ8が風車1及び回転軸2と同軸(中心軸C)上で回転する。
 マグネットロータ8がコイルステータ9に対して中心軸C回りに回転することにより、マグネットロータ8とコイルステータ9との間で電磁誘導が発生して、電力が発電される。
 回転軸2を軸支する軸受3の要求性能について、詳細に説明する。
 図3は、第一実施形態に係る軸受3を示す図である。
 垂直軸型風力発電装置10の回転軸2は、効率よく、軽く回転することが望まれる。回転軸2に用いられる軸受3は、風車1が微弱な風速の風Wを受けた場合であっても、回転軸2が回転するように軸支することが要請される。このため、軸受3(ラジアル軸受13、アンギュラ軸受14A,14B)は、起動トルク及び回転トルクが極力小さいことが必要である。
 その一方で、回転軸2を軸支する軸受3は、変動が大きい外力(風車1が受ける風W)を長期間に亘って受けるため、十分な静的負荷容量 (基本静定格荷重)と動的負荷容量(基本動定格荷重)を満足する性能を有することが必要である。
 したがって、軸受3は、十分な定格荷重を有する一方で、回転トルクが小さいものである必要がある。
 軸受3の仕様(性能)のうち、回転トルク、定格荷重(基本静定格荷重・基本動定格荷重)を決定する形状パラメータには、以下の4項目があることが知られている。
 (1)ボール直径Dw
 (2)転走溝曲率α(α=R/Dw、転走溝半径R)
 (3)ボール中心径Dpw
 (4)ボール数z
 一般的に、(1),(3),(4)の数値を大きくすると、回転トルク及び定格荷重も大きくなる。一方、(2)の数値を大きくすると、回転トルク及び定格荷重が小さくなることが知られている。
 このため、これら4つのパラメータのバランスが重要となる。
 風車1が受ける最大風力などの条件(使用条件)から、回転軸2の直径d1は、ほぼ必然的に定まる(必要最小限の直径以上)。軸受3の内径dは、回転軸2の直径d1と同一なので、ほぼ必然的に定まる。
 軸受3の内径dが定まると、(3)ボール中心径Dpwは、(1)ボール直径Dwを決定することにより導かれる。
 (4)ボール数zは、(1)ボール直径Dwと(3)ボール中心径Dpwを決定することにより導かれる。軌道上に配置できるボールBの最大数は物理的に定まるからである。ボール数zを減らすと、ボールB一つあたりの負荷が大きくなり信頼性が低下してしまうため現実的ではない。
 そうすると、風車1の回転軸2に最適な軸受3を設計(採用)しようとする場合、(1)ボール直径Dwと(2)転走溝曲率αの2つが重要なパラメータとなることが理解できる。
 したがって、軸受3が十分な負荷容量を有し、低回転トルクとなるためには、軸受3は、以下の条件を満足する必要である。
 (条件1)ボール直径Dwを小さくする。
 (条件2)転走溝曲率αを大きくする。
 上述した条件を満たす軸受3を設計(採用)するには、以下の手順を行う。
 まず、風車1の仕様(使用条件)から、回転軸2を軸支する軸受3に要求される性能を求める。軸受3に要求される定格荷重(基本動定格荷重・基本静定格荷重)及び起動トルクを求める。
 次に、求めた要求性能(基本動定格荷重、基本静定格荷重及び起動トルク)のそれぞれを満たすことができる関係曲線を求める。つまり、(1)ボール直径Dwと(2)転走溝曲率αの関係(関係曲線)を求める。
 図4は、軸受3が要求性能を満たすためのボール比βと転走溝曲率αの関係曲線をグラフ化したものである。図4では、風車1の受風面積が9m2の場合を示す。風条件は、IEC61400-2 classIVである。
 IEC61400-2において、受風面積が2m2~200m2未満の風車を小型風車とよぶ。
 図4において、縦軸はボール比βを、横軸は転走溝曲率αを示す。縦軸は(1)ボール直径Dwそのものではなく、回転軸2の直径d1に対するボール直径Dwの比率(ボール比β)を示す。回転軸2の直径d1は、必ずしも必要最小限の寸法に設計されるとは限らないので、ボール比βを用いている。
 ボール比β=Dw/d (ボール直径Dw、回転軸直径d)
 上述したように、軸受3は、定格荷重と起動トルクを満たす必要がある。軸受3は、少なくとも基本動定格荷重及び基本静定格荷重のいずれか一方を満たし、更に起動トルクを満たす必要がある。より好ましくは、軸受3は、基本動定格荷重、基本静定格荷重及び起動トルクの全てを満たすことが望まれる。
 図4に示す場合には、(1)ボール直径Dwと(2)転走溝曲率αが、領域I、領域II及び領域IIIにプロットされるものであれば、軸受3は、垂直軸型風力発電装置10の回転軸2に用いる軸受として適していることが理解できる。
 さらに、軸受3には、(1)ボール直径Dwと(2)転走溝曲率αが、領域Iにプロットされるものが最適である。(1)ボール直径Dwがおおよそ20%以下である。好ましくは、(1)ボール直径Dwが10%~15%である。(2)転走溝曲率αが54%~100%である。好ましくは、(2)転走溝曲率αが55%~65%である。
 例えば、軸受3として、転走溝曲率α=60%、ボール比β=12%である軸受を設計(採用)すればよい。
 ボール直径Dwが20%を超える場合には、定格荷重と起動トルクの両者を満足させることが困難となる。回転軸2の直径に対してあまりにボール径Dwが大きくなりすぎると、軸受3に配置できるボール7の数が少なくなってしまい、ボール7の一個あたりの負荷が過大となってしまい現実的ではない。
 一般的に、直径が小さ過ぎるボールや大きいボール(特に直径1インチ以上)は市場性が低く、コストが増加してしまう。このため、ボール直径Dwは20%以下が好適である。
 ボール直径Dwが10%未満の場合には、定格荷重と起動トルクの両者を満足させることが困難となる。このため、ボール直径Dwは10%以上が好適である。
 転走溝曲率αが54%未満の場合には、ボール直径Dwが10%以下の場合と同様に、定格荷重と起動トルクの両者を満足させることが困難となる。このため、転走溝曲率αは54%以上が好適である。
 転走溝曲率αが100%を超える場合には、ボール直径Dwが20%を超える場合と同様に、定格荷重と起動トルクの両者を満足させることが困難となる。このため、転走溝曲率αは100%以下が好適である。
 以上説明したように、第一実施形態に係る垂直軸型風力発電装置10では、軸受3は、(i)ボール直径Dwが小さく、(ii)転走溝曲率αが大きいので、十分な定格荷重を有する一方で回転トルクが小さい。したがって、風車1が微弱な風速の風Wを受けた場合であっても、回転軸2が回転できる。
 また、風車1は、変動が大きい外力(風車1が受ける風W)を長期間に亘って受けることができる。よって、垂直軸型風力発電装置10は、高い効率で発電できる。
(第二実施形態)
 図5は、第二実施形態に係る垂直軸型風力発電装置20及び軸受23を示す側断面図である。
 第一実施形態に係る垂直軸型風力発電装置10及び軸受3とは異なる点について説明し、垂直軸型風力発電装置10及び軸受3と同一の部材等については説明を省略等する。
 垂直軸型風力発電装置20の回転軸22は、軸受23により軸支される。軸受23は、上述したラジアル軸受13と、アンギュラ軸受24A,24Bとを備える。
 風車1が連結される回転軸22において、複列のアンギュラ軸受24A,24Bが設けられる部分には、複数のボール7が転走する転走溝33が形成される。アンギュラ軸受24A,24Bは、外輪28のみを有し、内輪を有しない。このため、回転軸22の外周面にボール7が転走する転走溝33が形成される。
 転走溝33は、回転軸22の外周面において周方向に沿って延びる環状に形成される。転走溝33は、中心軸C側に向かって窪む半円形状に形成される。
 ラジアル軸受13とアンギュラ軸受24A,24Bとの上下位置は、前述の形態とは反対に設定されてもよい。ラジアル軸受13が回転軸2の風車1側に配設され、アンギュラ軸受24A,24Bが回転軸2の発電機5側に配設されてもよい。
 アンギュラ軸受24A,24B同士は、背面合わせ以外の正面合わせや並列合わせであってもよい。
 回転軸22を軸支する軸受23の要求性能は、軸受3と同一である。したがって、上述した条件を満たす軸受23を設計(採用)するには、軸受3の設計(採用)と同一の手順を行えばよい。
 ただし、ラジアル軸受13とアンギュラ軸受24A,24Bでは、半径d、ボール直径Dw、転走溝半径R、ボール中心径Dpw、ボール数zの値が異なるので、それぞれ別個に設計(採用)する必要がある。例えば、アンギュラ軸受24A,24Bの半径dは、回転軸22の直径d1ではなく、転走溝33が形成された部位の直径d2となる。
 第二実施形態に係る垂直軸型風力発電装置20においても、軸受23は(i)ボール直径Dwが小さく、(ii)転走溝曲率αが大きいので、十分な定格荷重を有する一方で回転トルクが小さい。したがって、風車1が微弱な風速の風Wを受けた場合であっても、回転軸22が回転できる。また、風車1は、変動が大きい外力(風車1が受ける風W)を長期間に亘って受けることができる。よって、垂直軸型風力発電装置20は、高い効率で発電できる。
 上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 ラジアル軸受が内輪を有さずに、回転軸22に転走溝を形成する場合であってもよい。
 ラジアル軸受とアンギュラ軸受が内輪のみを有し、外輪を有さずに、ケーシング4(上側部分4A)の内周面に転走溝を形成する場合であってもよい。
 回転軸2,22は、一体構造に限らず、複数の軸部材を連結する場合であってもよい。
 一対のアーム1Bは、中心軸C方向に離間して平行でなくてもよい。
 軸受3,23のラジアル軸受13とアンギュラ軸受14A,14B,24A,24Bのボール径は、それぞれ同径であってもよいし、異径であってもよい。
 1…風車、 2…回転軸(軸体)、 3…軸受(垂直軸型風車用軸受)、 4…ケーシング(支持体)、 5…発電機、 7…ボール、 10…垂直軸型風力発電装置、 13…ラジアル軸受、 14A,14B…アンギュラ軸受、 20…垂直軸型風力発電装置、 22…回転軸(軸体)、 23…軸受(垂直軸型風車用軸受)、 24A,24B…アンギュラ軸受、 33…転走溝、 C…中心軸

Claims (5)

  1.  垂直軸型風車の垂直軸を回転可能に支持する軸受であって、
     所望の起動トルクと定格荷重を満たすように、ボールの直径と転走溝の曲率が選定される垂直軸型風車用軸受。
  2.  前記転走溝の曲率は、54%以上100%以下である請求項1に記載の垂直軸型風車用軸受。
  3.  前記ボールの直径は、前記垂直軸に対する比率が20%以下である請求項1又は2に記載の垂直軸型風車用軸受。
  4.  前記垂直軸の外周面に、前記ボールの転走溝が形成される請求項1から3のうちいずれか一項に記載の垂直軸型風車用軸受。
  5.  垂直方向に延びる中心軸回りに回転する風車と、
     前記中心軸に沿って配置されて前記風車が連結される軸体と、
     軸受を介して前記軸体を前記中心軸回りに回転可能に支持する支持体と、
     前記軸体の回転により電力を発電させる発電機と、
    を備えた垂直軸型流体発電装置において、
     前記軸受は、請求項1から4のうちいずれか一項に記載の垂直軸型風車用軸受である垂直軸型風力発電装置。
PCT/JP2012/080722 2011-11-29 2012-11-28 垂直軸型風車用軸受及び垂直軸型風力発電装置 WO2013080998A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12853037.5A EP2789865B1 (en) 2011-11-29 2012-11-28 Bearing for vertical axis wind turbine and vertical axis wind power generation device
US14/360,848 US9797447B2 (en) 2011-11-29 2012-11-28 Bearing for vertical axis windmill and vertical axis wind power generator
CN201280058026.0A CN103958910B (zh) 2011-11-29 2012-11-28 垂直轴型风车用轴承及垂直轴型风力发电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011260317A JP5509183B2 (ja) 2011-11-29 2011-11-29 垂直軸型風車用軸受及び垂直軸型風力発電装置
JP2011-260317 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013080998A1 true WO2013080998A1 (ja) 2013-06-06

Family

ID=48535449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080722 WO2013080998A1 (ja) 2011-11-29 2012-11-28 垂直軸型風車用軸受及び垂直軸型風力発電装置

Country Status (6)

Country Link
US (1) US9797447B2 (ja)
EP (1) EP2789865B1 (ja)
JP (1) JP5509183B2 (ja)
CN (1) CN103958910B (ja)
TW (1) TWI525250B (ja)
WO (1) WO2013080998A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044615A1 (fr) * 2013-09-30 2015-04-02 Electricfil Automotive Rotor pour éolienne a axe vertical
WO2018207669A1 (ja) * 2017-05-09 2018-11-15 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
CN110439759A (zh) * 2019-08-17 2019-11-12 温州乾含节能科技有限公司 一种垂直轴风力发电机塔架

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509183B2 (ja) 2011-11-29 2014-06-04 Thk株式会社 垂直軸型風車用軸受及び垂直軸型風力発電装置
JP5719416B2 (ja) * 2013-09-18 2015-05-20 Thk株式会社 垂直軸型風車用軸受の設計方法
TWI558913B (zh) * 2014-01-23 2016-11-21 陳泰維 垂直軸風力發電機之葉片旋角同步調節裝置
CN106762422A (zh) * 2015-11-20 2017-05-31 台湾垂直轴风电科技能源股份有限公司 垂直轴风力发电设备
GB2546635B (en) * 2015-12-12 2019-09-04 Spinetic Energy Ltd Wind turbine apparatus with rotor to blade connection
CN110671263A (zh) * 2019-10-30 2020-01-10 方晓峰 一种垂直轴风力发电机
WO2023146434A1 (ru) * 2022-01-25 2023-08-03 Игорь Анатольевич ЕФРЕМОВ Многорядный подшипник

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221326A (ja) * 1992-02-24 1994-08-09 Nippon Seiko Kk 予圧を付与された転がり軸受装置とその製造方法
JP2004316816A (ja) * 2003-04-17 2004-11-11 Nsk Ltd 玉軸受及び工作機械用主軸装置
JP2006207374A (ja) 2005-01-25 2006-08-10 Ise:Kk 風力発電装置
JP2006214456A (ja) * 2005-02-01 2006-08-17 Nsk Ltd 転がり軸受
JP2011208663A (ja) * 2010-03-29 2011-10-20 Ntn Corp 転がり軸受

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059519A (ja) 1992-02-24 2001-03-06 Nsk Ltd 複列転がり軸受装置
DE60022833T2 (de) 1999-07-19 2006-03-23 Nsk Ltd. Kugellager
JP2004124953A (ja) * 2002-08-02 2004-04-22 Nsk Ltd 玉軸受
JP2004270792A (ja) * 2003-03-07 2004-09-30 Nsk Ltd 多点接触玉軸受
EP2617992A3 (en) 2003-06-09 2013-08-28 Sinfonia Technology Co., Ltd. Vertical axis type wind power station
US20070189889A1 (en) 2004-03-31 2007-08-16 Tadashi Yokoi Cantilever type vertical axis wind turbine
CN100410531C (zh) 2004-05-13 2008-08-13 株式会社Ipb 垂直轴风车的支持臂安装结构和垂直轴风车
US20100183256A1 (en) * 2006-08-25 2010-07-22 Nsk Ltd. Angular ball bearing
CN101302994B (zh) 2008-07-10 2010-07-07 深圳市风发科技发展有限公司 一种垂直轴风力机
CN101435412B (zh) * 2008-12-19 2011-08-24 严强 一种垂直轴风力发电机结构
JP5197521B2 (ja) 2009-07-29 2013-05-15 京セラ株式会社 入力装置
JP5509183B2 (ja) 2011-11-29 2014-06-04 Thk株式会社 垂直軸型風車用軸受及び垂直軸型風力発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221326A (ja) * 1992-02-24 1994-08-09 Nippon Seiko Kk 予圧を付与された転がり軸受装置とその製造方法
JP2004316816A (ja) * 2003-04-17 2004-11-11 Nsk Ltd 玉軸受及び工作機械用主軸装置
JP2006207374A (ja) 2005-01-25 2006-08-10 Ise:Kk 風力発電装置
JP2006214456A (ja) * 2005-02-01 2006-08-17 Nsk Ltd 転がり軸受
JP2011208663A (ja) * 2010-03-29 2011-10-20 Ntn Corp 転がり軸受

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044615A1 (fr) * 2013-09-30 2015-04-02 Electricfil Automotive Rotor pour éolienne a axe vertical
FR3011285A1 (fr) * 2013-09-30 2015-04-03 Electricfil Automotive Rotor pour eolienne notamment a axe vertical
WO2018207669A1 (ja) * 2017-05-09 2018-11-15 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
JP2018191455A (ja) * 2017-05-09 2018-11-29 ダイキン工業株式会社 電動機システムおよびそれを備えたターボ圧縮機
US11300131B2 (en) 2017-05-09 2022-04-12 Daikin Industries, Ltd. Electric motor system and turbo compressor provided therewith
CN110439759A (zh) * 2019-08-17 2019-11-12 温州乾含节能科技有限公司 一种垂直轴风力发电机塔架

Also Published As

Publication number Publication date
EP2789865B1 (en) 2021-04-14
TW201333329A (zh) 2013-08-16
JP2013113379A (ja) 2013-06-10
CN103958910B (zh) 2016-12-07
EP2789865A4 (en) 2015-11-25
JP5509183B2 (ja) 2014-06-04
US9797447B2 (en) 2017-10-24
CN103958910A (zh) 2014-07-30
TWI525250B (zh) 2016-03-11
EP2789865A1 (en) 2014-10-15
US20140306459A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2013080998A1 (ja) 垂直軸型風車用軸受及び垂直軸型風力発電装置
EP2143944B1 (en) Wind turbine
US6975045B2 (en) Wind power generating system
JP5557392B2 (ja) アウターロータ・コアレス型風力発電機の発電機軸の固定構造
AU2013349341B2 (en) Machine with two co-axial rotors
US8376711B2 (en) Dual rotor wind turbine
US9124153B2 (en) Direct drive generator
US20130300124A1 (en) Profiled Air Cap on Direct Drive Wind Turbine Generator
CN105863926B (zh) 磁悬浮水轮机
JP5719416B2 (ja) 垂直軸型風車用軸受の設計方法
JP2015061464A (ja) 永久磁石回転電機、および、風力発電システム
WO2013045474A1 (en) Wind turbine rotor with improved hub system
JP6130680B2 (ja) 垂直軸型流体発電装置
JP2013227866A (ja) 風力発電システム
CN112751456B (zh) 发电机及风力发电机组
JP2010151006A (ja) アウターロータ・コアレス型風力発電機の発電機軸の固定構造
JP2020159306A (ja) 風力発電装置
DK2836707T3 (en) WIND ENERGY INSTALLATION WITH EXTERNAL RUNNER GENERATOR
JP2014037804A (ja) 垂直軸型風車及び風力発電システム
EP2425133B1 (en) Wind-power unit having a vertical turbine shaft
KR20150118717A (ko) 링형 발전모듈 및 이를 이용한 풍력발전기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14360848

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012853037

Country of ref document: EP