WO2021039529A1 - Inorganic oxide particle dispersion, molding composition in which same is used, and molded article - Google Patents

Inorganic oxide particle dispersion, molding composition in which same is used, and molded article Download PDF

Info

Publication number
WO2021039529A1
WO2021039529A1 PCT/JP2020/031253 JP2020031253W WO2021039529A1 WO 2021039529 A1 WO2021039529 A1 WO 2021039529A1 JP 2020031253 W JP2020031253 W JP 2020031253W WO 2021039529 A1 WO2021039529 A1 WO 2021039529A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
particle dispersion
oxide particle
dispersant
alkyl group
Prior art date
Application number
PCT/JP2020/031253
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 権藤
酒井 隆行
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020120323A external-priority patent/JP2021036028A/en
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Publication of WO2021039529A1 publication Critical patent/WO2021039529A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • An embodiment of the present invention relates to an inorganic oxide particle dispersion, a composition for molding using the dispersion, and a molded product. More specifically, the present invention relates to an inorganic oxide particle dispersion having high heat resistance and high transparency, and a molded product containing the dispersion.
  • organic compounds and inorganic oxides having the desired physical characteristics are combined by various methods in order to obtain mechanical and optical properties that cannot be achieved by the resin alone.
  • the method of making it has been tried.
  • optical characteristics it is common to impart physical properties such as UV shielding, heat ray shielding, and refractive index adjustment, and conventionally, a method of applying a paint having optical characteristics to a film has been used.
  • an inorganic oxide is added to the film itself. The method of adding is becoming a trend.
  • indium tin oxide which is an infrared shielding agent
  • indium tin oxide which is an infrared shielding agent
  • UV curable paints it has been proposed to use an alkoxysilane compound in combination with a specific dispersant as a method for maintaining nano-level dispersion of zirconia in the paint.
  • UV curable acrylate is used as a solvent in the paint by this method. Therefore, considering the use for film molding, it is difficult to use the paint component for general purposes from the viewpoint of deterioration of transparency at high temperature and compatibility with the resin and plasticizer used for molding, and the application is limited. There is a problem of being done.
  • the present invention is applicable to various plastic materials, and an inorganic oxide particle dispersion having heat resistance and transparency against a high temperature at the time of molding, and a molded body containing the inorganic oxide particle dispersion.
  • the purpose is to provide.
  • the present invention relates to the embodiments described below. However, the present invention is not limited to the embodiments described below, but includes various embodiments.
  • One embodiment is an inorganic oxide particle dispersion containing inorganic oxide particles, a dispersant, an alkoxysilane compound, and a plasticizer having a boiling point of 200 ° C. or higher and having no polymerizable unsaturated group.
  • the present invention relates to an inorganic oxide particle dispersion containing at least one selected from the group consisting of a dispersant A represented by the following general formula A and a dispersant B represented by the following general formula B. ..
  • R 1 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having 10 to 18 carbon atoms.
  • A represents an alkylene group having a linear structure having 2 to 3 carbon atoms.
  • n 1 is an integer of 5 to 20.
  • X 1 represents a hydrogen atom or Y 1.
  • R 2 is an alkyl group having a branched structure or a linear structure, and n 2 represents an alkyl group having a main chain having 12 to 13 carbon atoms.
  • R 3 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms.
  • N 3 is an integer of 1 to 10. .
  • one embodiment relates to the inorganic oxide particle dispersion in which the inorganic oxide particles contain zirconium oxide particles.
  • one embodiment relates to the above-mentioned inorganic oxide particle dispersion in which the above-mentioned plasticizer is at least one selected from the group consisting of polyethylene glycol-based ester, polypropylene glycol, and polypropylene glycol-based ester.
  • one embodiment relates to the above-mentioned inorganic oxide particle dispersion in which the above-mentioned alkoxysilane compound has an epoxy skeleton.
  • one embodiment relates to a molding composition containing the above-mentioned inorganic oxide particle dispersion and a molding resin.
  • one embodiment relates to a molded body using the above-mentioned inorganic oxide particle dispersion.
  • the disclosure of the present application is related to and all of the subjects described in Japanese Patent Application No. 2019-152855 filed on August 23, 2019 and Japanese Patent Application No. 2020-120323 filed on July 14, 2020. Disclosures of are incorporated herein by reference.
  • the present invention provides an inorganic oxide particle dispersion that is applicable to various plastic materials and has heat resistance and transparency against high temperatures during molding, and a molded body containing the inorganic oxide particle dispersion. be able to.
  • the inorganic oxide particle dispersion contains inorganic oxide particles, a dispersant, an alkoxysilane compound, and a plasticizer having a boiling point of 200 ° C. or higher and having no polymerizable unsaturated group. , At least one selected from the group consisting of the dispersant A represented by the following general formula A and the dispersant B represented by the following general formula B.
  • the dispersant A represented by the following general formula A
  • the dispersant B represented by the following general formula B.
  • Inorganic oxide particles As the inorganic oxide particles used in the inorganic oxide particle dispersion, an oxide of at least one element selected from a metal element and Si can be used. Inorganic oxide particles can be selected according to the physical characteristic values required for the molded body, the laminate, and the like. For example, zirconia (ZrO 2 ), titania (TIO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), copper oxide (CuO), zinc oxide (ZnO), Itria.
  • ZrO 2 zirconia
  • TiO 2 titania
  • SiO 2 silica
  • Al 2 O 3 alumina
  • Fe oxide Fe 2 O 3
  • CuO copper oxide
  • ZnO zinc oxide
  • the inorganic oxide particles may be used alone or in combination of two or more.
  • the particle size of the inorganic oxide particles is preferably in the range of 15 to 50 nm on average from the viewpoint of transparency.
  • the average particle size is an arithmetic mean value of the particle size observed with a scanning electron microscope (SEM). More specifically, it is a value obtained by observing the powder of inorganic oxide particles at a magnification of 20000 times, selecting arbitrary 100 particles, and averaging the particle diameters of each.
  • SEM scanning electron microscope
  • Inorganic oxide particles can be appropriately selected according to the desired physical property values.
  • inorganic oxide particles selected from zirconium oxide, titanium oxide, and alumina zirconium oxide is preferable from the viewpoint of maintaining transparency during heat resistance.
  • inorganic oxide particles selected from zinc oxide, titanium oxide, and cerium oxide it is preferable to use inorganic oxide particles selected from zinc oxide, titanium oxide, and cerium oxide.
  • inorganic oxide particles selected from indium-doped tin oxide particles, antimony-doped tin oxide particles, phosphorus-doped tin oxide particles, fluorine-doped tin oxide particles, and tin oxide particles can be used. preferable.
  • inorganic oxide particles such as silica and alumina.
  • indium-doped tin oxide particles antimony-doped tin oxide particles
  • cesium-tungsten oxide particles When a plurality of physical properties are required for a molded body, it is preferable to contain a plurality of inorganic oxide particles in one dispersion.
  • the amount of inorganic oxide particles added is not particularly limited. In one embodiment, from the viewpoint of dispersibility over time and handleability, the amount of inorganic oxide particles in 100% by mass of the inorganic oxide particle dispersion is preferably 10 to 40% by mass, more preferably 20. ⁇ 30% by mass.
  • a dispersant A represented by the following general formula A can be used as the inorganic oxide particle dispersion.
  • R 1 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having 10 to 18 carbon atoms.
  • A represents an alkylene group having a linear structure having 2 to 3 carbon atoms.
  • n 1 is an integer of 5 to 20. It is preferable that R 1 has 12 to 18 carbon atoms.
  • a dispersant B represented by the following general formula B can be used as the inorganic oxide particle dispersion.
  • X 1 represents a hydrogen atom or Y 1 .
  • R 2 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms.
  • n 2 is an integer from 1 to 10.
  • R 3 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms.
  • n 3 is an integer from 1 to 10.
  • dispersant A for example, "Kao Akipo RLM-100” manufactured by Kao Corporation, “NIKKOL AKYPO RLM 100” manufactured by Nikko Chemicals Co., Ltd., “NIKKOL ECT-7", and "Viewlight LCA” manufactured by Sanyo Chemicals Inc. -H "and the like.
  • the amount of the dispersant added is not particularly limited. In one embodiment, it is preferable to use the dispersant in an amount of 10 to 50% by mass based on 100% by mass of the inorganic oxide particles. By using the dispersant in the above range, it is easy to disperse various inorganic oxide particles well in the plasticizer. In addition, the dispersibility of the inorganic oxide particles is unlikely to decrease even during kneading with the molding resin. If necessary, only one type of dispersant A and dispersant B may be used alone or in combination.
  • Alkoxysilane compound is a general term for compounds in which an alkoxyl group is bonded to silicon. Apart from the alkoxyl group, it further contains an alkyl group or a vinyl group, or an alkyl group having a functional group such as a vinyl group, a glycidyl group, a methacryl group, a styryl group, an acrylic group, an amino group, an isocyanate group, and a carboxyl group. May be good.
  • alkoxysilane compound examples include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and decyltrimethoxysilane.
  • An alkoxysilane compound having an epoxy skeleton such as silane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane is preferable.
  • the amount of the alkoxysilane compound added is not particularly limited.
  • the alkoxysilane compound is preferably used in an amount of 5 to 60% by mass, more preferably 10 to 50% by mass, based on 100% by mass of the inorganic oxide particles.
  • the alkoxysilane compound in the above range, it becomes easy to disperse various inorganic oxide particles well in the plasticizer. As a result, high heat resistance can be obtained as the dispersion, and the dispersibility of the inorganic oxide particles is less likely to decrease even when kneading with the molding resin.
  • the alkoxysilane compound is preferably used alone or in combination of two or more.
  • alkoxysilane compounds include KBM series and KBE series manufactured by Shinetsu Silicone Co., Ltd., WACKER SILICATE series and GENIOSIL series manufactured by Asahi Kasei Wacker Silicone Co., Ltd., and DOWNSIL series and XIAMETER series manufactured by DOWN Toray Co., Ltd. Can be mentioned.
  • Plasticizers include, for example, phthalates, adipic acid esters, phosphate esters, trimellitic acid esters, propylene glycol, propylene glycol esters, ethylene glycol, ethylene glycol esters, vegetable oils, epoxidized vegetable oils, and Examples thereof include aliphatic hydrocarbons such as paraffin, and high boiling point cyclic compounds such as valerolactone and caprolactone. These plasticizers may be used alone or in combination of two or more.
  • a plasticizer having a boiling point of 200 ° C. or higher can be used as the plasticizer.
  • the boiling point is 200 ° C. or higher, the dispersibility of the inorganic oxide particle dispersion is maintained and good transparency can be exhibited when kneading with the molding resin. Further, since bubbles and the like are not generated in the molded body, the mechanical property value can be improved.
  • a plasticizer having a boiling point of less than 200 ° C. it is preferably 10% by mass or less in the inorganic oxide particle dispersion. When the amount is adjusted in this way, the dispersibility of the inorganic oxide particle dispersion is maintained when kneading with the molding resin, and it becomes easy to develop good transparency.
  • the dispersibility of the inorganic oxide particle dispersion can be improved and it can be applied to various resins, it is preferable to use polyethylene glycol-based ester, polypropylene glycol, and polypropylene glycol ester-based plasticizer.
  • triethylene glycol-di-ethylhexanoate (boiling point: 219 ° C.), triethylene glycol bis (2-ethylhexanoate) (boiling point: 344 ° C.), triethylene glycol-di-ethylhexanoate di (boiling point: 349 ° C.)
  • Polyethylene glycol-based esters such as 2-butoxyethoxyethyl) adipate (boiling point: 230 ° C.) and tetraethylene glycol-di-2-ethylhexanoate (boiling point: 499 ° C.) can be used to improve the transparency of the inorganic oxide particle dispersion. It is preferable from the viewpoint of heat resistance.
  • the molding composition contains an inorganic oxide particle dispersion and a molding resin. By using the molding composition, it is possible to easily obtain a molded body having excellent dispersion stability, high transparency, and high heat resistance.
  • ⁇ Molding resin Any resin that softens by heating and can be molded into a predetermined shape by extrusion, pressing, or the like can be used as a molding resin.
  • a molding resin polycarbonate, polyethylene terephthalate, polypropylene, polyethylene, polyacrylic, polyvinyl chloride, polystyrene, copolymer of acrylonitrile-butadiene-styrene, copolymer of acrylonitrile-styrene, polybutylene terephthalate, polyamide, polyether ketone, polyvinyl acetal.
  • Polyvinyl butyral polyester, polyvinylidene fluoride and the like, and can be selected according to the desired physical properties.
  • a disperser generally used for the purpose of achieving high transparency can be used.
  • examples thereof include dispersers such as dispersers, homomixers, planetary mixers, ball mills, sand mills, attritors, pearl mills, wet jet mills, and roll mills.
  • disperser one type may be used alone, or a plurality of types may be used in combination.
  • a general kneader capable of kneading the inorganic oxide particle dispersion and the molding resin for the purpose of uniformly dispersing the inorganic oxide particles in the molding resin is used.
  • a roll mill such as a two-roll or three-roll mill, a pressure kneader, a Banvari mixer, a twin-screw extruder, a kneader such as a single-screw extruder can be mentioned.
  • One type of kneader may be used alone, or a plurality of types may be used in combination.
  • a general molding machine can be used for the purpose of molding the kneaded product of the inorganic oxide particle dispersion and the molding resin into a desired shape. Molding such as extrusion molding, blow molding, and press molding can be performed to a desired shape using a mold or the like. At the time of molding, heating, cooling, and pressure can be adjusted according to the purpose.
  • a laminate can be obtained by using a molded product composed of an inorganic oxide particle dispersion and a molding resin as a base material or a bonding medium. By stacking multiple types of layers, it is possible to unify various functions as a laminate.
  • the laminating method a general method can be applied. For example, a method of applying paint on a molded body as a base material, a method of laminating various materials using a molded body as a medium by a hot press or the like, a method of using an adhesive or an adhesive or the like, and other materials on the molded body. There is a method of pasting together.
  • the dispersed particle size is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 70 nm, and preferably in the range of 1 to 50 nm. More preferred.
  • the "dispersed particle size” is a particle that becomes 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution using a dynamic light scattering type particle size distribution meter. The diameter.
  • Transparency is judged from the turbidity of the inorganic oxide particle dispersion and the molded product containing the inorganic oxide particle dispersion.
  • the transparency of the inorganic oxide particle dispersion was diluted with a plasticizer so that the inorganic oxide particle dispersion was 0.05% by mass, and measured using a cell having an optical path length of 1 cm with the plasticizer as a reference.
  • Judge from the turbidity of the time In one embodiment, the turbidity is preferably 1 to 3%, more preferably 1% or less.
  • the transparency of the molded body is judged from the turbidity of the molded body containing the inorganic oxide particle dispersion.
  • the turbidity of the molded body is preferably 1 to 3%, more preferably 1% or less, based on the molded body having the same film thickness composed of only the molding resin and the plasticizer used.
  • the heat resistance is close to 0, judging from the absolute values of the changes in the dispersed particle size and turbidity before and after heating when the inorganic oxide particle dispersion and the molded product containing the inorganic oxide particle dispersion are heated.
  • the change in the dispersed particle size is preferably 10 nm or less, and more preferably 5 nm or less.
  • the change in turbidity is preferably 0.4% or less, and preferably 0.1% or less.
  • the change in turbidity is preferably 0.4% or less, and more preferably 0.1% or less.
  • Prysurf A219B Polyoxyethylene lauryl ether phosphate, manufactured by Daiichi Kogyo Co., Ltd.
  • Prysurf AL polyoxyethylene styrenated phenyl ether phosphate, manufactured by Daiichi Kogyo Co., Ltd.
  • High Tenor LA-10 Polyoxyethylene Lauryl Ether Ammonium Sulfate
  • ⁇ Method for producing dispersant 1 400 parts of toluene, 213.3 parts of isotridecanol ethylene oxide 10 mol adduct, 50.7 parts of monochloroacetate, sodium hydroxide in a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer. Was charged in 17.3 parts, replaced with nitrogen gas, and then heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 1 as a dispersant A.
  • the dispersant 1 has a structure in which R 1 is a branched alkyl group having 13 carbon atoms and n 1 is 10.
  • ⁇ Method for producing dispersant 2 400 parts of toluene, 286.7 parts of 15 mol of isotridecanol ethylene oxide adduct, 50.7 parts of monochloroacetate, sodium hydroxide in a reaction vessel equipped with a gas inlet tube, thermometer, condenser, and stirrer. Was charged in 17.3 parts, replaced with nitrogen gas, and then heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 2 as a dispersant A.
  • the dispersant 2 has a structure in which R 1 is a branched alkyl group having 13 carbon atoms and n 1 is 15.
  • ⁇ Method for producing dispersant 3> In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 400 parts of toluene, 236.8 parts of an adduct of 10 mol of isostearyl alcohol ethylene oxide, 50.7 parts of sodium monochloroacetate, and sodium hydroxide. After charging 17.3 parts and replacing with nitrogen gas, the mixture was heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 3 as a dispersant A.
  • the dispersant 3 has a structure in which R 1 is a branched alkyl group having 18 carbon atoms and n 1 is 10.
  • ⁇ Method for producing dispersant 4> In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 400 parts of toluene, 199.4 parts of an adduct of 10 mol of isodecanol ethylene oxide, 50.7 parts of sodium monochloroacetate, and sodium hydroxide. After charging 17.3 parts and replacing with nitrogen gas, the mixture was heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 4 as a dispersant A.
  • the dispersant 4 has a structure in which R 1 is a branched alkyl group having 10 carbon atoms and n 1 is 10.
  • the dispersant 5 has a structure in which R 1 is a linear alkyl group having 14 carbon atoms and n 1 is 10.
  • ⁇ Method for producing dispersant 6> In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 62.6 parts of 1-dodecanol, 287.4 parts of ⁇ -caprolactone, and 0.1 part of monobutyltin (IV) oxide as a catalyst were charged, and nitrogen was charged. After replacement with gas, the mixture was heated at 120 ° C. for 4 hours and stirred. After confirming that 98% had reacted by solid content measurement, 36.6 parts of pyromellitic anhydride was added to this mixture and reacted at 120 ° C. for 2 hours to obtain a dispersant 6 having the structure of the dispersant B. ..
  • the dispersant 6 has a structure in which R 2 is a linear alkyl group having 12 carbon atoms, n 2 is 7, R 3 is a linear alkyl group having 12 carbon atoms, and n 3 is 7. ..
  • ⁇ Method for producing dispersant 7> A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 31.3 parts of 1-dodecanol, 143.7 parts of ⁇ -caprolactone, and 0.1 part of monobutyltin (IV) oxide as a catalyst, and nitrogen. After replacement with gas, the mixture was heated at 120 ° C. for 4 hours and stirred. After confirming that 98% had reacted by solid content measurement, 32.2 parts of trimellitic anhydride was added to this mixture and reacted at 130 ° C. for 4 hours to obtain a dispersant 7 having the structure of the dispersant B. ..
  • the dispersant 7 has a structure in which X 1 is a hydrogen atom, R 3 is a linear alkyl group having 12 carbon atoms, and n 3 is 7.
  • ⁇ Method for producing dispersant 8> A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 31.3 parts of 1-dodecanol, 143.7 parts of ⁇ -caprolactone, and 0.1 part of monobutyltin (IV) oxide as a catalyst, and nitrogen. After replacement with gas, the mixture was heated at 120 ° C. for 4 hours and stirred. After confirming that 98% had reacted by solid content measurement, 16.4 parts of maleic anhydride was added to this mixture, and the mixture was reacted at 130 ° C. for 4 hours to obtain a dispersant 8.
  • KBM-403 (3-glycidoxypropyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
  • KBM-303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
  • KBM-13 Metalhyltrimethoxysilane, Shinetsu Silicone Co., Ltd.
  • KBM-22 dimethyldimethoxysilane, Shinetsu Silicone Co., Ltd.
  • KBM-3033 n-propyltrimethoxysilane, Shinetsu Silicone Co., Ltd.
  • KBM-103 Phenyltrimethoxysilane, Shinetsu Silicone Co., Ltd.
  • KBM-1003 Vinyltrimethoxysilane, Shinetsu Silicone Co., Ltd.
  • the dispersed particle size of the inorganic oxide particle dispersion is determined by using a dynamic light scattering type particle size distribution meter (Microtrac UPA, manufactured by Nikkiso Co., Ltd.) in the volume particle size distribution, from the finer particle size to the volume ratio of the particles. The particle size of 50% was measured as the dispersed particle size.
  • the sample used for the measurement was prepared by adding an inorganic oxide particle dispersion to the plasticizer used at the time of preparing the dispersion in an arbitrary amount that can be measured, and dispersing it with a bath-type ultrasonic device. did. The finer the dispersed particle size, the more preferable it is from the viewpoint of transparency, and the evaluation was made according to the following criteria.
  • C Over 70 nm (defective)
  • Transparency 1 For the sample for evaluating the transparency of the inorganic oxide particle dispersion, 0.5 part of the inorganic oxide particle dispersion was added to 29.5 parts of the plasticizer used when preparing the inorganic oxide particle dispersion, and bath-type ultrasonic waves were used. It was dispersed and prepared by the device. The obtained evaluation sample was placed in a quartz cell having an optical path length of 1 cm in an arbitrary amount that can be measured, and used when preparing an inorganic oxide particle dispersion using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.). The turbidity of the above evaluation sample was measured using the plasticizer as a reference (as the zero point of haze). The closer the turbidity is to 0, the more preferable. Transparency was judged based on the following criteria. A: 1% or less (extremely good) B: 1% over, 3% or less (good) C: Over 3% (defective)
  • Heat resistance 1 of the inorganic oxide particle dispersion For the heat resistance 1 of the inorganic oxide particle dispersion, the dispersed particle size of the sample obtained by allowing the inorganic oxide particle dispersion to stand at 200 ° C. for 1 hour was measured. Then, the absolute value of the value obtained by subtracting the value of the dispersed particle size after standing (sample) from the value of the dispersed particle size of the inorganic oxide particle dispersion before standing is obtained and evaluated as the amount of change in the dispersed particle size. did. The smaller the amount of change in the dispersed particle size, the more preferable.
  • the heat resistance was evaluated according to the following criteria from the amount of change in the dispersed particle size. A: 5 nm or less (extremely good) B: Exceeding 5 nm and 10 nm or less (good) C: Exceeding 10 nm (defective)
  • Heat resistance 2 For the heat resistance 2 of the inorganic oxide particle dispersion, 0.5 part of the inorganic oxide particle dispersion left at 200 ° C. for 1 hour was added to 29.5 parts of the plasticizer used when preparing the inorganic oxide particle dispersion. Then, a sample was prepared by dispersion treatment with a bath type ultrasonic device. The turbidity of the obtained sample was measured using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) with reference to the plasticizer used when preparing the inorganic oxide particle dispersion. The turbidity of the sample left at 200 ° C.
  • Examples 1 to 32 had good dispersion particle size, transparency, and heat resistance as dispersions.
  • the dispersed particle size and transparency are extremely good, and further, in Examples 1, 4 to 6, 8 to 10, 12, 18, 24 to 26, and 29 to 32.
  • the heat resistance was also extremely good.
  • Molded body (Examples 33 to 64, Comparative Examples 12 to 22) ⁇ Manufacturing and evaluation of molded body> Molds were prepared using the inorganic oxide particle dispersions prepared in Examples 1 to 32 and Comparative Examples 1 to 11, respectively, and the transparency and heat resistance of the molded bodies were evaluated by the following methods. The evaluation results are shown in Table 4.
  • Transparency 2 A mixture containing 3.3 parts of the inorganic oxide particle dispersion, 90 parts of Elitel UE-9200 (molding resin), and 6.7 parts of Proviblast 1783 was kneaded at 130 ° C. for 3 minutes using two rolls. .. The kneaded product obtained by kneading was press-molded at 130 ° C.
  • a press molding machine for 5 minutes using a press molding machine to obtain a molded product (A) having a thickness of 0.8 mm.
  • a molded product (A) having a thickness of 0.8 mm.
  • 90 parts by mass of the molding resin and 10 parts by mass of Proviblast 1783 (plasticizer) are kneaded and press-molded by the same method to obtain a molded body (B) consisting of only the molding resin and the plasticizer. Obtained.
  • the total light transmittance of each of the obtained molded bodies was measured using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.). The value of the total light transmittance is preferably close to 100.
  • the total light transmittance of the molded body (A) formed by kneading the inorganic oxide particle dispersion is based on the value of the total light transmittance of the molded body (B) composed of only the molding resin and the plasticizer.
  • the rate of change was calculated from the value. Transparency was evaluated from the obtained rate of change according to the following criteria. The results are shown in Table 4. A: 1% or less (extremely good) B: 1% over, 3% or less (good) C: Over 3% (defective)
  • the obtained molded body is dispersed with inorganic oxide particles based on the molded body (B) consisting of only a molding resin and a plasticizer for turbidity.
  • the value of the molded body (A) in which the body was kneaded was measured, and the absolute value of the value obtained by subtracting the value of the molded body and the turbidity under the press molding conditions used for the evaluation of transparency 1 was evaluated as the rate of change. The smaller the rate of change in turbidity, the more preferable.
  • the heat resistance was evaluated according to the following criteria from the value of the rate of change in turbidity. A: 0.1% or less (extremely good) B: Exceeds 0.1%, 0.4% or less (good) C: Over 0.4% (defective)
  • Examples 33 to 64 were good as molded bodies. In particular, with respect to Examples 33 and 36 to 64, the transparency was also extremely good. Further, in Examples 33, 36 to 42, 44, 50 to 51, 56 to 58 and 61 to 64, the heat resistance was also extremely good.
  • the inorganic oxide particles capable of imparting functions such as refractive index adjustment, UV shielding, and heat ray shielding by using a specific dispersant, alkoxysilane compound, and plasticizing agent can be produced at a high level. It is possible to provide an inorganic oxide particle dispersion that can be dispersed to a dispersion level that can be made transparent and can maintain the dispersion level even under high temperature conditions.
  • the inorganic oxide particle dispersion according to the present invention has high compatibility with the molding resin and can maintain the transparency as a molded body, UV shielding, infrared shielding, refractive index adjustment, antistatic property adjustment, heat resistance It is possible to achieve the imparting of properties by a simple process that does not use a coating process or a laminating process, and it can be applied to a wide range of plastic molding applications.

Abstract

An inorganic oxide particle dispersion containing inorganic oxide particles, a dispersant, an alkoxysilane compound, and a plasticizer free of polymerizable unsaturated groups that has a boiling point of 200°C or higher, wherein the dispersant includes at least one selected from the group consisting of dispersants A represented by general formula A and dispersants B represented by general formula B.

Description

無機酸化物粒子分散体およびそれを用いた成型用組成物、成型体Inorganic oxide particle dispersion and molding composition using it, molded body
 本発明の実施形態は、無機酸化物粒子分散体およびそれを用いた成型用組成物と成型体に関する。より詳しくは、高い耐熱性および高い透明性を有する、無機酸化物粒子分散体および当該分散体を含む成型体に関する。 An embodiment of the present invention relates to an inorganic oxide particle dispersion, a composition for molding using the dispersion, and a molded product. More specifically, the present invention relates to an inorganic oxide particle dispersion having high heat resistance and high transparency, and a molded product containing the dispersion.
 プラスチックの成型体、フィルム、およびフィルム積層物の分野では、樹脂単独では達成困難な機械特性および光学特性を得るために、目的とする物性値を有する有機化合物および無機酸化物を種々の方法によって複合化する手法が試みられてきた。例えば、光学特性としては、UV遮蔽、熱線遮蔽、および屈折率調整などの物性付与が一般的であり、従来から、フィルムに対して、光学特性を有する塗料を塗布する方法が用いられている。その一方で、近年、電子デバイスの小型化および薄膜化に伴って、塗布厚分の薄膜化と、塗布工程を必要としない低コスト化とが可能であることから、フィルム自体に無機酸化物を添加する手法がトレンドとなっている。 In the field of plastic moldings, films, and film laminates, organic compounds and inorganic oxides having the desired physical characteristics are combined by various methods in order to obtain mechanical and optical properties that cannot be achieved by the resin alone. The method of making it has been tried. For example, as optical characteristics, it is common to impart physical properties such as UV shielding, heat ray shielding, and refractive index adjustment, and conventionally, a method of applying a paint having optical characteristics to a film has been used. On the other hand, in recent years, with the miniaturization and thinning of electronic devices, it has become possible to reduce the coating thickness and the cost without the need for a coating process. Therefore, an inorganic oxide is added to the film itself. The method of adding is becoming a trend.
 多くの場合、樹脂の透明性を維持する必要性があることから、無機酸化物を添加する際にはナノレベルまで分散する必要がある。例えば、ガラスの飛散防止を目的としてガラスとガラスとの間にポリビニルブチラールのフィルムを積層する用途では、フィルム成型時に用いる可塑剤中に赤外遮蔽剤であるインジウム錫酸化物をナノレベルまで分散する手法が適用されてきた。この手法では、揮発性の高い溶媒と可塑剤との混合物が用いられ、フィルム成型時の温度および混錬条件が透明性に影響することが課題であった。また、この手法で用いられる分散剤によって、UV遮蔽および屈折率調整を目的として用いられるジルコニア及び酸化チタンをナノレベルまで分散することは困難であった。 In many cases, it is necessary to maintain the transparency of the resin, so when adding an inorganic oxide, it is necessary to disperse it to the nano level. For example, in the application of laminating a polyvinyl butyral film between glass for the purpose of preventing glass from scattering, indium tin oxide, which is an infrared shielding agent, is dispersed to the nano level in the plasticizer used at the time of film molding. Techniques have been applied. In this method, a mixture of a highly volatile solvent and a plasticizer is used, and it has been a problem that the temperature and kneading conditions at the time of film molding affect the transparency. In addition, it has been difficult to disperse zirconia and titanium oxide used for the purpose of UV shielding and refractive index adjustment to the nano level by the dispersant used in this method.
 UV硬化塗料では、塗料におけるジルコニアのナノレベルの分散を維持する手法として、アルコキシシラン化合物と特定の分散剤とを組合せて用いることが提案されている。この手法による塗料では、UV硬化アクリレートを溶媒として使用している。そのため、フィルム成型のための使用を踏まえると、高温時の透明性の低下、並びに成型に用いる樹脂および可塑剤との相溶性の観点から、塗料成分を汎用的に用いることが難しく、用途が限定されるという課題がある。 In UV curable paints, it has been proposed to use an alkoxysilane compound in combination with a specific dispersant as a method for maintaining nano-level dispersion of zirconia in the paint. UV curable acrylate is used as a solvent in the paint by this method. Therefore, considering the use for film molding, it is difficult to use the paint component for general purposes from the viewpoint of deterioration of transparency at high temperature and compatibility with the resin and plasticizer used for molding, and the application is limited. There is a problem of being done.
特開2005-343723号公報Japanese Unexamined Patent Publication No. 2005-343723 特開2013-112707号公報Japanese Unexamined Patent Publication No. 2013-112707
 したがって、本発明は、種々のプラスチック材に適応可能であり、成型時の高温に対して耐熱性および透明性を有する無機酸化物粒子分散体、および当該無機酸化物粒子分散体を含む成型体を提供することを目的とする。 Therefore, the present invention is applicable to various plastic materials, and an inorganic oxide particle dispersion having heat resistance and transparency against a high temperature at the time of molding, and a molded body containing the inorganic oxide particle dispersion. The purpose is to provide.
 本発明は、以下に記載する実施形態に関する。しかし、本発明は、以下に記載する実施形態に限定されず様々な実施形態を含む。
 一実施形態は、無機酸化物粒子と、分散剤と、アルコキシシラン化合物と、沸点が200℃以上であり、かつ重合性不飽和基を有しない可塑剤とを含有する無機酸化物粒子分散体であって、上記分散剤が、下記一般式Aで表される分散剤A、および下記一般式Bで表される分散剤Bからなる群より選ばれる少なくとも1種を含む無機酸化物粒子分散体に関する。
Figure JPOXMLDOC01-appb-C000003
(Rは、分岐構造もしくは直鎖構造からなるアルキル基であって、炭素数10~18からなるアルキル基を表す。Aは、炭素数2~3の直鎖構造からなるアルキレン基を表す。nは、5~20の整数である。)
Figure JPOXMLDOC01-appb-C000004
(Xは、水素原子もしくはYを表す。Rは、分岐構造もしくは直鎖構造からなるアルキル基であり、主鎖が炭素数12~13からなるアルキル基を表す。nは、1~10の整数である。Rは、分岐構造もしくは直鎖構造からなるアルキル基であり、主鎖が炭素数12~13からなるアルキル基を表す。nは、1~10の整数である。)
The present invention relates to the embodiments described below. However, the present invention is not limited to the embodiments described below, but includes various embodiments.
One embodiment is an inorganic oxide particle dispersion containing inorganic oxide particles, a dispersant, an alkoxysilane compound, and a plasticizer having a boiling point of 200 ° C. or higher and having no polymerizable unsaturated group. The present invention relates to an inorganic oxide particle dispersion containing at least one selected from the group consisting of a dispersant A represented by the following general formula A and a dispersant B represented by the following general formula B. ..
Figure JPOXMLDOC01-appb-C000003
(R 1 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having 10 to 18 carbon atoms. A represents an alkylene group having a linear structure having 2 to 3 carbon atoms. n 1 is an integer of 5 to 20.)
Figure JPOXMLDOC01-appb-C000004
(X 1 represents a hydrogen atom or Y 1. R 2 is an alkyl group having a branched structure or a linear structure, and n 2 represents an alkyl group having a main chain having 12 to 13 carbon atoms. R 3 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms. N 3 is an integer of 1 to 10. .)
 また、一実施形態は、上記無機酸化物粒子が酸化ジルコニウム粒子を含む上記無機酸化物粒子分散体に関する。 Further, one embodiment relates to the inorganic oxide particle dispersion in which the inorganic oxide particles contain zirconium oxide particles.
 また、一実施形態は、上記可塑剤がポリエチレングリコール系エステル、ポリプロピレングリコール、およびポリプロピレングリコール系エステルからなる群より選ばれる少なくとも1種からなる上記無機酸化物粒子分散体に関する。 Further, one embodiment relates to the above-mentioned inorganic oxide particle dispersion in which the above-mentioned plasticizer is at least one selected from the group consisting of polyethylene glycol-based ester, polypropylene glycol, and polypropylene glycol-based ester.
 また、一実施形態は、上記アルコキシシラン化合物がエポキシ骨格を有する上記無機酸化物粒子分散体に関する。 Further, one embodiment relates to the above-mentioned inorganic oxide particle dispersion in which the above-mentioned alkoxysilane compound has an epoxy skeleton.
 また、一実施形態は、上記無機酸化物粒子分散体と、成型用樹脂とを含む成型用組成物に関する。 Further, one embodiment relates to a molding composition containing the above-mentioned inorganic oxide particle dispersion and a molding resin.
 また、一実施形態は、上記無機酸化物粒子分散体を用いた成型体に関する。
 本願の開示は、2019年8月23日に出願された特願2019-152855号および2020年7月14日に出願された特願2020-120323号に記載の主題と関連しており、その全ての開示内容は引用によりここに援用される。
Further, one embodiment relates to a molded body using the above-mentioned inorganic oxide particle dispersion.
The disclosure of the present application is related to and all of the subjects described in Japanese Patent Application No. 2019-152855 filed on August 23, 2019 and Japanese Patent Application No. 2020-120323 filed on July 14, 2020. Disclosures of are incorporated herein by reference.
 本発明により、種々のプラスチック材に適応可能であり、成型時の高温に対して耐熱性および透明性を有する無機酸化物粒子分散体、および当該無機酸化物粒子分散体を含む成型体を提供することができる。 INDUSTRIAL APPLICABILITY The present invention provides an inorganic oxide particle dispersion that is applicable to various plastic materials and has heat resistance and transparency against high temperatures during molding, and a molded body containing the inorganic oxide particle dispersion. be able to.
 以下、本発明の実施形態について説明するが、本発明は以下に記載する実施形態に限定されるものでなく様々な実施形態を含む。
<無機酸化物粒子分散体>
 無機酸化物粒子分散体は、無機酸化物粒子と、分散剤と、アルコキシシラン化合物と、沸点200℃以上であり、かつ重合性不飽和基を有しない可塑剤とを含有し、上記分散剤は、下記一般式Aで表される分散剤A、および下記一般式Bで表される分散剤Bからなる群より選ばれる少なくとも1種を含む。以下、使用可能な材料等に関して具体的に説明する。
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments described below, and includes various embodiments.
<Inorganic oxide particle dispersion>
The inorganic oxide particle dispersion contains inorganic oxide particles, a dispersant, an alkoxysilane compound, and a plasticizer having a boiling point of 200 ° C. or higher and having no polymerizable unsaturated group. , At least one selected from the group consisting of the dispersant A represented by the following general formula A and the dispersant B represented by the following general formula B. Hereinafter, usable materials and the like will be specifically described.
<無機酸化物粒子>
 無機酸化物粒子分散体に用いる無機酸化物粒子は、金属元素およびSiから選択される、少なくともいずれか1つの元素の酸化物を用いることができる。成型体、および積層物等に必要とされる物性値に応じて無機酸化物粒子を選定することが可能である。例えば、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、アルミナ(Al)、酸化鉄(Fe)、酸化銅(CuO)、酸化亜鉛(ZnO)、イットリア(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO)、酸化鉛(PbO)、酸化ビスマス(Bi)、セリア(CeO)、酸化アンチモン(Sb、Sb)等が挙げられる。上記無機酸化物粒子は、1種を単独で、あるいは2種以上を混合して用いることができる。
<Inorganic oxide particles>
As the inorganic oxide particles used in the inorganic oxide particle dispersion, an oxide of at least one element selected from a metal element and Si can be used. Inorganic oxide particles can be selected according to the physical characteristic values required for the molded body, the laminate, and the like. For example, zirconia (ZrO 2 ), titania (TIO 2 ), silica (SiO 2 ), alumina (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), copper oxide (CuO), zinc oxide (ZnO), Itria. (Y 2 O 3 ), niobium oxide (Nb 2 O 5 ), molybdenum oxide (MoO 3 ), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 ), lead oxide (PbO), bismuth oxide (Bi 2 O 3 ), ceria (CeO 2 ), antimony oxide (Sb 2 O 5 , Sb 2 O 3 ) and the like. The inorganic oxide particles may be used alone or in combination of two or more.
 無機酸化物粒子の粒子径は、透明性の観点から、平均粒子径が15~50nmの範囲であることが好ましい。ここで平均粒子径とは、走査型電子顕微鏡(SEM)で観察した粒子径の算術平均値である。詳細には、無機酸化物粒子の粉末を倍率20000倍で観察し、任意の100個の粒子を選択し、各々の粒子径を平均して求めた値である。粒子形状が長軸、および短軸を有する場合には、長軸と短軸との長さの平均値を、その粒子の粒子径とする。 The particle size of the inorganic oxide particles is preferably in the range of 15 to 50 nm on average from the viewpoint of transparency. Here, the average particle size is an arithmetic mean value of the particle size observed with a scanning electron microscope (SEM). More specifically, it is a value obtained by observing the powder of inorganic oxide particles at a magnification of 20000 times, selecting arbitrary 100 particles, and averaging the particle diameters of each. When the particle shape has a major axis and a minor axis, the average value of the lengths of the major axis and the minor axis is taken as the particle diameter of the particle.
 無機酸化物粒子は、目的とする物性値に応じて、適宜選択することが可能である。例えば、屈折率調整の用途の場合、酸化ジルコニウム、酸化チタン、およびアルミナから選ばれる無機酸化物粒子を用いることが好ましい。耐熱時の透明性維持の観点からは、酸化ジルコニウムが好ましい。UV遮蔽の用途の場合、酸化亜鉛、酸化チタン、および酸化セリウムから選ばれる無機酸化物粒子を用いることが好ましい。帯電防止の用途の場合、インジウムドープ錫酸化物粒子、アンチモンドープ錫酸化物粒子、リンドープ錫酸化物粒子、フッ素ドープ錫酸化物粒子、および錫酸化物粒子から選ばれる無機酸化物粒子を用いることが好ましい。熱膨張性の制御の観点からは、シリカ、およびアルミナなどの無機酸化物粒子を用いることが好ましい。熱線遮蔽の用途の場合、インジウムドープ錫酸化物粒子、アンチモンドープ錫酸化物粒子、およびセシウム-タングステン酸化物粒子を用いることが好ましい。複数の物性を成型体に求める場合には、複数の無機酸化物粒子を1つの分散体中に含有させることが好ましい。 Inorganic oxide particles can be appropriately selected according to the desired physical property values. For example, in the case of an application for adjusting the refractive index, it is preferable to use inorganic oxide particles selected from zirconium oxide, titanium oxide, and alumina. Zirconium oxide is preferable from the viewpoint of maintaining transparency during heat resistance. For UV shielding applications, it is preferable to use inorganic oxide particles selected from zinc oxide, titanium oxide, and cerium oxide. For antistatic applications, inorganic oxide particles selected from indium-doped tin oxide particles, antimony-doped tin oxide particles, phosphorus-doped tin oxide particles, fluorine-doped tin oxide particles, and tin oxide particles can be used. preferable. From the viewpoint of controlling the thermal expansion, it is preferable to use inorganic oxide particles such as silica and alumina. For heat ray shielding applications, it is preferred to use indium-doped tin oxide particles, antimony-doped tin oxide particles, and cesium-tungsten oxide particles. When a plurality of physical properties are required for a molded body, it is preferable to contain a plurality of inorganic oxide particles in one dispersion.
 無機酸化物粒子の添加量は、特に限定されない。一実施形態において、分散性の経時安定性、及びハンドリング性の観点から、無機酸化物粒子分散体100質量%中の無機酸化物粒子は、好ましくは10~40質量%であり、より好ましくは20~30質量%である。 The amount of inorganic oxide particles added is not particularly limited. In one embodiment, from the viewpoint of dispersibility over time and handleability, the amount of inorganic oxide particles in 100% by mass of the inorganic oxide particle dispersion is preferably 10 to 40% by mass, more preferably 20. ~ 30% by mass.
<分散剤A>
 無機酸化物粒子分散体には下記一般式Aで表される分散剤Aを用いることができる。
<Dispersant A>
As the inorganic oxide particle dispersion, a dispersant A represented by the following general formula A can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 Rは、分岐構造もしくは直鎖構造からなるアルキル基であって、炭素数10~18からなるアルキル基を表す。Aは、炭素数2~3の直鎖構造からなるアルキレン基を表す。nは、5~20の整数である。なお、Rは、炭素数が12~18であることが好ましい。 R 1 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having 10 to 18 carbon atoms. A represents an alkylene group having a linear structure having 2 to 3 carbon atoms. n 1 is an integer of 5 to 20. It is preferable that R 1 has 12 to 18 carbon atoms.
<分散剤B>
 無機酸化物粒子分散体には下記一般式Bで表される分散剤Bを用いることができる。
<Dispersant B>
As the inorganic oxide particle dispersion, a dispersant B represented by the following general formula B can be used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 Xは、水素原子もしくはYを表す。Rは、分岐構造もしくは直鎖構造からなるアルキル基であり、主鎖が炭素数12~13からなるアルキル基を表す。nは、1~10の整数である。Rは、分岐構造もしくは直鎖構造からなるアルキル基であり、主鎖が炭素数12~13からなるアルキル基を表す。nは、1~10の整数である。 X 1 represents a hydrogen atom or Y 1 . R 2 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms. n 2 is an integer from 1 to 10. R 3 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms. n 3 is an integer from 1 to 10.
 分散剤Aとして、例えば、花王株式会社製の「カオーアキポRLM-100」、日光ケミカルズ株式会社製の「NIKKOL AKYPO RLM 100」、「NIKKOL ECT-7」、および三洋化成株式会社製の「ビューライトLCA-H」などが挙げられる。 As the dispersant A, for example, "Kao Akipo RLM-100" manufactured by Kao Corporation, "NIKKOL AKYPO RLM 100" manufactured by Nikko Chemicals Co., Ltd., "NIKKOL ECT-7", and "Viewlight LCA" manufactured by Sanyo Chemicals Inc. -H "and the like.
 分散剤の添加量は、特に限定はされない。一実施形態において、無機酸化物粒子100質量%に対して、分散剤を10~50質量%で使用することが好ましい。分散剤を上記範囲で使用することにより、種々の無機酸化物粒子を可塑剤中で良好に分散させることが容易である。また、成型用樹脂との混練時にも無機酸化物粒子の分散性が低下し難い。必要に応じて、分散剤A、分散剤Bを一種類のみ単独で用いてもよいし、併用してもよい。 The amount of the dispersant added is not particularly limited. In one embodiment, it is preferable to use the dispersant in an amount of 10 to 50% by mass based on 100% by mass of the inorganic oxide particles. By using the dispersant in the above range, it is easy to disperse various inorganic oxide particles well in the plasticizer. In addition, the dispersibility of the inorganic oxide particles is unlikely to decrease even during kneading with the molding resin. If necessary, only one type of dispersant A and dispersant B may be used alone or in combination.
<アルコキシシラン化合物>
 アルコキシシラン化合物は、ケイ素にアルコキシル基が結合した化合物の総称である。アルコキシル基とは別に、アルキル基、またはビニル基、あるいはビニル基、グリシジル基、メタクリル基、スチリル基、アクリル基、アミノ基、イソシアネート基、およびカルボキシル基といった官能基を有するアルキル基をさらに含有してもよい。
<Alkoxysilane compound>
Alkoxysilane compound is a general term for compounds in which an alkoxyl group is bonded to silicon. Apart from the alkoxyl group, it further contains an alkyl group or a vinyl group, or an alkyl group having a functional group such as a vinyl group, a glycidyl group, a methacryl group, a styryl group, an acrylic group, an amino group, an isocyanate group, and a carboxyl group. May be good.
 アルコキシシラン化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、6-ビニロヘキシルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物等が挙げられる。
 上記のなかでも、分散体の透明性、耐熱性の観点から、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ骨格を有するアルコキシシラン化合物が好ましい。
Examples of the alkoxysilane compound include methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyltriethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and decyltrimethoxysilane. Phenyltrimethoxysilane, diphenyltrimethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, trifluoropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 6-vinilohexylmethyldiethoxysilane, 2-( 3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltri Ethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acry Loxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- Aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-isocyanoxidetriethoxysilane, 3-trimethoxy Examples thereof include silylpropyl succinic acid anhydride.
Among the above, from the viewpoint of transparency and heat resistance of the dispersion, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy An alkoxysilane compound having an epoxy skeleton such as silane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane is preferable.
 アルコキシシラン化合物の添加量は、特に限定はされない。一実施形態において、無機酸化物粒子100質量%に対して、アルコキシシラン化合物を5~60質量%で使用することが好ましく、10~50質量%で使用することがより好ましい。アルコキシシラン化合物を上記範囲で使用することにより、種々の無機酸化物粒子を可塑剤中で良好に分散させることが容易となる。その結果、分散体として高い耐熱性が得られ、また成型用樹脂との混練時にも無機酸化物粒子の分散性が低下し難くなる。さらに、耐熱性の観点から、一実施形態では、50~200℃の加熱処理を行い、アルコキシシラン化合物によって無機酸化物粒子を化学的に表面処理することが好ましい。必要に応じて、アルコキシシラン化合物は、単独もしくは、複数種を組合せて用いることが好ましい。 The amount of the alkoxysilane compound added is not particularly limited. In one embodiment, the alkoxysilane compound is preferably used in an amount of 5 to 60% by mass, more preferably 10 to 50% by mass, based on 100% by mass of the inorganic oxide particles. By using the alkoxysilane compound in the above range, it becomes easy to disperse various inorganic oxide particles well in the plasticizer. As a result, high heat resistance can be obtained as the dispersion, and the dispersibility of the inorganic oxide particles is less likely to decrease even when kneading with the molding resin. Further, from the viewpoint of heat resistance, in one embodiment, it is preferable to perform heat treatment at 50 to 200 ° C. and chemically surface-treat the inorganic oxide particles with the alkoxysilane compound. If necessary, the alkoxysilane compound is preferably used alone or in combination of two or more.
 アルコキシシラン化合物として、例えば、信越シリコーン株式会社製のKBMシリーズ、およびKBEシリーズ、旭化成ワッカーシリコーン株式会社製のWACKER SILICATEシリーズ、およびGENIOSILシリーズ、並びにDOW・東レ株式会社製のDOWSILシリーズ、およびXIAMETERシリーズが挙げられる。 Examples of alkoxysilane compounds include KBM series and KBE series manufactured by Shinetsu Silicone Co., Ltd., WACKER SILICATE series and GENIOSIL series manufactured by Asahi Kasei Wacker Silicone Co., Ltd., and DOWNSIL series and XIAMETER series manufactured by DOWN Toray Co., Ltd. Can be mentioned.
<可塑剤>
 成型用樹脂の製造プロセス中で、成型用樹脂を軟化、もしくは一部溶解するような重合性不飽和基を含有しない溶媒を、可塑剤として使用することができる。可塑剤として、例えば、フタル酸エステル系、アジピン酸エステル系、リン酸エステル系、トリメリット酸エステル系、プロピレングリコール、プロピレングリコール系エステル、エチレングリコール、エチレングリコール系エステル、植物油、エポキシ化植物油、およびパラフィンなどの脂肪族炭化水素、バレロラクトン、カプロラクトン等の高沸点の環状化合物等が挙げられる。これらの可塑剤を単独で、もしくは、複数種混合して用いてもよい。
<Plasticizer>
In the process of producing the molding resin, a solvent containing no polymerizable unsaturated group that softens or partially dissolves the molding resin can be used as the plasticizer. Plasticizers include, for example, phthalates, adipic acid esters, phosphate esters, trimellitic acid esters, propylene glycol, propylene glycol esters, ethylene glycol, ethylene glycol esters, vegetable oils, epoxidized vegetable oils, and Examples thereof include aliphatic hydrocarbons such as paraffin, and high boiling point cyclic compounds such as valerolactone and caprolactone. These plasticizers may be used alone or in combination of two or more.
 一般的な成型用樹脂が100℃以上の高温で軟化し、成型されることから、可塑剤として200℃以上の沸点を有する可塑剤を用いることができる。沸点が200℃以上であれば、成型用樹脂と混練する際に、無機酸化物粒子分散体の分散性が保持され、良好な透明性を発現することができる。また、成型体内に気泡等が発生しないことから、機械物性値を向上することもできる。沸点が200℃未満の可塑剤を使用する場合、無機酸化物粒子分散体中で、10質量%以下であることが好ましい。このように量を調整した場合、成型用樹脂と混練する際に、無機酸化物粒子分散体の分散性が保持され、良好な透明性を発現することが容易となる。 Since a general molding resin is softened and molded at a high temperature of 100 ° C. or higher, a plasticizer having a boiling point of 200 ° C. or higher can be used as the plasticizer. When the boiling point is 200 ° C. or higher, the dispersibility of the inorganic oxide particle dispersion is maintained and good transparency can be exhibited when kneading with the molding resin. Further, since bubbles and the like are not generated in the molded body, the mechanical property value can be improved. When a plasticizer having a boiling point of less than 200 ° C. is used, it is preferably 10% by mass or less in the inorganic oxide particle dispersion. When the amount is adjusted in this way, the dispersibility of the inorganic oxide particle dispersion is maintained when kneading with the molding resin, and it becomes easy to develop good transparency.
 無機酸化物粒子分散体の分散性を向上でき、また、種々の樹脂に適応可能なことから、可塑剤として、ポリエチレングリコール系エステル、ポリプロピレングリコール、およびポリプロピレングリコールエステル系を用いることが好ましい。特に、トリエチレングリコール-ジ-エチルヘキサノエート(沸点:219℃)、トリエチレングリコール ビス(2-エチルヘキサノエート)(沸点:344℃)、トリエチレングリコール-ジ-エチルヘキサノエートジ(2-ブトキシエトキシエチル)アジペート(沸点:230℃)、テトラエチレングリコール-ジ-2-エチルヘキサノエート(沸点:499℃)等のポリエチレングリコール系エステルが、無機酸化物粒子分散体の透明性および耐熱性の観点から好ましい。 Since the dispersibility of the inorganic oxide particle dispersion can be improved and it can be applied to various resins, it is preferable to use polyethylene glycol-based ester, polypropylene glycol, and polypropylene glycol ester-based plasticizer. In particular, triethylene glycol-di-ethylhexanoate (boiling point: 219 ° C.), triethylene glycol bis (2-ethylhexanoate) (boiling point: 344 ° C.), triethylene glycol-di-ethylhexanoate di (boiling point: 349 ° C.) Polyethylene glycol-based esters such as 2-butoxyethoxyethyl) adipate (boiling point: 230 ° C.) and tetraethylene glycol-di-2-ethylhexanoate (boiling point: 499 ° C.) can be used to improve the transparency of the inorganic oxide particle dispersion. It is preferable from the viewpoint of heat resistance.
<成型用組成物>
 成型用組成物は、無機酸化物粒子分散体と、成型用樹脂とを含有する。成型用組成物を用いることによって、分散安定性に優れ、高い透明性を有し、高い耐熱性を有する成型体を容易に得ることができる。
<Composition for molding>
The molding composition contains an inorganic oxide particle dispersion and a molding resin. By using the molding composition, it is possible to easily obtain a molded body having excellent dispersion stability, high transparency, and high heat resistance.
<成形用樹脂>
 加温することによって樹脂が軟化し、押出およびプレス等によって所定の形状に成型できる樹脂であれば、成型用樹脂として使用することができる。例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリアクリル、ポリ塩化ビニル、ポリスチレン、アクリロニトリル・ブタジエン・スチレンの共重合体、アクリロニトリル・スチレンの共重合体、ポリブチレンテレフタレート、ポリアミド、ポリエーテルケトン、ポリビニルアセタール、ポリビニルブチラール、ポリエステル、およびポリフッ化ビニリデン等が挙げられ、目的とする物性に応じて選択することができる。
<Molding resin>
Any resin that softens by heating and can be molded into a predetermined shape by extrusion, pressing, or the like can be used as a molding resin. For example, polycarbonate, polyethylene terephthalate, polypropylene, polyethylene, polyacrylic, polyvinyl chloride, polystyrene, copolymer of acrylonitrile-butadiene-styrene, copolymer of acrylonitrile-styrene, polybutylene terephthalate, polyamide, polyether ketone, polyvinyl acetal. , Polyvinyl butyral, polyester, polyvinylidene fluoride and the like, and can be selected according to the desired physical properties.
<分散方法>
 無機酸化物粒子分散体を作製するために、高い透明性を達成する目的で一般的に用いられる分散機を使用することができる。例えば、ディスパー、ホモミキサー、プラネタリーミキサー、ボールミル、サンドミル、アトライター、パールミル、湿式ジェットミル、およびロールミル等の分散機が挙げられる。分散機は、一種類を単独で用いてもよいし、複数種を併用してもよい。
<Dispersion method>
In order to prepare the inorganic oxide particle dispersion, a disperser generally used for the purpose of achieving high transparency can be used. Examples thereof include dispersers such as dispersers, homomixers, planetary mixers, ball mills, sand mills, attritors, pearl mills, wet jet mills, and roll mills. As the disperser, one type may be used alone, or a plurality of types may be used in combination.
<混練方法>
 成型体を作製するために、無機酸化物粒子を成型用樹脂中に均一に分散する目的で無機酸化物粒子分散体と成型用樹脂とを混練することができる、一般的な混練機を使用することができる。例えば、2本ロール、3本ロール等のロールミル、加圧ニーダー、バンバリミキサー、2軸押出機、単軸押出機等の混練機が挙げられる。混練機は、一種類を単独で用いてもよいし、複数種を併用してもよい。
<Kneading method>
In order to produce a molded body, a general kneader capable of kneading the inorganic oxide particle dispersion and the molding resin for the purpose of uniformly dispersing the inorganic oxide particles in the molding resin is used. be able to. For example, a roll mill such as a two-roll or three-roll mill, a pressure kneader, a Banvari mixer, a twin-screw extruder, a kneader such as a single-screw extruder can be mentioned. One type of kneader may be used alone, or a plurality of types may be used in combination.
<成型方法>
 無機酸化物粒子分散体と成型用樹脂との混練物を、目的とする形状に成型する目的で、一般的な成型機を使用することができる。鋳型等を用いて所望の形状へ押出成型、ブロー成型、およびプレス成型といった成型を行うことができる。成型時には、目的に応じて、加温、冷却、および圧力を調整することができる。
<Molding method>
A general molding machine can be used for the purpose of molding the kneaded product of the inorganic oxide particle dispersion and the molding resin into a desired shape. Molding such as extrusion molding, blow molding, and press molding can be performed to a desired shape using a mold or the like. At the time of molding, heating, cooling, and pressure can be adjusted according to the purpose.
<積層物>
 無機酸化物粒子分散体と成型用樹脂とからなる成型体を、基材、もしくは、貼りあわせの媒体として使用することで、積層物を得ることができる。複数種の層を重ねることで、積層物として多様な機能を一元化することが可能である。積層方法は、一般的な方法を適用することができる。例えば、成型体を基材としてその上に塗料を塗布する方法、成型体を媒体として種々の材料を熱プレス等によって貼りあわせる方法、粘着剤または接着剤等を用いて、成型体に他の材料を貼りあわせる方法が挙げられる。
<Laminate>
A laminate can be obtained by using a molded product composed of an inorganic oxide particle dispersion and a molding resin as a base material or a bonding medium. By stacking multiple types of layers, it is possible to unify various functions as a laminate. As the laminating method, a general method can be applied. For example, a method of applying paint on a molded body as a base material, a method of laminating various materials using a molded body as a medium by a hot press or the like, a method of using an adhesive or an adhesive or the like, and other materials on the molded body. There is a method of pasting together.
<分散粒子径>
 無機酸化物粒子分散体は、分散粒子径が細かいほど、可視光領域における光散乱が低減する。そのため、成型体および積層物の透明性の観点から、分散粒子径は1~100nmの範囲であることが好ましく、1~70nmの範囲であることがより好ましく、1~50nmの範囲であることがさらに好ましい。ここで「分散粒子径」とは、動的光散乱方式の粒度分布計を用いて、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算した際に、50%となる粒子径である。
<Dispersed particle size>
In the inorganic oxide particle dispersion, the finer the dispersed particle size, the smaller the light scattering in the visible light region. Therefore, from the viewpoint of transparency of the molded body and the laminate, the dispersed particle size is preferably in the range of 1 to 100 nm, more preferably in the range of 1 to 70 nm, and preferably in the range of 1 to 50 nm. More preferred. Here, the "dispersed particle size" is a particle that becomes 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution using a dynamic light scattering type particle size distribution meter. The diameter.
<透明性>
 透明性は、無機酸化物粒子分散体、および無機酸化物粒子分散体を含有する成型体の濁度から判断する。濁度が0に近いほど透明性が高い。
 無機酸化物粒子分散体の透明性は、可塑剤を用いて無機酸化物粒子分散体が0.05質量%となるように希釈し、可塑剤を基準として、光路長1cmセルを用いて測定した際の濁度から判断する。一実施形態において、濁度は、1~3%であることが好ましく、1%以下であることがより好ましい。
 成型体の透明性は、無機酸化物粒子分散体を含有した成型体の濁度から判断する。成型体の濁度は、使用した成型用樹脂と可塑剤のみからなる同膜厚の成型体を基準として判断し、1~3%であることが好ましく、1%以下であることがより好ましい。
<Transparency>
Transparency is judged from the turbidity of the inorganic oxide particle dispersion and the molded product containing the inorganic oxide particle dispersion. The closer the turbidity is to 0, the higher the transparency.
The transparency of the inorganic oxide particle dispersion was diluted with a plasticizer so that the inorganic oxide particle dispersion was 0.05% by mass, and measured using a cell having an optical path length of 1 cm with the plasticizer as a reference. Judge from the turbidity of the time. In one embodiment, the turbidity is preferably 1 to 3%, more preferably 1% or less.
The transparency of the molded body is judged from the turbidity of the molded body containing the inorganic oxide particle dispersion. The turbidity of the molded body is preferably 1 to 3%, more preferably 1% or less, based on the molded body having the same film thickness composed of only the molding resin and the plasticizer used.
<耐熱性>
 耐熱性は、無機酸化物粒子分散体、および無機酸化物粒子分散体を含有する成型体を加熱した際の、加熱前後の分散粒子径および濁度の変化の絶対値から判断し、0に近いほど、耐熱性が高い。
 無機酸化物粒子分散体の耐熱性は、分散粒子径の変化が、10nm以下であることが好ましく、5nm以下であることがより好ましい。また、濁度の変化は、0.4%以下であることが好ましく、0.1%以下であることが好ましい。無機酸化物粒子分散体を含有する成型体に関しては、濁度の変化が、0.4%以下であることが好ましく、0.1%以下であることがより好ましい。
<Heat resistance>
The heat resistance is close to 0, judging from the absolute values of the changes in the dispersed particle size and turbidity before and after heating when the inorganic oxide particle dispersion and the molded product containing the inorganic oxide particle dispersion are heated. The higher the heat resistance.
Regarding the heat resistance of the inorganic oxide particle dispersion, the change in the dispersed particle size is preferably 10 nm or less, and more preferably 5 nm or less. The change in turbidity is preferably 0.4% or less, and preferably 0.1% or less. With respect to the molded product containing the inorganic oxide particle dispersion, the change in turbidity is preferably 0.4% or less, and more preferably 0.1% or less.
 以下に、実施例によって本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例および比較例において、特に断りのない限り、「部」、「%」とは、それぞれ質量部、質量%を意味する。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. In the examples and comparative examples, “parts” and “%” mean parts by mass and% by mass, respectively, unless otherwise specified.
1.原材料
<無機酸化物粒子>
 実施例及び比較例で使用した無機酸化物粒子を以下に列挙する。
 PCS-60(酸化ジルコニウム、平均粒子径15nm、新日本電工株式会社製)
 STR-100A-LP(酸化チタン、平均粒子径50nm、堺化学工業株式会社製)
 E-ITO(錫ドープ酸化インジウム、平均粒子径30nm、三菱マテリアル電子化成株式会社)
1. 1. Raw material <Inorganic oxide particles>
The inorganic oxide particles used in Examples and Comparative Examples are listed below.
PCS-60 (Zirconium oxide, average particle size 15 nm, manufactured by Nippon Denko Co., Ltd.)
STR-100A-LP (titanium oxide, average particle size 50 nm, manufactured by Sakai Chemical Industry Co., Ltd.)
E-ITO (tin-doped indium oxide, average particle size 30 nm, Mitsubishi Materials Electronics Chemical Co., Ltd.)
<分散剤>
 実施例及び比較例で使用した分散剤を以下に列挙する。
 NIKKOL AKYPO RLM 100(ポリオキシエチレンラウリルエーテル酢酸、n=10、分散剤A、日光ケミカルズ株式会社製)
 NIKKOL ECT-7(ポリオキシエチレントリデシルエーテル酢酸、n=7、分散剤A、日光ケミカルズ株式会社製)
 ビューライト LCA-25NH(ポリオキシエチレンラウリルエーテル酢酸、n=3、三洋化成株式会社製)
 プライサーフA219B(ポリオキシエチレンラウリルエーテルリン酸エステル、第一工業株式会社製)
 プライサーフAL(ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル、第一工業株式会社製)
 ハイテノールLA-10(ポリオキシエチレンラウリルエーテル硫酸アンモニウム、第一工業株式会社製)
 ネオデカン酸(富士フィルム和光純薬株式会社製)
<Dispersant>
The dispersants used in Examples and Comparative Examples are listed below.
NIKKOL AKYPO RLM 100 (polyoxyethylene lauryl ether acetic acid, n 1 = 10, dispersant A, manufactured by Nikko Chemicals Co., Ltd.)
NIKKOL ECT-7 (polyoxyethylene tridecyl ether acetic acid, n 1 = 7, dispersant A, manufactured by Nikko Chemicals Co., Ltd.)
Beaulite LCA-25NH (Polyoxyethylene lauryl ether acetic acid, n 1 = 3, manufactured by Sanyo Chemical Industries, Ltd.)
Prysurf A219B (Polyoxyethylene lauryl ether phosphate, manufactured by Daiichi Kogyo Co., Ltd.)
Prysurf AL (polyoxyethylene styrenated phenyl ether phosphate, manufactured by Daiichi Kogyo Co., Ltd.)
High Tenor LA-10 (Polyoxyethylene Lauryl Ether Ammonium Sulfate, manufactured by Daiichi Kogyo Co., Ltd.)
Neodecanoic acid (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
<分散剤1の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、トルエンを400部、イソトリデカノールエチレンオキシド10モル付加物を213.3部、モノクロロ酢酸ナトリウムを50.7部、水酸化ナトリウムを17.3部仕込み、窒素ガスで置換した後、80℃で3時間加熱、攪拌した。この混合物に98%硫酸を39.0部加え、白色懸濁液を得た。その後、白色懸濁液を、精製水を用いて十分に洗浄し、溶剤を減圧留去することにより、分散剤Aである分散剤1を得た。分散剤1は、Rが分岐状の炭素数13のアルキル基であり、nが10の構造である。
<Method for producing dispersant 1>
400 parts of toluene, 213.3 parts of isotridecanol ethylene oxide 10 mol adduct, 50.7 parts of monochloroacetate, sodium hydroxide in a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer. Was charged in 17.3 parts, replaced with nitrogen gas, and then heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 1 as a dispersant A. The dispersant 1 has a structure in which R 1 is a branched alkyl group having 13 carbon atoms and n 1 is 10.
<分散剤2の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、トルエンを400部、イソトリデカノールエチレンオキシド15モル付加物を286.7部、モノクロロ酢酸ナトリウムを50.7部、水酸化ナトリウムを17.3部仕込み、窒素ガスで置換した後、80℃で3時間加熱、攪拌した。この混合物に98%硫酸を39.0部加え、白色懸濁液を得た。その後、白色懸濁液を、精製水を用いて十分に洗浄し、溶剤を減圧留去することにより、分散剤Aである分散剤2を得た。分散剤2は、Rが分岐状の炭素数13のアルキル基であり、nが15の構造である。
<Method for producing dispersant 2>
400 parts of toluene, 286.7 parts of 15 mol of isotridecanol ethylene oxide adduct, 50.7 parts of monochloroacetate, sodium hydroxide in a reaction vessel equipped with a gas inlet tube, thermometer, condenser, and stirrer. Was charged in 17.3 parts, replaced with nitrogen gas, and then heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 2 as a dispersant A. The dispersant 2 has a structure in which R 1 is a branched alkyl group having 13 carbon atoms and n 1 is 15.
<分散剤3の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、トルエンを400部、イソステアリルアルコールエチレンオキシド10モル付加物を236.8部、モノクロロ酢酸ナトリウムを50.7部、水酸化ナトリウムを17.3部仕込み、窒素ガスで置換した後、80℃で3時間加熱、攪拌した。この混合物に98%硫酸を39.0部加え、白色懸濁液を得た。その後、白色懸濁液を、精製水を用いて十分に洗浄し、溶剤を減圧留去することにより、分散剤Aである分散剤3を得た。分散剤3は、Rが分岐状の炭素数18のアルキル基であり、nが10の構造である。
<Method for producing dispersant 3>
In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 400 parts of toluene, 236.8 parts of an adduct of 10 mol of isostearyl alcohol ethylene oxide, 50.7 parts of sodium monochloroacetate, and sodium hydroxide. After charging 17.3 parts and replacing with nitrogen gas, the mixture was heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 3 as a dispersant A. The dispersant 3 has a structure in which R 1 is a branched alkyl group having 18 carbon atoms and n 1 is 10.
<分散剤4の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、トルエンを400部、イソデカノールエチレンオキシド10モル付加物を199.4部、モノクロロ酢酸ナトリウムを50.7部、水酸化ナトリウムを17.3部仕込み、窒素ガスで置換した後、80℃で3時間加熱、攪拌した。この混合物に98%硫酸を39.0部加え、白色懸濁液を得た。その後、白色懸濁液を、精製水を用いて十分に洗浄し、溶剤を減圧留去することにより、分散剤Aである分散剤4を得た。分散剤4は、Rが分岐状の炭素数10のアルキル基であり、nが10の構造である。
<Method for producing dispersant 4>
In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 400 parts of toluene, 199.4 parts of an adduct of 10 mol of isodecanol ethylene oxide, 50.7 parts of sodium monochloroacetate, and sodium hydroxide. After charging 17.3 parts and replacing with nitrogen gas, the mixture was heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 4 as a dispersant A. The dispersant 4 has a structure in which R 1 is a branched alkyl group having 10 carbon atoms and n 1 is 10.
<分散剤5の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、トルエンを400部、1-テトラデカノールエチレンオキシド10モル付加物を218.5部、モノクロロ酢酸ナトリウムを50.7部、水酸化ナトリウムを17.3部仕込み、窒素ガスで置換した後、80℃で3時間加熱、攪拌した。この混合物に98%硫酸を39.0部加え、白色懸濁液を得た。その後、白色懸濁液を、精製水を用いて十分に洗浄し、溶剤を減圧留去することにより、分散剤Aである分散剤5を得た。分散剤5は、Rが直鎖状の炭素数14のアルキル基であり、nが10の構造である。
<Method for producing dispersant 5>
400 parts of toluene, 218.5 parts of 1-tetradecanol ethylene oxide 10 mol adduct, 50.7 parts of sodium monochloroacetate, hydroxide in a reaction vessel equipped with a gas inlet tube, thermometer, condenser, and stirrer. After 17.3 parts of sodium was charged and replaced with nitrogen gas, the mixture was heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 5 as a dispersant A. The dispersant 5 has a structure in which R 1 is a linear alkyl group having 14 carbon atoms and n 1 is 10.
<分散剤6の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、1-ドデカノール62.6部、ε-カプロラクトン287.4部、触媒としてモノブチルスズ(IV)オキシド0.1部を仕込み、窒素ガスで置換した後、120℃で4時間加熱、撹拌した。固形分測定により98%が反応した事を確認した後、この混合物に無水ピロメリット酸36.6部を加え、120℃で2時間反応させ、分散剤Bの構造である分散剤6を得た。分散剤6は、Rが直鎖状の炭素数12のアルキル基、nが7であり、Rが直鎖状の炭素数12のアルキル基であり、nが7の構造である。
<Method for producing dispersant 6>
In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 62.6 parts of 1-dodecanol, 287.4 parts of ε-caprolactone, and 0.1 part of monobutyltin (IV) oxide as a catalyst were charged, and nitrogen was charged. After replacement with gas, the mixture was heated at 120 ° C. for 4 hours and stirred. After confirming that 98% had reacted by solid content measurement, 36.6 parts of pyromellitic anhydride was added to this mixture and reacted at 120 ° C. for 2 hours to obtain a dispersant 6 having the structure of the dispersant B. .. The dispersant 6 has a structure in which R 2 is a linear alkyl group having 12 carbon atoms, n 2 is 7, R 3 is a linear alkyl group having 12 carbon atoms, and n 3 is 7. ..
<分散剤7の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、1-ドデカノール31.3部、ε-カプロラクトン143.7部、触媒としてモノブチルスズ(IV)オキシド0.1部を仕込み、窒素ガスで置換した後、120℃で4時間加熱、撹拌した。固形分測定により98%が反応した事を確認した後、この混合物に無水トリメリット酸32.2部を加え、130℃で4時間反応させ、分散剤Bの構造である分散剤7を得た。分散剤7は、Xが水素原子であり、Rが直鎖状の炭素数12のアルキル基であり、nが7の構造である。
<Method for producing dispersant 7>
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 31.3 parts of 1-dodecanol, 143.7 parts of ε-caprolactone, and 0.1 part of monobutyltin (IV) oxide as a catalyst, and nitrogen. After replacement with gas, the mixture was heated at 120 ° C. for 4 hours and stirred. After confirming that 98% had reacted by solid content measurement, 32.2 parts of trimellitic anhydride was added to this mixture and reacted at 130 ° C. for 4 hours to obtain a dispersant 7 having the structure of the dispersant B. .. The dispersant 7 has a structure in which X 1 is a hydrogen atom, R 3 is a linear alkyl group having 12 carbon atoms, and n 3 is 7.
<分散剤8の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、1-ドデカノール31.3部、ε-カプロラクトン143.7部、触媒としてモノブチルスズ(IV)オキシド0.1部を仕込み、窒素ガスで置換した後、120℃で4時間加熱、撹拌した。固形分測定により98%が反応した事を確認した後、この混合物に無水マレイン酸16.4部を加え、130℃で4時間反応させ、分散剤8を得た。
<Method for producing dispersant 8>
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 31.3 parts of 1-dodecanol, 143.7 parts of ε-caprolactone, and 0.1 part of monobutyltin (IV) oxide as a catalyst, and nitrogen. After replacement with gas, the mixture was heated at 120 ° C. for 4 hours and stirred. After confirming that 98% had reacted by solid content measurement, 16.4 parts of maleic anhydride was added to this mixture, and the mixture was reacted at 130 ° C. for 4 hours to obtain a dispersant 8.
<分散剤9の作製方法>
 ガス導入管、温度計、コンデンサ、および攪拌機を備えた反応容器に、トルエンを400部、2-デシル-1-テトラデカノールエチレンオキシド10モル付加物を264.9部、モノクロロ酢酸ナトリウムを50.7部、水酸化ナトリウムを17.3部仕込み、窒素ガスで置換した後、80℃で3時間加熱、攪拌した。この混合物に98%硫酸を39.0部加え、白色懸濁液を得た。その後、白色懸濁液を、精製水を用いて十分に洗浄し、溶剤を減圧留去することにより、分散剤9を得た。
<Method for producing dispersant 9>
400 parts of toluene, 264.9 parts of 2-decyl-1-tetradecanol ethylene oxide 10 mol adduct, 50.7 parts of sodium monochloroacetate in a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer. 17.3 parts of sodium hydroxide was charged, replaced with nitrogen gas, and then heated at 80 ° C. for 3 hours and stirred. 39.0 parts of 98% sulfuric acid was added to this mixture to obtain a white suspension. Then, the white suspension was thoroughly washed with purified water, and the solvent was distilled off under reduced pressure to obtain a dispersant 9.
<アルコキシシラン化合物>
 KBM-403(3-グリシドキシプロピルトリメトキシシラン、信越シリコーン株式会社)
 KBM-303(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、信越シリコーン株式会社)
 KBM-13(メチルトリメトキシシラン、信越シリコーン株式会社)
 KBM-22(ジメチルジメトキシシラン、信越シリコーン株式会社)
 KBM-3033(n-プロピルトリメトキシシラン、信越シリコーン株式会社)
 KBM-103(フェニルトリメトキシシラン、信越シリコーン株式会社)
 KBM-1003(ビニルトリメトキシシラン、信越シリコーン株式会社)
<Alkoxysilane compound>
KBM-403 (3-glycidoxypropyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
KBM-303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
KBM-13 (Methyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
KBM-22 (dimethyldimethoxysilane, Shinetsu Silicone Co., Ltd.)
KBM-3033 (n-propyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
KBM-103 (Phenyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
KBM-1003 (Vinyltrimethoxysilane, Shinetsu Silicone Co., Ltd.)
<可塑剤>
 PEG#200(ポリエチレングリコール、沸点:250℃、日油株式会社製)
 トリプロピレングリコール(沸点:273℃以上、旭硝子株式会社製)
 Proviplast 1783(トリエチレングリコール ビス(2-エチルヘキサノエート)、沸点:344℃、Proviron社製)
 ノニオンL-2(モノラウリン酸ポリエチレングリコール、沸点:300℃以上、日油株式会社製)
 ビニサイザー90(フタル酸ジ2-エチルヘキシル、沸点:403℃、花王株式会社製)
 エキセパール M-OL(オレイン酸メチル、沸点:218℃、花王株式会社製)
 BFG(沸点170℃、プロピレングリコールモノブチルエーテル、日本乳化剤株式会社製)
 ブチセルアセテート(沸点192℃、エチレングリコールモノブチルエーテルアセテート、KHネオケム株式会社製)
 FA-BZA(沸点210℃、ベンジルアクリレート、日立化成株式会社製)
<Plasticizer>
PEG # 200 (polyethylene glycol, boiling point: 250 ° C, manufactured by NOF CORPORATION)
Tripropylene glycol (boiling point: 273 ° C or higher, manufactured by Asahi Glass Co., Ltd.)
Proviprest 1783 (triethylene glycol bis (2-ethylhexanoate), boiling point: 344 ° C, manufactured by Proviron)
Nonion L-2 (polyethylene glycol monolaurate, boiling point: 300 ° C or higher, manufactured by NOF CORPORATION)
Vinysizer 90 (di2-ethylhexyl phthalate, boiling point: 403 ° C, manufactured by Kao Corporation)
Exepearl M-OL (methyl oleate, boiling point: 218 ° C, manufactured by Kao Corporation)
BFG (boiling point 170 ° C, propylene glycol monobutyl ether, manufactured by Nippon Embroidery Co., Ltd.)
Butycel acetate (boiling point 192 ° C, ethylene glycol monobutyl ether acetate, manufactured by KH Neochem Co., Ltd.)
FA-BZA (boiling point 210 ° C, benzyl acrylate, manufactured by Hitachi Kasei Co., Ltd.)
<成形用樹脂>
 エリーテルUE-9200(ポリエステル樹脂、ユニチカ株式会社製)
<Molding resin>
Elitel UE-9200 (polyester resin, manufactured by Unitika Ltd.)
2.無機酸化物粒子分散体
(実施例1~32、比較例1~11)
<無機酸化物粒子分散体の調製>
 表1、表2に示す配合組成に従い、均一になるように撹拌混合した後、さらに直径0.1mmのジルコニアビーズを用いてサンドミルで5時間分散した。その後、混合物を50℃で3時間静置し、孔径1μmのフィルタで濾過して無機酸化物粒子分散体をそれぞれ得た。なお、表1中、単位表記のない数字は部を表し、空欄は配合していないことを表す。
2. 2. Inorganic oxide particle dispersion (Examples 1 to 32, Comparative Examples 1 to 11)
<Preparation of inorganic oxide particle dispersion>
According to the compounding compositions shown in Tables 1 and 2, the mixture was stirred and mixed so as to be uniform, and then dispersed in a sand mill for 5 hours using zirconia beads having a diameter of 0.1 mm. Then, the mixture was allowed to stand at 50 ° C. for 3 hours and filtered through a filter having a pore size of 1 μm to obtain an inorganic oxide particle dispersion. In Table 1, numbers without unit notation represent parts, and blanks indicate that they are not mixed.
Figure JPOXMLDOC01-appb-T000007
     
Figure JPOXMLDOC01-appb-T000007
     
Figure JPOXMLDOC01-appb-T000008
  
Figure JPOXMLDOC01-appb-T000008
  
<無機酸化物粒子分散体の評価>
 実施例1~32、比較例1~11で調製した無機酸化物粒子分散体に関して、それぞれ分散粒子径、透明性、および耐熱性を下記の方法で評価した。結果を表3に示す。
<Evaluation of inorganic oxide particle dispersion>
The dispersed particle size, transparency, and heat resistance of the inorganic oxide particle dispersions prepared in Examples 1 to 32 and Comparative Examples 1 to 11 were evaluated by the following methods, respectively. The results are shown in Table 3.
(分散粒子径)
 無機酸化物粒子分散体の分散粒子径は、動的光散乱方式の粒度分布計(日機装社製、マイクロトラックUPA)を用いて、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算した際に、50%となる粒子径を分散粒子径として測定した。なお、測定に用いた試料は、無機酸化物粒子分散体を、分散体作製時に用いた可塑剤に対して、測定可能な任意の量で添加し、バス型超音波装置にて分散し、調製した。分散粒子径は透明性の観点から細かい程好ましく、下記の基準に従って評価した。
 A:60nm以下(極めて良好)
 B:60nm超過、70nm以下(良好)
 C:70nm超過(不良)
(Dispersed particle size)
The dispersed particle size of the inorganic oxide particle dispersion is determined by using a dynamic light scattering type particle size distribution meter (Microtrac UPA, manufactured by Nikkiso Co., Ltd.) in the volume particle size distribution, from the finer particle size to the volume ratio of the particles. The particle size of 50% was measured as the dispersed particle size. The sample used for the measurement was prepared by adding an inorganic oxide particle dispersion to the plasticizer used at the time of preparing the dispersion in an arbitrary amount that can be measured, and dispersing it with a bath-type ultrasonic device. did. The finer the dispersed particle size, the more preferable it is from the viewpoint of transparency, and the evaluation was made according to the following criteria.
A: 60 nm or less (extremely good)
B: Over 60 nm, 70 nm or less (good)
C: Over 70 nm (defective)
(透明性1)
 無機酸化物粒子分散体の透明性の評価用試料は、無機酸化物粒子分散体 0.5部を無機酸化物分散体の作製時に用いた可塑剤29.5部に添加し、バス型超音波装置にて分散し調製した。得られた評価用試料を測定可能な任意の量で光路長1cm石英セルに入れ、ヘーズメーター(日本電色工業社製、NDH-2000)を用い、無機酸化物粒子分散体の作製時に用いた可塑剤を基準として(ヘイズのゼロ点として)、上記評価用試料の濁度を測定した。濁度は、0に近いほど好ましい。下記基準で透明性を判断した。
 A:1%以下(極めて良好)
 B:1%超過、3%以下(良好) 
 C:3%超過(不良)
(Transparency 1)
For the sample for evaluating the transparency of the inorganic oxide particle dispersion, 0.5 part of the inorganic oxide particle dispersion was added to 29.5 parts of the plasticizer used when preparing the inorganic oxide particle dispersion, and bath-type ultrasonic waves were used. It was dispersed and prepared by the device. The obtained evaluation sample was placed in a quartz cell having an optical path length of 1 cm in an arbitrary amount that can be measured, and used when preparing an inorganic oxide particle dispersion using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.). The turbidity of the above evaluation sample was measured using the plasticizer as a reference (as the zero point of haze). The closer the turbidity is to 0, the more preferable. Transparency was judged based on the following criteria.
A: 1% or less (extremely good)
B: 1% over, 3% or less (good)
C: Over 3% (defective)
(耐熱性1)
 無機酸化物粒子分散体の耐熱性1では、無機酸化物粒子分散体を200℃で1時間静置して得た試料の分散粒子径を測定した。そして、静置前の無機酸化物粒子分散体の分散粒子径の値から、静置後(試料)の分散粒子径の値を引いた値の絶対値を求め、分散粒子径の変化量として評価した。分散粒子径の変化量は、小さいほど好ましい。分散粒子径の変化量から下記基準に従って耐熱性を評価した。
 A:5nm以下(極めて良好)
 B:5nm超過、10nm以下(良好)
 C:10nm超過(不良)
(Heat resistance 1)
For the heat resistance 1 of the inorganic oxide particle dispersion, the dispersed particle size of the sample obtained by allowing the inorganic oxide particle dispersion to stand at 200 ° C. for 1 hour was measured. Then, the absolute value of the value obtained by subtracting the value of the dispersed particle size after standing (sample) from the value of the dispersed particle size of the inorganic oxide particle dispersion before standing is obtained and evaluated as the amount of change in the dispersed particle size. did. The smaller the amount of change in the dispersed particle size, the more preferable. The heat resistance was evaluated according to the following criteria from the amount of change in the dispersed particle size.
A: 5 nm or less (extremely good)
B: Exceeding 5 nm and 10 nm or less (good)
C: Exceeding 10 nm (defective)
(耐熱性2)
 無機酸化物粒子分散体の耐熱性2では、200℃で1時間静置した無機酸化物粒子分散体0.5部を、無機酸化物粒子分散体作製時に用いた可塑剤29.5部に添加し、バス型超音波装置にて分散処理して試料を調製した。得られた試料について、ヘーズメーター(日本電色工業社製、NDH-2000)を用い、無機酸化物粒子分散体の作製時に用いた可塑剤を基準として、濁度を測定した。200℃で1時間静置した上記試料の濁度を、静置前の試料の濁度の値から引いた値の絶対値を求め、濁度の変化率として評価した。濁度の変化率は、小さいほど好ましい。濁度の変化率から下記基準に従って耐熱性を評価した。
 A:0.1%以下(極めて良好)
 B:0.1%超過、0.4%以下(良好)
 C:0.4%超過(不良)
(Heat resistance 2)
For the heat resistance 2 of the inorganic oxide particle dispersion, 0.5 part of the inorganic oxide particle dispersion left at 200 ° C. for 1 hour was added to 29.5 parts of the plasticizer used when preparing the inorganic oxide particle dispersion. Then, a sample was prepared by dispersion treatment with a bath type ultrasonic device. The turbidity of the obtained sample was measured using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) with reference to the plasticizer used when preparing the inorganic oxide particle dispersion. The turbidity of the sample left at 200 ° C. for 1 hour was calculated as an absolute value obtained by subtracting the turbidity value of the sample before standing, and evaluated as the rate of change in turbidity. The smaller the rate of change in turbidity, the more preferable. The heat resistance was evaluated according to the following criteria from the rate of change in turbidity.
A: 0.1% or less (extremely good)
B: Exceeds 0.1%, 0.4% or less (good)
C: Over 0.4% (defective)
Figure JPOXMLDOC01-appb-T000009
     
 表3に示すように、分散体として、実施例1~32は、分散粒子径、透明性、および耐熱性のそれぞれが良好であった。特に、実施例1、4~32に関しては、分散粒子径および透明性が極めて良好であり、さらに実施例1、4~6、8~10、12、18、24~26、および29~32では、耐熱性についても極めて良好であった。
Figure JPOXMLDOC01-appb-T000009

As shown in Table 3, Examples 1 to 32 had good dispersion particle size, transparency, and heat resistance as dispersions. In particular, with respect to Examples 1, 4 to 32, the dispersed particle size and transparency are extremely good, and further, in Examples 1, 4 to 6, 8 to 10, 12, 18, 24 to 26, and 29 to 32. The heat resistance was also extremely good.
3.成型体
(実施例33~64、比較例12~22)
<成型体の作製と評価>
 実施例1~32及び比較例1~11で調製した無機酸化物粒子分散体を用いて成型体をそれぞれ作製し、成型体の透明性および耐熱性について下記の方法で評価した。評価結果を表4に示す。
(透明性2)
 無機酸化物粒子分散体を3.3部、エリーテルUE-9200(成型用樹脂)を90部、およびProviplast 1783を6.7部含む混合物を、2本ロールを用いて130℃で3分間混練した。混練によって得られた混練物を、プレス成型機を用いて130℃で5分間プレス成型し、厚さ0.8mmの成型体(A)を得た。一方、上記成型用樹脂90質量部と、Proviplast 1783(可塑剤)10質量部とを混練し、同様の方法でプレス成型することによって成型用樹脂と可塑剤とのみからなる成型体(B)を得た。
 得られた成型体について、ヘーズメーター(日本電色工業社製、NDH-2000)を用いて、それぞれ全光線透過率を測定した。全光線透過率の値は、100に近いほど好ましい。
 さらに、成型用樹脂と可塑剤のみからなる成型体(B)の全光線透過率の値を基準として、無機酸化物粒子分散体を混練して成型した成型体(A)の全光線透過率の値から変化率を算出した。得られた変化率の値から下記基準に従って透明性を評価した。結果を表4に示す。
 A:1%以下(極めて良好)
 B:1%超過、3%以下(良好)
 C:3%超過(不良)
3. 3. Molded body (Examples 33 to 64, Comparative Examples 12 to 22)
<Manufacturing and evaluation of molded body>
Molds were prepared using the inorganic oxide particle dispersions prepared in Examples 1 to 32 and Comparative Examples 1 to 11, respectively, and the transparency and heat resistance of the molded bodies were evaluated by the following methods. The evaluation results are shown in Table 4.
(Transparency 2)
A mixture containing 3.3 parts of the inorganic oxide particle dispersion, 90 parts of Elitel UE-9200 (molding resin), and 6.7 parts of Proviblast 1783 was kneaded at 130 ° C. for 3 minutes using two rolls. .. The kneaded product obtained by kneading was press-molded at 130 ° C. for 5 minutes using a press molding machine to obtain a molded product (A) having a thickness of 0.8 mm. On the other hand, 90 parts by mass of the molding resin and 10 parts by mass of Proviblast 1783 (plasticizer) are kneaded and press-molded by the same method to obtain a molded body (B) consisting of only the molding resin and the plasticizer. Obtained.
The total light transmittance of each of the obtained molded bodies was measured using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.). The value of the total light transmittance is preferably close to 100.
Further, the total light transmittance of the molded body (A) formed by kneading the inorganic oxide particle dispersion is based on the value of the total light transmittance of the molded body (B) composed of only the molding resin and the plasticizer. The rate of change was calculated from the value. Transparency was evaluated from the obtained rate of change according to the following criteria. The results are shown in Table 4.
A: 1% or less (extremely good)
B: 1% over, 3% or less (good)
C: Over 3% (defective)
(耐熱性3)
 無機酸化物粒子分散体を3.3部、エリーテルUE-9200(成型用樹脂)を90部、およびProviplast 1783を6.7部含む混合物を、2本ロールを用いて170℃で3分間混練した。混練によって得られた混練物を、プレス成型機にて170℃にて5分間プレス成型し、厚さ0.8mmの成型体(A)を得た。一方、上記成型用樹脂90質量部とProviplast 1783(可塑剤)10質量部を混練し、同様の方法でプレス成型することで成型用樹脂と可塑剤のみからなる成型体(B)を得た。
 得られた成型体をヘーズメーター(日本電色工業社製、NDH-2000)を用いて、濁度を成型用樹脂と可塑剤のみからなる成型体(B)を基準として、無機酸化物粒子分散体を混練した成型体(A)の値を測定し、透明性1の評価に用いたプレス成型条件の成型体と濁度の値を引いた値の絶対値を変化率として評価した。濁度の変化率は、小さいほど好ましい。濁度の変化率の値から下記の基準に従って耐熱性を評価した。
 A:0.1%以下(極めて良好)
 B:0.1%超過、0.4%以下(良好)
 C:0.4%超過(不良)
(Heat resistance 3)
A mixture containing 3.3 parts of the inorganic oxide particle dispersion, 90 parts of Elitel UE-9200 (molding resin), and 6.7 parts of Proviblast 1783 was kneaded at 170 ° C. for 3 minutes using two rolls. .. The kneaded product obtained by kneading was press-molded at 170 ° C. for 5 minutes with a press molding machine to obtain a molded product (A) having a thickness of 0.8 mm. On the other hand, 90 parts by mass of the molding resin and 10 parts by mass of Proviblast 1783 (plasticizer) were kneaded and press-molded by the same method to obtain a molded body (B) consisting of only the molding resin and the plasticizer.
Using a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.), the obtained molded body is dispersed with inorganic oxide particles based on the molded body (B) consisting of only a molding resin and a plasticizer for turbidity. The value of the molded body (A) in which the body was kneaded was measured, and the absolute value of the value obtained by subtracting the value of the molded body and the turbidity under the press molding conditions used for the evaluation of transparency 1 was evaluated as the rate of change. The smaller the rate of change in turbidity, the more preferable. The heat resistance was evaluated according to the following criteria from the value of the rate of change in turbidity.
A: 0.1% or less (extremely good)
B: Exceeds 0.1%, 0.4% or less (good)
C: Over 0.4% (defective)
Figure JPOXMLDOC01-appb-T000010
        
Figure JPOXMLDOC01-appb-T000010
        
 表4に示すように、成型体として、実施例33~64に関しては、透明性および耐熱性がそれぞれ良好であった。特に、実施例33、36~64に関しては、透明性についても極めて良好であった。さらに実施例33、36~42、44、50~51、56~58、61~64では、耐熱性についても極めて良好であった。 As shown in Table 4, the transparency and heat resistance of Examples 33 to 64 were good as molded bodies. In particular, with respect to Examples 33 and 36 to 64, the transparency was also extremely good. Further, in Examples 33, 36 to 42, 44, 50 to 51, 56 to 58 and 61 to 64, the heat resistance was also extremely good.
 以上のように、本発明によれば、特定の分散剤、アルコキシシラン化合物、可塑剤を使用することによって、屈折率調整、UV遮蔽、熱線遮蔽等の機能を付与できる無機酸化物粒子を、高透明化が可能な分散レベルまで分散し、さらには、高温条件下においても分散レベルを維持できる無機酸化物粒子分散体を提供できる。また、本発明による無機酸化物粒子分散体は、成型用樹脂と相溶性が高く、成型体としての透明性を維持できることから、UV遮蔽、赤外遮蔽、屈折率調整、帯電防止性調整、耐熱性の付与などを、塗布工程、積層工程を用いない簡素な工程で達成でき、幅広いプラスチックの成型用途に展開可能である。 As described above, according to the present invention, the inorganic oxide particles capable of imparting functions such as refractive index adjustment, UV shielding, and heat ray shielding by using a specific dispersant, alkoxysilane compound, and plasticizing agent can be produced at a high level. It is possible to provide an inorganic oxide particle dispersion that can be dispersed to a dispersion level that can be made transparent and can maintain the dispersion level even under high temperature conditions. Further, since the inorganic oxide particle dispersion according to the present invention has high compatibility with the molding resin and can maintain the transparency as a molded body, UV shielding, infrared shielding, refractive index adjustment, antistatic property adjustment, heat resistance It is possible to achieve the imparting of properties by a simple process that does not use a coating process or a laminating process, and it can be applied to a wide range of plastic molding applications.

Claims (6)

  1.  無機酸化物粒子と、分散剤と、アルコキシシラン化合物と、沸点200℃以上の重合性不飽和基を有しない可塑剤とを含有する無機酸化物粒子分散体であって、前記分散剤が、下記一般式Aで表される分散剤A、および下記一般式Bで表される分散剤Bからなる群より選ばれる少なくとも1種を含む、無機酸化物粒子分散体。
    Figure JPOXMLDOC01-appb-I000001
    (Rは、分岐構造もしくは直鎖構造からなるアルキル基であって、炭素数10~18からなるアルキル基を表す。Aは、炭素数2~3の直鎖構造からなるアルキレン基を表す。nは、5~20の整数である。)
    Figure JPOXMLDOC01-appb-I000002
    (Xは、水素原子もしくはYを表す。Rは、分岐構造もしくは直鎖構造からなるアルキル基であり、主鎖が炭素数12~13からなるアルキル基を表す。nは、1~10の整数である。Rは、分岐構造もしくは直鎖構造からなるアルキル基であり、主鎖が炭素数12~13からなるアルキル基を表す。nは、1~10の整数である。)
    An inorganic oxide particle dispersion containing inorganic oxide particles, a dispersant, an alkoxysilane compound, and a plasticizer having a boiling point of 200 ° C. or higher and having no polymerizable unsaturated group, wherein the dispersant is as follows. An inorganic oxide particle dispersion containing at least one selected from the group consisting of a dispersant A represented by the general formula A and a dispersant B represented by the following general formula B.
    Figure JPOXMLDOC01-appb-I000001
    (R 1 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having 10 to 18 carbon atoms. A represents an alkylene group having a linear structure having 2 to 3 carbon atoms. n 1 is an integer of 5 to 20.)
    Figure JPOXMLDOC01-appb-I000002
    (X 1 represents a hydrogen atom or Y 1. R 2 is an alkyl group having a branched structure or a linear structure, and n 2 represents an alkyl group having a main chain having 12 to 13 carbon atoms. R 3 is an alkyl group having a branched structure or a linear structure, and represents an alkyl group having a main chain having 12 to 13 carbon atoms. N 3 is an integer of 1 to 10. .)
  2.  前記無機酸化物粒子が、酸化ジルコニウム粒子を含む、請求項1に記載の無機酸化物粒子分散体。 The inorganic oxide particle dispersion according to claim 1, wherein the inorganic oxide particles contain zirconium oxide particles.
  3.  前記可塑剤が、ポリエチレングリコール系エステル、ポリプロピレングリコール、およびポリプロピレングリコール系エステルからなる群より選ばれる少なくとも1種を含む、請求項1または2に記載の無機酸化物粒子分散体。 The inorganic oxide particle dispersion according to claim 1 or 2, wherein the plasticizer contains at least one selected from the group consisting of polyethylene glycol-based esters, polypropylene glycols, and polypropylene glycol-based esters.
  4.  前記アルコキシシラン化合物が、エポキシ骨格を有する、請求項1~3のいずれか1項に記載の無機酸化物粒子分散体。 The inorganic oxide particle dispersion according to any one of claims 1 to 3, wherein the alkoxysilane compound has an epoxy skeleton.
  5.  請求項1~4のいずれか1項に記載の無機酸化物粒子分散体と、成型用樹脂とを含む、成型用組成物。 A molding composition containing the inorganic oxide particle dispersion according to any one of claims 1 to 4 and a molding resin.
  6.  請求項1~4のいずれか1項に記載の無機酸化物粒子分散体を用いた成型体。 A molded product using the inorganic oxide particle dispersion according to any one of claims 1 to 4.
PCT/JP2020/031253 2019-08-23 2020-08-19 Inorganic oxide particle dispersion, molding composition in which same is used, and molded article WO2021039529A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-152855 2019-08-23
JP2019152855 2019-08-23
JP2020-120323 2020-07-14
JP2020120323A JP2021036028A (en) 2019-08-23 2020-07-14 Inorganic oxide particle dispersion, molding composition using the same, and molded article

Publications (1)

Publication Number Publication Date
WO2021039529A1 true WO2021039529A1 (en) 2021-03-04

Family

ID=74685855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031253 WO2021039529A1 (en) 2019-08-23 2020-08-19 Inorganic oxide particle dispersion, molding composition in which same is used, and molded article

Country Status (1)

Country Link
WO (1) WO2021039529A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2005343723A (en) * 2004-06-01 2005-12-15 Sekisui Chem Co Ltd Thermally insulating particle dispersion, interlayer for laminated glass, and laminated glass
WO2013077219A1 (en) * 2011-11-25 2013-05-30 第一工業製薬株式会社 Resin composition for optical material
KR20190084741A (en) * 2018-01-09 2019-07-17 주식회사 쎄코 Hydrophilic multiple coating film
WO2019230785A1 (en) * 2018-05-29 2019-12-05 東洋インキScホールディングス株式会社 Inorganic-oxide particle dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262883A (en) * 1999-03-19 2000-09-26 Kao Corp In-oil dispersant for inorganic powder
JP2005343723A (en) * 2004-06-01 2005-12-15 Sekisui Chem Co Ltd Thermally insulating particle dispersion, interlayer for laminated glass, and laminated glass
WO2013077219A1 (en) * 2011-11-25 2013-05-30 第一工業製薬株式会社 Resin composition for optical material
KR20190084741A (en) * 2018-01-09 2019-07-17 주식회사 쎄코 Hydrophilic multiple coating film
WO2019230785A1 (en) * 2018-05-29 2019-12-05 東洋インキScホールディングス株式会社 Inorganic-oxide particle dispersion

Similar Documents

Publication Publication Date Title
EP2371768B1 (en) Zirconium oxide dispersion, process for production thereof, and resin compositions containing same
KR101647523B1 (en) Metal oxide microparticle dispersed slurry
EP1760126A1 (en) Siloxane coating material, optical articles and process for the production of siloxane coating materials
JP7275862B2 (en) Molding composition, molded article and laminate using the same
JP3567494B2 (en) Coating agent consisting of organosol dispersed in fluorinated solvent
TW200934733A (en) Metal oxide complex sol, coating composition and optical member
WO2013031799A1 (en) Inorganic oxide transparent dispersion and resin composition for forming transparent composite, and transparent composite and optical member
JP2008274047A (en) Composition for manufacturing heat ray-shielding vinyl chloride film and method of manufacturing the same, and heat ray-shielding vinyl chloride film
JP5037393B2 (en) Metal oxide fine particle dispersion and molded body
JP2010042369A (en) Dispersion liquid of inorganic nanoparticle and method for preparing the same, and composite composition
TWI591135B (en) Thermosetting resin composition, hardened material thereof, and display member using the same
JP2012031353A (en) Coating composition and optical member
WO2021039529A1 (en) Inorganic oxide particle dispersion, molding composition in which same is used, and molded article
JP2021036028A (en) Inorganic oxide particle dispersion, molding composition using the same, and molded article
JP6729779B1 (en) Tin-doped indium oxide particle dispersion, molding composition and molded body
JP2004231708A (en) Infrared-cutting composition, infrared-cutting powder, and coating material and molded article made therefrom
KR20070022311A (en) Siloxane coating material, optical articles and process for the production of siloxane coating materials
JP2017007889A (en) Composite tungsten oxide fine particle, infrared ray shielding resin composition and infrared ray shielding molded body
JP6192895B2 (en) Method for producing inorganic particle dispersion
JP6631656B2 (en) Inorganic oxide dispersion with high transparency
JP2005290137A (en) Titanium dioxide pigment and resin composition containing the same
JP2007262252A (en) Transparent plastic member containing zirconia fine particle and composite plastic member
JP2012058506A (en) Optical material, tin oxide fine particle dispersion, tin oxide fine particle dispersion coating material, method for manufacturing optical material, high refractive index film, and antistatic film
JP5278945B2 (en) Organic-inorganic composite and method for producing the same
JP2009235303A (en) Antimony-doped tin oxide fine particles dispersion for addition to polycarbonate resin, its manufacturing method, and antimony-doped tin oxide dispersed polycarbonate resin molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857553

Country of ref document: EP

Kind code of ref document: A1