WO2013077350A1 - 薄型リチウム空気電池用格納容器および電池 - Google Patents

薄型リチウム空気電池用格納容器および電池 Download PDF

Info

Publication number
WO2013077350A1
WO2013077350A1 PCT/JP2012/080149 JP2012080149W WO2013077350A1 WO 2013077350 A1 WO2013077350 A1 WO 2013077350A1 JP 2012080149 W JP2012080149 W JP 2012080149W WO 2013077350 A1 WO2013077350 A1 WO 2013077350A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin lithium
air
air battery
gas pipe
gas
Prior art date
Application number
PCT/JP2012/080149
Other languages
English (en)
French (fr)
Inventor
仁彦 伊藤
久保 佳実
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to EP12851917.0A priority Critical patent/EP2775560B1/en
Priority to US14/358,885 priority patent/US9564645B2/en
Publication of WO2013077350A1 publication Critical patent/WO2013077350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/253Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/138Primary casings; Jackets or wrappings adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • H01M50/1385Hybrid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a storage container for a thin lithium-air battery and a battery including a thin lithium-air battery therein.
  • the air battery includes a solid positive electrode material (air electrode), a negative electrode material made of metal foil or metal fine particles, and a liquid or solid electrolyte, and air or oxygen flowing in a gas flow path provided in the air battery.
  • the battery uses a gas as a positive electrode active material and the metal foil or metal fine particles as a negative electrode active material.
  • Patent Documents 1 to 6 Several air battery technologies have been proposed, but in recent years, research and development of lithium air batteries have become particularly active (Patent Documents 1 to 6). This is because the secondary battery can be recharged and reused, and the energy density per unit weight can be greatly improved as compared with a lithium ion battery that has already been put into practical use.
  • the zinc-air battery is a primary battery that cannot be recharged and is used mainly for hearing aids because of its light weight and small capacity, so there is no need to increase the capacity, so it can be stored in a small metal casing. Realizes performance.
  • One type of air battery is a fuel cell.
  • a fuel cell a plurality of cells are stacked via a separator called a bipolar plate.
  • the bipolar plate has a function of partitioning two flow paths of a fuel flow for the negative electrode and an air flow for the positive electrode, and a function of electrically connecting the stacked cells in series (Non-patent Document 1).
  • Non-patent Document 1 In order to increase the capacity of the stacked battery cells, it is necessary to connect them in parallel.
  • the bipolar plate is not suitable for the application, and is very thick, resulting in a problem that the volume when stacked is increased.
  • the present inventor has developed a thin positive electrode structure capable of efficiently taking in air or oxygen gas as a positive electrode active material into the positive electrode structure even when laminated with a thin separator and a thin negative electrode structure. It has been found that by using the thin positive electrode structure together with the thin negative electrode structure and the thin separator, a large capacity thin lithium air battery can be manufactured.
  • FIG. 1 is an explanatory view showing an example of a conventional method of using the thin lithium-air battery.
  • the thin lithium battery 101 is stored and used in a storage container 2201.
  • the storage container 2201 is provided with a gas exhaust pipe 2202B and a gas supply pipe 2202A, and portions other than the gas exhaust pipe 2202B and the gas supply pipe 2202A are sealed.
  • the inside of the storage container 2201 can be depressurized by a pump 2203 connected to the gas exhaust pipe 2202B. After the pressure inside the storage container 2201 is reduced, the valve 2204 of the gas exhaust pipe 2202B is closed and the pump 2203 is operated from a gas supply unit (not shown), whereby the storage container 2201 can be filled with air or oxygen gas.
  • the storage container 2201 When the storage container 2201 is filled with air or oxygen gas, air or oxygen gas can be supplied from the opening 99 of the storage container of the thin lithium battery 101 into the thin positive electrode structure, and the battery reaction can be started.
  • the two tabs 97 and 98 of the thin lithium-air battery 101 are connected to the blades 2205 and 2206.
  • the blades 2205 and 2206 are connected to output terminals 2207 and 2208, and the electric power generated in the thin lithium-air battery 101 can be taken out from the output terminals 2207 and 2208.
  • the metal Li as the electrolyte or the negative electrode material is oxygen or air. The risk of reacting directly with was not small, and safety issues remained.
  • An object of the present invention is to provide a containment container for a thin lithium-air battery that suppresses rapid oxidation exothermic reaction (ignition) of constituent members during operation of the thin lithium-air battery and has improved safety.
  • this researcher is dangerous by trial and error to monitor the temperature and pressure of the battery with a sensor while efficiently supplying oxygen and air as the positive electrode active material to the thin lithium-air battery. Recognize the degree of safety, and in a dangerous state, safety can be improved by automatically replacing the inert gas and positive electrode active material filled in the containment vessel in advance to stop the rapid oxidation reaction. I found.
  • a connecting member and a connecting auxiliary member that can efficiently supply air or oxygen gas to a thin lithium-air battery in a containment vessel filled with an inert gas have been developed, and oxygen and air are further efficiently transported into the cell. At the same time, it has been found that the efficiency of automatic replacement with an inert gas in a dangerous state can be increased.
  • a connecting member and / or a connecting auxiliary member having a plurality of connecting portions a plurality of thin lithium-air batteries can be connected in series or in parallel to further increase the output voltage and capacity, and stably.
  • the present invention has been completed by finding that it can be retained and safety can be further enhanced.
  • the present invention has the following configuration.
  • a storage container for a thin lithium-air battery having a storage chamber for storing a thin lithium-air battery, the first gas pipe and the second gas pipe communicating with the storage chamber, and storage in the storage chamber
  • a first gas pipe having a third gas pipe and a fourth gas pipe communicating with the thin lithium-air battery, and a valve for controlling the opening and closing of the third pipe with the storage chamber.
  • An inert gas supply source is attached to the third gas pipe, and an air or oxygen gas supply source is attached to the third gas pipe.
  • a sensor is provided in the storage chamber, and when the sensor exceeds a predetermined threshold, the valve is opened to supply an inert gas into the thin lithium-air battery.
  • the sensor is any one of a gas component sensor, a pressure sensor, and a temperature sensor, or a combination of these sensors.
  • an exhaust mechanism is attached to the second gas pipe and the fourth gas pipe .
  • a connecting member for connecting a thin lithium-air battery is attached to at least one of the third gas pipe and the fourth gas pipe.
  • the connection member includes a first connection part connected to the third gas pipe, a second connection part connected to the fourth gas pipe, the first connection part, and the second connection part.
  • the container for a thin lithium-air battery according to the above (5) comprising: a gas circulation part communicating with the connecting part of the battery; and a battery connecting part for connecting the thin lithium-air battery.
  • the connecting member includes a third connecting part that fits into the third gas pipe or the fourth gas pipe, a gas circulation part that communicates with the third connecting part, and a thin lithium-air battery. And a battery connecting part for connecting the thin lithium-air battery storage container according to (5).
  • connection auxiliary member includes an auxiliary connection portion connected to the third gas pipe or the fourth gas pipe, and a member connection portion connected to the connection member.
  • a battery comprising a thin lithium-air battery storage container, a storage chamber provided in the thin lithium-air battery storage container, and a thin lithium-air battery stored in the storage chamber, wherein the lithium air battery
  • the storage container includes a first gas pipe and a second gas pipe communicating with the storage chamber, a third gas pipe and a fourth gas pipe communicating with the thin lithium-air battery stored in the storage chamber,
  • the third pipe has a valve for controlling opening and closing of communication with the storage chamber, an inert gas supply source is attached to the first gas pipe, and air or oxygen is supplied to the third gas pipe.
  • the thin lithium-air battery has a thin positive electrode structure in which a positive electrode material made of a porous body is bonded to a plate-shaped positive electrode substrate, and the positive electrode substrate or one of the positive electrode materials From side to opposite side Cell characterized by the cheat gas flow path is formed.
  • the gas flow path is a hole that communicates from one side surface of the positive electrode base material to the opposite side surface.
  • the gas flow path is a groove extending from one side surface of the positive electrode material to the opposite side surface.
  • the storage container for a thin lithium-air battery is a storage container for a thin lithium-air battery having a storage chamber for storing a thin lithium-air battery, wherein the first gas pipe and the second gas pipe communicated with the storage chamber A gas pipe, a third gas pipe and a fourth gas pipe communicating with the thin lithium-air battery stored in the storage chamber, and a valve for controlling the opening and closing of the communication between the third gas pipe and the storage chamber. And an inert gas supply source is attached to the first gas pipe, and an air or oxygen gas supply source is attached to the third gas pipe.
  • a thin lithium-air battery can be stored in a storage container filled with air, and air or oxygen, which is a positive electrode active material inside the battery, can be replaced with an inert gas during a malfunction such as heat generation. Suppress explosive reaction with, it is possible to increase the safety. In addition, because it has a storage chamber filled with inert gas, abnormalities such as heat generation suddenly occur, and the process of replacing air or oxygen inside the battery with inert gas is not in time, and the thin lithium-air battery Even if an explosion occurs, damage can be suppressed.
  • a sensor is provided in the containment chamber, and when the sensor exceeds a predetermined threshold, the valve is opened to supply an inert gas into the thin lithium-air battery. Because of this configuration, the thin lithium-air battery is stored in a containment vessel filled with an inert gas, and the open / close valve attached to the third gas pipe is opened in the event of an abnormality, so that the positive electrode active material in the lithium-air battery is inactivated. By substituting with an active gas, the battery reaction can be stopped, ignition of lithium can be suppressed, and safety can be improved.
  • the containment container for connecting the thin lithium-air battery to the third gas pipe and / or the fourth gas pipe is installed in the containment container for the thin lithium-air battery according to the present invention, it is filled with an inert gas. Air or oxygen gas can be stably and efficiently supplied to the thin lithium-air battery stored in the containment vessel, the ignition of the electrolyte and lithium can be suppressed, and the battery reaction can be carried out with increased safety. .
  • connection auxiliary member is attached between the third gas pipe and the fourth gas pipe and the connection member, and the connection auxiliary member is the third gas pipe. Since there is an auxiliary connecting part connected to the gas pipe or the fourth gas pipe, and a member connecting part connected to the connecting member, and two or more member connecting parts are provided, two or more A thin lithium-air battery can be stably fixed, and a battery reaction can be caused in a state where safety is enhanced.
  • FIG. 4A It is a perspective view which shows an example of a thin positive electrode structure. It is a left view of the connection member shown in FIG. It is a top view of the connection member shown in FIG. FIG. 3 is a front view of the connecting member shown in FIG. 2. It is a perspective view of a thin lithium air battery in the state where a connecting member is attached.
  • FIG. 12 is a left side view showing an example of the connecting member shown in FIGS. 9 to 11.
  • FIG. 12 is a plan view showing an example of the connecting member shown in FIGS. 9 to 11.
  • FIG. 12 is a front view showing an example of the connecting member shown in FIGS. 9 to 11.
  • FIG. 12 is a sectional view taken along line B-B ′ of FIG. 11.
  • FIG. 1 is a schematic diagram illustrating a device configuration of Example 1.
  • FIG. It is a figure of the abnormality detection system of Example 1, Comprising: It is the schematic which shows the sequence of the abnormality coping operation
  • FIG. 2 is a schematic view showing an example of a container for a thin lithium-air battery according to an embodiment of the present invention.
  • a storage container 1001 for a thin lithium-air battery includes a storage chamber 201 that can store a thin lithium-air battery 101, and includes a first gas pipe 202B and a second gas pipe 202D, A third gas pipe 202A and a fourth gas pipe 202C are attached.
  • a fifth gas pipe 202E is attached branched from the third gas pipe 202A.
  • the storage chamber 201 is hermetically sealed and airtightness is maintained.
  • the first gas pipe 202 ⁇ / b> B is attached so as to communicate with the storage chamber 201. Further, it is attached to an inert gas supply source outside the storage chamber 201, and an inert gas can be supplied into the storage chamber 201 by operating the pump 203 ⁇ / b> B.
  • the second gas pipe 202D is attached so as to communicate with the storage chamber 201. Further, the inside of the storage chamber 201 can be exhausted by operating the valve 204B.
  • the inert gas supply source has an inert gas tank, a concentrator for supplying inert gas, and the like.
  • a membrane separation type nitrogen concentrator is used as an inert gas supply source, it may be combined with an oxygen concentrator.
  • the inert gas is nitrogen or a rare gas.
  • the third gas pipe 202A is attached so as to communicate with the thin lithium-air battery 101 in the storage chamber 201. Moreover, it is attached to an air or oxygen gas supply source outside the storage chamber 201, and it is possible to supply air or oxygen gas into the thin lithium-air battery 101 by operating the pump 203 ⁇ / b> A.
  • the fourth gas pipe 202C is attached so as to communicate with the thin lithium-air battery 101 in the storage chamber 201.
  • the inside of the storage chamber 201 can be exhausted by operating the valve 204A.
  • the fifth gas pipe 202E is attached so as to communicate with the third gas pipe 202A and the inside of the storage chamber 201 via the valve 204C, and the communication state can be switched by opening and closing the valve 204C. During normal operation of the battery, the valve 204C is closed.
  • the air or oxygen gas supply source may include an oxygen gas tank, a concentrator for supplying oxygen gas, and the like.
  • a concentrator a membrane separation method that concentrates compressed air through a hollow fiber polymer membrane using the difference in nitrogen oxygen permeability, or a PSA (Pressure Swing Absorption) method that passes an adsorbent such as activated carbon. Can be used.
  • PSA Pressure Swing Absorption
  • the tabs 97 and 98 of the thin lithium-air battery 101 are connected to blades 205 and 206, respectively.
  • the blades 205 and 206 are connected to output terminals 207 and 208, and the power generated by the thin lithium-air battery 101 can be taken out from the output terminals 207 and 208 to the outside.
  • the thin lithium-air battery 101 has a storage container 91 and tabs 97 and 98.
  • the storage container 91 is provided with an opening 99.
  • the storage container 91 is hermetically sealed and airtightness is maintained.
  • a laminate pack may be used as the storage container 91.
  • the connecting member 301 connects the thin lithium-air battery 101, the third gas pipe 202A, and the fourth gas pipe 202C.
  • a sensor 210 is installed in the storage chamber 201.
  • the sensor 210 is connected to a control mechanism (not shown) by wiring 211.
  • the control mechanism is configured to detect an abnormality by setting a threshold value. Further, when an abnormality is detected, the valve attached to each gas pipe can be controlled to open and close.
  • a pressure sensor, a temperature sensor, a gas component sensor, or a combination thereof can be used. It is preferable to use a plurality of sensors. By installing these sensors, it is possible to quickly detect internal abnormalities.
  • FIG. 3 is a perspective view of the thin lithium-air battery shown in FIG.
  • the thin lithium-air battery 101 is stored in a storage container 91, tabs 97 and 98 project from one end side and the other end side, and an opening 99 is provided on one side. Yes.
  • FIG. 4A and 4B are diagrams of the thin lithium-air battery shown in FIG. 3, in which FIG. 4A is a cross-sectional view and FIG. 4B is an enlarged view of a portion A in FIG. 4A.
  • the positive electrode base material 81 is exposed from the opening 99.
  • the partition film 100 is provided so that the laminated body 80 may not be exposed from the opening part 99.
  • the partition film 100 is made of an organic material or an inorganic material. The space inside the battery where the electrolyte exists and the partition wall near the opening into which air (oxygen) flows. By providing the partition film 100, it is possible to prevent liquid leakage and the positive electrode active material from reaching the periphery of the negative electrode.
  • the stacked body 80 is formed by stacking three unit structures 88 between two thin separators 83 with the thin separator 83 interposed therebetween.
  • the unit structure 88 is formed by laminating a thin positive electrode structure 86, a thin separator 83, and a thin negative electrode structure 87.
  • the thin negative electrode structure 87 is formed by laminating a negative electrode material 85 on both surfaces of a negative electrode substrate 84, and the thin positive electrode structure 86 is formed by forming a positive electrode material 82 on both surfaces of a positive electrode substrate 81.
  • FIG. 5 is a perspective view showing an example of a thin positive electrode structure.
  • the thin positive electrode structure 86 is formed by forming a positive electrode material 82 containing carbon as a main component on both surfaces of a positive electrode base material 81 that functions as a current collector.
  • the positive electrode base material 81 is substantially plate-shaped and has grooves formed on both sides. These grooves are formed as holes 15 ⁇ / b> A by arranging the positive electrode material 82 on the upper portion thereof.
  • the hole portion 15 ⁇ / b> A communicates with all the side surfaces of the positive electrode base material 11.
  • FIG. 20 is a perspective view showing a modification of the thin positive electrode structure. As shown in FIG.
  • a thin positive electrode structure 86B according to an embodiment of the present invention has a rectangular columnar positive electrode material 82B1 and 82B2 arranged in parallel on both surfaces of a substantially rectangular positive electrode base material 81B in plan view.
  • a layer 18B made of oil-repellent molecules is formed so as to cover 81B and the positive electrode materials 82B1 and 82B2, and is roughly configured.
  • grooves 14B for gas flow passages having a line width in a planar view are formed in parallel at regular intervals.
  • the thin positive electrode structure of the present embodiment is formed with a gas flow path that extends from one side surface of the positive electrode base material or the positive electrode material to the opposite side surface. ing.
  • oxygen is efficiently supplied from the third gas pipe to the positive electrode material.
  • the inert gas efficiently spreads over the entire area of the positive electrode material by this gas flow path.
  • FIGS. 6A to C are views of the connecting member shown in FIG. 2, in which FIG. 6A is a left side view, FIG. 6B is a plan view, and FIG. 6C is a front view.
  • the connecting member 301 has a substantially cylindrical shape, and a battery connecting portion 301c that is opened in a substantially rectangular shape in plan view is provided on a side surface.
  • a first connecting portion 301a that is opened in a circular shape in plan view is provided on the tip side of the cylinder.
  • a second connecting portion 301b opened in a circular shape in plan view is provided.
  • the gas distribution part 301d is provided so that the 1st connection part 301a, the 2nd connection part 301b, and the battery connection part 301c may be connected.
  • FIG. 7 is a perspective view of a thin lithium-air battery with a connecting member attached. As shown in FIG. 7, the thin lithium-air battery 101 has a substantially cylindrical connecting member 301 attached to one side surface.
  • FIG. 8 is a plan view of the thin lithium-air battery with the connecting member shown in FIG. 7 attached.
  • one side surface of the thin lithium-air battery 101 is inserted into and fitted into the battery connecting portion 301 c of the connecting member 301.
  • An opening 99 is provided on the one side surface.
  • the third gas pipe 202A is inserted into and fitted into the opening of the first connecting portion 301a.
  • the fourth gas pipe 202C is inserted and fitted into the opening of the second connecting portion 301b.
  • air or oxygen gas flows from the third gas pipe 202A through the first connection portion 301a through the gas distribution portion 301d and from the battery connection portion 301c through the opening 99.
  • the thin lithium-air battery 101 is supplied.
  • the valve 204C is closed, and the rare gas does not flow into the fifth gas pipe 202E to 202A.
  • Air or oxygen gas flows through the hole 15A of the thin positive electrode structure 86, is taken into the positive electrode material 82, and performs a battery reaction with lithium ions in the electrolyte in the pores of the positive electrode material 82.
  • Air or oxygen gas that is not involved in the reaction flows from the opening 99 through the battery connecting part 301c, through the gas circulation part 301d, and from the fourth gas pipe 202C through the second connecting part 301b. Exhausted.
  • the storage container for a thin lithium-air battery according to an embodiment of the present invention supplies an inert gas into the storage container 1001 for a thin lithium-air battery (inert gas supply step), and then air is supplied to the thin lithium-air battery.
  • oxygen gas is supplied to cause a battery reaction (air or oxygen gas supply step).
  • the thin lithium-air battery can be filled with an inert gas to suppress explosions and ensure safety. Specifically, it is the following process.
  • the valve 204B is opened and a vacuum pump (not shown) connected to the gas pipe 202D is operated to evacuate the storage chamber 201.
  • the pump 203B is operated to supply the inert gas into the storage chamber 201 from the first gas pipe 202B.
  • the valve 204A is opened, the valve 204C is closed, and a vacuum pump (not shown) connected to the gas pipe 202C is operated to exhaust the thin lithium-air battery 101.
  • the pump 203A is operated to supply air or oxygen gas into the thin lithium-air battery 101 from the third gas pipe 202A.
  • the air or oxygen gas pressure in the thin lithium-air battery 101 is adjusted by adjusting the exhaust amount from the fourth gas pipe 202C while operating the opening / closing ratio of the valve 204A. Is preferred.
  • the valve 204A is opened and the valve 202E is opened, so that the storage chamber 201 is thinned by the rare gas filled.
  • the battery discharge operation can be stopped.
  • the thin lithium-air battery 101 is stored in the storage chamber 201 filled with an inert gas. The entry of moisture into the inside is completely prevented, the ignition of lithium is suppressed, and the battery can be reacted with higher safety than in the past. Further, since the thin lithium-air battery 101 is covered with the thin lithium-air battery storage container 1001, even if an explosion reaction or the like occurs in the thin lithium-air battery, damage can be prevented.
  • FIG. 9 is a schematic view showing another example of a container for a thin lithium-air battery that is an embodiment of the present invention.
  • a storage container 1002 for a thin lithium-air battery according to an embodiment of the present invention stores a thin lithium-air battery 102 to which connecting members 302A and 302B are attached, and has an arrangement configuration of gas pipes.
  • the configuration is substantially the same as that of the first embodiment of the present invention.
  • FIG. 10 is a perspective view of the thin lithium-air battery 102.
  • FIG. 11 is a plan view of the thin lithium-air battery 102 shown in FIG.
  • the thin lithium-air battery 102 is stored in a storage container 92, and tabs 97 and 98 protrude from one end side and the other end side.
  • the coupling members 302A and 302B are arranged so that most of the coupling members 302A and 302B are inside the storage container 92, and are arranged so as to protrude from the storage container 91 in opposite directions.
  • FIGS. 12A, 12B, and 12C are views showing examples of the connecting member shown in FIGS. 9 to 11, in which FIG. 12A is a left side view, FIG. 12B is a plan view, and FIG. 12C is a front view. It is.
  • the connecting member 302A has a substantially cylindrical shape, and a battery connecting portion 302Ac that is opened in a substantially rectangular shape in plan view is provided on a side surface.
  • a third connecting portion 302Aa that is open in a circular shape in plan view is provided on the distal end side. The other end is closed.
  • a gas flow part 302Ad is provided so as to communicate the third connection part 302Aa and the battery connection part 302Ac.
  • the connecting member 302B has the same configuration. That is, the battery connection part opened in the substantially rectangular shape in planar view is provided in the side surface. On the distal end side, a third connecting portion opened in a circular shape in plan view is provided. The other end is closed. A gas flow part is provided so as to communicate the third connection part and the battery connection part.
  • FIG. 13 is a cross-sectional view taken along line BB ′ of FIG.
  • the laminated body 80 is formed so that only the positive electrode base material 81 protrudes on both sides.
  • connecting members 302A and 302B are attached so as to fit the protruding portion of the positive electrode base material 81.
  • the partition film 100 is disposed so as to close the space between the positive electrode bases 81.
  • the sealing film 73 covers a part of the connecting members 302A and 302B and the laminated body 80.
  • the sealing film 73 a film having a barrier property against air and oxygen which are positive electrode active materials is used.
  • a film made of the same material as the partition wall film 100 can be used. It is preferable that at least the surface of the partition film 100 is made of a material having high electrical insulation. 12A, 12B, and 12C are formed so as to cover only a part, but when the partition film 100 made of a material having high electrical insulation is used, the laminate 80 is completely covered. It may be. Thereby, the leakage of air or oxygen gas can be further reduced, and the reaction efficiency of the battery can be improved in some cases.
  • FIG. 14 is a diagram for explaining a manufacturing process of a thin lithium-air battery, and is a process diagram for attaching connecting members 302A and 302B.
  • the laminate 80 is prepared, and the protruding portion of the positive electrode substrate 81 is closed with the partition film 100.
  • the connecting members 302A and 302B are attached so that the protruding portion of the positive electrode base member 81 is fitted by the battery connecting portion 302Ac or the like.
  • a sealing film 73 is attached so as to follow the stacked body 80 and the connecting members 302A and 302B.
  • the laminated body 80 to which the sealing film 73 is attached and the connecting members 302A and 302B are arranged in the storage container 92, whereby a thin lithium-air battery can be manufactured.
  • the sealing film 73 in advance on the outer surfaces of the connecting members 302A and 302B. Thereby, the position shift in an assembly process can be suppressed and work efficiency can be improved.
  • the third gas pipe 202A is inserted and fitted into the opening of the third connecting portion 302Aa of the connecting member 302A.
  • the fourth gas pipe 202C is inserted and fitted into the opening of the third connecting portion of the connecting member 302B.
  • air or oxygen gas flows from the third gas pipe 202A through the third connection portion 302Aa through the gas distribution portion 302Ad, and from the battery connection portion 302Ac through the positive electrode substrate 81.
  • the thin lithium-air battery 102 is supplied. Air or oxygen gas flows through the hole 15A of the thin positive electrode structure 86, is taken into the positive electrode material 82, and performs a battery reaction with lithium ions in the electrolyte in the pores of the positive electrode material 82. Air or oxygen gas not involved in the reaction flows from the positive electrode base material 81 through the battery connection portion 302Ac, through the gas distribution portion 302Ad, through the third connection portion of the connection member 302B, and into the fourth state. The gas is exhausted from the gas pipe 202C.
  • the valve 204A When the operation is abnormal, as in the first embodiment, the valve 204A is opened and the valve 204C is opened, so that the air or oxygen filled in the thin lithium-air battery 102 by the rare gas filled in the storage chamber 201 is discharged. By purging and replacing, the battery discharge operation can be stopped. With the configuration of the present embodiment, the efficiency of transporting air or oxygen in the thin lithium-air battery 102 is increased, and the gas replacement efficiency at the time of abnormal operation is also increased, so that safer operation can be realized.
  • FIG. 15 is a schematic view showing still another example of a container for a thin lithium-air battery which is an embodiment of the present invention.
  • a storage container 1003 for a thin lithium-air battery according to an embodiment of the present invention stores four thin lithium-air batteries 102, which are connected by connecting auxiliary members 303A and 303B. Is substantially the same as that of the second embodiment of the present invention.
  • FIGS. 16A to 16C are views showing an example of a connection auxiliary member
  • FIG. 16A is a left side view
  • FIG. 16B is a plan view
  • FIG. 16C is a front view.
  • the connection assisting member 303A has a structure in which six cylindrical members are connected.
  • an auxiliary connecting portion 303Aa opened in a circular shape in plan view is provided.
  • the auxiliary connecting portion 303Aa is provided at the distal end portion of one cylindrical member, and the proximal end side is connected to another cylindrical member.
  • Four cylindrical members are connected to another cylindrical member.
  • member connecting portions 303Ac1, 303Ac2, 303Ac3, 303Ac4 that are opened in a circular shape in plan view are provided.
  • a gas circulation part 303Ad is provided inside another cylindrical member.
  • the gas circulation part 303Ad is communicated with the auxiliary connecting part 303Aa, the member connecting part 303Ac1, and the member connecting parts 303Ac2, 303Ac3, and 303Ac4.
  • FIG. 17 is a perspective view of four thin lithium-air batteries 102 connected by a connection auxiliary member. Tabs 97 and 98 are connected by a tab connection base 96 so that the four thin lithium-air batteries 102 are arranged in series. Further, the four thin lithium-air batteries 102 are connected by the connection auxiliary members 303A and 303B.
  • connection auxiliary member 303A is fitted to the connection members 302A of the four thin lithium-air batteries 102 at the member connection portions 303Ac1, 303Ac2, 303Ac3, and 303Ac4.
  • connection auxiliary member 303 ⁇ / b> B is fitted into the four thin lithium-air batteries 102.
  • the four thin lithium-air batteries 102 are stably held by the connection assisting members 303A and 303B.
  • the connecting auxiliary member 303A is fitted to the third gas pipe 202A at the auxiliary connecting portion 303Aa.
  • the auxiliary connecting member 303B is also fitted to the fourth gas pipe 202C at the auxiliary connecting portion.
  • air or oxygen gas is supplied from the third gas pipe 202A into the thin lithium-air battery 102 via the connection auxiliary member 303A, the connection member 302A, and the positive electrode substrate 81.
  • Air or oxygen gas flows through the hole 15A of the thin positive electrode structure 86, is taken into the positive electrode material 82, and performs a battery reaction with lithium ions in the electrolyte in the pores of the positive electrode material 82.
  • Air or oxygen gas not involved in the reaction is exhausted from the fourth gas pipe 202C via the positive electrode base member 81, the connecting member 302B, and the connecting auxiliary member 303B.
  • the valve 204A When the operation is abnormal, as in the first embodiment, the valve 204A is opened and the valve 204C is opened, so that the air or oxygen filled in the thin lithium-air battery 102 by the rare gas filled in the storage chamber 201 is discharged. By purging and replacing, the battery discharge operation can be stopped. With the configuration of the present embodiment, the air or oxygen transport efficiency in the thin lithium-air battery 102 is increased, and a safe operation and a higher output voltage can be realized by increasing the gas replacement efficiency at the time of abnormal operation. it can.
  • Storage containers 1001, 1002, and 1003 for thin lithium air batteries are storage containers for thin lithium air batteries that include a storage chamber 201 for storing thin lithium air batteries 101 and 102.
  • the first gas pipe 202B and the second gas pipe 202D communicating with the inside of the 201, and the third gas pipe 202A and the fourth gas pipe communicating with the thin lithium-air batteries 101 and 102 stored in the storage chamber 201 202C and a valve 204C for controlling the opening and closing of the communication with the storage chamber 201 in the third gas pipe 202A, and an inert gas supply source is attached to the first gas pipe.
  • the containment vessel Since the gas pipe is provided with an air or oxygen gas supply source, the containment vessel is efficiently filled with the inert gas, and the thin lithium-air battery is empty.
  • a thin lithium-air battery can be stored in a containment vessel that is stably and efficiently supplied with oxygen gas and filled with an inert gas. Or since it has a function which substitutes oxygen with an inert gas, ignition of lithium can be suppressed and safety can be improved. Moreover, since the storage room is provided, even if an explosion or the like occurs in a thin lithium-air battery, damage can be suppressed.
  • the storage containers 1001, 1002, 1003 for thin lithium-air batteries are provided with a sensor 210 in the storage chamber 201, and when the sensor 210 exceeds a predetermined threshold, the valve 204C is opened and the thin container Since the inert gas is supplied into the lithium air battery, when the sensor detects an abnormality, the valve provided in the third pipe is opened, and the third gas pipe, the thin lithium air battery, and the fourth The inert gas can be supplied into the gas pipe and the inside of the thin lithium-air battery can be purged with the inert gas to suppress the explosion reaction.
  • the thin lithium-air battery containment containers 1001, 1002, and 1003 have a configuration in which the sensor 210 is one of a gas component sensor, a pressure sensor, a temperature sensor, or a combination of these sensors. ,
  • the valve provided in the third pipe is opened to supply the inert gas into the third gas pipe, the thin lithium-air battery, and the fourth gas pipe.
  • the inside of the air battery can be purged to suppress the explosion reaction.
  • the thin lithium-air battery storage containers 1001, 1002, and 1003 have a configuration in which an exhaust mechanism is attached to the second gas pipe 202D and the fourth gas pipe 202C.
  • the amount of exhaust gas from the storage chamber can be adjusted to adjust the inert gas pressure in the storage chamber, and the amount of exhaust gas from the fourth gas pipe can be adjusted to adjust the air or oxygen gas pressure in the thin lithium-air battery
  • the air or oxygen gas can be stably and efficiently supplied to the thin lithium-air battery stored in the storage container filled with the inert gas.
  • the thin lithium-air battery storage containers 1001, 1002, and 1003 include a connecting member 301 that connects the thin lithium-air batteries 101 and 102 to the third gas pipe 202A and / or the fourth gas pipe 202C. , 302A and 302B are attached, so that air or oxygen gas can be stably and efficiently supplied to a thin lithium-air battery stored in a storage container filled with an inert gas.
  • the connecting member 301 is connected to the first connecting portion 301a connected to the third gas pipe 202A and the fourth gas pipe 202C. Since it is the structure which has the 2nd connection part 301b to connect, the gas distribution part 301d connected to the 1st connection part 301a and the 2nd connection part 301b, and the battery connection part 301c which connects the thin lithium air battery 101. Air or oxygen gas can be stably and efficiently supplied to a thin lithium-air battery stored in a storage container filled with an inert gas.
  • the thin lithium-air battery storage containers 1001, 1002, and 1003 have a third connection in which the connection members 302A and 302B are fitted into the third gas pipe 202A or the fourth gas pipe 202C.
  • 302Aa a gas flow part 302Ad communicating with the third connection part 302Aa
  • a battery connection part 302Ac for connecting the thin lithium-air battery 102, so that it is stored in a storage container filled with an inert gas.
  • Air or oxygen gas can be stably and efficiently supplied to a thin lithium-air battery.
  • the storage container for a thin lithium-air battery is configured to fit the portion including the opening 99 of the storage container 91 of the thin lithium-air battery 101, 1001, 1002, 1003, and the battery connecting part 301c, Air or oxygen gas can be stably and efficiently supplied to a thin lithium-air battery stored in a containment vessel filled with an inert gas.
  • the thin lithium-air battery storage containers 1001, 1002, and 1003 are configured so that the battery connecting portion 302Ac fits the positive electrode base material 81 of the thin lithium-air battery 102, and thus filled with an inert gas. Air or oxygen gas can be stably and efficiently supplied to the thin lithium-air battery stored in the storage container.
  • the storage containers 1001, 1002, and 1003 for thin lithium-air batteries which are embodiments of the present invention, include connection auxiliary members 303A and 303B between the third gas pipe 202A and the fourth gas pipe 202C and the connection members 302A and 302B. 2 or more, it is possible to stably fix two or more thin lithium-air batteries.
  • the storage containers 1001, 1002, and 1003 for thin lithium-air batteries include connection auxiliary members 303A and 303B connected to the third gas pipe 202A and the fourth gas pipe 202C.
  • connection auxiliary members 303A and 303B connected to the third gas pipe 202A and the fourth gas pipe 202C.
  • the structure since the structure includes the member connecting portions 303Ac1, 303Ac2, 303Ac3, and 303Ac4 that are connected to the connecting members 302A and 302B, two or more thin lithium-air batteries can be stably fixed.
  • the storage containers 1001, 1002, and 1003 for thin lithium-air batteries are configured to include four member connecting portions 303Ac1, 303Ac2, 303Ac3, and 303Ac4.
  • the battery can be reacted in a state where safety is improved.
  • the storage containers 1001, 1002, and 1003 for thin lithium-air batteries which are embodiments of the present invention, are not limited to the above-described embodiments, and may be implemented with various modifications within the scope of the technical idea of the present invention. Can do. Specific examples of this embodiment are shown in the following examples. However, the present invention is not limited to these examples.
  • FIG. 18 is a schematic diagram illustrating an apparatus configuration of the first embodiment. First, one thin air lithium-air battery shown in the second embodiment of the present invention was prepared. A laminate package was used as the storage container.
  • the connecting auxiliary member is connected to the third gas pipe 202A and the fourth gas pipe 202C, respectively, and then the thin air lithium air battery storage chamber 201 having the output terminals 207 and 208 is provided. Stored in.
  • the first gas pipe 202B is connected to an external inert gas supply system, and the third gas pipe 202A is connected to an external oxygen supply concentrator (air or oxygen gas supply source: positive electrode active material supply source). ).
  • pumps 203A, 203B, 2203A, 2203B and valves 2204A, 2204B, 2204C, 2204D, 2204E, 2204F, 2204G, 2204H, 2204I, and 2204J necessary for the gas supply / exhaust system were connected.
  • a pressure sensor 210D, a temperature sensor 210C, and a gas component sensor 210A for detecting internal abnormality were connected.
  • a CO 2 detector was used as the gas component sensor 210A in the oxygen gas flow path. The reason is that it is expected that the hydrocarbon electrolyte will be decomposed due to abnormal operation.
  • a CO 2 detector was also installed as a pressure sensor 210E and a gas component sensor 210B inside the container body for the thin air lithium-air battery. The inside of the container is controlled by exhaust pumps 203B and 2203B for exhaust and valves 2204A, 2204H, 2204I and 2204J.
  • a system for exhausting air based on the monitor values of the pressure sensors 210D and 210E was added, and an explosion-proof valve was also added (not shown). Since there may be abnormalities and malfunctions in the pressure sensor, double safety was provided.
  • the pressure of the oxygen gas flow path is monitored by the pressure sensor 210D, the cut valve is opened and closed, and the pressure feed pump 203A is controlled to adjust the gas pressure and pressurize. It was in a state.
  • a storage system 201 for a thin-air lithium-air battery was equipped with an abnormality response system (not shown).
  • an abnormality occurs in the thin-air lithium-air battery storage container 201
  • the operation shifts to an abnormality handling mode. Specifically, both during discharge and during charging, the temperature of the temperature sensor 210C installed on the surface of the laminated lami package, the abnormal pressure in the oxygen gas flow path in the lami package (detected by the pressure sensor 210D), and the oxygen gas flow path
  • the operation shifts to the abnormality handling mode 1. If any one of the abnormal pressure in the storage container body (detected by the pressure sensor 210E) and the abnormal gas component in the storage container body (detected by the CO 2 sensor 210B) occurs, the operation shifts to the abnormality handling mode 2.
  • FIG. 19 is a signal system diagram of the abnormality sensing system according to the first embodiment, and is a schematic diagram illustrating a sequence of an abnormality handling operation for outputs from each sensor in the abnormality handling system.
  • the pump driving (electromagnetic) relays 1 to 3 use the pumps 1 and 2 and the exhaust pump.
  • the valves 1 to 7 are opened and closed by the valve drive manifolds 1 to 7.
  • Table 1 shows the operation sequence of each supply device, pump, and valve.
  • In normal discharge in abnormal discharge, in normal charge, in abnormal charge, mode 1 in which there is no abnormality in the storage container and mode 2 in which abnormality is detected in the storage container are shown.
  • the basic operation at the time of abnormality is the stop of the oxygen concentrator and the pressure pump, and the closing / opening operation of the cut valve.
  • the basic operation at the time of abnormality in mode 1 is that the pump pump (electromagnetic) relay 2 is used to stop the pressure pump 2, the valve drive manifold 2 is closed, and the valve drive manifold 4 is closed. Then, the valve 4 is opened.
  • the exhaust pump 1 continues to operate.
  • the pump pump (electromagnetic) relay 1 operates the pump 1 and the valve drive manifold 1 maintains the valve 1 in an open state.
  • the valve 5 is opened by the valve drive manifold 5 and the valve 6 is opened by the valve drive manifold 6 to operate the exhaust pump.
  • valve 8 maintains a closed state.
  • the partial pressure (concentration) of oxygen in the thin lithium-air battery was reduced at a stretch, and uncontrollable dangerous states such as ignition and explosion could be avoided.
  • Mode 2 shifts due to an abnormality in the pressure sensor 2 or gas component sensor 2 inside the containment vessel.
  • the valve 8 is opened by the valve drive manifold 8
  • the valve 10 is opened by the valve drive manifold 10, and the exhaust pump 2 is operated.
  • the present invention relates to a containment vessel for a thin lithium-air battery that suppresses a rapid oxidation exothermic reaction (ignition) during operation and improves safety, and can be used in the battery industry, the energy industry, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 リチウム金属やリチウムイオンを含む電解液の爆発的な反応(発火)を抑制し、安全性を高めた薄型リチウム空気電池用格納容器を提供する。薄型リチウム空気電池(101)を格納する格納室(201)を備えた薄型リチウム空気電池用格納容器であって、格納室(201)内に連通する第1のガス管(202B)及び第2のガス管(202D)と、格納室(201)内に格納する薄型リチウム空気電池(101)内に連通する第3のガス管(202A)及び第4のガス管(202C)と、第3の配管(202A)に格納室(201)内との連通を開閉制御するバルブ(204C)とを有し、第1のガス管(202B)に不活性ガス供給源が取り付けられており、第3のガス管(202A)に空気又は酸素ガス供給源が取り付けられている薄型リチウム空気電池用格納容器(1001)を用いる。

Description

薄型リチウム空気電池用格納容器および電池
 本発明は、薄型リチウム空気電池用格納容器およびその内部に薄型リチウム空気電池を備える電池に関する。
 本願は、2011年11月21日に、日本に出願された特願2011-254162号に基づき優先権を主張し、その内容をここに援用する。
 空気電池は、固体正極材(空気極)と、金属箔又は金属微粒子からなる負極材と、液体又は固体の電解質とを有し、前記空気電池内に設けられたガス流路を流れる空気又は酸素ガスを正極活物質として用い、前記金属箔又は金属微粒子を負極活物質として用いる電池である。
 空気電池技術は複数提案されているが、近年特にリチウム空気電池の研究開発が活発となっている(特許文献1~6)。充電して繰り返し使える2次電池化ができる上、既に実用化されているリチウムイオン電池に比べ、単位重量あたりのエネルギー密度を大幅に向上させることができるからである。
 空気電池技術のうち、亜鉛空気電池が実用化されている(特許文献7)。しかし、亜鉛空気電池は充電ができない1次電池で、軽量ながら小容量であるため主として補聴器用に用いられており、大容量化は必要なく、そのため小型な金属製の筐体に格納することで性能を実現している。
 空気電池の一種として、燃料電池を挙げることができる。燃料電池においては、バイポーラプレートと呼ばれるセパレータを介して、複数のセルが積層される。バイポーラプレートには、負極用の燃料流と正極用の空気流の2つの流路を仕切る機能と、積層されたセルを電気的に直列接続する機能がある(非特許文献1)。
積層した電池セルを大容量にするためには並列接続する必要があるが、バイポーラプレートはその用途には向かない上、非常に厚く、積層した際の体積が大きくなってしまう問題があった。
 本発明者は、薄型セパレータ及び薄型負極構造体と積層しても、正極構造体内に正極活物質となる空気又は酸素ガスを効率よく取り込むことができる薄型正極構造体を開発した。前記薄型正極構造体を薄型負極構造体及び薄型セパレータとともに用いることにより、大容量で薄型リチウム空気電池を製造できることを見出した。
 図1は、前記薄型リチウム空気電池の従来の使用方法の一例を示す説明図である。図1に示すように、薄型リチウム電池101は、格納容器2201内に格納されて使用される。格納容器2201はガス排気管2202B及びガス供給管2202Aが取り付けられており、ガス排気管2202Bおよびガス供給管2202A以外の部分は密閉されている。ガス排気管2202Bに接続したポンプ2203により、格納容器2201内を減圧可能とされている。格納容器2201内を減圧後、ガス排気管2202Bのバルブ2204を閉じ、ガス供給部(図示略)からポンプ2203を動作させることにより、格納容器2201内を空気又は酸素ガスで充填することができる。格納容器2201内に空気又は酸素ガスを充填すると、薄型リチウム電池101の収納容器の開口部99から薄型正極構造体内に空気又は酸素ガスを供給することができ、電池反応を開始させることができる。格納容器2201内で、薄型リチウム空気電池101の2つのタブ97、98は、ブレード2205、2206に接続されている。ブレード2205、2206は出力端子2207、2208に接続されており、出力端子2207、2208から薄型リチウム空気電池101で発生させた電力を取り出すことができる。
 しかし、図1に示した従来型の格納容器2201内部は正極活物質で満たされ、かつ薄型リチウム空気電池101に開口部があるため、内部で電解液もしくは負極材である金属Liが酸素や空気と直接反応する危険性は小さいとは言えず、安全性に関する問題が残されていた。
特開2010-192313号公報 特開2011-96456号公報 特開2011-108388号公報 特開2011-108512号公報 特開2011-96586号公報 特開2011-96492号公報 特表2008-502118号公報
田川博章「固体酸化物燃料電池と地球環境」、p60、アグネ承風社
 本発明は、薄型リチウム空気電池の動作時における構成部材の急激な酸化発熱反応(発火)を抑制し、安全性を高めた薄型リチウム空気電池用格納容器を提供することを課題とする。
 上記事情を鑑みて、本研究者は試行錯誤して、薄型リチウム空気電池に正極活物質である酸素や空気を効率的に供給しながら、電池の温度や圧力等をセンサでモニタすることにより危険度を認識し、危険な状態においては予め格納容器内に充填しておいた不活性ガスと正極活物質を自動置換して急激な酸化反応の進行を停止することにより、安全性を高められることを見出した。また、不活性ガスを充填した格納容器内の薄型リチウム空気電池に、効率よく空気又は酸素ガスを供給できる連結部材及び連結補助部材を開発し、酸素や空気をさらにセル内部に効率的に輸送することを実現すると同時に、危険な状態における不活性ガスによる自動置換の効率をも高めることができることを見出した。更に、複数の連結部を備えた連結部材及び/又は連結補助部材を用いることにより、複数の薄型リチウム空気電池を直列または並列に接続して出力電圧や容量をさらに高めることができる上、安定に保持し、より安全性を高めることができることを見出し、本発明を完成した。
 本発明は、以下の構成を有する。
 (1)薄型リチウム空気電池を格納する格納室を備えた薄型リチウム空気電池用格納容器であって、前記格納室内に連通する第1のガス管及び第2のガス管と、前記格納室内に格納する薄型リチウム空気電池内に連通する第3のガス管及び第4のガス管と、前記第3の配管に前記格納室内との連通を開閉制御するバルブとを有し、前記第1のガス管に不活性ガス供給源が取り付けられており、前記第3のガス管に空気又は酸素ガス供給源が取り付けられていることを特徴とする薄型リチウム空気電池用格納容器。
 (2)前記格納室内にセンサが備えられ、前記センサが所定の閾値を超えたときに前記バルブを開け、前記薄型リチウム空気電池内に不活性ガスを供給することを特徴とする上記(1)に記載の薄型リチウム空気電池用格納容器。
 (3)前記センサがガス成分センサ、圧力センサ及び温度センサのいずれか又はこれらのセンサの組み合わせであることを特徴とする上記(2)に記載の薄型リチウム空気電池用格納容器。
 (4)前記第2のガス管及び前記第4のガス管に排気機構が取り付けられていることを特徴とする上記(1)~(3)のいずれかに記載の薄型リチウム空気電池用格納容器。
 (5)前記第3のガス管及び前記第4のガス管の少なくともどちらか一方に薄型リチウム空気電池を連結する連結部材が取り付けられていることを特徴とする上記(1)~(4)のいずれかに記載の薄型リチウム空気電池用格納容器。
 (6)前記連結部材が、前記第3のガス管に連結する第1の連結部と、前記第4のガス管に連結する第2の連結部と、前記第1の連結部及び前記第2の連結部に連通するガス流通部と、薄型リチウム空気電池を連結する電池連結部と、を有することを特徴とする上記(5)に記載の薄型リチウム空気電池用格納容器。
 (7)前記連結部材が、前記第3のガス管又は前記第4のガス管に嵌合する第3の連結部と、前記第3の連結部に連通するガス流通部と、薄型リチウム空気電池を連結する電池連結部と、を有することを特徴とする上記(5)に記載の薄型リチウム空気電池用格納容器。
 (8)前記電池連結部が、薄型リチウム空気電池の収納容器の開口部を含む部分を嵌合することを特徴とする上記(5)又は(6)に記載の薄型リチウム空気電池用格納容器。
 (9)前記電池連結部が、薄型リチウム空気電池の正極基材を嵌合することを特徴とする上記(5)又は(6)に記載の薄型リチウム空気電池用格納容器。
 (10)前記第3のガス管及び前記第4のガス管と連結部材との間に連結補助部材が取り付けられていることを特徴とする上記(5)~(9)のいずれかに記載の薄型リチウム空気電池用格納容器。
 (11)前記連結補助部材が、前記第3のガス管又は前記第4のガス管に連結する補助連結部と、前記連結部材に連結する部材連結部と、を有することを特徴とする上記(10)に記載の薄型リチウム空気電池用格納容器。
 (12)前記部材連結部が2以上設けられていることを特徴とする上記(11)に記載の薄型リチウム空気電池用格納容器。
 (13)薄型リチウム空気電池格納容器と、前記薄型リチウム空気電池格納容器内に設けられた格納室と、前記格納室内に格納された薄型リチウム空気電池とを備える電池であって、前記リチウム空気電池格納容器は、前記格納室内に連通する第1のガス管及び第2のガス管と、前記格納室内に格納する薄型リチウム空気電池内に連通する第3のガス管及び第4のガス管と、前記第3の配管に前記格納室内との連通を開閉制御するバルブとを有し、前記第1のガス管に不活性ガス供給源が取り付けられており、前記第3のガス管に空気又は酸素ガス供給源が取り付けられ、前記薄型リチウム空気電池は、板状の正極基材に多孔体からなる正極材が接合された薄型正極構造体を有し、前記正極基材又は前記正極材の一の側面から対向する側面に通ずるガス流路が形成されていることを特徴とする電池。
 (14)前記ガス流路が、前記正極基材の一の側面から対向する側面に通ずる孔であることを特徴とする上記(13)に記載の電池。
 (15)前記ガス流路が、前記正極材の一の側面から対向する側面に通ずる溝であることを特徴とする上記(13)に記載の電池。
 本発明の薄型リチウム空気電池用格納容器は、薄型リチウム空気電池を格納する格納室を備えた薄型リチウム空気電池用格納容器であって、前記格納室内に連通する第1のガス管及び第2のガス管と、前記格納室内に格納する薄型リチウム空気電池内に連通する第3のガス管及び第4のガス管と、前記第3のガス管に前記格納室内との連通を開閉制御するバルブと、を有し、前記第1のガス管に不活性ガス供給源が取り付けられており、前記第3のガス管に空気又は酸素ガス供給源が取り付けられている構成なので、電池動作時に不活性ガスを充填した格納容器内に薄型リチウム空気電池を格納することができ、発熱等の不良動作時に電池内部の正極活物質である空気又は酸素を不活性ガスに置換できることができ、電解質あるいは金属Liとの爆発的な反応を抑制し、安全性を高めることができる。また、不活性ガスに満たされた格納室を備えているので、発熱等の異常が急激に発生し、電池内部の空気又は酸素を不活性ガスに置換する工程が間に合わずに薄型リチウム空気電池の爆発が生じたとしても、被害を抑制することができる。
 本発明の薄型リチウム空気電池用格納容器は、前記格納室内にセンサが備えられ、前記センサが所定の閾値を超えたときに前記バルブを開け、前記薄型リチウム空気電池内に不活性ガスを供給する構成なので、不活性ガスを充填した格納容器内に、薄型リチウム空気電池を格納し、異常時に第3のガス管に取り付けられた開閉バルブを開けることにより、リチウム空気電池内の正極活物質を不活性ガスに置換して、電池反応を停止させ、リチウムの発火を抑制し、安全性を高めることができる。
 本発明の薄型リチウム空気電池用格納容器は、前記第3のガス管及び/又は前記第4のガス管に薄型リチウム空気電池を連結する連結部材が取り付けられている構成なので、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定に、かつ効率的に供給でき、電解質とリチウムの発火を抑制し、安全性を高めた状態で電池反応をさせることができる。
 本発明の薄型リチウム空気電池用格納容器は、前記第3のガス管及び前記第4のガス管と連結部材との間に連結補助部材が取り付けられており、前記連結補助部材が、前記第3のガス管又は前記第4のガス管に連結する補助連結部と、前記連結部材に連結する部材連結部と、を有し、前記部材連結部が2以上設けられている構成なので、2以上の薄型リチウム空気電池を安定に固定することができ、安全性を高めた状態で電池反応をさせることができる。
従来型の実施形態である薄型リチウム空気電池格納容器の一例を示す模式図である。 本発明の実施形態である薄型リチウム空気電池用格納容器の一例を示す模式図である。 図2に示す薄型リチウム空気電池の斜視図である。 図2示す薄型リチウム空気電池の断面図である。 図4AにおけるA部拡大図である。 薄型正極構造体の一例を示す斜視図である。 図2に示す連結部材の左側面図である。 図2に示す連結部材の平面図である。 図2に示す連結部材の正面図である。 連結部材を取り付けた状態の薄型リチウム空気電池の斜視図である。 図7に示す連結部材を取り付けた状態の薄型リチウム空気電池の平面図である。 本発明の実施形態である薄型リチウム空気電池用格納容器の別の一例を示す模式図である。 薄型リチウム空気電池102の斜視図である。 図10に示す薄型リチウム空気電池102の平面図である。 図9~図11に示す連結部材の一例を示す左側側面図である。 図9~図11に示す連結部材の一例を示す平面図である。 図9~図11に示す連結部材の一例を示す正面図である。 図11のB-B’線における断面図である。 薄型リチウム空気電池の製造プロセスを説明する図であって、連結部材302A、302Bを取り付け工程図である。 薄型リチウム空気電池の製造プロセスを説明する図であって、連結部材302A、302Bを取り付け工程図である。 薄型リチウム空気電池の製造プロセスを説明する図であって、連結部材302A、302Bを取り付け工程図である。 本発明の実施形態である薄型リチウム空気電池用格納容器の更に別の一例を示す模式図である。 連結補助部材の一例を示す左側面図である。 連結補助部材の一例を示す平面図である。 連結補助部材の一例を示す正面図である。 連結補助部材で連結された4枚の薄型リチウム空気電池102の斜視図である。 実施例1の装置構成を示す模式図である。 実施例1の異常感知システムの図であって、異常時対応システムにおける各センサからの出力の異常対処動作のシーケンスを示す概略図である。 薄型正極構造体の一変形例を示す斜視図である。
(本発明の第1の実施形態)
<薄型リチウム空気電池用格納容器>
 まず、本発明の実施形態である薄型リチウム空気電池用格納容器について説明する。
 図2は、本発明の実施形態である薄型リチウム空気電池用格納容器の一例を示す模式図である。
 図2に示すように、薄型リチウム空気電池用格納容器1001は、薄型リチウム空気電池101を格納可能な格納室201を備えており、第1のガス管202B及び第2のガス管202Dと、第3のガス管202A及び第4のガス管202Cが取り付けられている。格納室201内では、第3のガス管202Aから分岐して第5のガス配管202Eがとりつけられている。
 格納室201は密閉型であり、気密性が保たれている。
 第1のガス管202Bは、格納室201内に連通するように取り付けられている。また、格納室201外の不活性ガス供給源に取り付けられており、ポンプ203Bを操作して、格納室201内に不活性ガスを供給可能とされている。
 第2のガス管202Dは、格納室201内に連通するように取り付けられている。また、バルブ204Bを操作して、格納室201内を排気可能とされている。
 不活性ガス供給源は、不活性ガスタンク、不活性ガス供給ための濃縮器等を有する。不活性ガス供給源として膜分離方式の窒素濃縮器を使う場合は、酸素濃縮器と兼用させてもよい。不活性ガスは、窒素、希ガスである。
 第3のガス管202Aは、格納室201内の薄型リチウム空気電池101内に連通するように取り付けられている。また、格納室201外の空気又は酸素ガス供給源に取り付けられており、ポンプ203Aを操作して、薄型リチウム空気電池101内に空気又は酸素ガスを供給可能とされている。
 第4のガス管202Cは、格納室201内の薄型リチウム空気電池101内に連通するように取り付けられている。バルブ204Aを操作して、格納室201内を排気可能とされている。
 第5のガス管202Eは、バルブ204Cを介して第3のガス管202Aと格納室201内を連通するように取り付けられており、バルブ204Cの開閉によりその連通状態を切り替えることができる。電池の正常動作時にはバルブ204Cは閉じられている。
 空気又は酸素ガス供給源は、酸素ガスタンク、酸素ガス供給のための濃縮器等を有してよい。濃縮器としては、圧縮空気を中空糸状の高分子膜を通すことにより、窒素酸素の透過率差を利用して濃縮する膜分離方式、あるいは活性炭などの吸着材を通すPSA(Pressure Swing Absorption)方式を用いることができる。
 薄型リチウム空気電池101のタブ97、98はそれぞれ、ブレード205、206に接続されている。ブレード205、206は、出力端子207、208に接続されており、薄型リチウム空気電池101で発生させた電力を出力端子207、208から外部に取り出すことが可能とされている。
 薄型リチウム空気電池101は、収納容器91と、タブ97、98と、を有している。収納容器91には、開口部99が設けられている。
 収納容器91は密閉型であり、気密性が保たれている。収納容器91として、ラミネートパックを用いてもよい。
 図2に示すように、連結部材301が、薄型リチウム空気電池101と、第3のガス管202Aと、第4のガス管202Cとを連結している。
 格納室201内に、センサ210が設置されている。センサ210は配線211により制御機構(図示略)に接続される。制御機構では、閾値を設定して異常を感知できる構成とされている。また、異常を感知した場合、各ガス管に取り付けられたバルブを開閉制御できる構成とされている。センサ210としては、圧力センサ、温度センサ、ガス成分センサのいずれか又はこれらの組み合わせを用いることができる。また、複数のセンサを用いることが好ましい。これらのセンサを設置することにより、内部異常を素早く検知することができる。
 図3は、図2に示す薄型リチウム空気電池の斜視図である。
 図3に示すように、薄型リチウム空気電池101は、収納容器91に収納されており、一端側と他端側からタブ97、98が突出しており、一側面側に開口部99が設けられている。
 図4Aおよび図4Bは、図3に示す薄型リチウム空気電池の図であって、図4Aは断面図であり、図4Bは図4AにおけるA部拡大図である。
 図4Aに示すように、開口部99から正極基材81が露出されている。また、開口部99から積層体80が露出しないように、隔壁フィルム100が設けられている。
 隔壁フィルム100は、有機物もしくは無機物からなる。電解液が存在する電池内部の空間と空気(酸素)が流入する開口部付近の隔壁となる。隔壁フィルム100を設けることにより、漏液と正極活物質が負極周辺に到達することを防止できる。
 図4Bに示すように、積層体80は、2つの薄型セパレータ83の間に、3つの単位構造体88が薄型セパレータ83を挟んで積層されてなる。
 単位構造体88は、薄型正極構造体86と、薄型セパレータ83と、薄型負極構造体87が積層されてなる。薄型負極構造体87は、負極基材84の両面に負極材85が積層されてなり、薄型正極構造体86は、正極基材81の両面に正極材82が形成されてなる。
 図5は、薄型正極構造体の一例を示す斜視図である。
図5に示すように、薄型正極構造体86は、集電体として機能する正極基材81の両面に炭素を主成分とする正極材82が形成されてなる。
 正極基材81は、略板状であり、両面に溝が形成されている。これらの溝が、その上部に正極材82が配置されることにより、孔部15Aとされている。孔部15Aは正極基材11の側面すべてに連通されている。
 図20は、薄型正極構造体の変形例を示す斜視図である。
 図20に示すように、本発明の実施形態である薄型正極構造体86Bは、平面視略矩形状の正極基材81Bの両面に四角柱状の正極材82B1、82B2が並列配置され、正極基材81Bと正極材82B1、82B2とを覆うように、撥油性分子からなる層18Bが形成されて、概略構成されている。
 図20に示すように、隣接する正極材82B1、82B2の間に、幅nの平面視線状のガスの流路用の溝14Bが一定間隔で平行に形成されている。
 上述の薄型正極構造体の一例および変形例に示されるように、本実施形態の薄型正極構造体には、正極基材又は正極材の一の側面から対向する側面に通ずるガス流路が形成されている。
 このガス流路により、第三のガス管から正極材に対して効率良く酸素が供給される。また、異常時にリチウム空気電池内のガスを不活性ガスに置換する場合、このガス流路により、不活性ガスが効率良く正極材の全域へ行き渡る。この構成を有することにより、本実施形態の薄型正極構造体を有する電池の安全性をより高めることができる。
<連結部材>
 図6A、図6Bおよび図6Cは、図2に示す連結部材の図であって、図6Aは左側面図であり、図6Bは平面図であり、図6Cは正面図である。
 図6AからCに示すように、連結部材301は略円筒状であり、側面に平面視略長方形状に開口された電池連結部301cが設けられている。円筒の先端側には、平面視円形状に開口された第1の連結部301aが設けられている。円筒の他端側には、平面視円形状に開口された第2の連結部301bが設けられている。
 第1の連結部301a、第2の連結部301b及び電池連結部301cを連通するように、ガス流通部301dが設けられている。
 図7は、連結部材を取り付けた状態の薄型リチウム空気電池の斜視図である。
 図7に示すように、薄型リチウム空気電池101は、一側面に、略円筒状の連結部材301が取り付けられている。
 図8は、図7に示す連結部材を取り付けた状態の薄型リチウム空気電池の平面図である。
 図8に示すように、薄型リチウム空気電池101の一側面は、連結部材301の電池連結部301cに差し込まれ、嵌合されている。前記一側面には、開口部99が設けられている。
 図8及び図2で示すように、第1の連結部301aの開口には、第3のガス管202Aが差し込まれ、嵌合される。また、第2の連結部301bの開口には、第4のガス管202Cが差し込まれ、嵌合される。
以上の構成により、空気又は酸素ガスは、第3のガス管202Aから、第1の連結部301aを経由して、ガス流通部301d内を流通し、電池連結部301cから開口部99を経由して、薄型リチウム空気電池101内に供給される。このとき、バルブ204Cは閉じられており、第5のガス管202Eから202Aに希ガスは流入しない。
 空気又は酸素ガスは、薄型正極構造体86の孔部15A内を流通し、正極材82に取り込まれ、正極材82の細孔内の電解液中のリチウムイオンと電池反応を行う。
 反応に関与しない空気又は酸素ガスは、開口部99から電池連結部301cを経由して、ガス流通部301d内を流通し、第2の連結部301bを経由して、第4のガス管202Cから排気される。
<薄型リチウム空気電池用格納容器の安全機構>
 次に、本発明の実施形態である薄型リチウム空気電池用格納容器の安全機構について説明する。
 まず、本発明の実施形態である薄型リチウム空気電池用格納容器は、薄型リチウム空気電池用格納容器1001内へ不活性ガスを供給してから(不活性ガス供給工程)、薄型リチウム空気電池へ空気又は酸素ガスを供給して、電池反応をさせる(空気又は酸素ガス供給工程)。薄型リチウム空気電池のまわりを不活性ガスで満たし、爆発を抑制し、安全を確保することができる。具体的には、以下の工程である。
(不活性ガス供給工程)
 まず、図2に示す薄型リチウム空気電池用格納容器1001において、バルブ204Bを開として、ガス管202Dに接続した真空ポンプ(図示略)を動作させて、格納室201内を排気する。
 次に、バルブ204Bを閉とした後、ポンプ203Bを操作して、第1のガス管202Bから格納室201内に不活性ガスを供給する。
 不活性ガス供給工程では、バルブ204Bの開閉の割合を操作しながら、第2のガス管202Dからの排気量を調整して、格納室201内の不活性ガス圧を調整することが好ましい。
(空気又は酸素ガス供給工程)
 次に、バルブ204Aを開、バルブ204Cを閉として、ガス管202Cに接続された真空ポンプ(図示略)を動作させて、薄型リチウム空気電池101内を排気する。
 次に、バルブ204Aを閉とした後、ポンプ203Aを操作して、第3のガス管202Aから薄型リチウム空気電池101内に空気又は酸素ガスを供給する。
 空気又は酸素ガス供給工程では、バルブ204Aの開閉の割合を操作しながら、第4のガス管202Cからの排気量を調整して、薄型リチウム空気電池101内の空気又は酸素ガス圧を調整することが好ましい。
 以上の工程により、電池反応をさせるのに十分な量の空気又は酸素ガスを、薄型リチウム空気電池101内に供給することができる。
(不活性ガスによるパージ工程)
 また、異常時において、薄型リチウム空気電池内を不活性ガスでパージする安全機構を有する。
 異常時は、格納室内のセンサに所定の閾値を設定し、その閾値を超えたときとする。このとき、第3のガス管202Aのバルブ203Aを開け、前記薄型リチウム空気電池内に不活性ガスを供給する。これにより、爆発を抑制し、安全を確保することができる。
 具体的には、発熱等の異常が発生し、放電を緊急停止する必要がある場合には、バルブ204Aを開とし、バルブ202Eを開とすることにより、格納室201に充満した希ガスにより薄型リチウム空気電池101内に充満した空気もしくは酸素をパージし置換することにより、電池放電動作を停止させることができる。
 前記緊急時停止動作が異常な発熱反応速度に対して遅れてしまった場合においても、薄型リチウム空気電池101は不活性ガスを充填した格納室201内に格納されているので、薄型リチウム空気電池101内への水分の入り込みは完全に防止され、リチウムの発火を抑制し、従来に比べ安全性を高めて電池反応させることができる。
 また、薄型リチウム空気電池101は薄型リチウム空気電池用格納容器1001で覆われているので、仮に薄型リチウム空気電池内で爆発反応等が生じたとしても、被害を防止することができる。
(本発明の第2の実施形態)
<薄型リチウム空気電池用格納容器>
 図9は、本発明の実施形態である薄型リチウム空気電池用格納容器の別の一例を示す模式図である。
 図9に示すように、本発明の実施形態である薄型リチウム空気電池用格納容器1002は、連結部材302A、302Bが取り付けられた薄型リチウム空気電池102が格納されており、ガス管の配置構成が異なる他は本発明の第1の実施形態と概略同様の構成とされている。
 図10は、薄型リチウム空気電池102の斜視図である。図11は、図10に示す薄型リチウム空気電池102の平面図である。
 図10及び図11に示すように、薄型リチウム空気電池102は、収納容器92に収納されており、一端側と他端側からタブ97、98が突出している。
 連結部材302A、302Bは、その大部分が収納容器92の内側にとなるように配置され、それぞれ反対方向に収納容器91から突出するように配置されている。
 図12A、図12Bおよび図12Cは、図9~図11に示す連結部材の一例を示す図であって、図12Aは左側面図であり、図12Bは平面図であり、図12Cは正面図である。
 図12A、図12B、および図12Cに示すように、連結部材302Aは略円筒状であり、側面に平面視略長方形状に開口された電池連結部302Acが設けられている。先端側には、平面視円形状に開口された第3の連結部302Aaが設けられている。他端側は、閉口されている。第3の連結部302Aa及び電池連結部302Acを連通するように、ガス流通部302Adが設けられている。
 なお、連結部材302Bも同様の構成である。すなわち、側面に平面視略長方形状に開口された電池連結部が設けられている。先端側には、平面視円形状に開口された第3の連結部が設けられている。他端側は、閉口されている。第3の連結部及び電池連結部を連通するように、ガス流通部が設けられている。
 図13は、図11のB-B’線における断面図である。
 図13に示すように、積層体80は、両側で正極基材81のみが突出するように形成されている。また、正極基材81の突出された部分を嵌合するように連結部材302A、302Bが取り付けられている。また、隔壁フィルム100が正極基材81の間を塞ぐように配置されている。更に、連結部材302A、302B及び積層体80の一部を封止フィルム73が覆っている。
 封止フィルム73は、正極活物質である空気や酸素に対するバリア性を有するフィルムを用いる。隔壁フィルム100と同じ材質のフィルムを用いることができる。隔壁フィルム100の少なくとも表面は電気的絶縁性の高い材質であることが好ましい。図12A、図12B、および図12Cでは、一部のみを覆うように形成されているが、電気的絶縁性の高い材質の隔壁フィルム100を用いた場合には、積層体80を完全に覆うようにしてもよい。これにより、空気又は酸素ガスの漏洩をより低減でき、電池の反応効率を向上させることができる場合がある。
 図14は、薄型リチウム空気電池の製造プロセスを説明する図であって、連結部材302A、302Bを取り付け工程図である。
 まず、積層体80を用意し、正極基材81の突出された部分の間を隔壁フィルム100で塞ぐ。
 次に、図14Aおよび図14Bに示すように、正極基材81の突出された部分を電池連結部302Ac等で嵌合するように連結部材302A、302Bを取り付ける。
 次に、図14Cに示すように、積層体80及び連結部材302A、302Bを追うように封止フィルム73を貼り付ける。
 次に、封止フィルム73を貼り付けた積層体80及び連結部材302A、302Bを収納容器92内に配置して、薄型リチウム空気電池を製造することができる。
 なお、連結部材302A、302Bの外面に封止フィルム73をあらかじめ貼り付けておくことが好ましい。これにより、組立工程における位置ずれを抑制でき、作業効率を高めることができる。
 図9で示すように、連結部材302Aの第3の連結部302Aaの開口には、第3のガス管202Aが差し込まれ、嵌合される。また、連結部材302Bの第3の連結部の開口には、第4のガス管202Cが差し込まれ、嵌合される。
 以上の構成により、空気又は酸素ガスは、第3のガス管202Aから、第3の連結部302Aaを経由して、ガス流通部302Ad内を流通し、電池連結部302Acから正極基材81を経由して、薄型リチウム空気電池102内に供給される。
 空気又は酸素ガスは、薄型正極構造体86の孔部15A内を流通し、正極材82に取り込まれ、正極材82の細孔内の電解液中のリチウムイオンと電池反応を行う。
 反応に関与しない空気又は酸素ガスは、正極基材81から電池連結部302Acを経由して、ガス流通部302Ad内を流通し、連結部材302Bの第3の連結部を経由して、第4のガス管202Cから排気される。
 動作異常時には、第1の実施形態と同様に、バルブ204Aを開とし、バルブ204Cを開とすることにより、格納室201に充満した希ガスにより薄型リチウム空気電池102内に充満した空気もしくは酸素をパージし置換することにより、電池放電動作を停止させることができる。
 本実施形態の構成により、薄型リチウム空気電池102内の空気又は酸素の輸送効率が高まるとともに、動作異常時のガス置換効率も高まることになり、より安全な動作を実現することができる。
(本発明の第3の実施形態)
<薄型リチウム空気電池用格納容器>
 図15は、本発明の実施形態である薄型リチウム空気電池用格納容器の更に別の一例を示す模式図である。
 図15に示すように、本発明の実施形態である薄型リチウム空気電池用格納容器1003は、4枚の薄型リチウム空気電池102が格納され、これらが連結補助部材303A、303Bで連結されている他は本発明の第2の実施形態と概略同様の構成とされている。
 図16A、図16Bおよび図16Cは、連結補助部材の一例を示す図であって、図16Aは左側面図であり、図16Bは平面図であり、図16Cは正面図である。
図16AからCに示すように、連結補助部材303Aは、6本の円筒状部材が連結された構造である。
 図16Aに示すように、平面視円形状に開口された補助連結部303Aaが設けられている。
 図16Bに示すように、補助連結部303Aaは1本の円筒状部材の先端部分に設けられており、基端側は別の円筒状部材に連結されている。別の円筒状部材には4本の円筒状部材が連結されている。4本の円筒状部材の先端側には、平面視円形状に開口された部材連結部303Ac1、303Ac2、303Ac3、303Ac4が設けられている。
 別の円筒状部材の内部には、ガス流通部303Adが設けられている。ガス流通部303Adは、補助連結部303Aa、部材連結部303Ac1、部材連結部303Ac2、303Ac3、303Ac4に連通されている。
 図17は、連結補助部材で連結された4枚の薄型リチウム空気電池102の斜視図である。4枚の薄型リチウム空気電池102は直列配列となるように、タブ97、98が、タブ接続基材96によって接続されている。また、連結補助部材303A、303Bにより、4枚の薄型リチウム空気電池102が連結されている。
 連結補助部材303Aは、部材連結部303Ac1、303Ac2、303Ac3、303Ac4で、4枚の薄型リチウム空気電池102の連結部材302Aに嵌合する。
 同様に、連結補助部材303Bも、4枚の薄型リチウム空気電池102に嵌合する。連結補助部材303A、303Bにより、4枚の薄型リチウム空気電池102は安定して保持される。
 連結補助部材303Aは、補助連結部303Aaで、第3のガス管202Aに嵌合する。同様に、連結補助部材303Bも、補助連結部で、第4のガス管202Cに嵌合する。
 以上の構成により、空気又は酸素ガスは、第3のガス管202Aから、連結補助部材303A、連結部材302A、正極基材81を経由して、薄型リチウム空気電池102内に供給される。
 空気又は酸素ガスは、薄型正極構造体86の孔部15A内を流通し、正極材82に取り込まれ、正極材82の細孔内の電解液中のリチウムイオンと電池反応を行う。
 反応に関与しない空気又は酸素ガスは、正極基材81、連結部材302B、連結補助部材303Bを経由して、第4のガス管202Cから排気される。動作異常時には、第1の実施形態と同様に、バルブ204Aを開とし、バルブ204Cを開とすることにより、格納室201に充満した希ガスにより薄型リチウム空気電池102内に充満した空気もしくは酸素をパージし置換することにより、電池放電動作を停止させることができる。
 本実施形態の構成により、薄型リチウム空気電池102内の空気又は酸素の輸送効率が高まるとともに、動作異常時のガス置換効率をも高める事により安全な動作と、より高い出力電圧を実現することができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、薄型リチウム空気電池101、102を格納する格納室201を備えた薄型リチウム空気電池用格納容器であって、格納室201内に連通する第1のガス管202B及び第2のガス管202Dと、格納室201内に格納する薄型リチウム空気電池101、102内に連通する第3のガス管202A及び第4のガス管202Cと、第3のガス管202Aに格納室201内との連通を開閉制御するバルブ204Cとを有し、前記第1のガス管に不活性ガス供給源が取り付けられており、前記第3のガス管に空気又は酸素ガス供給源が取り付けられている構成なので、不活性ガスを格納容器内に効率的に充填するとともに、薄型リチウム空気電池内に空気又は酸素ガスを安定して、かつ、効率的に供給し、不活性ガスを充填した格納容器内に、薄型リチウム空気電池を格納することができ、発熱等の異常時に薄型リチウム空気電池内の空気又は酸素を不活性ガスと置換する機能を有するので、リチウムの発火を抑制し、安全性を高めることができる。また、格納室を備えているので、仮に薄型リチウム空気電池で爆発等が生じたとしても、被害を抑制することができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、格納室201内にセンサ210が備えられ、センサ210が所定の閾値を超えたときにバルブ204Cを開け、前記薄型リチウム空気電池内に不活性ガスを供給する構成なので、センサが異常を感知したときに、第3の配管に設けたバルブを開けて、第3のガス管内、薄型リチウム空気電池内、および第4のガス管内へ不活性ガスの供給し、不活性ガスで薄型リチウム空気電池内をパージして、爆発反応を抑制することができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、センサ210がガス成分センサ、圧力センサ及び温度センサのいずれか又はこれらのセンサの組み合わせである構成なので、センサが異常を感知したときに、第3の配管に設けたバルブを開けて、第3のガス管内、薄型リチウム空気電池内、および第4のガス管内へ不活性ガスの供給し、不活性ガスで薄型リチウム空気電池内をパージして、爆発反応を抑制することができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、第2のガス管202D及び第4のガス管202Cに排気機構が取り付けられている構成なので、第2のガス管からの排気量を調整して、格納室内の不活性ガス圧を調整することができ、第4のガス管からの排気量を調整して、薄型リチウム空気電池内の空気又は酸素ガス圧を調整することができ、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定して、かつ、効率的に供給できる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、第3のガス管202A及び/又は第4のガス管202Cに薄型リチウム空気電池101、102を連結する連結部材301、302A、302Bが取り付けられている構成なので、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定して、かつ、効率的に供給できる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、連結部材301が、第3のガス管202Aに連結する第1の連結部301aと、第4のガス管202Cに連結する第2の連結部301bと、第1の連結部301a及び第2の連結部301bに連通するガス流通部301dと、薄型リチウム空気電池101を連結する電池連結部301cと、を有する構成なので、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定して、かつ、効率的に供給できる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、前記連結部材302A、302Bが、第3のガス管202A又は第4のガス管202Cに嵌合する第3の連結部302Aaと、第3の連結部302Aaに連通するガス流通部302Adと、薄型リチウム空気電池102を連結する電池連結部302Acと、を有する構成なので、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定して、かつ、効率的に供給できる。
 本発明の実施形態である薄型リチウム空気電池用格納容器は1001、1002、1003、電池連結部301cが、薄型リチウム空気電池101の収納容器91の開口部99を含む部分を嵌合する構成なので、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定して、かつ、効率的に供給できる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、電池連結部302Acが、薄型リチウム空気電池102の正極基材81を嵌合する構成なので、不活性ガスを充填した格納容器内に格納した薄型リチウム空気電池に空気又は酸素ガスを安定して、かつ、効率的に供給できる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、第3のガス管202A及び第4のガス管202Cと連結部材302A、302Bとの間に連結補助部材303A、303Bが取り付けられている構成なので、2以上の薄型リチウム空気電池を安定に固定することができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、連結補助部材303A、303Bが、第3のガス管202A及び第4のガス管202Cに連結する補助連結部303Aaと、前記連結部材302A、302Bに連結する部材連結部303Ac1、303Ac2、303Ac3、303Ac4と、を有する構成なので、2以上の薄型リチウム空気電池を安定に固定することができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、部材連結部303Ac1、303Ac2、303Ac3、303Ac4が4つ設けられている構成なので、4個の薄型リチウム空気電池を安定に固定することができ、安全性を高めた状態で電池反応をさせることができる。
 本発明の実施形態である薄型リチウム空気電池用格納容器1001、1002、1003は、上記実施形態に限定されるものではなく、本発明の技術的思想の範囲内で、種々変更して実施することができる。本実施形態の具体例を以下の実施例で示す。しかし、本発明はこれらの実施例に限定されるものではない。
(実施例1)
<薄型空気リチウム空気電池用格納容器>
 図18は、実施例1の装置構成を示す模式図である。
 まず、本発明の第2の実施形態で示した薄型空気リチウム空気電池を1個用意した。この収納容器としてはラミネートパッケージを用いた。
 次に、図18に示すように、連結補助部材をそれぞれ第3のガス管202A及び第4のガス管202Cに接続してから、出力端子207、208を有する薄型空気リチウム空気電池用格納室201内に格納した。
 次に、第1のガス管202Bを外部の不活性ガスの供給システムに接続し、第3のガス管202Aを外部の酸素供給ための濃縮器(空気又は酸素ガス供給源:正極活物質供給源)に接続した。
 次に、ガス供給・排気システムに必要なポンプ203A、203B、2203A、2203B及びバルブ2204A、2204B、2204C、2204D、2204E、2204F、2204G、2204H、2204I、2204Jを接続した。
 次に、内部異常検知のための圧力センサ210D、温度センサ210C、ガス成分センサ210Aを接続した。
 酸素ガス流路内のガス成分センサ210AとしてCO検知器を用いた。その理由は、異常動作に伴い炭化水素系の電解質の分解が起こると予想したからである。
 薄型空気リチウム空気電池用格納容器本体にも容器内部の圧力センサ210E、ガス成分センサ210BとしてCO検知器を設置した。容器内部は、排気用の排気ポンプ203B、2203Bおよびバルブ2204A、2204H、2204I、2204Jにより制御される。圧力センサ210D、210Eのモニタ値によって排気をするシステムとし、別途防爆弁も追加した(図示略)。圧力センサの異常や動作不良がありうるので、二重の安全性をもたせた。
<薄型空気リチウム空気電池用格納容器の安全機構>
 次に、格納室201内に不活性ガスを供給してから、ポンプ及びバルブを操作して、薄型空気リチウム空気電池用格納容器内の不活性ガス圧を所定値に保持した。
 次に、薄型空気リチウム空気電池102内に空気又は酸素ガスを供給してから、ポンプ及びバルブを操作して、薄型空気リチウム空気電池102内の空気又は酸素ガス圧を所定値に保持した。
 この状態で、電池反応を行った。
 通常放電時は、酸素供給律速状態を解消するため、酸素ガス流路の圧力を圧力センサ210Dでモニタしながら、カットバルブの開閉および圧送ポンプ203Aを制御して、ガス圧力を調整し、加圧状態とした。
 薄型空気リチウム空気電池用格納容器201には、異常時対応システムを取り付けた(図示略)。薄型空気リチウム空気電池用格納容器201内で異常が生じたときは、異常対処モードの動作に移行する。
 具体的には、放電時および充電時とも、積層ラミパッケージ表面に設置された温度センサ210Cの温度上昇、ラミパッケージ内酸素ガス流路の圧力異常(圧力センサ210Dで検知)、および酸素ガス流路のガス成分異常(COセンサ210Aで検知)のいずれかが発生した時点で、異常対処モード1の動作に移行する。収納容器本体の圧力異常(圧力センサ210Eで検知)、収納容器本体内部のガス成分異常(COセンサ210Bで検知)のいずれかも発生した場合には、異常対処モード2の動作に移行する。
<異常感知システム>
 図19は、実施例1の異常感知システムの信号系統図であって、異常時対応システムにおける各センサからの出力の異常対処動作のシーケンスを示す概略図である。
 図19に示すように、異常時対応システムへ入力される各センサからのアナログ信号は所定の閾値を超えると、ポンプ駆動用(電磁)リレー1~3にて、圧送ポンプ1、2、排気ポンプのオンオフを行い、バルブ駆動用マニホールド1~7にて、バルブ1~7の開閉動作を行う構成とした。
 表1は、各供給装置、ポンプ、バルブの動作シーケンスである。通常放電時、放電異常時、通常充電時、充電異常時にわけ、かつ格納容器内には異常がないモード1と格納容器内部にも異常を検知したモード2にわけて示している。
Figure JPOXMLDOC01-appb-T000001
 異常時の基本動作は、酸素濃縮器および圧送ポンプの停止、カットバルブの閉鎖・開動作である。
 具体的には、モード1の異常時の基本動作は、ポンプ駆動用(電磁)リレー2を用いて圧送ポンプ2を停止、バルブ駆動用マニホールド2にてバルブ2を閉鎖、バルブ駆動用マニホールド4にてバルブ4を開動作、となる。排気ポンプ1は動作し続ける。
 不活性ガスの供給系としては、ポンプ駆動用(電磁)リレー1にて圧送ポンプ1を動作、バルブ駆動用マニホールド1にてバルブ1は開状態を維持する。
 排ガス系についてはバルブ駆動用マニホールド5にてバルブ5、バルブ駆動用マニホールド6にてバルブ6の開動作を開け、排気ポンプを動作させる。モード1については、薄型リチウム空気電池内部の異常であるため、バルブ8は閉状態を維持する。以上の動作により、薄型リチウム空気電池内の酸素の分圧(濃度)を一気に低減して、発火、爆発等の制御不能な危険な状態を回避できた。
 モード2は、格納容器内部の圧力センサ2もしくはガス成分センサ2の異常により移行する。この場合には格納容器内部も排気する必要があるため、モード1の動作に加え、バルブ駆動用マニホールド8にてバルブ8、バルブ駆動用マニホールド10にてバルブ10を開動作、排気ポンプ2を動作させる。以上により、薄型リチウム空気電池内部および格納容器内部を同時に不活性ガスで置換することができ、発火等の危険な状態を回避できた。
 本発明は、動作時の急激な酸化発熱反応(発火)を抑制し、安全性を高めた薄型リチウム空気電池用格納容器に関するものであり、電池産業、エネルギー産業等に利用可能性がある。
 15A  孔部
 73  封止フィルム
 80  積層体
 81  正極基材
 82  正極材
 83  セパレータ
 84  負極基材
 85  負極材
 86  薄型正極構造体
 87  薄型負極構造体
 88  単位構造部
 91、92  収納容器
 96  タブ接続部材
 97、98  タブ
 99  開口部
 100  隔壁フィルム
 101、102  薄型リチウム空気電池
 201  格納室
 202A  第3のガス管
 202B  第1のガス管
 202C  第4のガス管
 202D  第2のガス管
 202E  第5のガス管
 203A、203B  圧送ポンプ
 204A、204B、204C  バルブ
 205、206  ブレード
 207、208  出力端子
 210  センサ
 211  配線
 301  連結部材
 301a  第1の連結部
 301b  第2の連結部
 301c  電池連結部
 301d  ガス流通部
 302A  連結部材
 302Aa  第3の連結部
 302Ac  電池連結部
 302Ad  ガス流通部
 302B  連結部材
 303A  連結補助部材
 303Aa  補助連結部
 303Ac1、303Ac2、303Ac3、303Ac4  部材連結部
 303Ad  ガス流通部
 303B  連結補助部材
 1001、1002、1003  薄型リチウム空気電池用格納容器
 2201  格納容器
 2202A、2202B  ガス管
 2203A、2203B  ポンプ
 2204A、2204B、2204C、2204D、2204E、2204F、2204G、2204H、2204I、2204J  バルブ
 2205、2206  ブレード
 2207、2208  出力端子。

Claims (15)

  1.  薄型リチウム空気電池を格納する格納室を備えた薄型リチウム空気電池用格納容器であって、
     前記格納室内に連通する第1のガス管及び第2のガス管と、
     前記格納室内に格納する薄型リチウム空気電池内に連通する第3のガス管及び第4のガス管と、
     前記第3の配管に前記格納室内との連通を開閉制御するバルブとを有し、
     前記第1のガス管に不活性ガス供給源が取り付けられており、
     前記第3のガス管に空気又は酸素ガス供給源が取り付けられていることを特徴とする薄型リチウム空気電池用格納容器。
  2.  前記格納室内にセンサが備えられ、前記センサが所定の閾値を超えたときに前記バルブを開け、前記薄型リチウム空気電池内に不活性ガスを供給することを特徴とする請求項1に記載の薄型リチウム空気電池用格納容器。
  3.  前記センサがガス成分センサ、圧力センサ及び温度センサのいずれか又はこれらのセンサの組み合わせであることを特徴とする請求項2に記載の薄型リチウム空気電池用格納容器。
  4.  前記第2のガス管及び前記第4のガス管に排気機構が取り付けられていることを特徴とする請求項1~3のいずれか1項に記載の薄型リチウム空気電池用格納容器。
  5.  前記第3のガス管及び前記第4のガス管の少なくともどちらか一方に薄型リチウム空気電池を連結する連結部材が取り付けられていることを特徴とする請求項1~4のいずれか1項に記載の薄型リチウム空気電池用格納容器。
  6.  前記連結部材が、前記第3のガス管に連結する第1の連結部と、前記第4のガス管に連結する第2の連結部と、前記第1の連結部及び前記第2の連結部に連通するガス流通部と、薄型リチウム空気電池を連結する電池連結部と、を有することを特徴とする請求項5に記載の薄型リチウム空気電池用格納容器。
  7.  前記連結部材が、前記第3のガス管又は前記第4のガス管に嵌合する第3の連結部と、前記第3の連結部に連通するガス流通部と、薄型リチウム空気電池を連結する電池連結部と、を有することを特徴とする請求項5に記載の薄型リチウム空気電池用格納容器。
  8.  前記電池連結部が、薄型リチウム空気電池の収納容器の開口部を含む部分を嵌合することを特徴とする請求項5又は請求項6に記載の薄型リチウム空気電池用格納容器。
  9.  前記電池連結部が、薄型リチウム空気電池の正極基材を嵌合することを特徴とする請求項5又は請求項6に記載の薄型リチウム空気電池用格納容器。
  10.  前記第3のガス管及び前記第4のガス管と連結部材との間に連結補助部材が取り付けられていることを特徴とする請求項5~9のいずれか1項に記載の薄型リチウム空気電池用格納容器。
  11.  前記連結補助部材が、前記第3のガス管又は前記第4のガス管に連結する補助連結部と、前記連結部材に連結する部材連結部と、を有することを特徴とする請求項10に記載の薄型リチウム空気電池用格納容器。
  12.  前記部材連結部が2以上設けられていることを特徴とする請求項11に記載の薄型リチウム空気電池用格納容器。
  13.  薄型リチウム空気電池格納容器と、前記薄型リチウム空気電池格納容器内に設けられた格納室と、前記格納室内に格納された薄型リチウム空気電池とを備える電池であって、
     前記リチウム空気電池格納容器は、前記格納室内に連通する第1のガス管及び第2のガス管と、
     前記格納室内に格納する薄型リチウム空気電池内に連通する第3のガス管及び第4のガス管と、
     前記第3の配管に前記格納室内との連通を開閉制御するバルブとを有し、
     前記第1のガス管に不活性ガス供給源が取り付けられており、
     前記第3のガス管に空気又は酸素ガス供給源が取り付けられ、
     前記薄型リチウム空気電池は、板状の正極基材に多孔体からなる正極材が接合された薄型正極構造体を有し、
     前記正極基材又は前記正極材の一の側面から対向する側面に通ずるガス流路が形成されていることを特徴とする電池。
  14.  前記ガス流路が、前記正極基材の一の側面から対向する側面に通ずる孔であることを特徴とする請求項13に記載の電池。
  15.  前記ガス流路が、前記正極材の一の側面から対向する側面に通ずる溝であることを特徴とする請求項13に記載の電池。
PCT/JP2012/080149 2011-11-21 2012-11-21 薄型リチウム空気電池用格納容器および電池 WO2013077350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12851917.0A EP2775560B1 (en) 2011-11-21 2012-11-21 Storage container for thin lithium-air cell, and cell
US14/358,885 US9564645B2 (en) 2011-11-21 2012-11-21 Storage container for thin lithium-air cell, and cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011254162A JP5843147B2 (ja) 2011-11-21 2011-11-21 薄型リチウム空気電池用格納容器
JP2011-254162 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013077350A1 true WO2013077350A1 (ja) 2013-05-30

Family

ID=48469792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080149 WO2013077350A1 (ja) 2011-11-21 2012-11-21 薄型リチウム空気電池用格納容器および電池

Country Status (4)

Country Link
US (1) US9564645B2 (ja)
EP (1) EP2775560B1 (ja)
JP (1) JP5843147B2 (ja)
WO (1) WO2013077350A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235053B1 (en) * 2014-12-18 2019-09-18 Robert Bosch GmbH Metal/air battery with gas separations unit and load-leveling oxygen storage system
GB2533583A (en) * 2014-12-22 2016-06-29 Airbus Operations Ltd Inerting arrangement, aircraft comprising the same and a method of providing inert gas
CN104767239B (zh) * 2015-03-18 2018-03-09 九能京通(天津)新能源科技有限公司 便携式应急电源
US10381698B2 (en) 2015-04-29 2019-08-13 Samsung Electronics Co., Ltd. Metal air battery having air purification module, electrochemical cell having air purification module and method of operating metal air battery
KR102409386B1 (ko) 2015-07-08 2022-06-15 삼성전자주식회사 금속 공기 전지 시스템 및 그 작동 방법
KR102409387B1 (ko) * 2015-07-14 2022-06-15 삼성전자주식회사 금속 공기 전지 및 금속 공기 전지의 운전 방법
KR102409388B1 (ko) * 2015-07-28 2022-06-15 삼성전자주식회사 금속 공기 전지 및 이를 포함하는 차량 시스템과 차량 시스템의 운전 방법
KR102420010B1 (ko) 2015-07-29 2022-07-12 삼성전자주식회사 금속-공기 전지장치 및 금속-공기 전지장치의 작동 방법
KR102475890B1 (ko) * 2015-10-08 2022-12-08 삼성전자주식회사 금속 공기 전지 시스템 및 그 작동 방법
DE102015223136A1 (de) * 2015-11-24 2017-05-24 Robert Bosch Gmbh Batteriezelle, Batteriemodul und Verfahren zum Betrieb derselben
WO2018033217A1 (en) * 2016-08-19 2018-02-22 Toyota Motor Europe Control device and method for charging a non-aqueous rechargeable metal-air battery
JP6724719B2 (ja) * 2016-10-26 2020-07-15 トヨタ自動車株式会社 電池構造体、電池システム及び車両
CN108172951B (zh) * 2016-12-08 2020-02-21 中国科学院大连化学物理研究所 一种锌空气电池系统及其控制方法
US20180212284A1 (en) * 2017-01-25 2018-07-26 Panasonic Intellectual Property Management Co., Ltd. Battery system
CN109065982B (zh) * 2018-08-01 2021-03-09 华霆(合肥)动力技术有限公司 电池爆喷检测装置及电子设备
US10957919B2 (en) * 2018-10-03 2021-03-23 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for heat exchange between gaseous fuel tank and heat transfer medium
US20220376516A1 (en) * 2021-05-20 2022-11-24 Yantai Chungway New Energy Technology Co., Ltd. Battery pack charging system and charging method thereof
WO2023055273A1 (en) * 2021-09-28 2023-04-06 Nilar International Ab A metal hydride battery with means for introducing a gas into the battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502118A (ja) 2004-06-09 2008-01-24 ザ ジレット カンパニー 電気化学電池
WO2008136296A1 (ja) * 2007-05-01 2008-11-13 Toyota Jidosha Kabushiki Kaisha 空気電池システム
JP2010135144A (ja) * 2008-12-03 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池及びリチウム空気二次電池の製造方法
WO2010082338A1 (ja) * 2009-01-16 2010-07-22 トヨタ自動車株式会社 空気二次電池およびその製造方法
JP2010192313A (ja) 2009-02-19 2010-09-02 Mie Univ リチウム空気電池
JP2011096456A (ja) 2009-10-28 2011-05-12 Toyota Motor Corp リチウム空気電池
JP2011096586A (ja) 2009-10-30 2011-05-12 Ohara Inc リチウム空気電池
JP2011096492A (ja) 2009-10-29 2011-05-12 Sony Corp リチウム空気電池
JP2011108512A (ja) 2009-11-18 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池及びリチウム空気二次電池の製造方法
JP2011108388A (ja) 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023040A1 (en) * 2007-07-19 2009-01-22 Ford Motor Company Oxygen removal systems during fuel cell shutdown
JP2010244929A (ja) * 2009-04-08 2010-10-28 Toyota Motor Corp 金属空気電池
KR101153715B1 (ko) * 2010-04-16 2012-06-14 주식회사 이엠따블유에너지 공기 금속 전지 충전 장치 및 이를 포함하는 공기 금속 전지 충전 시스템

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008502118A (ja) 2004-06-09 2008-01-24 ザ ジレット カンパニー 電気化学電池
WO2008136296A1 (ja) * 2007-05-01 2008-11-13 Toyota Jidosha Kabushiki Kaisha 空気電池システム
JP2010135144A (ja) * 2008-12-03 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池及びリチウム空気二次電池の製造方法
WO2010082338A1 (ja) * 2009-01-16 2010-07-22 トヨタ自動車株式会社 空気二次電池およびその製造方法
JP2010192313A (ja) 2009-02-19 2010-09-02 Mie Univ リチウム空気電池
JP2011096456A (ja) 2009-10-28 2011-05-12 Toyota Motor Corp リチウム空気電池
JP2011096492A (ja) 2009-10-29 2011-05-12 Sony Corp リチウム空気電池
JP2011096586A (ja) 2009-10-30 2011-05-12 Ohara Inc リチウム空気電池
JP2011108388A (ja) 2009-11-13 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> リチウム空気電池
JP2011108512A (ja) 2009-11-18 2011-06-02 Nippon Telegr & Teleph Corp <Ntt> リチウム空気二次電池及びリチウム空気二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775560A4

Also Published As

Publication number Publication date
JP2013109959A (ja) 2013-06-06
EP2775560A1 (en) 2014-09-10
EP2775560A4 (en) 2014-11-05
US20150024291A1 (en) 2015-01-22
JP5843147B2 (ja) 2016-01-13
US9564645B2 (en) 2017-02-07
EP2775560B1 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5843147B2 (ja) 薄型リチウム空気電池用格納容器
US9437854B2 (en) Battery pack
EP2057709B1 (en) Secondary battery including one-way exhaust valve
US11011786B2 (en) Battery and battery system
US9048506B2 (en) Secondary battery and manufacturing method thereof
WO2012014348A1 (ja) 電池モジュール及び電池パック
JP6376273B2 (ja) 電源装置
US20100047673A1 (en) Battery pack and battery-mounted device
JP4218267B2 (ja) 集合電池
JP2008103239A (ja) 扁平型電気化学セル及びそれを組み合わせてなる組電池
US20120196161A1 (en) Secondary battery including one-way exhaust member
KR20200095536A (ko) 프리즘 파우치 하이브리드 배터리 모듈
JP2015088324A (ja) 電池の製造方法および製造装置
KR20100124209A (ko) 축전 디바이스
US20220096885A1 (en) Extinguishing battery thermal runaway
JP2011108433A (ja) 蓄電装置
KR20160015853A (ko) 리튬공기 배터리
JP2012199186A (ja) 電池モジュール
JP5518496B2 (ja) 燃料電池スタックおよび燃料電池自動車
WO2023044764A1 (zh) 压力平衡机构、电池、用电装置、制备电池的方法和装置
US20230178843A1 (en) Secondary Battery
JP2004178909A (ja) 密閉式二次電池
JP2023544047A (ja) 電池の筐体、電池、電力消費装置、電池の製造方法及び装置
KR20170025700A (ko) 이차 전지 모듈
JP6942092B2 (ja) 電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012851917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14358885

Country of ref document: US