WO2013076853A1 - Cooling device and electronic apparatus - Google Patents

Cooling device and electronic apparatus Download PDF

Info

Publication number
WO2013076853A1
WO2013076853A1 PCT/JP2011/077089 JP2011077089W WO2013076853A1 WO 2013076853 A1 WO2013076853 A1 WO 2013076853A1 JP 2011077089 W JP2011077089 W JP 2011077089W WO 2013076853 A1 WO2013076853 A1 WO 2013076853A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
generating component
cooling device
fan
sealed space
Prior art date
Application number
PCT/JP2011/077089
Other languages
French (fr)
Japanese (ja)
Inventor
吉野幸雄
島森浩
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2011/077089 priority Critical patent/WO2013076853A1/en
Publication of WO2013076853A1 publication Critical patent/WO2013076853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20372Cryogenic cooling; Nitrogen liquid cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20754Air circulating in closed loop within cabinets

Definitions

  • Embodiments discussed herein relate to a cooling device and an electronic device that includes the cooling device and a heat generating component.
  • an air cooling method or a water cooling method is used for a cooling device arranged in an electronic device or the like.
  • a cooling device for example, a cooling device including both an air cooling device and a liquid cooling device is known.
  • a cooling device that includes a heat dissipating fin that radiates heat inside the sealed casing to the outside, and a cooling fan arranged in the sealed casing.
  • JP 2005-317033 A Japanese Utility Model Publication No. 02-04493
  • the conventional cooling device raises the temperature outside the device by exhausting the high-temperature air outside the device or radiating the air inside the device to the air outside the device with fins. To rise.
  • a cooling device and an electronic device disclosed in this specification are intended to suppress an increase in environmental temperature.
  • the cooling device disclosed in this specification includes a flow path, a heat exchanger, and a fan.
  • the flow path is arranged to pass through the inside and the outside of the sealed space, and the refrigerant flows.
  • the heat exchanger is disposed in the sealed space so as to be able to conduct heat with the refrigerant.
  • the fan controls the gas flow so that the gas flow in the sealed space is directed to the heat exchanger.
  • the electronic device disclosed in this specification includes a housing, a heat generating component, a flow path, a heat exchanger, and a fan.
  • the casing has a sealed space inside.
  • the heat generating component is disposed in the sealed space.
  • the flow path is arranged to pass through the inside and the outside of the sealed space, and the refrigerant flows.
  • the heat exchanger is disposed in the sealed space so as to be able to conduct heat with the refrigerant.
  • the fan controls the gas flow so that the gas flow in the sealed space is directed to the heat exchanger.
  • an increase in environmental temperature can be suppressed.
  • FIG. 1 is a plan view showing an electronic device 100 including the cooling device 1.
  • 2 and 3 are a schematic side view and a schematic front view showing the internal structure of the electronic device 100.
  • the cooling device 1 includes a liquid flow path (an example of a flow path) 2, a heat exchanger 3, a fan 4, a partition member 5, and a wind deflection member 6.
  • the electronic device 100 includes a cooling device 1, a housing 101, a substrate 102, a first heat generating component 103, and a second heat generating component 104.
  • the electronic device 100 is used for a server device, for example.
  • the liquid flow path 2 is arranged so as to circulate a liquid refrigerant (an example of a refrigerant) L which is water, for example, inside and outside a sealed space S formed inside the housing 101.
  • a liquid refrigerant L circulates in the liquid flow path 2 by a pump disposed outside the sealed space S.
  • the pump may be arranged outside the system.
  • the liquid refrigerant L is forcibly cooled by the cooling device and maintained at a constant temperature outside the sealed space S, but may be naturally cooled if it can be maintained at a constant temperature.
  • the refrigerant is not limited to the liquid refrigerant L. Therefore, the flow path is not limited to the liquid flow path 2.
  • the liquid flow path 2 has a U shape with both ends positioned on the left side in the plan view of FIG. As shown in FIGS. 2 and 3, the liquid flow path 2 includes, for example, a cooling plate 2a having a microchannel formed therein and a pipe 2b.
  • the cooling plate 2 a is disposed so as to be in surface contact with the upper surface of the first heat generating component (for example, CPU) 103 mounted on the substrate 102. In this way, the liquid flow path 2 is arranged so that the heat of the first heat generating component 103 is conducted to the liquid refrigerant L.
  • the first heat generating component for example, CPU
  • cooling plates 2a are arranged in the same number as the first heat generating component 103.
  • the pipe 2b connects the four cooling plates 2a to each other and extends inside and outside the sealed space S.
  • the heat exchanger 3 is disposed in the sealed space S so as to be able to conduct heat with the liquid refrigerant L.
  • the heat exchanger 3 is arranged so as to be in surface contact with the upper surface of the cooling plate 2a, so that heat conduction with the liquid refrigerant L is possible.
  • the heat exchanger 3 faces the first heat generating component 103 with the cooling plate 2a interposed therebetween.
  • the heat exchanger 3 can be a heat sink, for example.
  • the heat exchanger 3 shown in FIGS. 1 and 2 has a plurality of plate-like fins 3a arranged in parallel to each other, and the plurality of plate-like fins 3a are arranged in parallel with the flow of a gas G described later. Yes. This can prevent the heat exchanger 3 from obstructing the flow of the gas G. However, it is possible to prevent the flow of the gas G from being obstructed even by arranging needle-like or rod-like fins instead of the plate-like fins 3a. Can do.
  • the fan 4 controls the flow of the gas G so that the flow of the gas G in the sealed space S is directed to the heat exchanger 3.
  • the fan 4 generates a clockwise flow in a plan view of FIG.
  • the heat of the gas G is conducted from the heat exchanger 3 to the liquid refrigerant L.
  • the fan 4 is disposed between the first heat generating component 103 and the second heat generating component (for example, memory) 104, and blows the gas G on the first heat generating component 103 side (heat exchanger 3 side).
  • the second heat generating component 104 does not generate a larger amount of heat than the first heat generating component 103, but is not arranged so as to directly conduct heat with the liquid flow path 2, so that the lee of the heat exchanger 3 Is arranged so that the gas G deprived of heat by the heat exchanger 3 is in contact with the heat exchanger 3. Therefore, the size of the second heating component 104 is determined such that only the gas G in contact with the heat exchanger 3 is in contact with the gas G not in contact with the heat exchanger 3. Good.
  • the first heat generating component 103, the second heat generating component 104, the fan 4, and the first heat generating component 103 are arranged along the wind direction of the gas G from the left back in FIG.
  • the first heating component 103, the second heating component 104, the first heating component 103, the second heating component 104, the fan 4, the first heating component 103, and the second heating component 104 are arranged in this order.
  • the first heat generating component 103 and the second heat generating component 104 are alternately arranged without being continuous in the wind direction.
  • the second heat generating component 104 is arranged on both sides of the liquid flow path 2 in parallel with the wind direction.
  • the second heat generating component 104 includes a plurality of plate-like members 104a that are vertically arranged and parallel to each other.
  • the fan 4 causes the gas S to flow so that the gas G is brought into contact with the plurality of plate-like members 104 a of the second heat generating component 104 in parallel with the plurality of plate-like members 104 a. That is, the plurality of plate-like members 104a of the second heat generating component 104 are arranged in parallel to the wind direction.
  • the partition member 5 partitions the sealed space S to form a circulation path for the gas G in the clockwise direction in the plan view of FIG.
  • a plurality of partition members 5 may be disposed, for example, according to the size of the casing 101, and the position and size of the partition member 5 may be disposed so as to suppress convection and pressure loss.
  • the wind deflection member 6 is provided at both left and right (longitudinal) ends in the plan view of FIG. 1 so as to assist the change in the wind direction of the gas G by rounding the four corners of the rectangular sealed space S in the plan view of FIG. Two are arranged in a curved plate shape. Thereby, the duct formed by the two wind deflecting members 6 and the partition member 5 reduces the pressure loss of the gas G.
  • the gas G in the sealed space S may have a low thermal resistance by increasing the pressure.
  • the pressure of the gas G is increased, at the time of manufacturing the cooling device 1 and the electronic device 100, the gas injection hole is provided in the housing 101 and the gas G is enclosed in the housing 101 by the compressor to increase the atmospheric pressure.
  • a backflow prevention valve for preventing a backflow of the gas G may be provided in the injection hole.
  • the gas G is compressed when it is compressed, it is preferable to enclose it in the housing 101 after cooling and removing moisture.
  • the gas G sealed in the sealed space S is dry air, condensation of the liquid flow path 2 can be prevented.
  • ⁇ For the relative humidity of dry air select an appropriate value from the wet air diagram. Further, instead of air, a gas having a low thermal resistance (for example, a high-efficiency refrigerant such as carbon dioxide, nitrogen, etc.) is sealed, and between the gas G and the heat exchanger 3, and between the gas G and the heat generating component 104, The cooling efficiency can be increased by reducing the thermal resistance between the two.
  • a gas having a low thermal resistance for example, a high-efficiency refrigerant such as carbon dioxide, nitrogen, etc.
  • FIG. 4 is a graph showing the relationship between the wind speed of the gas G and the temperature of the memory case (second electronic component 104).
  • the temperature of the memory case decreases as the wind speed of the gas G increases or the water temperature of the liquid refrigerant L decreases.
  • the volume and water temperature of the heat exchanger 3 shall be constant.
  • the wind speed is about 3 [m / sec] or more when the water temperature of the liquid refrigerant L is 15 ° C.
  • the wind speed is about when the water temperature of the liquid refrigerant L is 20 ° C. What is necessary is just to set it as 4 [m / sec] or more.
  • FIG. 5 is a front view showing the fan 4 and the flow path restricting portion 7.
  • the flow path restricting unit 7 is disposed between the top plate 105 of the housing 101 and the fan 4.
  • the flow path restricting section 7 narrows the flow path of the circulation path at least at the fan 4 portion so that no space is generated in the upper portion of the fan 4.
  • the flow path restricting unit 7 may gradually narrow the flow path as it approaches the fan 4 from the front of the fan 4 and gradually expand the flow path as it moves away from the fan 4.
  • FIG. 6 is a front view showing the fan 4 and the spacer 8.
  • the spacers 8 are arranged at, for example, four corners of the bottom surface of the fan 4 so as to form a gap C between the fan 4 and the substrate 102. Thereby, a mounting area on the substrate 102 can be secured.
  • the fan 4 is suspended from the top plate 105 of the housing 101, or a portal-type support member that supports the fan 4 on the side surface is disposed, for example. A mounting area may be secured.
  • the heat of the gas G in the sealed space S is circulated or flowed by the fan 4 to conduct heat to the liquid refrigerant L flowing in the liquid flow path 2 via the heat exchanger 3. . Therefore, it is possible to suppress an increase in the environmental temperature outside the electronic device 100 due to the heat in the sealed space S. Further, since the fan 4 serving as a noise source is installed in the sealed space S, noise reduction can be realized. Furthermore, since the increase in the environmental temperature can be suppressed, it is possible to reduce the investment in the air conditioner equipment for lowering the environmental temperature and the like and to save the power consumption of the air conditioner.
  • the cooling plate 2a (liquid flow path 2) is arranged so that the heat of the first heat generating component 103 is conducted to the liquid refrigerant L. Therefore, the liquid refrigerant L in the liquid flow path 2 can absorb not only the heat conducted from the gas G through the heat exchanger 3 but also the heat of the first heat generating component 103.
  • the heat exchanger 3 is disposed so as to face the first heat generating component 103 with the cooling plate 2a (liquid flow path 2) interposed therebetween. Therefore, the liquid refrigerant L can absorb the heat from the heat exchanger 3 and the first heat generating component 103 at the same location.
  • the fan 4 is disposed between the first heat generating component 103 and the second heat generating component 104 alternately disposed with the first heat generating component 103 in the wind direction of the gas G, for example,
  • the gas G is sprayed on the first heat generating component 103 side (heat exchanger 3 side). Therefore, the heat transfer efficiency from the gas G to the heat exchanger 3 can be increased.
  • the second heat generating component 104 includes a plurality of plate-like members 104a arranged in parallel with each other, and the fan 4 includes a plurality of plate-like members 104a and a plurality of plate-like members 104a.
  • a flow is generated in the gas G so that the gas G is brought into contact in parallel. Therefore, it is possible to prevent the second heat generating component 104 from obstructing the flow of the gas G.
  • the partition member 5 forms the circulation path of the gas G in the sealed space S by partitioning the sealed space S. Therefore, the heat transfer efficiency from the gas G to the heat exchanger 3 can be increased.
  • the wind deflecting member 6 assists the change in the wind direction of the gas G in the circulation path. Therefore, the heat transfer efficiency from the gas G to the heat exchanger 3 can be increased.
  • the flow path restricting section 7 restricts the flow path of the circulation path at least by the fan 4 portion. Therefore, convection around the fan 4 can be prevented and the heat transfer efficiency from the gas G to the heat exchanger 3 can be improved without using the fan 4 having the same size as the flow path.
  • the fan 4 is disposed with a gap C between the fan 4 and the substrate 102. Therefore, a mounting area for the substrate 102 can be secured.
  • the spacer 8 forms the gap C between the fan 4 and the substrate 102, so that the mounting area of the substrate 102 can be secured with a simple configuration.
  • the plurality of plate-like fins 3 a of the heat exchanger 3 are arranged in parallel with the flow of the gas G. Therefore, the heat exchanger 3 can be prevented from obstructing the flow of the gas G.
  • a gas having a lower thermal resistance than air such as a high-pressure gas or a high-efficiency refrigerant (for example, carbon dioxide or nitrogen) is enclosed in the sealed space S, heat exchange is performed from the gas G.
  • a gas having a lower thermal resistance than air such as a high-pressure gas or a high-efficiency refrigerant (for example, carbon dioxide or nitrogen)
  • a high-pressure gas or a high-efficiency refrigerant for example, carbon dioxide or nitrogen
  • Cooling device Liquid flow path 2a Cooling plate 2b Piping 3 Heat exchanger 3a Fin 4 Fan 5 Partition member 6 Wind deflecting member 7 Flow path restricting part 8 Spacer 100 Electronic device 101 Case 102 Substrate 103 First heating component 104 First 2 heating parts 104a plate-like member 105 top plate

Abstract

In the present invention, a cooling device is provided with the following: a flow path which is disposed so as to pass through the inside and the outside of an enclosed space and in which a refrigerant flows; a heat exchanger disposed in the enclosed space so as to enable thermal conduction with the refrigerant; and a fan which by causing gas inside the enclosed space to flow, causes the heat of the gas to thermally conduct from the heat exchanger to the refrigerant.

Description

冷却装置、および、電子機器Cooling device and electronic device
 本明細書で論じられる実施形態は、冷却装置と、冷却装置および発熱部品を備える電子機器とに関する。 Embodiments discussed herein relate to a cooling device and an electronic device that includes the cooling device and a heat generating component.
 従来、電子機器等に配置される冷却装置には、例えば、空冷方式或いは水冷方式が用いられている。 Conventionally, for example, an air cooling method or a water cooling method is used for a cooling device arranged in an electronic device or the like.
 このような冷却装置において、例えば、空冷装置および液冷装置の両方を備える冷却装置が知られている。 As such a cooling device, for example, a cooling device including both an air cooling device and a liquid cooling device is known.
 また、密閉筐体内の熱を外部に放熱する放熱用フィンと、密閉筐体内に配置された冷却ファンとを備える冷却装置が知られている。 Also, a cooling device is known that includes a heat dissipating fin that radiates heat inside the sealed casing to the outside, and a cooling fan arranged in the sealed casing.
特開2005-317033号公報JP 2005-317033 A 実開平02-041493号公報Japanese Utility Model Publication No. 02-04493
 ところで、従来の冷却装置は、高温の空気を装置外に排気することにより或いは装置内の空気をフィンで装置外の空気に放熱することにより、装置外の空気を高温にするため、環境温度が上昇する。 By the way, the conventional cooling device raises the temperature outside the device by exhausting the high-temperature air outside the device or radiating the air inside the device to the air outside the device with fins. To rise.
 環境温度を低下させるために空調設備を用いて環境温度を低下させると、空調設備の投資や空調設備の消費電力の増加が生じる。一例ではあるが、データセンタにおいては、空調に使用する消費電力を低減させることが課題となっている。 If the environmental temperature is lowered by using air conditioning equipment to lower the environmental temperature, investment in the air conditioning equipment and increase in power consumption of the air conditioning equipment occur. As an example, in a data center, reducing power consumption used for air conditioning is an issue.
 1つの側面では、本明細書で開示する冷却装置および電子機器は、環境温度の上昇を抑えることを目的とする。 In one aspect, a cooling device and an electronic device disclosed in this specification are intended to suppress an increase in environmental temperature.
 本明細書で開示する冷却装置は、流路と、熱交換器と、ファンとを備える。前記流路は、密閉空間の内部および外部を通るように配置され、冷媒が流れる。前記熱交換器は、前記冷媒と熱伝導可能に前記密閉空間に配置されている。前記ファンは、前記密閉空間内の気体の流れが前記熱交換器に向かうように該気体の流れを制御する。 The cooling device disclosed in this specification includes a flow path, a heat exchanger, and a fan. The flow path is arranged to pass through the inside and the outside of the sealed space, and the refrigerant flows. The heat exchanger is disposed in the sealed space so as to be able to conduct heat with the refrigerant. The fan controls the gas flow so that the gas flow in the sealed space is directed to the heat exchanger.
 本明細書で開示する電子機器は、筐体と、発熱部品と、流路と、熱交換器と、ファンとを備える。前記筐体は、内部に密閉空間を有する。前記発熱部品は、前記密閉空間に配置されている。前記流路は、密閉空間の内部および外部を通るように配置され、冷媒が流れる。前記熱交換器は、前記冷媒と熱伝導可能に前記密閉空間に配置されている。前記ファンは、前記密閉空間内の気体の流れが前記熱交換器に向かうように該気体の流れを制御する。 The electronic device disclosed in this specification includes a housing, a heat generating component, a flow path, a heat exchanger, and a fan. The casing has a sealed space inside. The heat generating component is disposed in the sealed space. The flow path is arranged to pass through the inside and the outside of the sealed space, and the refrigerant flows. The heat exchanger is disposed in the sealed space so as to be able to conduct heat with the refrigerant. The fan controls the gas flow so that the gas flow in the sealed space is directed to the heat exchanger.
 1つの実施態様に係る冷却装置および電子機器によれば、環境温度の上昇を抑えることができる。 According to the cooling device and the electronic device according to one embodiment, an increase in environmental temperature can be suppressed.
冷却装置を備える電子機器を示す平面図である。It is a top view which shows an electronic device provided with a cooling device. 冷却装置を備える電子機器の内部構造を示す概略側面図である。It is a schematic side view which shows the internal structure of an electronic device provided with a cooling device. 冷却装置を備える電子機器の内部構造を示す概略正面図である。It is a schematic front view which shows the internal structure of an electronic device provided with a cooling device. 風速とメモリケースの温度との関係を示すグラフである。It is a graph which shows the relationship between a wind speed and the temperature of a memory case. ファンおよび流路絞り部を示す正面図である。It is a front view which shows a fan and a flow-path throttle part. ファンおよびスペーサを示す正面図である。It is a front view which shows a fan and a spacer.
 図1は、冷却装置1を備える電子機器100を示す平面図である。
 図2および図3は、電子機器100の内部構造を示す概略側面図および概略正面図である。
FIG. 1 is a plan view showing an electronic device 100 including the cooling device 1.
2 and 3 are a schematic side view and a schematic front view showing the internal structure of the electronic device 100.
 冷却装置1は、液体流路(流路の一例)2と、熱交換器3と、ファン4と、仕切り部材5と、風偏向部材6とを備える。 The cooling device 1 includes a liquid flow path (an example of a flow path) 2, a heat exchanger 3, a fan 4, a partition member 5, and a wind deflection member 6.
 電子機器100は、冷却装置1と、筐体101と、基板102と、第1の発熱部品103と、第2の発熱部品104とを備える。電子機器100は、例えばサーバ装置に用いられる。 The electronic device 100 includes a cooling device 1, a housing 101, a substrate 102, a first heat generating component 103, and a second heat generating component 104. The electronic device 100 is used for a server device, for example.
 液体流路2は、筐体101の内部に形成された密閉空間Sの内部と外部とに、例えば水である液体冷媒(冷媒の一例)Lを循環させるように配置されている。液体流路2には、密閉空間Sの外部に配置されたポンプによって液体冷媒Lが循環する。ポンプは、電子機器100がサーバ装置等のシステムに配置される場合は、そのシステムの外部に配置されるようにするとよい。液体冷媒Lは、例えば、密閉空間Sの外部において、冷却装置により強制冷却されて一定温度に保たれるが、一定温度に保つことのできる場合には自然冷却されるようにしてもよい。なお、冷媒は、液体冷媒Lに限られない。そのため、流路も液体流路2に限られない。 The liquid flow path 2 is arranged so as to circulate a liquid refrigerant (an example of a refrigerant) L which is water, for example, inside and outside a sealed space S formed inside the housing 101. A liquid refrigerant L circulates in the liquid flow path 2 by a pump disposed outside the sealed space S. When the electronic device 100 is arranged in a system such as a server device, the pump may be arranged outside the system. For example, the liquid refrigerant L is forcibly cooled by the cooling device and maintained at a constant temperature outside the sealed space S, but may be naturally cooled if it can be maintained at a constant temperature. The refrigerant is not limited to the liquid refrigerant L. Therefore, the flow path is not limited to the liquid flow path 2.
 液体流路2は、筐体101の内部では、図1の平面視において左側面に両端が位置するU字状を呈する。図2および図3に示すように、液体流路2は、例えば内部にマイクロチャネルが形成されたクーリングプレート2aと、配管2bとを有する。 The liquid flow path 2 has a U shape with both ends positioned on the left side in the plan view of FIG. As shown in FIGS. 2 and 3, the liquid flow path 2 includes, for example, a cooling plate 2a having a microchannel formed therein and a pipe 2b.
 クーリングプレート2aは、基板102上に実装された第1の発熱部品(例えば、CPU)103の上面に面接触するように配置されている。このように、液体流路2は、第1の発熱部品103の熱が液体冷媒Lへ熱伝導されるように配置されている。 The cooling plate 2 a is disposed so as to be in surface contact with the upper surface of the first heat generating component (for example, CPU) 103 mounted on the substrate 102. In this way, the liquid flow path 2 is arranged so that the heat of the first heat generating component 103 is conducted to the liquid refrigerant L.
 本実施形態では、クーリングプレート2aは、第1の発熱部品103と同数の4つ配置されている。配管2bは、4つのクーリングプレート2aを互いに接続するとともに、密閉空間Sの内部および外部に延びる。 In this embodiment, four cooling plates 2a are arranged in the same number as the first heat generating component 103. The pipe 2b connects the four cooling plates 2a to each other and extends inside and outside the sealed space S.
 熱交換器3は、液体冷媒Lと熱伝導可能に密閉空間Sに配置されている。本実施形態では、熱交換器3は、クーリングプレート2aの上面に面接触するように配置されていることで、液体冷媒Lと熱伝導可能になっている。このように、熱交換器3は、クーリングプレート2aを挟んで第1の発熱部品103に対向する。 The heat exchanger 3 is disposed in the sealed space S so as to be able to conduct heat with the liquid refrigerant L. In the present embodiment, the heat exchanger 3 is arranged so as to be in surface contact with the upper surface of the cooling plate 2a, so that heat conduction with the liquid refrigerant L is possible. Thus, the heat exchanger 3 faces the first heat generating component 103 with the cooling plate 2a interposed therebetween.
 熱交換器3は、例えばヒートシンクとすることができる。図1および図2に示す熱交換器3は、互いに平行に配置された複数の板状フィン3aを有し、これら複数の板状フィン3aは、後述する気体Gの流れと平行に配置されている。これにより熱交換器3が気体Gの流れを妨げるのを防ぐことができるが、板状フィン3aに代えて針状または棒状のフィンを配置することでも、気体Gの流れを妨げるのを防ぐことができる。 The heat exchanger 3 can be a heat sink, for example. The heat exchanger 3 shown in FIGS. 1 and 2 has a plurality of plate-like fins 3a arranged in parallel to each other, and the plurality of plate-like fins 3a are arranged in parallel with the flow of a gas G described later. Yes. This can prevent the heat exchanger 3 from obstructing the flow of the gas G. However, it is possible to prevent the flow of the gas G from being obstructed even by arranging needle-like or rod-like fins instead of the plate-like fins 3a. Can do.
 ファン4は、密閉空間S内の気体Gの流れが熱交換器3に向かうように気体Gの流れを制御する。ファン4は、例えば図1の平面視において時計回りの流れを生じさせる。これにより、気体Gの熱が熱交換器3から液体冷媒Lへ熱伝導する。ファン4は、第1の発熱部品103と第2の発熱部品(例えばメモリ)104との間に配置され、第1の発熱部品103側(熱交換器3側)に気体Gを吹き付ける。 The fan 4 controls the flow of the gas G so that the flow of the gas G in the sealed space S is directed to the heat exchanger 3. For example, the fan 4 generates a clockwise flow in a plan view of FIG. Thereby, the heat of the gas G is conducted from the heat exchanger 3 to the liquid refrigerant L. The fan 4 is disposed between the first heat generating component 103 and the second heat generating component (for example, memory) 104, and blows the gas G on the first heat generating component 103 side (heat exchanger 3 side).
 なお、第2の発熱部品104は、第1の発熱部品103よりも発熱量は多くないが、液体流路2と直接的に熱伝導するように配置されていないため、熱交換器3の風下の近傍で熱交換器3により熱を奪われた気体Gが接触するように配置されている。そのため、第2の発熱部品104には、熱交換器3に接触した気体Gのみが接触し、熱交換器3に接触していない気体Gが接触しないように、幅等の大きさが決定されるとよい。 The second heat generating component 104 does not generate a larger amount of heat than the first heat generating component 103, but is not arranged so as to directly conduct heat with the liquid flow path 2, so that the lee of the heat exchanger 3 Is arranged so that the gas G deprived of heat by the heat exchanger 3 is in contact with the heat exchanger 3. Therefore, the size of the second heating component 104 is determined such that only the gas G in contact with the heat exchanger 3 is in contact with the gas G not in contact with the heat exchanger 3. Good.
 本実施形態では、図1の左奥から気体Gの風向(液体冷媒Lの流れ方向と同一で時計回り)に沿って、第1の発熱部品103、第2の発熱部品104、ファン4、第1の発熱部品103、第2の発熱部品104、第1の発熱部品103、第2の発熱部品104、ファン4、第1の発熱部品103、第2の発熱部品104の順に配置されている。このように、第1の発熱部品103と第2の発熱部品104とは、風向にそれぞれ連続せず交互に配置されている。なお、第2の発熱部品104は、風向に並列に、液体流路2を挟んだ両側に配置されている。 In the present embodiment, the first heat generating component 103, the second heat generating component 104, the fan 4, and the first heat generating component 103 are arranged along the wind direction of the gas G from the left back in FIG. The first heating component 103, the second heating component 104, the first heating component 103, the second heating component 104, the fan 4, the first heating component 103, and the second heating component 104 are arranged in this order. As described above, the first heat generating component 103 and the second heat generating component 104 are alternately arranged without being continuous in the wind direction. The second heat generating component 104 is arranged on both sides of the liquid flow path 2 in parallel with the wind direction.
 第2の発熱部品104は、縦置きされた互いに平行な複数の板状部材104aを含む。ファン4は、第2の発熱部品104の複数の板状部材104aに対し複数の板状部材104aと平行に気体Gを接触させるように気体Sに流れを生じさせる。即ち、第2の発熱部品104の複数の板状部材104aは、風向に平行に配置されている。 The second heat generating component 104 includes a plurality of plate-like members 104a that are vertically arranged and parallel to each other. The fan 4 causes the gas S to flow so that the gas G is brought into contact with the plurality of plate-like members 104 a of the second heat generating component 104 in parallel with the plurality of plate-like members 104 a. That is, the plurality of plate-like members 104a of the second heat generating component 104 are arranged in parallel to the wind direction.
 仕切り部材5は、密閉空間Sを仕切ることで密閉空間S内に図1の平面視において時計回りの気体Gの循環路を形成する。仕切り部材5は、例えば筐体101の大きさなどに応じて複数配置してもよく、また、仕切り部材5の位置や大きさは、対流や圧損を抑えるように配置すればよい。 The partition member 5 partitions the sealed space S to form a circulation path for the gas G in the clockwise direction in the plan view of FIG. A plurality of partition members 5 may be disposed, for example, according to the size of the casing 101, and the position and size of the partition member 5 may be disposed so as to suppress convection and pressure loss.
 風偏向部材6は、図1の平面視において矩形の密閉空間Sの四つ角に丸みをもたせて気体Gの風向の変化を補助するように、図1の平面視において左右(長手方向)の両端に2つ、湾曲した板状に配置されている。これにより、2つの風偏向部材6と仕切り部材5とで形成されるダクトが気体Gの圧損を低下させる。 The wind deflection member 6 is provided at both left and right (longitudinal) ends in the plan view of FIG. 1 so as to assist the change in the wind direction of the gas G by rounding the four corners of the rectangular sealed space S in the plan view of FIG. Two are arranged in a curved plate shape. Thereby, the duct formed by the two wind deflecting members 6 and the partition member 5 reduces the pressure loss of the gas G.
 密閉空間S内の気体Gは、高圧化することで熱抵抗を低くしてもよい。気体Gを高圧化する場合、冷却装置1および電子機器100の製造時において、筐体101に気体注入孔を設けて圧縮機により筐体101内に気体Gを封入し、気圧を増加させる。このとき、注入孔には気体Gの逆流を防ぐための逆流防止弁を設けるとよい。 The gas G in the sealed space S may have a low thermal resistance by increasing the pressure. When the pressure of the gas G is increased, at the time of manufacturing the cooling device 1 and the electronic device 100, the gas injection hole is provided in the housing 101 and the gas G is enclosed in the housing 101 by the compressor to increase the atmospheric pressure. At this time, a backflow prevention valve for preventing a backflow of the gas G may be provided in the injection hole.
 また、気体Gを圧縮すると高温になるため、冷却し水分を除去した後に筐体101に封入するとよい。密閉空間Sに封入された気体Gが乾燥空気である場合、液体流路2の結露を防ぐことができる。 In addition, since the gas G is compressed when it is compressed, it is preferable to enclose it in the housing 101 after cooling and removing moisture. When the gas G sealed in the sealed space S is dry air, condensation of the liquid flow path 2 can be prevented.
 乾燥空気の相対湿度は、湿り空気線図より適切な値を選ぶとよい。さらに、空気の代わりに熱抵抗が低い気体(例えば、二酸化炭素、窒素等である高効率冷媒)の気体を封入し、気体Gと熱交換器3との間、および気体Gと発熱部品104との間の熱抵抗を低減させることで、冷却効率を上昇させることができる。 ¡For the relative humidity of dry air, select an appropriate value from the wet air diagram. Further, instead of air, a gas having a low thermal resistance (for example, a high-efficiency refrigerant such as carbon dioxide, nitrogen, etc.) is sealed, and between the gas G and the heat exchanger 3, and between the gas G and the heat generating component 104, The cooling efficiency can be increased by reducing the thermal resistance between the two.
 図4は、気体Gの風速とメモリケース(第2の電子部品104)の温度との関係を示すグラフである。 FIG. 4 is a graph showing the relationship between the wind speed of the gas G and the temperature of the memory case (second electronic component 104).
 図4に示すように、メモリケースの温度は、気体Gの風速が速いほど或いは液体冷媒Lの水温が低いほど低下する。なお、熱交換器3の体積および水温は一定であるものとする。 As shown in FIG. 4, the temperature of the memory case decreases as the wind speed of the gas G increases or the water temperature of the liquid refrigerant L decreases. In addition, the volume and water temperature of the heat exchanger 3 shall be constant.
 例えば、メモリケースの動作温度が85℃である場合、液体冷媒Lの水温が15℃であるときは風速約3[m/sec]以上、液体冷媒Lの水温が20℃であるときは風速約4[m/sec]以上とすればよい。 For example, when the operating temperature of the memory case is 85 ° C., the wind speed is about 3 [m / sec] or more when the water temperature of the liquid refrigerant L is 15 ° C., and the wind speed is about when the water temperature of the liquid refrigerant L is 20 ° C. What is necessary is just to set it as 4 [m / sec] or more.
 図5は、ファン4および流路絞り部7を示す正面図である。
 図5に示すように、流路絞り部7は、筐体101の天板105とファン4との間に配置されている。流路絞り部7は、循環路の流路を、特にファン4の上部にスペースが生じないように少なくともファン4の部分で絞る。例えば、流路絞り部7は、ファン4の手前からファン4に近づくほど流路を徐々に絞り、ファン4から遠ざかるほど流路を徐々に拡げるとよい。
FIG. 5 is a front view showing the fan 4 and the flow path restricting portion 7.
As shown in FIG. 5, the flow path restricting unit 7 is disposed between the top plate 105 of the housing 101 and the fan 4. The flow path restricting section 7 narrows the flow path of the circulation path at least at the fan 4 portion so that no space is generated in the upper portion of the fan 4. For example, the flow path restricting unit 7 may gradually narrow the flow path as it approaches the fan 4 from the front of the fan 4 and gradually expand the flow path as it moves away from the fan 4.
 図6は、ファン4およびスペーサ8を示す正面図である。
 スペーサ8は、ファン4と基板102との間に隙間Cを形成するべく、例えば、ファン4の底面の4つ角に配置される。これにより、基板102上の実装領域を確保することができる。
FIG. 6 is a front view showing the fan 4 and the spacer 8.
The spacers 8 are arranged at, for example, four corners of the bottom surface of the fan 4 so as to form a gap C between the fan 4 and the substrate 102. Thereby, a mounting area on the substrate 102 can be secured.
 また、スペーサ8を配置するのに代えて、ファン4を筐体101の天板105から懸架すること或いはファン4を側面において支持する例えば門型の支持部材を配置することで、基板102上の実装領域を確保するようにしてもよい。 Further, instead of disposing the spacer 8, the fan 4 is suspended from the top plate 105 of the housing 101, or a portal-type support member that supports the fan 4 on the side surface is disposed, for example. A mounting area may be secured.
 以上説明した本実施形態では、密閉空間S内の気体Gの熱は、ファン4により循環或いは流動することで、熱交換器3を介して液体流路2内を流れる液体冷媒Lへ熱伝導する。そのため、密閉空間S内の熱により電子機器100の外部の環境温度が上昇するのを抑えることができる。また、密閉空間Sの中に騒音源となるファン4が設置されているため、静音化を実現できる。更には、環境温度が上昇するのを抑えることができるため、環境温度等を降下させるための空調機設備への投資の削減や空調機の省電力化を図ることもできる。 In the present embodiment described above, the heat of the gas G in the sealed space S is circulated or flowed by the fan 4 to conduct heat to the liquid refrigerant L flowing in the liquid flow path 2 via the heat exchanger 3. . Therefore, it is possible to suppress an increase in the environmental temperature outside the electronic device 100 due to the heat in the sealed space S. Further, since the fan 4 serving as a noise source is installed in the sealed space S, noise reduction can be realized. Furthermore, since the increase in the environmental temperature can be suppressed, it is possible to reduce the investment in the air conditioner equipment for lowering the environmental temperature and the like and to save the power consumption of the air conditioner.
 また、本実施形態では、第1の発熱部品103の熱が液体冷媒Lへ熱伝導されるようにクーリングプレート2a(液体流路2)が配置されている。そのため、液体流路2内の液体冷媒Lは、気体Gから熱交換器3を介して熱伝導される熱のみならず第1の発熱部品103の熱をも吸収することができる。 In this embodiment, the cooling plate 2a (liquid flow path 2) is arranged so that the heat of the first heat generating component 103 is conducted to the liquid refrigerant L. Therefore, the liquid refrigerant L in the liquid flow path 2 can absorb not only the heat conducted from the gas G through the heat exchanger 3 but also the heat of the first heat generating component 103.
 また、本実施形態では、熱交換器3は、クーリングプレート2a(液体流路2)を挟んで第1の発熱部品103に対向するように配置されている。そのため、熱交換器3および第1の発熱部品103からの熱を同一箇所において液体冷媒Lが吸収することができる。 In this embodiment, the heat exchanger 3 is disposed so as to face the first heat generating component 103 with the cooling plate 2a (liquid flow path 2) interposed therebetween. Therefore, the liquid refrigerant L can absorb the heat from the heat exchanger 3 and the first heat generating component 103 at the same location.
 また、本実施形態では、ファン4は、第1の発熱部品103と、気体Gの風向に第1の発熱部品103と交互に配置される第2の発熱部品104との間に配置され、例えば第1の発熱部品103側(熱交換器3側)に気体Gを吹き付ける。そのため、気体Gから熱交換器3への伝熱効率を高めることができる。 Further, in the present embodiment, the fan 4 is disposed between the first heat generating component 103 and the second heat generating component 104 alternately disposed with the first heat generating component 103 in the wind direction of the gas G, for example, The gas G is sprayed on the first heat generating component 103 side (heat exchanger 3 side). Therefore, the heat transfer efficiency from the gas G to the heat exchanger 3 can be increased.
 また、本実施形態では、第2の発熱部品104は、縦置きされた互いに平行な複数の板状部材104aを含み、ファン4は、複数の板状部材104aに対し複数の板状部材104aと平行に気体Gを接触させるように気体Gに流れを生じさせる。そのため、第2の発熱部品104が気体Gの流れを妨げるのを防ぐことができる。 Further, in the present embodiment, the second heat generating component 104 includes a plurality of plate-like members 104a arranged in parallel with each other, and the fan 4 includes a plurality of plate-like members 104a and a plurality of plate-like members 104a. A flow is generated in the gas G so that the gas G is brought into contact in parallel. Therefore, it is possible to prevent the second heat generating component 104 from obstructing the flow of the gas G.
 また、本実施形態では、仕切り部材5は、密閉空間Sを仕切ることで密閉空間S内に気体Gの循環路を形成する。そのため、気体Gから熱交換器3への伝熱効率を高めることができる。 Moreover, in this embodiment, the partition member 5 forms the circulation path of the gas G in the sealed space S by partitioning the sealed space S. Therefore, the heat transfer efficiency from the gas G to the heat exchanger 3 can be increased.
 また、本実施形態では、風偏向部材6は、循環路の気体Gの風向の変化を補助する。そのため、気体Gから熱交換器3への伝熱効率を高めることができる。 In the present embodiment, the wind deflecting member 6 assists the change in the wind direction of the gas G in the circulation path. Therefore, the heat transfer efficiency from the gas G to the heat exchanger 3 can be increased.
 また、本実施形態では、流路絞り部7は、循環路の流路を少なくともファン4の部分で絞る。そのため、流路と同程度の大きさのファン4を使用しなくとも、ファン4の周囲での対流を防ぎ、気体Gから熱交換器3への伝熱効率を高めることができる。 Further, in the present embodiment, the flow path restricting section 7 restricts the flow path of the circulation path at least by the fan 4 portion. Therefore, convection around the fan 4 can be prevented and the heat transfer efficiency from the gas G to the heat exchanger 3 can be improved without using the fan 4 having the same size as the flow path.
 また、本実施形態では、ファン4は、基板102との間に隙間Cを隔てて配置されている。そのため、基板102の実装領域を確保することができる。 In this embodiment, the fan 4 is disposed with a gap C between the fan 4 and the substrate 102. Therefore, a mounting area for the substrate 102 can be secured.
 また、本実施形態では、スペーサ8がファン4と基板102との間に隙間Cを形成することで、簡素な構成で基板102の実装領域を確保することができる。 In this embodiment, the spacer 8 forms the gap C between the fan 4 and the substrate 102, so that the mounting area of the substrate 102 can be secured with a simple configuration.
 また、本実施形態では、熱交換器3の複数の板状フィン3aは、気体Gの流れと平行に配置されている。そのため、熱交換器3が気体Gの流れを妨げるのを防ぐことができる。 In the present embodiment, the plurality of plate-like fins 3 a of the heat exchanger 3 are arranged in parallel with the flow of the gas G. Therefore, the heat exchanger 3 can be prevented from obstructing the flow of the gas G.
 また、本実施形態では、密閉空間Sに、高圧化気体や高効率冷媒(例えば、二酸化炭素や窒素等)などの空気よりも熱抵抗が低い気体が封入されている場合、気体Gから熱交換器3への伝熱効率を高めることができる。 In the present embodiment, when a gas having a lower thermal resistance than air, such as a high-pressure gas or a high-efficiency refrigerant (for example, carbon dioxide or nitrogen) is enclosed in the sealed space S, heat exchange is performed from the gas G. The heat transfer efficiency to the vessel 3 can be increased.
 また、本実施形態では、密閉空間Sに乾燥空気が封入されている場合、液体流路2等における結露の発生を防ぐことができる。 Further, in the present embodiment, when dry air is sealed in the sealed space S, it is possible to prevent the occurrence of condensation in the liquid flow path 2 or the like.
   1   冷却装置
   2   液体流路
    2a   クーリングプレート
    2b   配管
   3   熱交換器
    3a   フィン
   4   ファン
   5   仕切り部材
   6   風偏向部材
   7   流路絞り部
   8   スペーサ
 100   電子機器
 101   筐体
 102   基板
 103   第1の発熱部品
 104   第2の発熱部品
  104a   板状部材
  105  天板
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Liquid flow path 2a Cooling plate 2b Piping 3 Heat exchanger 3a Fin 4 Fan 5 Partition member 6 Wind deflecting member 7 Flow path restricting part 8 Spacer 100 Electronic device 101 Case 102 Substrate 103 First heating component 104 First 2 heating parts 104a plate-like member 105 top plate

Claims (15)

  1.  密閉空間の内部および外部を通るように配置され、冷媒が流れる流路と、
     前記冷媒と熱伝導可能に前記密閉空間に配置された熱交換器と、
     前記密閉空間内の気体の流れが前記熱交換器に向かうように該気体の流れを制御するファンと
     を備えることを特徴とする冷却装置。
    A flow path that is arranged to pass through the inside and outside of the sealed space and through which the refrigerant flows;
    A heat exchanger disposed in the sealed space so as to be able to conduct heat with the refrigerant;
    And a fan for controlling the flow of the gas so that the flow of the gas in the sealed space is directed to the heat exchanger.
  2.  前記流路は、第1の発熱部品の熱が前記冷媒へ熱伝導されるように配置されていることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein the flow path is arranged so that heat of the first heat generating component is conducted to the refrigerant.
  3.  前記流路は、前記第1の発熱部品に面接触するクーリングプレートを有し、
     前記熱交換器は、前記クーリングプレートを挟んで前記第1の発熱部品に対向するように前記クーリングプレートに面接触することを特徴とする請求項2記載の冷却装置。
    The flow path has a cooling plate in surface contact with the first heat-generating component,
    The cooling device according to claim 2, wherein the heat exchanger is in surface contact with the cooling plate so as to face the first heat generating component with the cooling plate interposed therebetween.
  4.  前記ファンは、前記第1の発熱部品と、前記気体の風向に前記第1の発熱部品と交互に配置される第2の発熱部品との間に配置されていることを特徴とする請求項3記載の冷却装置。 The said fan is arrange | positioned between the said 1st heat generating component and the 2nd heat generating component arrange | positioned alternately with the said 1st heat generating component in the wind direction of the said gas. The cooling device described.
  5.  前記ファンは、前記第1の発熱部品と前記第2の発熱部品との間において前記第1の発熱部品側に前記気体を吹き付けることを特徴とする請求項4記載の冷却装置。 The cooling device according to claim 4, wherein the fan blows the gas toward the first heat generating component between the first heat generating component and the second heat generating component.
  6.  前記第2の発熱部品は、縦置きされた互いに平行な複数の板状部材を含み、
     前記ファンは、前記第2の発熱部品の前記複数の板状部材に対し該複数の板状部材と平行に前記気体を接触させるように前記気体に流れを生じさせる、
     ことを特徴とする請求項4記載の冷却装置。
    The second heat generating component includes a plurality of plate-like members arranged in parallel to each other,
    The fan causes a flow of the gas so that the gas is brought into contact with the plurality of plate-like members of the second heat-generating component in parallel with the plurality of plate-like members.
    The cooling device according to claim 4.
  7.  前記密閉空間を仕切ることで前記密閉空間内に前記気体の循環路を形成する仕切り部材を更に備えることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, further comprising a partition member that forms the gas circulation path in the sealed space by partitioning the sealed space.
  8.  前記循環路の前記気体の風向の変化を補助する風偏向部材を更に備えることを特徴とする請求項7記載の冷却装置。 The cooling device according to claim 7, further comprising a wind deflecting member for assisting a change in a wind direction of the gas in the circulation path.
  9.  前記循環路の流路を少なくとも前記ファンの部分で絞る流路絞り部を更に備えることを特徴とする請求項7記載の冷却装置。 The cooling device according to claim 7, further comprising a flow passage restricting portion that restricts the flow passage of the circulation passage at least by the fan portion.
  10.  前記密閉空間には、前記第1の発熱部品が実装された基板が配置され、
     前記ファンは、前記基板との間に隙間を隔てて配置されている、
     ことを特徴とする請求項2記載の冷却装置。
    In the sealed space, a substrate on which the first heat generating component is mounted is disposed,
    The fan is disposed with a gap between the fan and the substrate.
    The cooling device according to claim 2.
  11.  前記ファンと前記基板との間に配置されたスペーサを更に備え、
     前記スペーサは、前記ファンと前記基板との間に隙間を形成する、
     ことを特徴とする請求項10記載の冷却装置。
    A spacer disposed between the fan and the substrate;
    The spacer forms a gap between the fan and the substrate;
    The cooling device according to claim 10.
  12.  前記熱交換器は、互いに平行に配置された複数の板状フィンを有し、
     前記複数の板状フィンは、前記気体の流れと平行に配置されている、
     ことを特徴とする請求項1記載の冷却装置。
    The heat exchanger has a plurality of plate-like fins arranged in parallel to each other,
    The plurality of plate-like fins are arranged in parallel with the gas flow,
    The cooling device according to claim 1.
  13.  前記密閉空間には、空気よりも熱抵抗が低い気体が封入されていることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein a gas having a lower thermal resistance than air is enclosed in the sealed space.
  14.  前記密閉空間には、乾燥空気が封入されていることを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein dry air is enclosed in the sealed space.
  15.  内部に密閉空間を有する筐体と、
     前記密閉空間に配置された発熱部品と、
     前記密閉空間の内部および外部を通るように配置され、冷媒が流れる流路と、
     前記冷媒と熱伝導可能に前記密閉空間に配置された熱交換器と、
     前記密閉空間内の気体の流れが前記熱交換器に向かうように該気体の流れを制御するファンと
     を備えることを特徴とする電子機器。
    A housing having a sealed space inside,
    A heat generating component disposed in the sealed space;
    A flow path that is arranged to pass through the inside and outside of the sealed space, and through which the refrigerant flows;
    A heat exchanger disposed in the sealed space so as to be able to conduct heat with the refrigerant;
    An electronic device comprising: a fan that controls the flow of gas so that the flow of gas in the sealed space is directed toward the heat exchanger.
PCT/JP2011/077089 2011-11-24 2011-11-24 Cooling device and electronic apparatus WO2013076853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077089 WO2013076853A1 (en) 2011-11-24 2011-11-24 Cooling device and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077089 WO2013076853A1 (en) 2011-11-24 2011-11-24 Cooling device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2013076853A1 true WO2013076853A1 (en) 2013-05-30

Family

ID=48469331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077089 WO2013076853A1 (en) 2011-11-24 2011-11-24 Cooling device and electronic apparatus

Country Status (1)

Country Link
WO (1) WO2013076853A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3846602A1 (en) * 2020-01-06 2021-07-07 Sungrow Power Supply Co., Ltd. Case heat dissipation structure
US20210372829A1 (en) * 2020-05-28 2021-12-02 Gm Cruise Holdings Llc Structural mount with integrated cooling for autonomous vehicle sensors
US11240932B1 (en) * 2018-07-27 2022-02-01 Waymo Llc Cold plate
JP7442585B2 (en) 2022-07-19 2024-03-04 株式会社安川電機 Electronic devices and electronic device manufacturing methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198298A (en) * 1987-10-12 1989-04-17 Fujitsu Ltd Cooling structure
JPH10224066A (en) * 1997-02-12 1998-08-21 Yaskawa Electric Corp Electronic apparatus device
JP2010122887A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Server device
JP2011191974A (en) * 2010-03-15 2011-09-29 Fujitsu Ltd Information device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198298A (en) * 1987-10-12 1989-04-17 Fujitsu Ltd Cooling structure
JPH10224066A (en) * 1997-02-12 1998-08-21 Yaskawa Electric Corp Electronic apparatus device
JP2010122887A (en) * 2008-11-19 2010-06-03 Hitachi Ltd Server device
JP2011191974A (en) * 2010-03-15 2011-09-29 Fujitsu Ltd Information device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11240932B1 (en) * 2018-07-27 2022-02-01 Waymo Llc Cold plate
EP3846602A1 (en) * 2020-01-06 2021-07-07 Sungrow Power Supply Co., Ltd. Case heat dissipation structure
US11452235B2 (en) 2020-01-06 2022-09-20 Sungrow Power Supply Co., Ltd. Case heat dissipation structure
US20210372829A1 (en) * 2020-05-28 2021-12-02 Gm Cruise Holdings Llc Structural mount with integrated cooling for autonomous vehicle sensors
US11629920B2 (en) * 2020-05-28 2023-04-18 GM Cruise Holdings LLC. Structural mount with integrated cooling for autonomous vehicle sensors
JP7442585B2 (en) 2022-07-19 2024-03-04 株式会社安川電機 Electronic devices and electronic device manufacturing methods

Similar Documents

Publication Publication Date Title
US7411785B2 (en) Heat-spreading devices for cooling computer systems and associated methods of use
TWI422318B (en) Data center module
JP5560182B2 (en) Cooling device and power conversion device including the same
KR100919525B1 (en) A switchgear with high efficiency using peltier module
CN102412515B (en) Automatic cooling outdoor cabinet
KR101185567B1 (en) Cooling apparatus using thermoelement module
JP4720688B2 (en) Electronic control unit cooling system
CN108766946B (en) Liquid cooling heat abstractor and motor controller
CN105704984A (en) Integrated cooling device
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP6138093B2 (en) Server cooling system and cooling method thereof
WO2013076853A1 (en) Cooling device and electronic apparatus
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JP3160838U (en) Heat dissipation device
KR20130085633A (en) Cooling apparatus using thermoelement module
CN202050625U (en) Radiating system of power electronic equipment
JP2005210088A (en) Cooling device in closed cabinet
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
KR100801677B1 (en) Apparatus for cooling communication repeaters
JP2015116910A (en) Heat exchange system
CN102506601A (en) Temperature-difference-drive-type self-adapting heat transfer pipe
US20060236717A1 (en) Heat disspiating system and device
CN105485969B (en) Heat-exchanger rig and semiconductor freezer with the heat-exchanger rig
CN211087143U (en) Heat dissipation formula server box and server
CN214891556U (en) Radiating assembly, radiator and air conditioner outdoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP