WO2013077219A1 - Resin composition for optical material - Google Patents

Resin composition for optical material Download PDF

Info

Publication number
WO2013077219A1
WO2013077219A1 PCT/JP2012/079318 JP2012079318W WO2013077219A1 WO 2013077219 A1 WO2013077219 A1 WO 2013077219A1 JP 2012079318 W JP2012079318 W JP 2012079318W WO 2013077219 A1 WO2013077219 A1 WO 2013077219A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
acrylate
meth
dispersant
Prior art date
Application number
PCT/JP2012/079318
Other languages
French (fr)
Japanese (ja)
Inventor
真徳 大本
直樹 池
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN201280055373.8A priority Critical patent/CN103987781B/en
Priority to KR1020147013956A priority patent/KR101606303B1/en
Publication of WO2013077219A1 publication Critical patent/WO2013077219A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Definitions

  • the present invention relates to a resin composition for optical materials, and more particularly to a resin composition for optical materials having a low refractive index and an Abbe number of a resin obtained by curing and capable of suppressing yellowing.
  • Resin lenses are widely used in cameras, office automation equipment, and glasses. Such a resin lens is required to have a high refractive index.
  • Patent Document 1 discusses a dispersion in which a large amount of metal oxide fine particles such as zirconium oxide surface-treated with an organic acid are dispersed in the resin.
  • Patent Document 2 a dispersion in which metal oxide fine particles are treated with an organosilicon compound and dispersed in a large amount in a resin is studied.
  • the zirconium oxide particles are dispersed in the resin as described above, there arises a problem that the resin is easily yellowed over time.
  • the problem of yellowing of the resin can be solved by adding an organosilicon compound as in Reference 2.
  • the amount of zirconium oxide is increased, the viscosity of the dispersion itself greatly increases, and in some cases, it becomes impossible to stir.
  • An object of the present invention is to provide a resin composition for an optical material that can suppress yellowing of a resin over time and can form a resin having a high refractive index that is excellent in transparency and heat resistance.
  • the resin composition for optical materials of the present invention comprises zirconium oxide particles having an average particle size of 1 to 30 nm, a dispersant comprising a compound represented by the following formula (1), an organosilicon compound, a polymerizable unsaturated group It contains the compound which has this.
  • R is a branched chain alkyl group and / or alkenyl group having 3 to 24 carbon atoms
  • AO is an oxyalkylene group having 1 to 4 carbon atoms
  • n is an alkylene group It is a numerical value in the range of 3 to 30 indicating the average number of moles of oxide added
  • X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
  • X in the formula (1) in the dispersant is preferably an alkylene group having 1 to 15 carbon atoms.
  • X in the formula (1) is preferably a linking group represented by the following formula (2).
  • Y in the formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  • the blending amount of the zirconium oxide particles when the resin composition for optical materials is 100% by weight is preferably 0.5 to 80% by weight.
  • the resin composition for an optical material of the present invention has a low viscosity despite a large amount of zirconium oxide particles and an organosilicon compound, can suppress yellowing of the resulting cured resin over time, and is transparent. Resin having a high refractive index and excellent heat resistance and heat resistance and a low haze value can be formed.
  • the zirconium oxide particles that are dispersoid particles in the resin composition for optical materials of the present invention have an average particle diameter of 1 to 30 nm.
  • the zirconium oxide particles may be partially stabilized by adding other metal oxides. Further, it may be crystalline or amorphous. Further, the dispersoid particles dispersed by the dispersant in the present invention may be isotropic particles, anisotropic particles, or fibrous.
  • zirconium oxide particles to be dispersed in the present invention those obtained by a known method can be used.
  • a method for preparing fine particles a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which particles are formed through a cluster state in which several unit particles are generated and aggregated.
  • any one prepared by any method can be suitably used. Further, they may be either a wet method or a dry method.
  • the bottom-up method includes a physical method and a chemical method, and any method may be used.
  • the dispersant in the present invention may be used in a top-down process in which coarse particles are mechanically pulverized and refined to form several unit particles, which pass through a cluster state in which they are aggregated. May be used in a bottom-up process in which particles are formed, or after preparing fine particles in advance by the above-described method, a surface modifier or surface protective agent is used to stably remove the fine particles from the medium. It is also possible to use particles taken out after being coated or impregnated with a known protective agent. As the protective agent, the above-mentioned known dispersants can be substituted.
  • a method for preparing metal nanoparticles among the zirconium oxide particles will be exemplified.
  • a representative example of a physical method is an in-gas evaporation method in which bulk metal is evaporated in an inert gas and cooled and condensed by collision with the gas to generate nanoparticles.
  • Chemical methods include a liquid phase reduction method in which metal ions are reduced in the liquid phase in the presence of a protective agent, and the generated zero-valent metal is stabilized at the nanosize, and a metal complex thermal decomposition method. is there.
  • a chemical reduction method an electrochemical reduction method, a photoreduction method, a method combining a chemical reduction method and a light irradiation method, or the like can be used.
  • the zirconium oxide particles that can be suitably used in the present invention may be those obtained by any of the top-down method and the bottom-up method, and they are aqueous, non-aqueous, and in the gas phase. It may be prepared in any environment. In addition, when using these zirconium oxide particles, you may use what disperse
  • the refractive index of the resin obtained by curing is increased, and the Abbe number can be increased.
  • a preferable blending amount of the zirconium oxide particles in the resin composition for an optical material of the present invention is 0.5 to 80% by weight with respect to the whole composition (100% by weight), more preferably from the viewpoint of refractive index and viscosity. Is 30 to 70% by weight, more preferably 35 to 60% by weight.
  • the hydrophobic group (R) of the dispersant in the present invention is a branched chain alkyl group and / or alkenyl group having 3 to 24 carbon atoms.
  • the content of the branched alkyl group having 3 to 24 carbon atoms and / or alkenyl is preferably 70% by weight or more based on the entire R.
  • the raw material alcohol that can be used to generate R may have a single carbon number or a mixture of alcohols having different carbon numbers.
  • the raw material alcohol may be synthetically or naturally derived, and the chemical structure may be a single composition or a mixture of a plurality of isomers.
  • known alcohols can be selected. Specific examples include butanol, isobutanol, pentanol and / or its isomer, hexanol and / or its isomer, heptanol and / or its isomer derived from synthesis.
  • Octanol and / or its isomer 3,5,5-trimethyl-1-hexanol, isononanol, isodecanol, isounol produced by the oxo process via higher olefins derived from propylene or butene, or mixtures thereof
  • Decanol, isododecanol, isotridecanol, Neodol 23, 25, 45 manufactured by Shell Chemicals, SAFOL23 manufactured by Sasol, EXXAL7, EXXAL8N, EXXAL9, EXXAL10, EXXXAL11 and EXXXA manufactured by Exxon Mobil 13 illustrates another example of a higher alcohol which can be suitably used.
  • octyl alcohol decyl alcohol, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), oleyl alcohol (Cis-9-octadecene-1-ol) and the like are also examples of higher alcohols that can be used.
  • a single composition of Guerbet alcohol having a 2-alkyl-1-alkanol type chemical structure (Guerbet Alcohol) or a mixture thereof is also an example of a higher alcohol that can be suitably used.
  • the hydrophobic group (R) contains a branched alkyl group and / or alkenyl group having 3 to 24 carbon atoms.
  • the hydrophobic group (R) is hydrogen or a hydrocarbon group having 1 to 2 carbon atoms
  • the carbon number exceeds 25
  • the hydrophobic group (R) has a carbon number in the range of 3 to 24
  • the zirconium oxide particles cannot be stably dispersed in the dispersion medium, or the selection range of the dispersion medium that can be used. May be limited, or substitution or mixing with a different type of dispersion medium may occur in the dispersion preparation process.
  • the hydrophobic group (R) is more preferably a branched alkyl group having 8 to 18 carbon atoms. .
  • Dispersant oxyalkylene group (AO) n the alkylene oxide species suitably selected as the dispersant in the formula (1) is that AO represents an oxyalkylene group having 1 to 4 carbon atoms, specifically, an alkylene oxide having 2 carbon atoms is ethylene oxide. It is.
  • the alkylene oxide having 3 carbon atoms is propylene oxide.
  • the alkylene oxide having 4 carbon atoms is tetrahydrofuran or butylene oxide, and is preferably 1,2-butylene oxide or 2,3-butylene oxide.
  • the oxyalkylene chain (-(AO) n-) is blocked by either a homopolymer chain or a random polymer chain of two or more alkylene oxides for the purpose of adjusting the dispersion medium affinity of the dispersant. It may be a polymer chain or a combination thereof.
  • N representing the average number of added moles of the alkylene oxide of the formula (1) is in the range of 3 to 30, but is preferably in the range of 5 to 20.
  • Dispersing agent linking group (X) can be selected from a known structure consisting of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a saturated hydrocarbon group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, or an ester group. It may have an alicyclic structure or an aromatic ring structure, and may have a repeating unit.
  • the linking group X contains a nitrogen atom and / or a sulfur atom and / or a phosphorus atom, it has an action of weakening the affinity effect of the carboxyl group on the dispersoid, and thus is not suitable as a structural factor of the dispersant in the present invention. .
  • X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.
  • X in the formula (1) is preferably a substance represented by the above formula (2).
  • Y in Formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  • R is preferably a branched alkyl group having 8 to 18 carbon atoms
  • n is the average number of moles of ethylene oxide added, preferably in the range of 5 to 20.
  • the blending amount of the dispersant in the present invention is not particularly limited, but is 0.5 wt% or more and 25 wt% or less, and 0.5 to 20 wt% with respect to the zirconium oxide particles. Is preferable, and more preferably 1.25 wt% or more and 10 wt% or less.
  • the dispersant in the present invention can be produced by a known method. For example, using a general nonionic surfactant compound obtained by adding an alkylene oxide to an alcohol, amine, or thiol by a known method as a raw material, a monohalogenated lower carboxylic acid or a salt thereof is used. Although it can manufacture by the method of making it react with a hydroxyl group, or the method of ring-opening reaction with the hydroxyl group of the alkylene oxide terminal using an acid anhydride, it is not limited to these methods.
  • hydrophobic groups alkylene oxide types and addition forms thereof, addition molar amounts, linking groups, etc. are particularly limited within the above-mentioned range, so that a wider range of types than known dispersants can be selected.
  • the industrial utility value is great in that it can disperse various dispersoids and can disperse and stabilize the dispersoids in a wider variety of dispersion media.
  • the dispersant used in the present invention should be used by reducing the content of ionic species, particularly alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions, contained by a known purification method. Can do.
  • the ionic species in the dispersant is greatly affected by the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion.
  • it is desirable that the content of the ions is less than 10 ppm in the dispersant.
  • the resin composition for an optical material of the present invention can be prepared using a known stirring means, homogenizing means, and dispersing means.
  • dispersers that can be used include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned.
  • the dispersion treatment can be performed in an ultrasonic wave generation bath.
  • Organosilicon compound As the organosilicon compound in the resin composition for an optical material of the present invention, when the surface of the zirconium oxide particles is modified, the reactivity with respect to a chemical reaction such as oxidation or reduction reaction is low or non-reactive. In addition, those having high affinity for a dispersion medium such as water, an organic solvent, and a resin are preferable. Among these, one or more selected from the group of modified silicone, silicone resin, alkoxysilane compound, chlorosilane compound, silanol compound, and silazane compound are particularly preferable.
  • modified silicone examples include alkoxy-modified silicone, epoxy-modified silicone, epoxy-polyether-modified silicone, carbinol-modified silicone, silanol-modified silicone, mercapto-modified silicone, aralkyl-modified silicone, methacryl-modified silicone, methacrylate-modified silicone, and carboxyl-modified silicone.
  • the modified silicone includes vinyl group and / or silicon as long as it does not affect the surface activity of the zirconium oxide particles and does not impair the optical and mechanical properties of the resin when forming a composite with the resin. Those having a functional group bonded to an atom may be used.
  • silicone resin examples include methyl silicone resin, phenylmethyl silicone resin, diphenyl silicone resin, and the like.
  • alkoxysilane compound examples include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, and hexyltriethoxy.
  • Examples include silane, decyltrimethoxysilane, phenyltrimethoxysilane, diphenyltrimethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, and trifluoropropyltrimethoxysilane.
  • chlorosilane compound examples include alkylchlorosilane, and examples of the alkylchlorosilane include methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane, trimethylchlorosilane, and triethylchlorosilane.
  • silanol compounds examples include trimethylsilanol and triethylsilanol.
  • alkoxysilane compounds, chlorosilane compounds, and silanol compounds are in a range that does not affect the surface activity of the zirconium oxide particles, and in a range that does not impair the optical properties and mechanical properties of the resin when forming a composite with the resin.
  • silazane compound examples include hexamethyldisilazane.
  • Compound having a polymerizable unsaturated group The compound having a polymerizable unsaturated group that can be used in the present invention is not particularly limited as long as it has a polymerizable functional group capable of undergoing a curing reaction after formation of a coating film.
  • carboxylic acid group-containing unsaturated polymerizable monomers, alkyl esters of carboxylic acid group-containing unsaturated polymerizable monomers, vinyl compounds and urethane acrylates can be preferably used.
  • carboxylic acid group-containing unsaturated polymerizable monomer examples include (meth) acrylic acid, crotonic acid, maleic acid and itaconic acid.
  • alkyl esters of carboxylic acid group-containing unsaturated polymerizable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, N-butyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, (meth ) Decyl acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid-t-butylcyclohexyl, (meth) acrylic acid Iso
  • vinyl compound examples include vinyl acetate, vinyl propionate, styrene, ⁇ -methylstyrene, vinyl toluene, acrylonitrile, methacrylonitrile, butadiene and isoprene.
  • Urethane acrylate is obtained by reacting polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • polyisocyanate which can be used for urethane acrylate, Tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, phenylene diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, hexamethylene diisocyanate, trimethyl Examples include hexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, norbornene diisocyanate, and modified products thereof.
  • an isocyanate group-terminated urethane prepolymer obtained by reacting a polyisocyanate and a polyol can also be used as the polyisocyanate.
  • polyols include, but are not limited to, polyol compounds such as alkylene glycol, trimethylol alkane, glycerin and pentaerythritol, as well as polyether polyols, polyester polyols, polycaprolactone polyols, polyolefin polyols, polybutadiene polyols, and polycarbonates. A polyol etc. are also mentioned.
  • the hydroxyl group-containing (meth) acrylate that can be used for urethane acrylate is a (meth) acrylate compound having one or more hydroxyl groups in the molecule.
  • examples of such a compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxyethylacryloyl.
  • Phosphate 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipenta
  • examples include erythritol penta (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, and cyclohexanedimethanol mono (meth) acrylate.
  • the resin composition for an optical material of the present invention can be polymerized by a known polymerization reaction such as a photopolymerization reaction or a thermal polymerization reaction.
  • a known polymerization initiator such as a photopolymerization initiator or a thermal polymerization initiator can be used.
  • photopolymerization initiator examples include a benzophenone polymerization initiator, an acetophenone polymerization initiator, and an anthraquinone photopolymerization initiator.
  • thermal polymerization initiators in addition to azo polymerization initiators and substituted ethane polymerization initiators, peroxide initiators such as persulfates and peroxides, sulfites, hydrogen sulfites and metal salts, etc. And redox polymerization initiators in combination with other reducing agents.
  • the amount of the polymerization initiator used is usually 0.005 to 10 parts by weight per 100 parts by weight of the compound having a polymerizable unsaturated group.
  • the polymerization method a known method such as emulsion polymerization is used.
  • the polymerization temperature is adjusted depending on the kind of the polymerization initiator, and is preferably 20 ° C. to 100 ° C., for example.
  • those having a polymerizable unsaturated group those having three or more polymerizable functional groups in one molecule are preferable from the viewpoint of increasing hardness and preventing damage.
  • the resin composition for an optical material in which the compound having a polymerizable unsaturated group having three or more polymerizable functional groups in one molecule and zirconium oxide as the dispersoid particle are used together has a higher refractive index. It becomes possible to provide the coating film which has a rate, and the utilization in a various field
  • the preferred blending amount of the compound having a polymerizable unsaturated group is 1 to 80% by weight, more preferably 30 to 70% by weight, based on the entire resin composition for an optical material of the present invention.
  • the resin composition for optical materials of the present invention also includes various resins, oligomers, and monomers used for ordinary paints, adhesives, and moldings. Can be used without restriction. Specifically, acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, polyvinyl alcohol, or the like may be added. Moreover, you may add the organic solvent whose boiling point in 1 atmosphere is less than 100 degreeC.
  • the hard coat coating of the present invention is obtained by applying the resin composition for an optical material of the present invention on a substrate, evaporating the solvent, and then curing.
  • the base material to be coated include glass, resin films such as polyethylene terephthalate (PET), glass composites, ceramics, metals, and steel plates.
  • the coating method include spin coating, bar coating, spraying, screen, gravure, offset, letterpress, intaglio, and ink jet, but are not limited to these, and generally used apparatuses and instruments. Can be used.
  • known materials such as heat, ultraviolet rays and radiation can be used.
  • an optical material such as a lens can be produced by molding with a mold using the resin composition for optical material of the present invention.
  • Example 1 100 parts of a commercially available zirconium oxide dispersion (trade name SZR-M, manufactured by Sakai Chemical Co., Ltd., a methanol dispersion containing zirconium oxide with a primary particle size of 3 nm and 30% by weight) and dispersant A produced in Production Example 1 1.5 parts, 1.5 parts of phenyltriethoxysilane (trade name: KBE-103, manufactured by Shin-Etsu Silicone) and pentaerythritol triacrylate (trade name: New Frontier PET-3, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 18.9 parts and 8.1 parts of phenoxyethyl acrylate (trade name: New Frontier PHE, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were mixed. By removing methanol from this mixture under reduced pressure using a rotary evaporator, the resin composition for optical materials of the present Example was obtained.
  • SZR-M commercially available
  • Example 2 A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 1.5 parts of Dispersant B described in Production Example 2 was used instead of 1.5 parts of Dispersant A. It was.
  • Example 3 A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 1.5 parts of dispersant C described in Production Example 3 was used instead of 1.5 parts of dispersant A. It was.
  • Example 4 A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 1.5 parts of dispersant D described in Production Example 4 was used instead of 1.5 parts of dispersant A. It was.
  • Example 5 It replaced with 1.5 parts of dispersing agent A, and carried out similarly to Example 1 except having used 1.5 parts of dispersing agent E as described in manufacture example 5, and obtained the resin composition for optical materials of a present Example. .
  • Example 6 This example was carried out in the same manner as in Example 1 except that 1.5 parts of methyltriethoxysilane (trade name: KBE-13, manufactured by Shin-Etsu Silicone) was used instead of 1.5 parts of phenyltriethoxysilane.
  • the resin composition for optical materials was obtained.
  • Example 7 Example 1 was repeated except that 1.5 parts of 3-methacryloxypropyltrimethoxysilane (trade name: KBM-503, manufactured by Shin-Etsu Silicone) was used instead of 1.5 parts of phenyltriethoxysilane.
  • the resin composition for optical materials of the present Example was obtained.
  • Example 8 The optical material of this example was the same as that of Example 1 except that 4.1 parts of phenoxyethyl acrylate and 4.1 parts of urethane acrylate A described in Production Example 7 were used instead of 8.1 parts of phenoxyethyl acrylate. A resin composition was obtained.
  • Example 9 Instead of using 18.9 parts of pentaerythritol triacrylate, 9.5 parts of pentaerythritol triacrylate and 9.4 parts of tricyclodecane dimethylol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD R-684) were used. It carried out like Example 1 and obtained the resin composition for optical materials of a present Example.
  • Example 10 In place of 8.1 parts of phenoxyethyl acrylate, 4 parts of methoxypolyethylene glycol methacrylate (trade name: New Frontier MPEM-400, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and bisphenol A polyethylene glycol methacrylate (trade name: New Frontier BPEM-10, No. 1) The same procedure as in Example 1 was carried out except that 4.1 parts by Ichi Kogyo Seiyaku Co., Ltd. were used to obtain a resin composition for optical materials of this example.
  • Example 11 A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 8.1 parts of phenylthioethyl acrylate was used instead of 8.1 parts of phenoxyethyl acrylate.
  • Example 12 The same procedure as in Example 1 was carried out except that 18.9 parts of pentaerythritol triacrylate and 8.1 parts of phenoxyethyl acrylate were replaced with 29.4 parts of pentaerythritol triacrylate and 12.6 parts of phenoxyethyl acrylate.
  • the resin composition for optical materials of the Example was obtained.
  • Example 13 The same procedure as in Example 1 was performed except that 17.2 parts of pentaerythritol triacrylate and 7.3 parts of phenoxyethyl acrylate were used instead of 18.9 parts of pentaerythritol triacrylate and 8.1 parts of phenoxyethyl acrylate.
  • the resin composition for optical materials of the Example was obtained.
  • Comparative Example 1 A composition of this comparative example was obtained in the same manner as in Example 1 except that the same amount of lauric acid was used instead of the dispersant A.
  • Comparative Example 2 A composition of this comparative example was obtained in the same manner as in Example 1 except that the same amount of 2-ethylhexanoic acid was used instead of the dispersant A.
  • Comparative Example 3 A composition of this comparative example was obtained in the same manner as in Example 1 except that the same amount of the dispersant a described in Production Example 6 was used instead of the dispersant A.
  • Comparative Example 4 A composition of this comparative example was obtained by carrying out the same method except that the amount of phenyltriethoxysilane in Example 1 was 3 parts and the dispersant A was not used.
  • a prism coupler (trade name: METRICON prism coupler model 2010, manufactured by METRICON) was used to measure the refractive index of the cured product at wavelengths of 405 nm, 532 nm, and 633 nm, and the Abbe number was determined from the obtained measured values.
  • the Abbe number was determined from the obtained measured values.
  • the resin composition for optical material of each example shows excellent results in any evaluation of dispersibility and viscosity.
  • the resin compositions of Comparative Examples 1 and 2 are inferior in evaluation of dispersibility, and the resin compositions of Comparative Examples 1 to 4 have a large viscosity, which makes it difficult to uniformly mix and cure. An object could not be formed.
  • the cured product obtained from the resin composition for optical materials of each Example shows excellent results in any evaluation of appearance, refractive index, Abbe number, haze and yellowing degree.
  • the resin composition for an optical material of the present invention has a low viscosity despite a large amount of zirconium oxide particles and an organosilicon compound, can suppress yellowing of the resulting cured resin over time, and is transparent. Since the resin having a high refractive index and excellent in heat resistance and heat resistance can be formed, it can be used in the field of manufacturing optical equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a resin composition for an optical material. The resin composition has a low viscosity even if formulated having high quantities of zirconium oxide particles and an organic silicon compound, is capable of inhibiting yellowing, and forms a resin having a high refractive index and exhibiting excellent transparency and heat resistance. The resin composition for an optical material is characterized by including zirconium oxide particles having an average particle size in the range of 1-30nm, a dispersant comprising a compound represented by formula (1), an organic silicon compound, and a compound having polymerizable unsaturated groups. In formula (1), R is a branched-chain C3-24 alkyl and/or alkenyl group, AO is a C1-4 oxyalkylene group, n is a value in the range of 3-30 expressing the average number of moles of alkylene oxide added, and X is a linking group comprising carbon, hydrogen, and/or oxygen.

Description

光学材料用樹脂組成物Resin composition for optical materials
 本発明は、光学材料用樹脂組成物に関し、より詳細には、硬化により得られる樹脂の屈折率およびアッベ数が大きく、黄変を抑制することができる低粘度の光学材料用樹脂組成物に関する。 The present invention relates to a resin composition for optical materials, and more particularly to a resin composition for optical materials having a low refractive index and an Abbe number of a resin obtained by curing and capable of suppressing yellowing.
 樹脂製のレンズは、カメラ、OA機器、メガネなどに広く利用されている。このような樹脂製レンズには、高い屈折率を有することが求められている。樹脂の屈折率を高めるために、例えば、特許文献1では、有機酸によって表面処理された酸化ジルコニウムなどの金属酸化物微粒子を多量に樹脂中に分散させた分散液が検討されている。また、特許文献2では、金属酸化物微粒子を有機ケイ素化合物によって処理することにより樹脂中に多量に分散させた分散液が検討されている。 Resin lenses are widely used in cameras, office automation equipment, and glasses. Such a resin lens is required to have a high refractive index. In order to increase the refractive index of the resin, for example, Patent Document 1 discusses a dispersion in which a large amount of metal oxide fine particles such as zirconium oxide surface-treated with an organic acid are dispersed in the resin. In Patent Document 2, a dispersion in which metal oxide fine particles are treated with an organosilicon compound and dispersed in a large amount in a resin is studied.
 しかし、上記のように酸化ジルコニウム粒子を樹脂中に分散させると、経時的に樹脂が黄変しやすいという問題が生じる。この樹脂の黄変の問題は、引用文献2のように、有機ケイ素化合物を添加することにより、解決することができる。ところが、光学材料用樹脂組成物では、屈折率を高めるために酸化ジルコニウム粒子の配合量を多くする必要がある。しかしながら、酸化ジルコニウムの配合量が多くなると、分散液自体の粘度が大きく上昇し、場合によっては撹拌できなくなるという問題が生じる However, when the zirconium oxide particles are dispersed in the resin as described above, there arises a problem that the resin is easily yellowed over time. The problem of yellowing of the resin can be solved by adding an organosilicon compound as in Reference 2. However, in the resin composition for optical materials, it is necessary to increase the amount of zirconium oxide particles to increase the refractive index. However, when the amount of zirconium oxide is increased, the viscosity of the dispersion itself greatly increases, and in some cases, it becomes impossible to stir.
日本国特開2009-191167号公報Japanese Unexamined Patent Publication No. 2009-191167 日本国特開2008-120605号公報Japanese Unexamined Patent Publication No. 2008-120605
 本発明は従来技術の有するこのような問題点に鑑みてなされたものであって、その目的は、酸化ジルコニウム粒子および有機ケイ素化合物の配合量が多いにも拘わらず低粘度であり、得られる硬化樹脂の経時的な黄変を抑制し、透明性および耐熱性に優れた高い屈折率を有する樹脂を形成し得る光学材料用樹脂組成物を提供することである。 The present invention has been made in view of such problems of the prior art, and the object thereof is a low viscosity despite the large amount of the zirconium oxide particles and the organosilicon compound, and the resulting cured product. An object of the present invention is to provide a resin composition for an optical material that can suppress yellowing of a resin over time and can form a resin having a high refractive index that is excellent in transparency and heat resistance.
 本発明の光学材料用樹脂組成物は、平均粒子径が1~30nmである酸化ジルコニウム粒子と、下記式(1)で示される化合物からなる分散剤と、有機ケイ素化合物と、重合性不飽和基を有する化合物とを含有することを特徴とする。 The resin composition for optical materials of the present invention comprises zirconium oxide particles having an average particle size of 1 to 30 nm, a dispersant comprising a compound represented by the following formula (1), an organosilicon compound, a polymerizable unsaturated group It contains the compound which has this.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ただし、式(1)のRは、分岐鎖を有し炭素数が3ないし24のアルキル基および/又はアルケニル基であり、AOは炭素数が1ないし4のオキシアルキレン基であり、nはアルキレンオキシドの平均付加モル数を示す3~30の範囲の数値であり、Xは炭素原子、水素原子及び/又は酸素原子からなる連結基である。 In the formula (1), R is a branched chain alkyl group and / or alkenyl group having 3 to 24 carbon atoms, AO is an oxyalkylene group having 1 to 4 carbon atoms, and n is an alkylene group It is a numerical value in the range of 3 to 30 indicating the average number of moles of oxide added, and X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
 ここで、前記分散剤における前記式(1)のXは、炭素数が1ないし15のアルキレン基であることが好ましい。 Here, X in the formula (1) in the dispersant is preferably an alkylene group having 1 to 15 carbon atoms.
 また、前記分散剤における前記式(1)のXは、下記式(2)で示される連結基であることが好ましい。 In the dispersant, X in the formula (1) is preferably a linking group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ただし、式(2)のYは、炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。 However, Y in the formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
 本発明においては、前記光学材料用樹脂組成物を100重量%とした場合の前記酸化ジルコニウム粒子の配合量は、0.5~80重量%であることが好ましい。 In the present invention, the blending amount of the zirconium oxide particles when the resin composition for optical materials is 100% by weight is preferably 0.5 to 80% by weight.
 本発明の光学材料用樹脂組成物は、酸化ジルコニウム粒子および有機ケイ素化合物の配合量が多いにも拘わらず低粘度であり、得られる硬化樹脂の経時的な黄変を抑制することができ、透明性および耐熱性に優れ、ヘイズの値も低い高い屈折率の樹脂を形成することができる。 The resin composition for an optical material of the present invention has a low viscosity despite a large amount of zirconium oxide particles and an organosilicon compound, can suppress yellowing of the resulting cured resin over time, and is transparent. Resin having a high refractive index and excellent heat resistance and heat resistance and a low haze value can be formed.
 1.酸化ジルコニウム粒子
 本発明の光学材料用樹脂組成物における分散質粒子である酸化ジルコニウム粒子は、平均粒子径が1~30nmのものである。この酸化ジルコニウム粒子は、他の金属酸化物を添加することにより、部分安定化されていてもよい。また、結晶状であってもアモルファス状であってもよい。また、本発明における分散剤により分散される前記分散質粒子は等方性粒子であっても異方性粒子であってもよく、繊維状であってもよい。
1. Zirconium oxide particles The zirconium oxide particles that are dispersoid particles in the resin composition for optical materials of the present invention have an average particle diameter of 1 to 30 nm. The zirconium oxide particles may be partially stabilized by adding other metal oxides. Further, it may be crystalline or amorphous. Further, the dispersoid particles dispersed by the dispersant in the present invention may be isotropic particles, anisotropic particles, or fibrous.
 本発明で被分散質となる酸化ジルコニウム粒子は、公知の方法で得たものが使用できる。微粒子の調製方法としては、粗大粒子を機械的に解砕、微細化していくトップダウン方式と、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子が形成されるボトムアップ方式の2通りの方式があるが、いずれの方法で調製されたものであっても好適に使用できる。また、それらは湿式法、乾式法のいずれの方法によるものであってもよい。また、ボトムアップ方式には、物理的方法と化学的方法があるが、いずれの方法によるものであってもよい。本発明における分散剤は、粗大粒子を機械的に解砕、微細化していくトップダウン方式の工程中で使用してもよく、いくつかの単位粒子を生成させ、それが凝集したクラスター状態を経由して粒子が形成されるボトムアップ方式の工程中で使用してもよく、或いは、事前に前記方法で微粒子を調製後、該微粒子を媒体中から安定に取り出すために表面修飾剤や表面保護剤と称する公知の保護剤で被覆或いは含浸させて取り出された粒子を使用することもできる。保護剤としては前記の公知分散剤で代用することができる。 As the zirconium oxide particles to be dispersed in the present invention, those obtained by a known method can be used. As a method for preparing fine particles, a top-down method in which coarse particles are mechanically pulverized and refined, and a bottom in which particles are formed through a cluster state in which several unit particles are generated and aggregated. Although there are two types of up systems, any one prepared by any method can be suitably used. Further, they may be either a wet method or a dry method. The bottom-up method includes a physical method and a chemical method, and any method may be used. The dispersant in the present invention may be used in a top-down process in which coarse particles are mechanically pulverized and refined to form several unit particles, which pass through a cluster state in which they are aggregated. May be used in a bottom-up process in which particles are formed, or after preparing fine particles in advance by the above-described method, a surface modifier or surface protective agent is used to stably remove the fine particles from the medium. It is also possible to use particles taken out after being coated or impregnated with a known protective agent. As the protective agent, the above-mentioned known dispersants can be substituted.
 ボトムアップ方式をより具体的に説明するために、前記酸化ジルコニウム粒子の内、金属ナノ粒子の調製法を例示する。ボトムアップ方式の内、物理的方法の代表例としてはバルク金属を不活性ガス中で蒸発させ、ガスとの衝突により冷却凝縮させてナノ粒子を生成するガス中蒸発法がある。また、化学的方法には、液相中で保護剤の存在下で金属イオンを還元し、生成した0価の金属をナノサイズで安定化させる液相還元法や金属錯体の熱分解法などがある。液相還元法としては、化学的還元法、電気化学的還元法、光還元法、または化学的還元法と光照射法を組み合わせた方法などを利用することができる。 In order to more specifically explain the bottom-up method, a method for preparing metal nanoparticles among the zirconium oxide particles will be exemplified. Among the bottom-up methods, a representative example of a physical method is an in-gas evaporation method in which bulk metal is evaporated in an inert gas and cooled and condensed by collision with the gas to generate nanoparticles. Chemical methods include a liquid phase reduction method in which metal ions are reduced in the liquid phase in the presence of a protective agent, and the generated zero-valent metal is stabilized at the nanosize, and a metal complex thermal decomposition method. is there. As the liquid phase reduction method, a chemical reduction method, an electrochemical reduction method, a photoreduction method, a method combining a chemical reduction method and a light irradiation method, or the like can be used.
 また、本発明で好適に使用できる酸化ジルコニウム粒子は、前記の如く、トップダウン方式、ボトムアップ方式のいずれも手法で得たものであってもよく、それらは水系、非水系、気相中のいずれの環境下で調製されたものであってもよい。なお、これらの酸化ジルコニウム粒子を使用する際には、各種溶媒に酸化ジルコニウム粒子をあらかじめ分散したものを使用してもよい。 Further, as described above, the zirconium oxide particles that can be suitably used in the present invention may be those obtained by any of the top-down method and the bottom-up method, and they are aqueous, non-aqueous, and in the gas phase. It may be prepared in any environment. In addition, when using these zirconium oxide particles, you may use what disperse | distributed the zirconium oxide particles previously in various solvents.
 本発明においては酸化ジルコニウム粒子を使用しているので、硬化により得られる樹脂の屈折率が高くなり、アッベ数も大きくすることができる。 In the present invention, since zirconium oxide particles are used, the refractive index of the resin obtained by curing is increased, and the Abbe number can be increased.
 本発明の光学材料用樹脂組成物における酸化ジルコニウム粒子の好ましい配合量は、屈折率および粘度の観点から、組成物全体(100重量%)に対し、0.5~80重量%であり、より好ましくは30~70重量%、更に好ましくは35~60重量%である。 A preferable blending amount of the zirconium oxide particles in the resin composition for an optical material of the present invention is 0.5 to 80% by weight with respect to the whole composition (100% by weight), more preferably from the viewpoint of refractive index and viscosity. Is 30 to 70% by weight, more preferably 35 to 60% by weight.
 2.分散剤の疎水基(R)について 
 本発明における分散剤の疎水基(R)は、分岐鎖を有し炭素数が3ないし24のアルキル基および/又はアルケニル基である。分岐鎖を有し炭素数が3ないし24のアルキル基および/又はアルケニルの含有量は、Rの全体に対して70重量%以上であることが好ましい。
2. About the hydrophobic group (R) of the dispersant
The hydrophobic group (R) of the dispersant in the present invention is a branched chain alkyl group and / or alkenyl group having 3 to 24 carbon atoms. The content of the branched alkyl group having 3 to 24 carbon atoms and / or alkenyl is preferably 70% by weight or more based on the entire R.
 Rの生成に使用し得る原料アルコールの炭素数は、単一であっても異なる炭素数のアルコールの混合物であってもよい。また、その原料アルコールは合成由来であっても天然由来であってもよく、また、その化学構造は単一組成であっても複数の異性体からなる混合物であってもよい。使用できる原料アルコールは公知のものが選択できるが、具体例としては、合成由来のブタノール、イソブタノール、ペンタノール及び/又はその異性体、ヘキサノール及び/又はその異性体、ヘプタノール及び/又はその異性体、オクタノール及び/又はその異性体、3,5,5-トリメチル-1-ヘキサノールの他、プロピレン或いはブテン、又はその混合物から誘導される高級オレフィンを経てオキソ法によって製造されるイソノナノール、イソデカノール、イソウンデカノール、イソドデカノール、イソトリデカノール、シェルケミカルズ社製のネオドール23、25、45、サソール社製のSAFOL23、エクソン・モービル社製のEXXAL7、EXXAL8N、EXXAL9、EXXAL10、EXXAL11及びEXXAL13も好適に使用できる高級アルコールの一例である。更に天然由来のオクチルアルコール、デシルアルコール、ラウリルアルコール(1-ドデカノール)、ミリスチルアルコール(1-テトラデカノール)、セチルアルコール(1-ヘキサデカノール)、ステアリルアルコール(1-オクタデカノール)、オレイルアルコール(cis-9-オクタデセン-1-オール)なども使用できる高級アルコールの一例である。また、2-アルキル-1-アルカノール型の化学構造をもつゲルベアルコール(Guerbet Alcohol)類の単一組成、或いはその混合物なども好適に使用できる高級アルコールの一例であり、2-エチル-1-ヘキサノール、2-プロピル-1-ヘキサノール、2-ブチル-1-ヘキサノール、2-エチル-1-ヘプタノール、2-プロピル-1-ヘプタノール、2-エチル-1-オクタノール、2-ヘキシル-1-デカノール、2-ヘプチル-1-ウンデカノール、2-オクチル-1-ドデカノール、2-デシル-1-テトラデカノールの他、分岐アルコールから誘導されるイソステアリルアルコールなどがある。また、上記各種アルコールを2種以上配合して使用することも可能である。但し、本発明における分散剤では、前記の如く疎水基(R)は、炭素数3~24の分岐型のアルキル基及び/又はアルケニル基を含むものである。 The raw material alcohol that can be used to generate R may have a single carbon number or a mixture of alcohols having different carbon numbers. The raw material alcohol may be synthetically or naturally derived, and the chemical structure may be a single composition or a mixture of a plurality of isomers. As the raw material alcohol that can be used, known alcohols can be selected. Specific examples include butanol, isobutanol, pentanol and / or its isomer, hexanol and / or its isomer, heptanol and / or its isomer derived from synthesis. , Octanol and / or its isomer, 3,5,5-trimethyl-1-hexanol, isononanol, isodecanol, isounol produced by the oxo process via higher olefins derived from propylene or butene, or mixtures thereof Decanol, isododecanol, isotridecanol, Neodol 23, 25, 45 manufactured by Shell Chemicals, SAFOL23 manufactured by Sasol, EXXAL7, EXXAL8N, EXXAL9, EXXAL10, EXXXAL11 and EXXXA manufactured by Exxon Mobil 13 illustrates another example of a higher alcohol which can be suitably used. Furthermore, natural octyl alcohol, decyl alcohol, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), oleyl alcohol (Cis-9-octadecene-1-ol) and the like are also examples of higher alcohols that can be used. A single composition of Guerbet alcohol having a 2-alkyl-1-alkanol type chemical structure (Guerbet Alcohol) or a mixture thereof is also an example of a higher alcohol that can be suitably used. 2-ethyl-1-hexanol 2-propyl-1-hexanol, 2-butyl-1-hexanol, 2-ethyl-1-heptanol, 2-propyl-1-heptanol, 2-ethyl-1-octanol, 2-hexyl-1-decanol, 2 In addition to heptyl-1-undecanol, 2-octyl-1-dodecanol, 2-decyl-1-tetradecanol, there are isostearyl alcohols derived from branched alcohols. Moreover, it is also possible to mix | blend and use 2 or more types of said various alcohol. However, in the dispersant in the present invention, as described above, the hydrophobic group (R) contains a branched alkyl group and / or alkenyl group having 3 to 24 carbon atoms.
 なお、疎水基(R)が水素或いは炭素数が1~2の炭化水素基である場合、炭素数が25を超える場合、および疎水基(R)の炭素数が3~24の範囲にある場合でも直鎖型のアルキル基及び/又はアルケニル基の含有量が30重量%を超える場合には、分散媒中で酸化ジルコニウム粒子を安定に分散させることができないか、又は使用できる分散媒の選択範囲が限定されたり、分散体の調製工程において異種の分散媒への置換や混合が生じることがある。その結果、分散体の安定性が著しく低下して直ちに沈降物を生じたり、経時安定性が著しく低下して最終製品の付加価値低下、生産性低下、加工特性低下および品質劣化などの問題を生じる。これらの問題を回避し、更に本発明において分散剤の作用を特に効果的なものにするためには、疎水基(R)は炭素数8~18の分岐型のアルキル基であることがより好ましい。 When the hydrophobic group (R) is hydrogen or a hydrocarbon group having 1 to 2 carbon atoms, when the carbon number exceeds 25, and when the hydrophobic group (R) has a carbon number in the range of 3 to 24 However, when the content of the linear alkyl group and / or alkenyl group exceeds 30% by weight, the zirconium oxide particles cannot be stably dispersed in the dispersion medium, or the selection range of the dispersion medium that can be used. May be limited, or substitution or mixing with a different type of dispersion medium may occur in the dispersion preparation process. As a result, the stability of the dispersion is significantly reduced, resulting in immediate sedimentation, and the stability over time is significantly reduced, resulting in problems such as a decrease in added value, productivity, processing characteristics, and quality deterioration of the final product. . In order to avoid these problems and make the action of the dispersant particularly effective in the present invention, the hydrophobic group (R) is more preferably a branched alkyl group having 8 to 18 carbon atoms. .
 3.分散剤のオキシアルキレン基(AO)n
 本発明において分散剤に好適に選択されるアルキレンオキシド種は、式(1)においてAOは炭素数1ないし4のオキシアルキレン基を示すものであり、具体的には炭素数2のアルキレンオキシドはエチレンオキシドである。炭素数3のアルキレンオキシドはプロピレンオキシドである。炭素数4のアルキレンオキシドは、テトラヒドロフラン或いはブチレンオキシドであるが、好ましくは、1,2-ブチレンオキシドまたは2,3-ブチレンオキシドである。分散剤においてオキシアルキレン鎖(-(AO)n-)は分散剤の分散媒親和性を調整する目的でアルキレンオキシドは単独重合鎖であっても、2種以上のアルキレンオキサイドのランダム重合鎖でもブロック重合鎖でもよく、また、その組み合わせであってもよい。式(1)のアルキレンオキシドの平均付加モル数を示すnは3ないし30の範囲であるが、5ないし20の範囲にあることが好ましい。
3. Dispersant oxyalkylene group (AO) n
In the present invention, the alkylene oxide species suitably selected as the dispersant in the formula (1) is that AO represents an oxyalkylene group having 1 to 4 carbon atoms, specifically, an alkylene oxide having 2 carbon atoms is ethylene oxide. It is. The alkylene oxide having 3 carbon atoms is propylene oxide. The alkylene oxide having 4 carbon atoms is tetrahydrofuran or butylene oxide, and is preferably 1,2-butylene oxide or 2,3-butylene oxide. In the dispersant, the oxyalkylene chain (-(AO) n-) is blocked by either a homopolymer chain or a random polymer chain of two or more alkylene oxides for the purpose of adjusting the dispersion medium affinity of the dispersant. It may be a polymer chain or a combination thereof. N representing the average number of added moles of the alkylene oxide of the formula (1) is in the range of 3 to 30, but is preferably in the range of 5 to 20.
 4.分散剤の連結基(X)
 連結基(X)は炭素原子、水素原子、酸素原子からなる公知の構造から選択可能であるが、好ましくは飽和炭化水素基、不飽和炭化水素基、エーテル基、カルボニル基、エステル基からなり、脂環構造、芳香環構造を有していてもよく、また、繰り返し単位を有していてもよい。連結基Xに窒素原子及び/又は硫黄原子及び/又はリン原子などを含む場合は、カルボキシル基の分散質への親和効果を弱める作用があるために本発明における分散剤の構造因子としては適さない。
4). Dispersing agent linking group (X)
The linking group (X) can be selected from a known structure consisting of a carbon atom, a hydrogen atom, and an oxygen atom, preferably a saturated hydrocarbon group, an unsaturated hydrocarbon group, an ether group, a carbonyl group, or an ester group. It may have an alicyclic structure or an aromatic ring structure, and may have a repeating unit. When the linking group X contains a nitrogen atom and / or a sulfur atom and / or a phosphorus atom, it has an action of weakening the affinity effect of the carboxyl group on the dispersoid, and thus is not suitable as a structural factor of the dispersant in the present invention. .
 また、式(1)のXは炭素数が1ないし15のアルキレン基であることが好ましく、炭素数が1ないし8のアルキレン基であることがより好ましい。 Further, X in the formula (1) is preferably an alkylene group having 1 to 15 carbon atoms, and more preferably an alkylene group having 1 to 8 carbon atoms.
 また、式(1)のXは、前述の式(2)で示される物質であることが好ましい。ただし、式(2)におけるYは、炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。 Further, X in the formula (1) is preferably a substance represented by the above formula (2). However, Y in Formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
 5.一層好ましい分散剤
 本発明においては、下記式(3)に記載の分散剤を使用することが一層好ましい。
5. More preferable dispersant In the present invention, it is more preferable to use a dispersant described in the following formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 但し、式(3)においてRは炭素数が8ないし18の分岐型のアルキル基が好適で、nはエチレンオキシドの平均付加モル数を示し、5ないし20の範囲が好適である。分散剤の組成をこの範囲に限定することで、分散体の調製に使用できる分散媒の選択範囲の拡大、異種の分散媒の混合、置換に対する適用性が向上する。このように、分散剤の組成範囲を限定することで、分散体の経時安定性に対して更に好適に作用し、その結果、最終製品の付加価値向上、生産性向上、加工特性向上および品質安定化などを達成できる。 However, in formula (3), R is preferably a branched alkyl group having 8 to 18 carbon atoms, and n is the average number of moles of ethylene oxide added, preferably in the range of 5 to 20. By limiting the composition of the dispersant to this range, the applicability to expansion of the selection range of the dispersion medium that can be used for preparation of the dispersion, mixing of different types of dispersion medium, and substitution is improved. In this way, by limiting the composition range of the dispersant, it works more favorably with respect to the stability of the dispersion over time. Can be achieved.
 6.分散剤の配合量
 本発明における分散剤の配合量は特に限定される物ではないが、酸化ジルコニウム粒子に対して0.5重量%以上かつ25重量%以下であり、0.5~20重量%が好ましく、1.25重量%以上かつ10重量%以下がより好ましい。
6). The blending amount of the dispersant in the present invention is not particularly limited, but is 0.5 wt% or more and 25 wt% or less, and 0.5 to 20 wt% with respect to the zirconium oxide particles. Is preferable, and more preferably 1.25 wt% or more and 10 wt% or less.
 7.分散剤の製造方法
 本発明における分散剤は公知の方法で製造することができる。例えば、アルコール、アミン、チオールに公知の方法でアルキレンオキシドを付加した一般的な非イオン界面活性剤化合物を原料として、モノハロゲン化低級カルボン酸またはその塩を用い、塩基存在下でアルキレンオキシド末端の水酸基と反応させる方法、または、酸無水物を用いてアルキレンオキシド末端の水酸基との開環反応による方法により製造することができるが、これらの方法に限定されるものではない。
7). Dispersant Production Method The dispersant in the present invention can be produced by a known method. For example, using a general nonionic surfactant compound obtained by adding an alkylene oxide to an alcohol, amine, or thiol by a known method as a raw material, a monohalogenated lower carboxylic acid or a salt thereof is used. Although it can manufacture by the method of making it react with a hydroxyl group, or the method of ring-opening reaction with the hydroxyl group of the alkylene oxide terminal using an acid anhydride, it is not limited to these methods.
 また、前述の範囲で疎水基の種類、アルキレンオキシド種とその付加形態、付加モル量、連結基などを特に限定して組成を最適選定することにより、公知の分散剤よりも、より広範な種類の分散質を分散でき、より広範な種類の分散媒に分散質を分散安定化できる点で産業上の利用価値は大きい。 In addition, the types of hydrophobic groups, alkylene oxide types and addition forms thereof, addition molar amounts, linking groups, etc. are particularly limited within the above-mentioned range, so that a wider range of types than known dispersants can be selected. The industrial utility value is great in that it can disperse various dispersoids and can disperse and stabilize the dispersoids in a wider variety of dispersion media.
 また、本発明に使用される分散剤は、公知の精製法により含有するイオン種、特にアルカリ金属イオン、アルカリ土類金属イオン、重金属イオン、ハロゲンイオンの各イオンの含有量を低減して用いることができる。分散剤中のイオン種は分散体の分散安定性、耐触性、耐酸化性、分散塗膜の電気特性(導電特性、絶縁特性)、経時安定性、耐熱性、低湿性、耐候性に大きく影響するため、上記イオンの含有量は適宜決定することができるが、分散剤中で10ppm未満であることが望ましい。 In addition, the dispersant used in the present invention should be used by reducing the content of ionic species, particularly alkali metal ions, alkaline earth metal ions, heavy metal ions, and halogen ions, contained by a known purification method. Can do. The ionic species in the dispersant is greatly affected by the dispersion stability, touch resistance, oxidation resistance, electrical properties (conductive properties, insulation properties), aging stability, heat resistance, low humidity, and weather resistance of the dispersion. However, it is desirable that the content of the ions is less than 10 ppm in the dispersant.
 また、本発明の光学材料用樹脂組成物は公知の撹拌手段、均一化手段、分散化手段を用いて調製することができる。採用することができる分散機の一例としては、2本ロール、3本ロールなどのロールミル、ボールミル、振動ボールミルなどのボールミル、ペイントシェーカー、連続ディスク型ビーズミル、連続アニュラー型ビーズミルなどのビーズミル、サンドミル、ジェットミルなどが挙げられる。また、超音波発生浴中において分散処理を行うことも出来る。 The resin composition for an optical material of the present invention can be prepared using a known stirring means, homogenizing means, and dispersing means. Examples of dispersers that can be used include roll mills such as two rolls and three rolls, ball mills such as ball mills and vibration ball mills, paint shakers, continuous disk type bead mills, bead mills such as continuous annular type bead mills, sand mills, and jets. Mill etc. are mentioned. Further, the dispersion treatment can be performed in an ultrasonic wave generation bath.
 8.有機ケイ素化合物
 本発明の光学材料用樹脂組成物における有機ケイ素化合物としては、酸化ジルコニウム粒子を表面修飾した際に、酸化、還元反応などの化学反応に対して反応性が低く、または反応性がなく、かつ水、有機溶媒、樹脂等の分散媒に対して親和性の高いものが好ましい。中でも、特に好ましいのは、変性シリコーン、シリコーンレジン、アルコキシシラン化合物、クロロシラン化合物、シラノール化合物、シラザン化合物の群から選択される1種または2種以上である。
8). Organosilicon compound As the organosilicon compound in the resin composition for an optical material of the present invention, when the surface of the zirconium oxide particles is modified, the reactivity with respect to a chemical reaction such as oxidation or reduction reaction is low or non-reactive. In addition, those having high affinity for a dispersion medium such as water, an organic solvent, and a resin are preferable. Among these, one or more selected from the group of modified silicone, silicone resin, alkoxysilane compound, chlorosilane compound, silanol compound, and silazane compound are particularly preferable.
 変性シリコーンとしては、例えば、アルコキシ変性シリコーン、エポキシ変性シリコーン、エポキシ・ポリエーテル変性シリコーン、カルビノール変性シリコーン、シラノール変性シリコーン、メルカプト変性シリコーン、アラルキル変性シリコーン、メタクリル変性シリコーン、メタクリレート変性シリコーン、カルボキシル変性シリコーン、フェノール変性シリコーン、メチルスチリル変性シリコーン、アクリル変性シリコーン、メルカプト変性シリコーン、アミノ変性シリコーン、メチルハイドロジェンシリコーン、フェニルメチルハイドロジェンシリコーン等が挙げられる。この変性シリコーンとしては、酸化ジルコニウム粒子の表面活性に影響を与えない範囲、かつ樹脂と複合体を構成する際に樹脂の光学的特性や機械的特性を損なわない範囲で、ビニル基および/またはケイ素原子に結合した官能基を有するものを用いてもよい。 Examples of the modified silicone include alkoxy-modified silicone, epoxy-modified silicone, epoxy-polyether-modified silicone, carbinol-modified silicone, silanol-modified silicone, mercapto-modified silicone, aralkyl-modified silicone, methacryl-modified silicone, methacrylate-modified silicone, and carboxyl-modified silicone. Phenol-modified silicone, methylstyryl-modified silicone, acrylic-modified silicone, mercapto-modified silicone, amino-modified silicone, methyl hydrogen silicone, phenylmethyl hydrogen silicone, and the like. The modified silicone includes vinyl group and / or silicon as long as it does not affect the surface activity of the zirconium oxide particles and does not impair the optical and mechanical properties of the resin when forming a composite with the resin. Those having a functional group bonded to an atom may be used.
 シリコーンレジンとしては、例えば、メチルシリコーンレジン、フェニルメチルシリコーンレジン、ジフェニルシリコーンレジン等が挙げられる。 Examples of the silicone resin include methyl silicone resin, phenylmethyl silicone resin, diphenyl silicone resin, and the like.
 アルコキシシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、トリフルオロプロピルトリメトキシシラン等が挙げられる。 Examples of the alkoxysilane compound include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, and hexyltriethoxy. Examples include silane, decyltrimethoxysilane, phenyltrimethoxysilane, diphenyltrimethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, and trifluoropropyltrimethoxysilane.
 クロロシラン化合物としては、アルキルクロロシランが挙げられ、アルキルクロロシランとしては、例えば、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシラン、トリメチルクロロシラン、トリエチルクロロシラン等が挙げられる。 Examples of the chlorosilane compound include alkylchlorosilane, and examples of the alkylchlorosilane include methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diethyldichlorosilane, trimethylchlorosilane, and triethylchlorosilane.
 シラノール化合物としては、トリメチルシラノール、トリエチルシラノール等が挙げられる。 Examples of silanol compounds include trimethylsilanol and triethylsilanol.
 これらアルコキシシラン化合物、クロロシラン化合物及びシラノール化合物は、酸化ジルコニウム粒子の表面活性に影響を与えない範囲、かつ樹脂と複合体を構成する際に樹脂の光学的特性や機械的特性を損なわない範囲で、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、イソシアネート基、メルカプト基などの反応性官能基を含有するシランカップリング剤と併用してもよい。 These alkoxysilane compounds, chlorosilane compounds, and silanol compounds are in a range that does not affect the surface activity of the zirconium oxide particles, and in a range that does not impair the optical properties and mechanical properties of the resin when forming a composite with the resin. You may use together with the silane coupling agent containing reactive functional groups, such as a vinyl group, an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, an amino group, an isocyanate group, a mercapto group.
 シラザン化合物としては、例えば、ヘキサメチルジシラザン等が挙げられる。 Examples of the silazane compound include hexamethyldisilazane.
 9.重合性不飽和基を有する化合物
 本発明に於いて使用し得る重合性不飽和基を有する化合物は、塗膜形成後に硬化反応をすることができる重合性官能基を有するものであれば特に限定されるものではないが、カルボン酸基含有不飽和重合性モノマー、カルボン酸基含有不飽和重合性モノマーのアルキルエステル、ビニル化合物およびウレタンアクリレートを好適に使用することができる。
9. Compound having a polymerizable unsaturated group The compound having a polymerizable unsaturated group that can be used in the present invention is not particularly limited as long as it has a polymerizable functional group capable of undergoing a curing reaction after formation of a coating film. Although not intended, carboxylic acid group-containing unsaturated polymerizable monomers, alkyl esters of carboxylic acid group-containing unsaturated polymerizable monomers, vinyl compounds and urethane acrylates can be preferably used.
 カルボン酸基含有不飽和重合性モノマーとしては、(メタ)アクリル酸、クロトン酸、マレイン酸およびイタコン酸などが挙げられる。 Examples of the carboxylic acid group-containing unsaturated polymerizable monomer include (meth) acrylic acid, crotonic acid, maleic acid and itaconic acid.
 カルボン酸基含有不飽和重合性モノマーのアルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソステアリル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸-t-ブチルシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ビシクロ[3,3,1]ノニル、(メタ)アクリル酸-2-メトキシエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸アリル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-3-ヒドロキシプロピル、(メタ)アクリル酸-4-ヒドロキシブチル、メトキシエチレングリコール(メタ) アクリレート、メトキシポリエチレングリコール(メタ) アクリレート、エトキシエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシエチレングリコール(メタ) アクリレート、プロポキシポリエチレングリコール(メタ) アクリレート、メトキシプロピレングリコール(メタ) アクリレート、メトキシポリプロピレングリコール(メタ) アクリレート、エトキシプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシプロピレングリコール(メタ) アクリレートおよびプロポキシポリプロピレングリコール(メタ) アクリレートなどのモノ(メタ)アクリル酸エステル、エチレングリコールジ(メタ) アクリレート、ポリエチレングリコールジ(メタ) アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートおよびトリエチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリレート化合物、トリメチロールプロパントリ(メタ)アクリレートおよびグリセリントリ(メタ)アクリレートなどのトリ(メタ)アクリレート化合物、ペンタエリスリトールテトラ(メタ)アクリレートなどのテトラ(メタ)アクリレート化合物、ジペンタエリスリトールヘキサ(メタ)アクリレートおよびソルビトールヘキサ(メタ)アクリレートなどのヘキサ(メタ)アクリレート化合物、などが挙げられる。なお、(メタ)アクリレートとは、アクリレートまたはメタクリレートを意味する。 Examples of alkyl esters of carboxylic acid group-containing unsaturated polymerizable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, N-butyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, (meth ) Decyl acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic acid-t-butylcyclohexyl, (meth) acrylic acid Isobornyl, adamantyl (meth) acrylate, (meth) acrylic Bicyclo [3,3,1] nonyl, 2-methoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, allyl (meth) acrylate, diethylamino (meth) acrylate Ethyl, (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid-3-hydroxypropyl, (meth) acrylic acid-4-hydroxybutyl, methoxyethylene glycol ( (Meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxyethylene glycol (meth) acrylate, ethoxypolyethylene glycol (meth) acrylate, propoxyethylene glycol (meth) acrylate, propoxypolyethylene glycol (Meth) acrylate, methoxypropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, ethoxypropylene glycol (meth) acrylate, ethoxypolypropylene glycol (meth) acrylate, propoxypropylene glycol (meth) acrylate and propoxypolypropylene glycol (meth) Mono (meth) acrylic esters such as acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate and triethylene glycol di (meth) Di (meth) acrylate compounds such as acrylate, trimethylol group Tri (meth) acrylate compounds such as pantri (meth) acrylate and glycerol tri (meth) acrylate, tetra (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and sorbitol hexa (meth) ) Hexa (meth) acrylate compounds such as acrylate. In addition, (meth) acrylate means an acrylate or a methacrylate.
 ビニル化合物としては、酢酸ビニル、プロピオン酸ビニル、スチレン、α-メチルスチレン、ビニルトルエン、アクリロニトリル、メタクリロニトリル、ブタジエンおよびイソプレンが挙げられる。 Examples of the vinyl compound include vinyl acetate, vinyl propionate, styrene, α-methylstyrene, vinyl toluene, acrylonitrile, methacrylonitrile, butadiene and isoprene.
 ウレタンアクリレートは、ポリイソシアネートと水酸基含有(メタ)アクリレートとを反応させたものである。 Urethane acrylate is obtained by reacting polyisocyanate and hydroxyl group-containing (meth) acrylate.
 ウレタンアクリレートに使用しうるポリイソシアネートとしては、特に限定されないが、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリフェニルメタンポリイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート、ジシクロヘキシルメタンジイソシアネート、水添化キシリレンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、ノルボルネンジイソシアネートおよびこれらの変性体が挙げられる。 Although it does not specifically limit as polyisocyanate which can be used for urethane acrylate, Tolylene diisocyanate, diphenylmethane diisocyanate, polyphenylmethane polyisocyanate, phenylene diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, hexamethylene diisocyanate, trimethyl Examples include hexamethylene diisocyanate, lysine diisocyanate, lysine triisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, norbornene diisocyanate, and modified products thereof.
 また、ポリイソシアネートとポリオールとを反応させてなるイソシアネート基末端ウレタンプレポリマーもポリイソシアネートとして使用することができる。このようなポリオールとしては、特に限定されないが、アルキレングリコール、トリメチロールアルカン、グリセリンおよびペンタエリスルトールなどのポリオール化合物の他、ポリエーテルポリオール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリオレフィンポリオール、ポリブタジエンポリオール、ポリカーボネートポリオールなども挙げられる。 Further, an isocyanate group-terminated urethane prepolymer obtained by reacting a polyisocyanate and a polyol can also be used as the polyisocyanate. Examples of such polyols include, but are not limited to, polyol compounds such as alkylene glycol, trimethylol alkane, glycerin and pentaerythritol, as well as polyether polyols, polyester polyols, polycaprolactone polyols, polyolefin polyols, polybutadiene polyols, and polycarbonates. A polyol etc. are also mentioned.
 ウレタンアクリレートに使用しうる水酸基含有(メタ)アクリレートは、分子中に1個以上の水酸基を有する(メタ)アクリレート系化合物である。このような化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート等が挙げられる。 The hydroxyl group-containing (meth) acrylate that can be used for urethane acrylate is a (meth) acrylate compound having one or more hydroxyl groups in the molecule. Examples of such a compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxyethylacryloyl. Phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipenta Examples include erythritol penta (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) acrylate, and cyclohexanedimethanol mono (meth) acrylate.
 本発明の光学材料用樹脂組成物は、光重合反応や熱重合反応など、公知の重合反応により重合することができる。その際、光重合開始剤や熱重合開始剤などの公知の重合開始剤を使用することができる。 The resin composition for an optical material of the present invention can be polymerized by a known polymerization reaction such as a photopolymerization reaction or a thermal polymerization reaction. At that time, a known polymerization initiator such as a photopolymerization initiator or a thermal polymerization initiator can be used.
 光重合開始剤としては、ベンゾフェノン系重合開始剤、アセトフェノン系重合開始剤、アントラキノン光重合開始剤などが挙げられる。 Examples of the photopolymerization initiator include a benzophenone polymerization initiator, an acetophenone polymerization initiator, and an anthraquinone photopolymerization initiator.
 熱重合開始剤としては、アゾ系重合開始剤、置換エタン系重合開始剤の他、過硫酸塩および過酸化物などの過酸化物系開始剤と、亜硫酸塩、亜酸水素塩および金属塩などの還元剤との組み合わせによるレドックス系重合開始剤が挙げられる。 As thermal polymerization initiators, in addition to azo polymerization initiators and substituted ethane polymerization initiators, peroxide initiators such as persulfates and peroxides, sulfites, hydrogen sulfites and metal salts, etc. And redox polymerization initiators in combination with other reducing agents.
 重合開始剤の使用量は、通常、重合性不飽和基を有する化合物100重量部に対して、0.005~10重量部が適当である。 The amount of the polymerization initiator used is usually 0.005 to 10 parts by weight per 100 parts by weight of the compound having a polymerizable unsaturated group.
 また、重合方法としては、乳化重合などの公知の方法が用いられる。 As the polymerization method, a known method such as emulsion polymerization is used.
 重合温度は、前記重合開始剤の種類によって調整されるが、例えば20℃~100℃が好ましい。 The polymerization temperature is adjusted depending on the kind of the polymerization initiator, and is preferably 20 ° C. to 100 ° C., for example.
 本発明においては、上記重合性不飽和基を有する化合物のうち、硬度が高くなりより傷つきを防止できる観点から、1分子中に3つ以上の重合性官能基を有するものが好ましい。 In the present invention, among the compounds having a polymerizable unsaturated group, those having three or more polymerizable functional groups in one molecule are preferable from the viewpoint of increasing hardness and preventing damage.
 更に、この1分子中に3つ以上の重合性官能基を有する重合性不飽和基を有する化合物と、前述の分散質粒子として酸化ジルコニウムとを併用した光学材料用樹脂組成物は、更に高い屈折率を有する塗膜を提供することが可能となり、種々の分野での利用が可能となる。 Furthermore, the resin composition for an optical material in which the compound having a polymerizable unsaturated group having three or more polymerizable functional groups in one molecule and zirconium oxide as the dispersoid particle are used together has a higher refractive index. It becomes possible to provide the coating film which has a rate, and the utilization in a various field | area becomes possible.
 重合性不飽和基を有する化合物の好ましい配合量は、本発明の光学材料用樹脂組成物の全体に対して1~80重量%であり、より好ましくは30~70重量%である。 The preferred blending amount of the compound having a polymerizable unsaturated group is 1 to 80% by weight, more preferably 30 to 70% by weight, based on the entire resin composition for an optical material of the present invention.
 10.任意成分
 本発明の光学材料用樹脂組成物には、上記各成分に加えて、通常の塗料用や粘接着用、成型用に利用されている各種樹脂類、オリゴマー類、単量体類も特に制限無く使用できる。具体的には、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコールなどを添加してもよい。また、1気圧における沸点が100℃未満の有機溶媒を添加してもよい。
10. Optional components In addition to the above components, the resin composition for optical materials of the present invention also includes various resins, oligomers, and monomers used for ordinary paints, adhesives, and moldings. Can be used without restriction. Specifically, acrylic resin, polyester resin, alkyd resin, urethane resin, silicone resin, fluorine resin, epoxy resin, polycarbonate resin, polyvinyl chloride resin, polyvinyl alcohol, or the like may be added. Moreover, you may add the organic solvent whose boiling point in 1 atmosphere is less than 100 degreeC.
 11.使用方法
 本発明の光学材料用樹脂組成物を基材上に塗布し、溶剤を蒸発させた後、硬化させることにより、本発明のハードコート被覆物が得られる。塗工の対象となる基材としては、ガラス、ポリエチレンテレフタレート(PET)などの樹脂フィルム、ガラスコンポジット、セラミックス、金属、鋼板、などを挙げることができる。また、塗工方法としては、スピンコート、バーコート、スプレー、スクリーン、グラビア、オフセット、凸版、凹版、インクジェットなどを挙げることができるが、これらに限定されることなく、通常用いられる装置、器具等を用いて行うことが出来る。また、塗工した膜の硬化には、熱、紫外線、放射線などの公知のものを使用することができる。
11. Method of Use The hard coat coating of the present invention is obtained by applying the resin composition for an optical material of the present invention on a substrate, evaporating the solvent, and then curing. Examples of the base material to be coated include glass, resin films such as polyethylene terephthalate (PET), glass composites, ceramics, metals, and steel plates. Examples of the coating method include spin coating, bar coating, spraying, screen, gravure, offset, letterpress, intaglio, and ink jet, but are not limited to these, and generally used apparatuses and instruments. Can be used. For curing the coated film, known materials such as heat, ultraviolet rays and radiation can be used.
 また、本発明の光学材料用樹脂組成物を用いて、成形型で成形するなどにより、レンズなどの光学材料を作製することもできる。 Also, an optical material such as a lens can be produced by molding with a mold using the resin composition for optical material of the present invention.
 以下に本発明の実施例および比較例について説明する。なお、以下において、配合量を示す「部」は「重量部」を示し、「%」は「重量%」を示す。言うまでもないが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更や修正が可能である。 Hereinafter, examples and comparative examples of the present invention will be described. In the following, “part” indicating the blending amount indicates “part by weight” and “%” indicates “% by weight”. Needless to say, the present invention is not limited to the following examples, and appropriate changes and modifications can be made without departing from the technical scope of the present invention.
 <分散剤の合成>
 [製造例1(分散剤Aの合成)]
 トルエン溶媒中に、分岐C11~14アルキルアルコール(製品名:EXXAL13、エクソン・モービル社製)エチレンオキシド10モル付加物640g(1モル)およびモノクロロ酢酸ナトリウム152g(1.3モル)を反応器にとり、均一になるよう撹拌した。その後、反応系の温度を60℃の条件で水酸化ナトリウム52gを添加した。次いで、反応系の温度を80℃に昇温させ、3時間熟成させた。熟成後、反応系が50℃の条件で98%硫酸117g(1.2モル)を滴下することにより、白色懸濁溶液を得た。次いで、この白色懸濁溶液を蒸留水で洗浄し、溶媒を減圧留去することにより、分散剤A(R:分岐C11~14アルキル、AO:エチレンオキシド、n:10、X:CH)を得た。
<Synthesis of dispersant>
[Production Example 1 (Synthesis of Dispersant A)]
Into a toluene solvent, 640 g (1 mol) of ethylene oxide 10 mol adduct and 152 g (1.3 mol) of sodium monochloroacetate, branched C11-14 alkyl alcohol (product name: EXXAL13, manufactured by Exxon Mobil Co., Ltd.) were uniformly added. It stirred until it became. Thereafter, 52 g of sodium hydroxide was added under the condition that the temperature of the reaction system was 60 ° C. Subsequently, the temperature of the reaction system was raised to 80 ° C. and aged for 3 hours. After aging, 117 g (1.2 mol) of 98% sulfuric acid was added dropwise with the reaction system at 50 ° C. to obtain a white suspension. Next, the white suspension is washed with distilled water, and the solvent is distilled off under reduced pressure to obtain a dispersant A (R: branched C11-14 alkyl, AO: ethylene oxide, n: 10, X: CH 2 ). It was.
 [製造例2(分散剤Bの合成)]
 製造例1において、分岐C11~14アルキルアルコールエチレンオキシド10モル付加物に代えて、イソデシルアルコールエチレンオキシド10モル付加物598g(1モル)としたこと以外は製造例1と同様の方法を実施し、分散剤B(R:イソデシル、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 2 (Synthesis of Dispersant B)]
In Production Example 1, the same method as in Production Example 1 was carried out except that 598 g (1 mol) of isodecyl alcohol ethylene oxide 10 mol adduct was used instead of the branched C11-14 alkyl alcohol ethylene oxide 10 mol adduct. Agent B (R: isodecyl, AO: ethylene oxide, n: 10, X: CH 2 ) was obtained.
 [製造例3(分散剤Cの合成)]
 製造例1において、分岐C11~14アルキルアルコールエチレンオキシド10モル付加物に代えて、分岐C11~14アルキルアルコールエチレンオキシド5モル付加物420g(1モル)としたこと以外は製造例1と同様の方法を実施し、分散剤C(R:分岐C11~14アルキル、AO:エチレンオキシド、n:5、X:CH)を得た。
[Production Example 3 (Synthesis of Dispersant C)]
In Production Example 1, the same method as in Production Example 1 was carried out, except that 420 g (1 mol) of a branched C11-14 alkyl alcohol ethylene oxide 5 mol adduct was used instead of the branched C11-14 alkyl alcohol ethylene oxide 10 mol adduct. Dispersant C (R: branched C11-14 alkyl, AO: ethylene oxide, n: 5, X: CH 2 ) was obtained.
 [製造例4(分散剤Dの合成)]
 分岐C11~14アルキルアルコールエチレンオキシド10モル付加物640g(1モル)およびコハク酸無水物100g(1モル)を120℃で2時間反応させることにより、分散剤D(R:分岐C11~14アルキル、AO:エチレンオキシド、n:10、X:COCHCH)を得た。
[Production Example 4 (Synthesis of Dispersant D)]
By reacting 640 g (1 mol) of branched C11-14 alkyl alcohol ethylene oxide 10 mol adduct and 100 g (1 mol) of succinic anhydride at 120 ° C. for 2 hours, dispersant D (R: branched C11-14 alkyl, AO : Ethylene oxide, n: 10, X: COCH 2 CH 2 ).
 [製造例5(分散剤Eの合成)]
 製造例1において、分岐C11~14アルキルアルコールエチレンオキシド10モル付加物に代えて、2-エチルヘキシルアルコールエチレンオキシド10モル付加物570g(1モル)としたこと以外は製造例1と同様の方法を実施し、分散剤E(R:2-エチルヘキシル、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 5 (Synthesis of Dispersant E)]
In Production Example 1, the same method as in Production Example 1 was carried out except that 570 g (1 mol) of 2-ethylhexyl alcohol ethylene oxide 10 mol adduct was used instead of the branched C11-14 alkyl alcohol ethylene oxide 10 mol adduct, Dispersant E (R: 2-ethylhexyl, AO: ethylene oxide, n: 10, X: CH 2 ) was obtained.
 [製造例6(分散剤aの合成)]
 製造例1において、分岐C11~14アルキルアルコールエチレンオキシド10モル付加物に代えて、メタノールエチレンオキシド10モル付加物472g(1モル)としたこと以外は製造例1と同様の方法を実施し、分散剤a(R:メチル、AO:エチレンオキシド、n:10、X:CH)を得た。
[Production Example 6 (Synthesis of Dispersant a)]
The same procedure as in Production Example 1 was carried out except that 472 g (1 mol) of methanol ethylene oxide 10 mol adduct was used in place of the branched C11-14 alkyl alcohol ethylene oxide 10 mol adduct in Production Example 1, and dispersant a (R: methyl, AO: ethylene oxide, n: 10, X: CH 2 ) was obtained.
 [製造例7(ウレタンアクリレートAの合成)]
 ヘキサメチレンジイソシアネート(HMDI)の3量体504g(1モル)と、ペンタエリスリトールトリアクリレート(商品名:PET-3、第一工業製薬社製)894g(3モル)と、ハイドロキノンモノメチルエーテル0.8gを添加し、70℃~80℃で残存イソシアネート濃度が0.1重量%以下になるまで反応させ、ウレタンアクリレートAを得た。
[Production Example 7 (Synthesis of urethane acrylate A)]
504 g (1 mol) of hexamethylene diisocyanate (HMDI) trimer, 894 g (3 mol) of pentaerythritol triacrylate (trade name: PET-3, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 0.8 g of hydroquinone monomethyl ether The resultant was added and reacted at 70 ° C. to 80 ° C. until the residual isocyanate concentration became 0.1% by weight or less to obtain urethane acrylate A.
 [実施例1]
 市販の酸化ジルコニウム分散体(堺化学社製の商品名SZR-M、一次粒子径3nm、30重量%の酸化ジルコニウムを含有するメタノール分散体)100部と、製造例1で製造した分散剤Aを1.5部と、フェニルトリエトキシシラン(商品名:KBE-103、信越シリコーン社製)1.5部と、ペンタエリスリトールトリアクリレート(商品名:ニューフロンティアPET-3、第一工業製薬社製)18.9部と、フェノキシエチルアクリレート(商品名:ニューフロンティアPHE、第一工業製薬社製)8.1部とを混合した。この混合物からロータリーエバボレーターを用いてメタノールを減圧除去することにより、本実施例の光学材料用樹脂組成物を得た。
[Example 1]
100 parts of a commercially available zirconium oxide dispersion (trade name SZR-M, manufactured by Sakai Chemical Co., Ltd., a methanol dispersion containing zirconium oxide with a primary particle size of 3 nm and 30% by weight) and dispersant A produced in Production Example 1 1.5 parts, 1.5 parts of phenyltriethoxysilane (trade name: KBE-103, manufactured by Shin-Etsu Silicone) and pentaerythritol triacrylate (trade name: New Frontier PET-3, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 18.9 parts and 8.1 parts of phenoxyethyl acrylate (trade name: New Frontier PHE, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were mixed. By removing methanol from this mixture under reduced pressure using a rotary evaporator, the resin composition for optical materials of the present Example was obtained.
 [実施例2]
 分散剤A1.5部に代えて、製造例2に記載の分散剤Bの1.5部を使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 2]
A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 1.5 parts of Dispersant B described in Production Example 2 was used instead of 1.5 parts of Dispersant A. It was.
 [実施例3]
 分散剤A1.5部に代えて、製造例3に記載の分散剤Cの1.5部を使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 3]
A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 1.5 parts of dispersant C described in Production Example 3 was used instead of 1.5 parts of dispersant A. It was.
 [実施例4]
 分散剤A1.5部に代えて、製造例4に記載の分散剤Dの1.5部を使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 4]
A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 1.5 parts of dispersant D described in Production Example 4 was used instead of 1.5 parts of dispersant A. It was.
 [実施例5]
 分散剤A1.5部に代えて、製造例5に記載の分散剤Eを1.5部使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 5]
It replaced with 1.5 parts of dispersing agent A, and carried out similarly to Example 1 except having used 1.5 parts of dispersing agent E as described in manufacture example 5, and obtained the resin composition for optical materials of a present Example. .
 [実施例6]
 フェニルトリエトキシシラン1.5部に代えて、メチルトリエトキシシラン(商品名:KBE-13、信越シリコーン社製)を1.5部使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 6]
This example was carried out in the same manner as in Example 1 except that 1.5 parts of methyltriethoxysilane (trade name: KBE-13, manufactured by Shin-Etsu Silicone) was used instead of 1.5 parts of phenyltriethoxysilane. The resin composition for optical materials was obtained.
 [実施例7]
 フェニルトリエトキシシラン1.5部に代えて、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM-503、信越シリコーン社製)を1.5部使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 7]
Example 1 was repeated except that 1.5 parts of 3-methacryloxypropyltrimethoxysilane (trade name: KBM-503, manufactured by Shin-Etsu Silicone) was used instead of 1.5 parts of phenyltriethoxysilane. The resin composition for optical materials of the present Example was obtained.
 [実施例8]
 フェノキシエチルアクリレート8.1部に代えて、フェノキシエチルアクリレート4部および製造例7に記載のウレタンアクリレートAを4.1部使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 8]
The optical material of this example was the same as that of Example 1 except that 4.1 parts of phenoxyethyl acrylate and 4.1 parts of urethane acrylate A described in Production Example 7 were used instead of 8.1 parts of phenoxyethyl acrylate. A resin composition was obtained.
 [実施例9]
 ペンタエリスリトールトリアクリレート18.9部に代えて、ペンタエリスリトールトリアクリレート9.5部およびトリシクロデカンジメチロールジアクリレート(日本化薬社製、KAYARAD R-684)9.4部を使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 9]
Instead of using 18.9 parts of pentaerythritol triacrylate, 9.5 parts of pentaerythritol triacrylate and 9.4 parts of tricyclodecane dimethylol diacrylate (manufactured by Nippon Kayaku Co., Ltd., KAYARAD R-684) were used. It carried out like Example 1 and obtained the resin composition for optical materials of a present Example.
 [実施例10]
 フェノキシエチルアクリレート8.1部に代えてメトキシポリエチレングリコールメタクリレート(商品名:ニューフロンティアMPEM-400、第一工業製薬社製)4部およびビスフェノールAポリエチレングリコールメタクリレート(商品名:ニューフロンティアBPEM-10、第一工業製薬社製)4.1部を使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 10]
In place of 8.1 parts of phenoxyethyl acrylate, 4 parts of methoxypolyethylene glycol methacrylate (trade name: New Frontier MPEM-400, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and bisphenol A polyethylene glycol methacrylate (trade name: New Frontier BPEM-10, No. 1) The same procedure as in Example 1 was carried out except that 4.1 parts by Ichi Kogyo Seiyaku Co., Ltd. were used to obtain a resin composition for optical materials of this example.
 [実施例11]
 フェノキシエチルアクリレート8.1部に代えてフェニルチオエチルアクリレート8.1部使用したこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 11]
A resin composition for optical materials of this example was obtained in the same manner as in Example 1 except that 8.1 parts of phenylthioethyl acrylate was used instead of 8.1 parts of phenoxyethyl acrylate.
 [実施例12]
 ペンタエリスリトールトリアクリレート18.9部とフェノキシエチルアクリレート8.1部に代えて、ペンタエリスリトールトリアクリレート29.4部とフェノキシエチルアクリレート12.6部にしたこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 12]
The same procedure as in Example 1 was carried out except that 18.9 parts of pentaerythritol triacrylate and 8.1 parts of phenoxyethyl acrylate were replaced with 29.4 parts of pentaerythritol triacrylate and 12.6 parts of phenoxyethyl acrylate. The resin composition for optical materials of the Example was obtained.
 [実施例13]
 ペンタエリスリトールトリアクリレート18.9部とフェノキシエチルアクリレート8.1部に代えて、ペンタエリスリトールトリアクリレート17.2部とフェノキシエチルアクリレート7.3部にしたこと以外は実施例1と同様に行い、本実施例の光学材料用樹脂組成物を得た。
[Example 13]
The same procedure as in Example 1 was performed except that 17.2 parts of pentaerythritol triacrylate and 7.3 parts of phenoxyethyl acrylate were used instead of 18.9 parts of pentaerythritol triacrylate and 8.1 parts of phenoxyethyl acrylate. The resin composition for optical materials of the Example was obtained.
 [比較例1]
 実施例1の分散剤Aに代えて、ラウリン酸を同量用いたこと以外は同様の方法を実施し、本比較例の組成物を得た。
[Comparative Example 1]
A composition of this comparative example was obtained in the same manner as in Example 1 except that the same amount of lauric acid was used instead of the dispersant A.
 [比較例2]
 実施例1の分散剤Aに代えて、2-エチルヘキサン酸を同量用いたこと以外は同様の方法を実施し、本比較例の組成物を得た。
[Comparative Example 2]
A composition of this comparative example was obtained in the same manner as in Example 1 except that the same amount of 2-ethylhexanoic acid was used instead of the dispersant A.
 [比較例3]
 実施例1の分散剤Aに代えて、製造例6に記載の分散剤aを同量用いたこと以外は同様の方法を実施し、本比較例の組成物を得た。
[Comparative Example 3]
A composition of this comparative example was obtained in the same manner as in Example 1 except that the same amount of the dispersant a described in Production Example 6 was used instead of the dispersant A.
 [比較例4]
 実施例1のフェニルトリエトキシシランの配合量を3部とし、分散剤Aを使用しないこと以外は同様の方法を実施し、本比較例の組成物を得た。
[Comparative Example 4]
A composition of this comparative example was obtained by carrying out the same method except that the amount of phenyltriethoxysilane in Example 1 was 3 parts and the dispersant A was not used.
 <分散体(分散液)の特性評価>
 上記実施例および比較例の光学材料用樹脂組成物について、分散性、粘度の評価を行い、その結果を表1に示した。評価方法は以下のとおりである。
<Characteristic evaluation of dispersion (dispersion)>
The resin compositions for optical materials of the examples and comparative examples were evaluated for dispersibility and viscosity, and the results are shown in Table 1. The evaluation method is as follows.
 (分散性)
 目視により沈殿物の有無を確認し、沈殿物がない場合を○、沈殿物がある場合を×とした。
(Dispersibility)
The presence or absence of precipitates was confirmed by visual observation.
 (粘度)
 JIS K5600-2-3に準じて、E型粘度計(東機産業社製 RE80R)を使用し、25℃における分散体の粘度を測定した。
(viscosity)
According to JIS K5600-2-3, an E-type viscometer (RE80R manufactured by Toki Sangyo Co., Ltd.) was used to measure the viscosity of the dispersion at 25 ° C.
 <硬化物の特性評価>
 上記各実施例および各比較例で調製した光半導体封止材組成物5gに、重合開始剤であるLucirin TPO(商品名、BASFジャパン社製)を0.15g加えて溶解させた後、25μmのスペーサーを挟んだガラス板で作製したケースに入れ、積算400mJのUVを照射して硬化させることにより、厚さ25μmの硬化物を得た。この硬化物について、外観、屈折率、ヘイズ、耐熱試験後の黄変度を表1に示した。評価方法は以下のとおりである。
<Characteristic evaluation of cured product>
After adding 0.15 g of Lucirin TPO (trade name, manufactured by BASF Japan) as a polymerization initiator to 5 g of the optical semiconductor encapsulant composition prepared in each of the above Examples and Comparative Examples, 25 μm A cured product with a thickness of 25 μm was obtained by placing in a case made of a glass plate with a spacer interposed between them and irradiating and curing with UV of 400 mJ. Table 1 shows the appearance, refractive index, haze, and degree of yellowing after the heat resistance test for this cured product. The evaluation method is as follows.
 (硬化物の外観)
 目視により硬化物の外観を観察し、析出物およびクラックが見られない場合を○、析出物あるいはクラックが見られる場合を×とした。
(Appearance of cured product)
The appearance of the cured product was observed with the naked eye, and the case where no precipitates and cracks were observed was evaluated as ◯, and the case where precipitates or cracks were observed was evaluated as x.
 (屈折率)
 プリズムカプラ(METRICON社製METRICONプリズムカプラ モデル2010)を使用し、波長589nmにおける屈折率を測定した。
(Refractive index)
Using a prism coupler (METRICON prism coupler model 2010 manufactured by METRICON), the refractive index at a wavelength of 589 nm was measured.
 (アッベ数)
 JIS K0062に準じて、プリズムカプラ(商品名:METRICONプリズムカプラ モデル2010、METRICON社製)を使用し、波長405nm、532nmおよび633nmにおける硬化物の屈折率を測定し、得られた測定値からアッベ数を算出した。
(Abbe number)
According to JIS K0062, a prism coupler (trade name: METRICON prism coupler model 2010, manufactured by METRICON) was used to measure the refractive index of the cured product at wavelengths of 405 nm, 532 nm, and 633 nm, and the Abbe number was determined from the obtained measured values. Was calculated.
 (ヘイズ)
 JIS K 7136に準じて、ヘイズメーター(スガ製作所製 HGM型)を使用して硬化物のヘイズを測定した。
(Haze)
According to JIS K7136, the haze of the cured product was measured using a haze meter (HGM type manufactured by Suga Seisakusho).
 (耐熱試験・黄変度)
 上記硬化物を250℃のホットプレート上にのせ、JIS K7105に従って、加熱前と5分後の黄変度の測定値からΔYIを算出した。
(Heat resistance test / yellowing degree)
The cured product was placed on a hot plate at 250 ° C., and ΔYI was calculated from the measured values of yellowing before heating and after 5 minutes according to JIS K7105.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <結果>
 表1から明らかなように、各実施例の光学材料用樹脂組成物は、分散性および粘度の何れの評価においても優れた結果を示している。これに対して、比較例1及び2の樹脂組成物は、分散性の評価において劣り、また、比較例1~4の樹脂組成物は、粘度が大きくなり、均一混合することが困難となり、硬化物を形成することができなかった。
<Result>
As is clear from Table 1, the resin composition for optical material of each example shows excellent results in any evaluation of dispersibility and viscosity. On the other hand, the resin compositions of Comparative Examples 1 and 2 are inferior in evaluation of dispersibility, and the resin compositions of Comparative Examples 1 to 4 have a large viscosity, which makes it difficult to uniformly mix and cure. An object could not be formed.
 また、各実施例の光学材料用樹脂組成物から得られる硬化物は、外観、屈折率、アッベ数、ヘイズおよび黄変度の何れの評価においても優れた結果を示している。 Moreover, the cured product obtained from the resin composition for optical materials of each Example shows excellent results in any evaluation of appearance, refractive index, Abbe number, haze and yellowing degree.
 本発明の光学材料用樹脂組成物は、酸化ジルコニウム粒子および有機ケイ素化合物の配合量が多いにも拘わらず低粘度であり、得られる硬化樹脂の経時的な黄変を抑制することができ、透明性および耐熱性に優れた高い屈折率を有する樹脂を形成し得るので、光学機器の製造等の分野で利用可能である。 The resin composition for an optical material of the present invention has a low viscosity despite a large amount of zirconium oxide particles and an organosilicon compound, can suppress yellowing of the resulting cured resin over time, and is transparent. Since the resin having a high refractive index and excellent in heat resistance and heat resistance can be formed, it can be used in the field of manufacturing optical equipment.

Claims (4)

  1.  平均粒子径が1~30nmである酸化ジルコニウム粒子と、下記式(1)で示される化合物からなる分散剤と、有機ケイ素化合物と、重合性不飽和基を有する化合物とを含有することを特徴とする光学材料用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式(1)のRは、分岐鎖を有し炭素数が3ないし24のアルキル基および/又はアルケニル基であり、AOは炭素数が1ないし4のオキシアルキレン基であり、nはアルキレンオキシドの平均付加モル数を示す3~30の範囲の数値であり、Xは炭素原子、水素原子及び/又は酸素原子からなる連結基である。
    It contains zirconium oxide particles having an average particle diameter of 1 to 30 nm, a dispersant composed of a compound represented by the following formula (1), an organosilicon compound, and a compound having a polymerizable unsaturated group. A resin composition for optical materials.
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R is a branched chain alkyl group and / or alkenyl group having 3 to 24 carbon atoms, AO is an oxyalkylene group having 1 to 4 carbon atoms, and n is an alkylene group It is a numerical value in the range of 3 to 30 indicating the average number of moles of oxide added, and X is a linking group consisting of a carbon atom, a hydrogen atom and / or an oxygen atom.
  2.  前記分散剤における前記式(1)のXは、炭素数が1ないし15のアルキレン基であることを特徴とする請求項1記載の光学材料用樹脂組成物。 2. The resin composition for an optical material according to claim 1, wherein X in the formula (1) in the dispersant is an alkylene group having 1 to 15 carbon atoms.
  3.  前記分散剤における前記式(1)のXは、下記式(2)で示される連結基であることを特徴とする請求項1記載の光学材料用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     ただし、式(2)のYは、炭素数が1ないし15のアルキレン基、ビニレン基、フェニレン基およびカルボキシル基含有フェニレン基の中から選択されるいずれかである。
    2. The resin composition for an optical material according to claim 1, wherein X in the formula (1) in the dispersant is a linking group represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    However, Y in the formula (2) is any selected from an alkylene group having 1 to 15 carbon atoms, a vinylene group, a phenylene group, and a carboxyl group-containing phenylene group.
  4.  前記光学材料用樹脂組成物を100重量%とした場合の前記酸化ジルコニウム粒子の配合量が、0.5~80重量%であることを特徴とする請求項1乃至3の何れか一項に記載の光学材料用樹脂組成物。 4. The compounding amount of the zirconium oxide particles when the resin composition for optical materials is 100% by weight is 0.5 to 80% by weight. A resin composition for optical materials.
PCT/JP2012/079318 2011-11-25 2012-11-13 Resin composition for optical material WO2013077219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280055373.8A CN103987781B (en) 2011-11-25 2012-11-13 Resin composition for optical material
KR1020147013956A KR101606303B1 (en) 2011-11-25 2012-11-13 Resin composition for optical material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011257960A JP5795949B2 (en) 2011-11-25 2011-11-25 Resin composition for optical materials
JP2011-257960 2011-11-25

Publications (1)

Publication Number Publication Date
WO2013077219A1 true WO2013077219A1 (en) 2013-05-30

Family

ID=48469667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079318 WO2013077219A1 (en) 2011-11-25 2012-11-13 Resin composition for optical material

Country Status (5)

Country Link
JP (1) JP5795949B2 (en)
KR (1) KR101606303B1 (en)
CN (1) CN103987781B (en)
TW (1) TWI488898B (en)
WO (1) WO2013077219A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160282A (en) * 2015-02-26 2016-09-05 旭化成株式会社 Curable resin composition and method for producing the same, and sealing material for optical semiconductor, die bond material for optical semiconductor, and optical semiconductor package
EP3507337A4 (en) * 2016-08-30 2020-04-08 Henkel IP & Holding GmbH Light stable adhesive compositions with high refractive index and assemblies, articles, light emitting elements thereof
WO2021039529A1 (en) * 2019-08-23 2021-03-04 東洋インキScホールディングス株式会社 Inorganic oxide particle dispersion, molding composition in which same is used, and molded article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491495B2 (en) * 2015-02-24 2019-03-27 第一工業製薬株式会社 Dispersion composition, cured product thereof, and laminate
DE102016104790A1 (en) * 2016-03-15 2017-09-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Materials for LED encapsulation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2001276596A (en) * 2000-04-04 2001-10-09 Kao Corp Aqueous dispersant for inorganic powder
JP2004158397A (en) * 2001-12-21 2004-06-03 Kawatetsu Mining Co Ltd Ultrafine metal powder slurry with high dispersibility
JP2008056826A (en) * 2006-08-31 2008-03-13 Canon Inc Method for producing composite material and dispersing agent
JP2009067949A (en) * 2007-09-14 2009-04-02 Nippon Shokubai Co Ltd Resin composition
JP2010037534A (en) * 2008-07-08 2010-02-18 Nippon Shokubai Co Ltd Composite particle, resin composition, and its cured product
JP2010085937A (en) * 2008-10-03 2010-04-15 Nippon Shokubai Co Ltd Composition containing inorganic oxide fine particle, and cured composition containing inorganic oxide fine particle obtained by curing the composition
JP2010189506A (en) * 2009-02-17 2010-09-02 Dic Corp Resin composition containing inorganic oxide fine particle and cured product obtained from the composition
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2001276596A (en) * 2000-04-04 2001-10-09 Kao Corp Aqueous dispersant for inorganic powder
JP2004158397A (en) * 2001-12-21 2004-06-03 Kawatetsu Mining Co Ltd Ultrafine metal powder slurry with high dispersibility
JP2008056826A (en) * 2006-08-31 2008-03-13 Canon Inc Method for producing composite material and dispersing agent
JP2009067949A (en) * 2007-09-14 2009-04-02 Nippon Shokubai Co Ltd Resin composition
JP2010037534A (en) * 2008-07-08 2010-02-18 Nippon Shokubai Co Ltd Composite particle, resin composition, and its cured product
JP2010085937A (en) * 2008-10-03 2010-04-15 Nippon Shokubai Co Ltd Composition containing inorganic oxide fine particle, and cured composition containing inorganic oxide fine particle obtained by curing the composition
JP2010189506A (en) * 2009-02-17 2010-09-02 Dic Corp Resin composition containing inorganic oxide fine particle and cured product obtained from the composition
JP2011157435A (en) * 2010-01-29 2011-08-18 Dic Corp Method for producing inorganic particle dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160282A (en) * 2015-02-26 2016-09-05 旭化成株式会社 Curable resin composition and method for producing the same, and sealing material for optical semiconductor, die bond material for optical semiconductor, and optical semiconductor package
EP3507337A4 (en) * 2016-08-30 2020-04-08 Henkel IP & Holding GmbH Light stable adhesive compositions with high refractive index and assemblies, articles, light emitting elements thereof
US11174419B2 (en) 2016-08-30 2021-11-16 Henkel IP & Holding GmbH Light stable transparent adhesive compositions and methods for use thereof
WO2021039529A1 (en) * 2019-08-23 2021-03-04 東洋インキScホールディングス株式会社 Inorganic oxide particle dispersion, molding composition in which same is used, and molded article

Also Published As

Publication number Publication date
JP2013112707A (en) 2013-06-10
TW201339222A (en) 2013-10-01
KR20140092850A (en) 2014-07-24
KR101606303B1 (en) 2016-03-24
CN103987781A (en) 2014-08-13
CN103987781B (en) 2017-02-15
JP5795949B2 (en) 2015-10-14
TWI488898B (en) 2015-06-21

Similar Documents

Publication Publication Date Title
JP5167582B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP5587869B2 (en) Curable composition and cured product thereof
TWI290570B (en) Radiation-curable metal particles and curable resin compositions comprising these particles
JP5795949B2 (en) Resin composition for optical materials
TWI689539B (en) Active energy ray-curable resin composition, paint, coating film, and film
TWI509035B (en) Hard coating with a dispersion composition, a hard coat coating composition, and a hard coat coating
CN103370361A (en) Polymerizable compositions, cured products obtained therewith, and use of these materials
EP2298822A1 (en) Hardening composition and resultant hardened material
JP5463120B2 (en) Active energy ray-curable resin composition
Lv et al. A novel method for preparation of exfoliated UV-curable polymer/clay nanocomposites
JP2016041774A (en) Surface-treated inorganic particle and curable resin composition
US20190011604A1 (en) Laminate, method of manufacturing laminate, and method of manufacturing antireflection film
JP6965186B2 (en) Photocurable resin composition
KR102389723B1 (en) Reactive polymer, photocurable resin composition and laminate
JPWO2016190373A1 (en) Curable resin composition and method for producing the same
JP6491495B2 (en) Dispersion composition, cured product thereof, and laminate
EP3885381A1 (en) Reactive silicone composition and cured product of same
JP2015203083A (en) Organic-inorganic hybrid particle and manufacturing method thereof
Topçu et al. Effects of perfluoro modified sol‐gel additive on UV‐curable phosphorus containing urethane acrylate coatings
Zoromba Preparation and characterization of new nanostructured organic, inorganic composite coatings for anti-fog applications
JP5368017B2 (en) Active energy ray-curable coating resin composition
JP2001172468A (en) Resin particle of organic polymer, method for producing the particle and surface slipperiness imparter
JP2018070839A (en) Photocurable resin composition
JP2018123195A (en) Photocurable resin composition
JP2015203114A (en) Organic-inorganic hybrid particle and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147013956

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850958

Country of ref document: EP

Kind code of ref document: A1