WO2013076383A1 - Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston - Google Patents

Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston Download PDF

Info

Publication number
WO2013076383A1
WO2013076383A1 PCT/FR2012/000417 FR2012000417W WO2013076383A1 WO 2013076383 A1 WO2013076383 A1 WO 2013076383A1 FR 2012000417 W FR2012000417 W FR 2012000417W WO 2013076383 A1 WO2013076383 A1 WO 2013076383A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
sodium hydroxide
soda
extraction
pretreatment
Prior art date
Application number
PCT/FR2012/000417
Other languages
English (en)
Inventor
Frédéric AUGIER
Arnaud Baudot
Jérémy GAZARIAN
Damien Leinekugel Le Cocq
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to KR1020147016895A priority Critical patent/KR101958509B1/ko
Priority to EP12788615.8A priority patent/EP2782981A1/fr
Priority to RU2014125428/04A priority patent/RU2605087C2/ru
Priority to JP2014542910A priority patent/JP5872709B2/ja
Priority to CN201280057707.5A priority patent/CN103946344B/zh
Priority to IN4666CHN2014 priority patent/IN2014CN04666A/en
Priority to US14/360,322 priority patent/US9708550B2/en
Publication of WO2013076383A1 publication Critical patent/WO2013076383A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/12Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one alkaline treatment step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/02Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/08Recovery of used refining agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/08Inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/30Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step
    • C10G53/06Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step including only extraction steps, e.g. deasphalting by solvent treatment followed by extraction of aromatics

Definitions

  • the invention relates to the field of the extraction of sulfur compounds such as mercaptans, COS and rH 2 S from a hydrocarbon fraction. This selective extraction is done by contacting the hydrocarbon feedstock in the liquid phase with a sodium hydroxide solution.
  • the disulfide-rich soda solution is brought into contact with a hydrocarbon phase, which makes it possible to extract the disulphides and thus regenerate the soda which can be reused at the top of the liquid-liquid extraction column.
  • the parameters associated with the oxidation are chosen so as to oxidize almost all the sodium thiolates present in the sodium hydroxide. The process thus allows partially or completely desoldering a hydrocarbon cut, and generates another organic effluent heavily loaded with sulfur species.
  • a problem inherent in this type of process is the fact that certain chemical species such as COS or H 2 S irreversibly form salts in the presence of sodium hydroxide, salts that accumulate in the soda loop. Too much salt in the soda loop eventually limits its performance. For this reason, purges and regular additions are operated on the loop.
  • Another widespread practice is to pretreat the hydrocarbon upstream of the extraction column, in an enclosure containing a solution of soda. This pretreatment has the effect of consuming a portion of the sulfur species, especially the species forming salts. The soda solution used in the pretreatment is not regenerated. This pretreatment step may be carried out in a separate enclosure, or in the same enclosure as the extraction column, if the latter is partitioned into 2 separate capacities, as described in US Pat. No. 6,749,741.
  • the pretreatment is generally discontinuous, and consists in injecting the charge into a capacity filled with a soda solution which is periodically changed. Due to the discontinuous operation of the pretreatment, the sodium concentration decreases with time, as does its extraction performance. When the pretreatment performance is too low, the aqueous phase containing the sodium hydroxide is renewed, which can be carried out for example between 1 and 10 times per month depending on the methods and the size of the enclosure used for pretreatment.
  • the initial concentration of sodium hydroxide is generally set at a content of between 2% and 10% by weight.
  • the soda-countercurrent extraction of the hydrocarbon phase leaving the pretreatment can be carried out in different types of extraction columns. Many technologies are known, such as those reported in the Handbook of Solvent Extraction (Krieger Publishing Company, 1991). These columns are generally designed to generate at least 2 theoretical extraction stages. A technology of extraction column often encountered is that of the perforated plates with weirs, because the counter-current extraction with soda is often carried out with a soda flow much lower than the flow of hydrocarbon. The ratio between the flow rates of hydrocarbon and soda can vary between 5 and 40. The soda content in the loop is
  • I generally set at a content of between 15 and 25% by weight.
  • the discontinuous operation of the pretreatment has the advantage of maximizing its performance with respect to continuous operation in a perfectly stirred type reactor.
  • the contents of COS and H 2 S are on average greatly reduced by the pretreatment step.
  • the sulfur species leaving the pretreatment including the majority species of the mercaptan type, have fluctuating concentrations depending on the age of the sodium hydroxide solution used in the pretreatment chamber.
  • the fluctuations in total sulfur can thus for example vary from single to double at the counter-current extraction column inlet. Concentration fluctuations pose several problems because the steps of mercaptan extraction, sodium thiolate oxidation and sodium hydroxide regeneration operate in steady state. Thus, several problems can appear:
  • the quantity of mercaptans leaving the pretreatment can be as high as at the pre-treatment inlet, or even higher because of a salting out of mercaptans linked to the previous accumulation of a large amount of sodium thiolates and the low concentration of sodium hydroxide.
  • waves of high concentrations of total sulfur may be present at the countercurrent extraction inlet, which can potentially generate liquid-liquid extraction efficiency losses in the column if the flow rate of soda in the n-loop is not enough to treat the highest concentrations.
  • waves of mercaptans in the hydrocarbon then generate waves of sodium thiolates in the soda at the bottom of the extractor.
  • the excessive concentration of sodium thiolates in the oxidizer can lead to a partial conversion to disulfide and thus a sodium thiolate referral in quantity in the regenerated sodium hydroxide at the top of the extraction column. This can also decrease the performance of the extraction column.
  • the hydrocarbon entering the countercurrent extraction column contains little sulfur, so the concentration of sodium thiolate in the soda at the bottom of the extraction is low.
  • the amount of air is then in excess.
  • the dissolved oxygen in the sodium hydroxide is not consumed by the residual sodium thiolates, and is returned directly into the extractor with the regenerated sodium hydroxide.
  • the oxygen present in the regenerated sodium hydroxide can then react with the mercaptans and produce disulfides within the extractor. These disulfides are then extracted by the hydrocarbon phase to be treated directly in the extraction column, so the overall performance of the process is reduced.
  • FIG. 1 shows a version of the device according to the prior art.
  • the pretreatment is carried out in a single enclosure (2).
  • the extraction column (4) is fed with the feedstock resulting from the pretreatment (3) and with the regenerated soda (6).
  • the regeneration loop of sodium hydroxide consists of an oxidizer (9) and a three-phase settling tank (12) for separating the air injected at (8) and withdrawn at (14) from an organic phase. injected
  • the regenerated sodium hydroxide is reinjected into the extraction column via (6).
  • FIG. 2 represents a version of the invention for which the pretreatment is carried out in two steps: a first discontinuous step (2) and a second step in a continuous piston-type co-current reactor (16).
  • Fresh sodium hydroxide is introduced into the reactor (16) at point (15).
  • the sodium hydroxide mixture and the hydrocarbon phase are separated in the settling tank (17), and the hydrocarbon phase is then injected at the bottom of the extraction column (4).
  • the regeneration loop of the soda is identical to that of Figure 1.
  • a portion of the pretreatment soda is extracted by the line (18).
  • FIG. 3 represents an example of evolution of the sulfur content in mercaptan form (bold line), in sulfur in COS form (dashed) and in H 2 S form (fine line) in the hydrocarbon phase at the column outlet of extraction during the total period of use of the pretreatment soda in a process according to the prior art with a single batch pre-treatment reactor with sodium hydroxide.
  • FIG. 4 represents an example of evolution of the sulfur content in mercaptan form (bold line), in sulfur in COS form (dotted line) and in H 2 S form (fine line) in the phase. hydrocarbon at the outlet of the extraction column during the total period of use of the sodium hydroxide in the discontinuous stage of the pretreatment system of the process according to the invention.
  • the method according to the invention proposes to partially remedy the performance problems of the extraction process related to fluctuations in the contents of sulfur compounds in the stream obtained at the outlet of the pretreatment stage.
  • the object of the invention is to provide a pretreatment which generates fewer fluctuations in sulfur compounds than in the pretreatment described according to the prior art, while improving its operation.
  • the pretreatment of the hydrocarbon feedstock is carried out in two steps:
  • the second pretreatment step is composed of a reactor supplied in cocurrent, ascending or descending, between the hydrocarbon phase to be refined and a sodium phase.
  • the two phases are in contact in the reactor, which makes it possible to continue the extraction of the various acidic chemical species present in the hydrocarbon.
  • the soda used here may be a new soda solution, between 5% and 21%, but may also be a spent soda solution recovered from the main loop of the extraction process, for example during purges carried out to renew the composition. > soda.
  • the invention also has better performance than a continuous reactor of identical total size, even at identical levels of sodium consumption.
  • the continuous step is carried out in a piston type reactor.
  • the piston nature of the reactor means that the phases are transported in a preferred direction, that the compositions of the two phases evolve progressively from the inlet to the outlet of the reactor, and there is no axial mixing between the different species. reactive.
  • Pe where U is the average rate of passage of the hydrocarbon in the reactor, L is the length of the reactor, D ax is the axial dispersion coefficient of the hydrocarbon in the reactor.
  • the usual range of Peclet number is 1 ⁇ Pe ⁇ 50.
  • the range of Peclet in the context of the present invention is 3 ⁇ Pe ⁇ 10, and more preferably 3 ⁇ Pe ⁇ 5.
  • the linear velocity U is determined as the ratio of the hydrocarbon phase flow rate over the reactor section.
  • the axial dispersion coefficient of the hydrocarbon phase Dax is determined by a tracing measurement, for example of the colorimetric type, which consists in introducing a colored wafer into the reactor inlet and monitoring its evolution at the reactor outlet.
  • the output signal more or less spread, relates to the axial dispersion coefficient by methods well known to those skilled in the art.
  • the piston reactor will be filled with a static mixer-type packing.
  • static mixer-type packing Several industrial suppliers offer static mixer geometries. These include in particular and not exclusively static contactors models SMX ® type sold by Sulzer Chemtech or KMX ® model marketed by Kenics Company (PA Schweitzer, Handbook of separation techniques for chemincal engineers, 3rd Ed., Me Graw Hill, NY, 1997; Theron, F. Sauze, N.
  • the sodium hydroxide used in the second continuous pre-treatment reactor (16) comes from the regeneration loop of the extractor soda.
  • the sodium hydroxide used in the second continuous pre-treatment reactor (16) is taken between the outlet of the soda of the extractor (4) and the oxidizer (9).
  • the present invention relates to a process for extracting sulfur compounds present in a hydrocarbon, in the case where the majority sulfur species are mercaptans, denoted RSH, for example methanethiol CH 3 SH, ethanethiol C 2 H 5 SH, propanethiol C3H7SH, and or other sulfur species are also present, such as H 2 S hydrogen sulfide or COS carbon oxysulfide.
  • RSH mercaptans
  • Figure 1 illustrates a process used to extract the sulfur species according to the prior art.
  • the hydrocarbon fraction 1 enters a pretreatment chamber 2 pre-filled with a dilute sodium hydroxide solution at a concentration of between 2% and 10% by weight.
  • the treated hydrocarbon feedstock exits the pretreatment via the pipe 3.
  • the sodium hydroxide solution in the enclosure (2) is renewed according to an operating cycle of between 3 and 30 days, and depending on the age of the soda, the pretreatment extracts a variable amount of sulfur species, including mercaptans.
  • the hydrocarbon then enters a countercurrent extraction column (4) from the bottom of the column.
  • the extraction column (4) is also fed with a regenerated sodium hydroxide solution (6) at the top of the column.
  • the concentration of sodium hydroxide is then between 15 and 25%.
  • the function of column (4) is to extract the majority of the mercaptans still present in the hydrocarbon.
  • the hydrocarbon thus refined exits the column (4) through line (5).
  • the soda leaving the column (4) through the pipe (7) said spent soda is loaded with species of sodium thiolate RS-Na types, corresponding to mercaptans extracted, dissociated and recombined with Na + sodium ions.
  • the flow (7) enters an oxidation reactor, also supplied with air by the pipe (8).
  • the presence of air and a catalyst dissolved in the sodium hydroxide solution promote the oxidation reaction of sodium thiolates to disulphides noted RSSR.
  • the catalyst used may be of the family of cobalt phthalocyanines.
  • the multiphase medium leaving the reactor via line (11) is sent to a separation chamber (12).
  • a flow (10) of gasoline cut or other hydrocarbon is injected into the soda solution upstream of the enclosure (12), for example in the pipe (11). It can also be injected into the pipe (7).
  • the soda thus regenerated is returned to the top of the extraction column (4) via the pipe (6).
  • a separating flask is added on the line (6) to optimize the extraction of disulfides with the hydrocarbon cut.
  • the hydrocarbon cut (10) used to extract the disulfides is injected into the line (6), and then decanted into the additional separation flask.
  • the hydrocarbon cut then leaving the additional balloon is sent to the line (7).
  • FIG. 2 illustrates a version of the method according to the invention.
  • a second pretreatment step has been added to the scheme of the process.
  • This second stage is composed of a continuous reactor (16) fed with the hydrocarbon leaving the first discontinuous pretreatment stage (2).
  • the reactor (16) is also fed with a sodium phase (15) injected into the pipe conveying the hydrocarbon between the two stages, or injected directly into the reactor.
  • the injected sodium hydroxide is at a concentration of between 6% and 21% by weight in water.
  • the sodium hydroxide introduced has a soda concentration of between 6% and 15% and even more preferably in a range of between 6% and
  • the volume of the second piston reactor is between 0.1 and 3 times, and preferably between 0.5 and 1.5 times the volume of the first batch reactor.
  • the flow rate of sodium hydroxide is low relative to the hydrocarbon flow rate, the volume flow rate ratio between the hydrocarbon feedstock and the sodium hydroxide is between 10 and 100,000, and preferably between 500 and 3000.
  • the two sodium and hydrocarbon phases circulate cocurrently in the reactor.
  • the piston nature in the reactor can be ensured in various ways, for example by dividing the reactor volume into separate compartments, separated by baffles.
  • the two-phase mixture leaving the reactor (16) is sent to a decanter (17) to separate the sodium phase (18) from the hydrocarbon phase (3), which is conveyed to the countercurrent extraction column (4). ).
  • the soda (18) can be reintroduced at a point of the second piston reactor located approximately mid-length of said reactor.
  • a variant of the process consists in recycling part of the flow (18) of soda to the inlet
  • the soda used in the second continuous pretreatment reactor (16) may be derived from the regeneration loop of the extractor soda, and preferably at a point (7) situated between the outlet of the soda of the extractor (4) and the oxidizer (9).
  • the process is in all respects similar to that described in FIG. .
  • the pretreatment is composed of a 12 m 3 prewash flask filled 2/3 of a 6% weight soda solution, renewed every 9 days.
  • the hydrocarbon feedstock to be treated has a flow rate of 30 m 3 / h, and contains 146 ppm (weight S) of methyl mercaptans, 10 ppm (weight S) of COS and 7 ppm (weight S) of H 2 S.
  • the composition of the hydrocarbon at the pre-treatment outlet as a function of time is obtained by simulation.
  • the contents of RSH, COS and H 2 S are reported in Figure 3.
  • the content of RSH varies sharply between the beginning and the end of life of the soda, in this case over a period of 9 days, which is detrimental to overall smooth operation of the process.
  • the average sulfur content in the refined LPG leaving the process which is 2.05 ppm (weight S), is also obtained by simulation.
  • This example constitutes the continuous version according to the prior art. This is to replace the pretreatment step discontinuously by a step continuously in a co-current reactor.
  • the volume of the pretreatment reactor is identical to the flask used in Example 1, ie 12 m 3 .
  • the amount of sodium hydroxide also unchanged is now introduced continuously into the reactor, with a constant injection and withdrawal rate.
  • the injected 6% sodium hydroxide flow rate is 3.7 ⁇ 10 -2 m 3 / hr
  • the advantage of this implementation in the pretreatment reactor is obviously to operate in a stationary manner, ie to stabilize the concentrations In this sense, this solution is relevant, making it possible to significantly reduce the average sulfur content in the refined LPG leaving the process.An average sulfur content in refined LPG of 1.27 ppm is obtained by simulation ( weight S).
  • the same process now comprises an additional pretreatment step of the piston-flow co-current continuous reactor type, as described in FIG. 2, which is positioned downstream of the batch pretreatment reactor.
  • the volume of the batch reactor is 6 m 3
  • the volume of the continuous reactor is 6 m 3 , so that the total volume of the pretreatment is identical to Example 1.
  • the batch pretreatment reactor is filled 2/3 of soda at 6% (weight), renewed every 4.5 days.
  • the continuous piston reactor is fed with sodium hydroxide at 18% (weight) at a flow rate of 2 L / hr, so that the total amount of sodium hydroxide in the two pretreatment stages is identical to that of the single pre-treatment stage. of Example 1.
  • composition of the hydrocarbon phase leaving the pretreatment obtained by simulation is reported in FIG. 4 as a function of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude faisant appel à une unité de prétraitement (2) de la charge à traiter placée en amont de l'unité d'extraction (4) à la soude, ladite unité de prétraitement étant constituée d'un premier réacteur de prétraitement fonctionnant en discontinu suivi d'un second réacteur continu de type piston fonctionnant en régime piston.

Description

DISPOSITIF AMÉLIORÉ D'EXTRACTION DE COMPOSÉS SOUFRÉS
COMPORTANT UN PREMIER REACTEUR DE PRETRAITEMENT FONCTIONNANT EN DISONTINU SUIVI D'UN SECOND REACTEUR
DE PRETRAITEMENT DE TYPE PISTON
Domaine de l'invention :
L'invention se rapporte au domaine de l'extraction des composés soufrés tels que les mercaptans, le COS et rH2S d'une coupe hydrocarbonée. Cette extraction sélective se fait en mettant en contact la charge hydrocarbonée en phase liquide avec une solution de soude.
Art antérieur :
L'extraction des composés soufrés d'une coupe hydrocarbure (essence, GPL...) par extraction liquide-liquide avec une solution de soude est bien connue dans l'état de la technique. Lorsque la majorité des espèces soufrées sont des mercaptans, ou thiols, un type de procédé très répandu consiste à réaliser une extraction des espèces soufrées à l'aide d'une solution de soude tournant en boucle dans le procédé, comme décrit dans le brevet US 4,081 ,354. Les espèces soufrées de type mercaptan se dissocient en thiolates de sodium dans la soude. Après extraction, la soude chargée en thiolates de sodium est oxydée à l'air en présence d'un catalyseur dissous, par exemple à base de phtalocyanine de cobalt. Ainsi, les espèces de type thiolates de sodium sont converties en disulfures. La solution de soude riche en disulfure est mise en contact avec une phase hydrocarbure, ce qui permet d'extraire les disulfures et ainsi de régénérer la soude qui peut être réutilisée en tête de colonne d'extraction liquide-liquide. Les paramètres associés à l'oxydation sont choisis de manière à oxyder la quasi-totalité des thiolates de sodium présents dans la soude. Le procédé permet donc de désoufrer partiellement ou totalement une coupe hydrocarbure, et génère un autre effluent organique très chargé en espèces soufrées.
Un problème inhérent à ce type de procédé est le fait que certaines espèces chimiques comme le COS ou l'H2S forment de manière irréversible des sels en présence de soude, sels qui s'accumulent dans la boucle de soude. Une trop grande quantité de sels dans la boucle de soude finit par limiter ses performances. Pour cette raison, des purges et des appoints réguliers sont opérés sur la boucle. Une autre pratique très répandue consiste à prétraiter l'hydrocarbure en amont de la colonne d'extraction, dans une enceinte contenant une solution de soude. Ce prétraitement a pour effet de consommer une partie des espèces soufrées, notamment les espèces formant des sels. La solution de soude utilisée au prétraitement n'est pas régénérée. Cette étape de prétraitement peut être réalisée dans une enceinte séparée, ou dans la même enceinte que la colonne d'extraction, si cette 5 dernière est cloisonnée en 2 capacités distinctes, comme décrit dans le brevet US 6,749,741.
Ainsi, l'extraction des espèces soufrées est généralement réalisée en deux étapes :
• l'étape de prétraitement : extraction du COS et de l'H2S résiduel ;
• l'étape d'extraction continue à contre-courant des mercaptans : étape située en aval ) de l'étape de prétraitement.
Le prétraitement est généralement discontinu, et consiste à injecter la charge dans une capacité remplie d'une solution de soude qui est changée périodiquement. Du fait du fonctionnement discontinu du prétraitement, la concentration en soude diminue avec le 5 temps, de même que ses performances d'extraction. Lorsque les performances du prétraitement sont trop faibles, la phase aqueuse contenant la soude est renouvelée, ce qui peut être réalisé par exemple entre 1 et 10 fois par mois suivant les procédés et la taille de l'enceinte servant au prétraitement. La concentration initiale en soude est généralement fixée à une teneur comprise entre 2% et 10% poids.
)
L'extraction à contre-courant à la soude de la phase hydrocarbure sortant du prétraitement peut être réalisée dans différents types de colonnes d'extraction. On connaît de nombreuses technologies, comme par exemple celles reportées dans le Handbook of Solvent Extraction (Krieger Publishing Company, 1991). Ces colonnes sont généralement i conçues pour générer au moins 2 étages théoriques d'extraction. Une technologie de colonne d'extraction souvent rencontrée est celle des plateaux perforés à déversoirs, car l'extraction à contre-courant à la soude est souvent réalisée avec un débit de soude bien plus faible que le débit d'hydrocarbure. Le rapport entre les débits volumiques d'hydrocarbure et de soude peut varier entre 5 et 40. La teneur en soude dans la boucle est
I généralement fixée à une teneur comprise entre 15 et 25% poids. Le fonctionnement discontinu du prétraitement présente l'avantage de maximiser ses performances par rapport à un fonctionnement en continu dans un réacteur de type parfaitement agité. De ce fait, les teneurs en COS et H2S sont en moyenne fortement diminuées par l'étape de prétraitement. Par contre les espèces soufrées sortant du prétraitement, y compris les espèces majoritaires de type mercaptans, ont des concentrations fluctuantes en fonction de l'âge de la solution de soude utilisée dans l'enceinte de prétraitement. Les fluctuations en soufre total peuvent ainsi par exemple varier du simple au double en entrée de colonne d'extraction à contre-courant. Les fluctuations de concentrations posent plusieurs problèmes, car les étapes d'extraction des mercaptans, d'oxydation des thiolates de sodium et de régénération de la soude fonctionnent en régime permanent. Ainsi, plusieurs problèmes peuvent apparaître :
1) Lorsque la soude utilisée au prétraitement est en fin de vie, la quantité de mercaptans sortant du prétraitement peut être aussi élevée qu'en entrée de prétraitement, voire supérieure du fait d'un relargage de mercaptans lié à l'accumulation antérieure d'une forte quantité de thiolates de sodium et à la trop faible concentration en soude. Ainsi des vagues de concentrations élevées en soufre total peuvent être présentes en entrée d'extraction à contre-courant, ce qui peut potentiellement générer des pertes d'efficacité d'extraction liquide-liquide dans la colonne si le débit de soude dans la boucle n'est pas suffisant pour traiter les concentrations les plus hautes. De plus, les vagues de mercaptans dans l'hydrocarbure génèrent ensuite des vagues de thiolates de sodium dans la soude en pied d'extracteur. La trop forte concentration en thiolates de sodium dans l'oxydeur peut amener à une conversion partielle en disulfure et donc un renvoi de thiolates de sodium en quantité dans la soude régénérée, en tête de colonne d'extraction. Ceci peut également diminuer les performances de la colonne d'extraction.
2) Inversement en début de cycle de prétraitement, l'hydrocarbure entrant dans la colonne d'extraction à contre-courant contient peu de soufre, donc la concentration en thiolates de sodium dans la soude en pied d'extraction est faible. Dans l'oxydeur, la quantité d'air est alors en excès. L'oxygène dissout dans la soude n'est pas consommé par les thiolates de sodium résiduels, et est directement renvoyé dans l'extracteur avec la soude régénérée. L'oxygène présent dans la soude régénérée peut alors réagir avec les mercaptans et produire des disulfures au sein de l'extracteur. Ces disulfures sont alors extraits par la phase hydrocarbure à traiter directement dans la colonne d'extraction, donc les performances globales du procédé sont diminuées.
Ainsi, les fluctuations de concentration en espèces soufrées dans la coupe hydrocarbure à 5 traiter peuvent potentiellement générer une baisse d'efficacité du procédé, ce qui se traduit par une augmentation des concentrations en espèces soufrées dans la phase hydrocarbure sortant de la colonne d'extraction à contre-courant.
Description sommaire des figures :
3 La figure 1 représente une version du dispositif selon l'art antérieur. Le prétraitement est réalisé dans une unique enceinte (2). La colonne d'extraction (4) est alimentée par la charge issue du prétraitement (3) et par la soude régénérée (6). La boucle de régénération de la soude se compose d'un oxydeur (9) et d'un ballon de décantation triphasique (12) permettant de séparer l'air injecté en (8) et soutiré en (14), d'une phase organique injectée
5 en (10) et soutirée en (13) dont le but est d'extraire des disulfures formés dans l'oxydeur.
La soude régénérée est réinjectée dans la colonne d'extraction via (6).
La figure 2 représente une version de l'invention pour laquelle le prétraitement est réalisé dans en deux étapes : une première étape discontinue (2) et une deuxième étape dans un ) réacteur co-courant continu de type piston (16). De la soude fraîche est introduite dans le réacteur (16) au point (15) Le mélange soude et phase hydrocarbure est séparé dans le ballon de décantation (17), puis la phase hydrocarbonée est injectée en pied de colonne d'extraction (4). La boucle de régénération de la soude est identique à celle de la figure 1. Une partie de la soude de prétraitement est extraite par la ligne (18).
5
La figure 3 représente un exemple d'évolution de la teneur en soufre sous forme mercaptan (trait gras), en soufre sous forme COS (pointillés) et sous forme H2S (trait fin) dans la phase hydrocarbure en sortie de colonne d'extraction durant la durée totale d'utilisation de la soude de prétraitement dans un procédé selon l'art antérieur avec un unique réacteur de ) prétraitement discontinu à la soude.
La figure 4 représente un exemple d'évolution de la teneur en soufre sous forme mercaptan (trait gras), en soufre sous forme COS (pointillés) et sous forme H2S (trait fin) dans la phase hydrocarbure en sortie de colonne d'extraction durant la durée totale d'utilisation de la soude dans l'étage discontinu du système de prétraitement du procédé selon l'invention.
Description sommaire de l'invention
5 Le procédé selon l'invention propose de remédier partiellement aux problèmes de performance du procédé d'extraction liés aux fluctuations des teneurs en composés soufrés du flux obtenu en sortie d'étage de prétraitement. L'objet de l'invention est de réaliser un prétraitement qui génère moins de fluctuations en composés soufrés que dans le prétraitement décrit selon l'art antérieur, tout en améliorant son fonctionnement.
D
Selon l'invention, le prétraitement de la charge hydrocarbure est réalisé en 2 étapes :
une étape réalisée en mode discontinu, avec un volume d'environ moitié de celui de l'étape de prétraitement selon l'art antérieur,
- et une deuxième étape réalisée en continue.
5
La deuxième étape de prétraitement, appelée ici étape continue, est composée d'un réacteur alimenté en co-courant, ascendant ou descendant, entre la phase hydrocarbure à raffiner et une phase soude. Les deux phases sont en contact dans le réacteur ce qui permet de poursuivre l'extraction des différentes espèces chimiques acides présentes dans ) l'hydrocarbure.
La soude utilisée ici peut être une solution de soude neuve, comprise entre 5% et 21%, mais peut aussi être une solution de soude usée récupérée de la boucle principale du procédé d'extraction, par exemple lors des purges réalisées pour renouveler la composition > de la soude.
Par un effet inattendu, il s'est avéré que la solution d'un prétraitement composé d'un premier réacteur discontinu suivi d'un second réacteur continu travaillant en écoulement piston était plus performante qu'un seul réacteur discontinu de taille totale équivalente et ) consommant la même quantité de soude, selon l'art antérieur.
L'invention présente aussi de meilleures performances qu'un réacteur continu de taille totale identique, et ce même à niveaux identiques de consommation en soude. Selon un mode préféré de l'invention, l'étape continue est réalisée dans un réacteur de type piston. Le caractère piston du réacteur signifie que les phases sont transportées dans une direction privilégiée, que les compositions des deux phases évoluent progressivement depuis l'entrée jusqu'à la sortie du réacteur, et il n'y a pas de mélange axial entre les différentes espèces réactives.
L'homme du métier connaît l'ouvrage « Génie de la réaction chimique », édition tec&doc, qui explique le concept de réacteur piston. Le caractère piston du réacteur est classiquement associé à un nombre de Peclet, défini comme suit :
Pe = où U est la vitesse moyenne de passage de l'hydrocarbure dans le réacteur, L est la longueur du réacteur, Dax est le coefficient de dispersion axiale de l'hydrocarbure dans le réacteur. La gamme usuelle du nombre de Peclet est 1 <Pe<50.
De manière préférée, la gamme de Peclet dans le cadre de la présente invention est 3<Pe<10, et de manière encore préférée 3<Pe<5 .
La vitesse linéaire U se détermine comme le rapport du débit volumique de phase hydrocarbure sur la section du réacteur.
Le coefficient de dispersion axial de la phase hydrocarbure Dax se détermine par une mesure de traçage, par exemple de type colorimètrique, qui consiste à introduire en entrée du réacteur une tranche colorée et à suivre son évolution en sortie de réacteur. Le signal de sortie, plus ou moins étalé, se relie au coefficient de dispersion axial par des méthodes bien connues de l'homme du métier.
De manière préférée, le réacteur piston sera rempli avec un garnissage de type mélangeur statique. Plusieurs fournisseurs industriels proposent des géométries de mélangeurs statiques. On peut citer en particulier et de manière non exclusive les modèles de contacteurs statiques de type SMX® vendu par Sulzer Chemtech ou le modèle KMX® commercialisé par la société Kenics (P.A. Schweitzer, Handbook of séparation techniques for chemincal engineers, 3rd Ed., Me Graw Hill, NY, 1997; Theron, F.; Le Sauze, N.; Ricard, A., Turbulent liquid-liquid dispersion in Sulzer SMX mixer, Industrial and Engineering Chemistry Research 49 (2010) 623-632; Mahuranthakam, C.M.R.; Pan, Q.; Rempel, G.L., Résidence time distribution and liquid holdup in Kenics® KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas System, Chemical Engineering Science 64 (2009) 3320-3328). De manière préférée, on pourra également assurer le contactage de la phase hydrocarbure avec la soude en écoulement continu co-courant au moyen d'un contacteur membranaire (Gabelman, A.; Hwang, S ., Hollow fiber membrane contactors, Journal of Membrane Science 169 (1999) 61-106). Une géométrie de membrane au sein du contacteur membranaire de type fibre creuse est particulièrement adpatée car elle offre une compacité très importante et permet de contrôler de manière indépendante la circulation des deux phases en contact indépendamment.
Selon une variante préférée du procédéselon la présente invention, la soude utilisée dans le second réacteur de prétraitement continu (16) est issue de la boucle de régénération de la soude de l'extracteur.
Selon une autre variante de manière encore davantage préférée, la soude utilisée dans le second réacteur de prétraitement continu (16) est prélevée entre la sortie de la soude de l'extracteur (4) et l'oxydeur (9).
Description détaillée de l'invention :
La présente invention concerne un procédé d'extraction de composés soufrés présents dans un hydrocarbure, dans le cas où les espèces soufrées majoritaires sont des mercaptans, notés RSH, par exemple méthanethiol CH3SH, éthanethiol C2H5SH, propanethiol C3H7SH, et ou d'autres espèces soufrées sont également présentes, comme le sulfure d'hydrogène H2S ou l'oxysulfure de carbone COS.
La figure 1 illustre un procédé utilisé pour extraire les espèces soufrées selon l'art antérieur. La coupe hydrocarbure 1 rentre dans une enceinte de prétraitement 2 pré-remplie d'une solution de soude diluée à une concentration comprise entre 2% et 10% poids. La charge hydrocarbure traitée sort du prétraitement par la conduite 3. La solution de soude dans l'enceinte (2) est renouvelée selon un cycle de fonctionnement compris entre 3 et 30 jours, et selon l'âge de la soude, le prétraitement extrait une quantité variable d'espèces soufrées, dont les mercaptans. L'hydrocarbure entre ensuite dans une colonne d'extraction à contre-courant (4), par le bas de la colonne.
La colonne d'extraction (4) est également alimentée par une solution de soude régénérée (6), en tête de colonne. La concentration en soude est alors comprise entre 15 et 25%. La colonne(4) a pour fonction d'extraire la majorité des mercaptans encore présents dans l'hydrocarbure. L'hydrocarbure ainsi raffiné sort de la colonne (4) par la conduite (5). La soude sortant de la colonne (4) par la conduite (7) dite soude usée est chargée en espèces de types thiolates de sodium RS-Na, correspondant aux mercaptans extraits, dissociés et recombinés avec les ions sodium Na+.
Le flux (7) entre dans un réacteur d'oxydation, également alimenté en air par la conduite (8). La présence d'air et d'un catalyseur dissous dans la solution de soude favorisent la réaction d'oxydation des thiolates de sodium en disulfures notés RSSR. Le catalyseur utilisé peut être de la famille des phtalocyanines de cobalt. Le milieu polyphasique sortant du réacteur par la conduite (11) est envoyé vers une enceinte de séparation (12).
Un flux (10) de coupe essence ou d'un autre hydrocarbure est injecté dans la solution de soude en amont de l'enceinte (12), par exemple dans la conduite (11). Il peut aussi être injecté dans la conduite (7).
Ce flux permet d'extraire les disulfures et de récupérer par décantation dans l'enceinte (12) une coupe hydrocarbure très enrichie en espèces soufrées (13). ^
L'air appauvri sort du ballon de décantation (12) par la conduite (14). La soude ainsi régénérée est renvoyée en tête de colonne d'extraction (4) par la conduite (6).
Parfois un ballon de séparation est rajouté sur la ligne (6) afin d'optimiser l'extraction des disulfures avec la coupe hydrocarbure. Dans ce cas, la coupe hydrocarbure (10) utilisée pour extraire les disulfures est injectée dans la ligne (6), et elle décante ensuite dans le ballon de séparation supplémentaire. La coupe hydrocarbure sortant alors du ballon supplémentaire est envoyée dans la ligne (7).
La figure 2 illustre une version du procédé selon l'invention. Une deuxième étape de prétraitement a été rajoutée au schéma du procédé. Cette deuxième étape est composée d'un réacteur continu (16) alimenté par l'hydrocarbure sortant de la première étape de prétraitement en discontinu (2). Le réacteur (16) est également alimenté par une phase soude (15) injectée dans la conduite acheminant l'hydrocarbure entre les deux étapes, ou injectée directement dans le réacteur.
La soude injectée est à une concentration comprise entre 6% et 21% poids dans l'eau. De manière préférée la soude introduite présente une concentration en soude comprise en 6% et 15% et de manière encore plus préférée dans une gamme comprise entre 6% et De manière préférée, le volume du second réacteur piston est compris entre 0,1 et 3 fois, et de manière préférée entre 0,5 et 1 ,5 fois le volume du premier réacteur discontinu.
Le débit de soude est faible par rapport au débit d'hydrocarbure, le ratio de débit volumique 5 entre la charge hydrocarbure et la soude est compris entre 10 et 100000, et préférentiellement entre 500 et 3000.
Les deux phases soude et hydrocarbure circulent à co-courant dans le réacteur.
Le caractère piston dans le réacteur peut être assuré de différentes manières, par exemple en divisant le volume du réacteur en compartiments distincts, séparés par des chicanes.
) Le mélange diphasique sortant du réacteur (16) est envoyé vers un décanteur (17) pour séparer la phase soude (18) de la phase hydrocarbure (3), acheminée quant à elle vers la colonne d'extraction à contre-courant (4). La soude (18) peut être réintroduite en un point du second réacteur piston situé environ à mi longueur dudit réacteur.
Une variante du procédé consiste à recycler une partie du flux (18) de soude vers l'entrée
5 du réacteur continu (16), de manière à augmenter le débit de soude dans ledit réacteur.
La soude utilisée dans le second réacteur de prétraitement continu (16) peut être issue de la boucle de régénération de la soude de l'extracteur, et, de manière préférée en un point (7), situé entre la sortie de la soude de l'extracteur (4) et l'oxydeur (9).
) Exemples :
L'invention sera mieux comprise à la lecture des exemples qui suivent.
Exemple 1 (selon l'art antérieur)
On considère une unité d'extraction des mercaptans présents dans une phase hydrocarbure de type GPL, mélange d'alcanes et d'alcènes à 2,3 et 4 atomes de carbones, i Le procédé est en tout point similaire à celui décrit en figure 1.
Le prétraitement est composé d'un ballon de prélavage de 12 m3 rempli au 2/3 d'une solution de soude à 6% poids, renouvelée tous les 9 jours.
La charge hydrocarbure à traiter a un débit de 30 m3/h, et contient 146 ppm (poids S) de methylmercaptans, 10 ppm (poids S) de COS et 7 ppm (poids S) de H2S.
I On obtient par simulation la composition de l'hydrocarbure en sortie de prétraitement en fonction du temps. Les teneurs en RSH, COS et H2S sont reportées en figure 3. La teneur en RSH varie fortement entre le début et la fin de vie de la soude, en l'occurrence sur une durée de 9 jours, ce qui est néfaste au bon fonctionnement global du procédé. Par contre, on observe qu'environ 60% du COS et 20% de l'H2S sont extraits lors du prétraitement, ce qui permet de minimiser la consommation de soude au niveau de l'extracteur. On obtient également par simulation la teneur moyenne en soufre dans le GPL raffiné sortant du procédé, qui est de 2,05 ppm (poids S).
Exemple 2 (selon l'art antérieur)
Cet exemple constitue la version continue selon l'art antérieur. Il s'agit de remplacer l'étape de prétraitement en discontinu par une étape en continu, dans un réacteur à co-courant. Le volume du réacteur de prétraitement est identique au ballon utilisé dans l'exemple 1 , soit 12 m3.
La quantité de soude également inchangée, est maintenant introduite en continu dans la réacteur, avec un débit d'injection et de soutirage constant.
Le débit de soude à 6% injecté est de 3,7 10"2 m3/hr. L'intérêt de cette mise en oeuvre dans le réacteur de prétraitement est évidemment de fonctionner en stationnaire, c'est à dire de stabiliser les concentrations en sortie de prétraitement. En ce sens, cette solution est pertinente, permettant de baisser significativement la teneur moyenne en soufre dans le GPL raffiné sortant du procédé. On obtient par simulation une teneur moyenne en soufre dans le GPL raffiné de 1 ,27 ppm (poids S).
Cette solution pose cependant un problème en terme d'efficacité de prétraitement, comme l'illustrent la teneur en COS dans la phase hydrocarbure en sortie de prétraitement obtenues par simulation. En effet ce mode de fonctionne s'avère peu efficace en terme d'hydrolyse des COS, car 50% poids seulement des COS entrant sont convertis dans cette étape, c'est à dire sensiblement moins qu'en utilisant un prétraitement discontinu (exemple
1).
Cela entraine une consommation accrue de la soude au niveau de l'extracteur.
Cette solution d'un seul réacteur de prétraitement fonctionnant en continu ne remplace donc pas efficacement le prétraitement en mode discontinu.
Exemple 3 (selon l'invention)
Le même procédé comporte maintenant une étape de prétraitement supplémentaire, de type réacteur continu à co-courant à écoulement piston, tel que décrit en figure 2 qui est positionné en aval du réacteur de prétraitement discontinu. Le volume du réacteur discontinu est de 6 m3, et le volume du réacteur continu est de 6 m3, de sorte que le volume total du prétraitement est identique à l'exemple 1.
Le réacteur de prétraitement discontinu est rempli au 2/3 de soude à 6% (poids), renouvelée tous les 4,5 jours.
La composition de la charge et son débit sont inchangés par rapport à l'exemple 1.
Le réacteur piston continu est alimenté par de la soude à 18% (poids) à un débit de 2 L/hr, si bien que la quantité totale de soude dans les deux étapes de prétraitement est identique à celle de l'unique étape de prétraitement de l'exemple 1.
La composition de la phase hydrocarbure sortant du prétraitement obtenue par simulation est reportée en figure 4 en fonction du temps.
Elle fluctue avec une amplitude diminuée par rapport à l'art antérieur.
Cela permet de minimiser la consommation de soude au niveau de l'extracteur, tout en opérant une extraction des RSH dans l'extracteur très efficace. En effet, on obtient par simulation une teneur moyenne en soufre dans l'hydrocarbure en sortie de procédé, c'est à dire mesurée en tête de colonne d'extraction, de 1 ,23 ppm (poids S).
Cela représente une réduction de 40% du niveau de soufre en sortie par rapport au procédé selon l'art antérieur (exemple 1).

Claims

REVENDICATIONS
Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude faisant appel à une unité de prétraitement (2) de la charge à traiter placée en amont de l'unité d'extraction (4) à la soude, ladite unité de prétraitement étant constituée d'un premier réacteur de prétraitement fonctionnant en discontinu suivi d'un second réacteur continu de type piston fonctionnant en régime piston avec un nombre de Peclet pe = ^- compris entre 3 et 10, et préférentiellement compris entré 3 et 5, U désignant la vitesse linéaire d'écoulement de la phase hydrocarbure dans le réacteur, L la longueur du réacteur, et Dax le coefficient de dispersion axial de la phase hydrocarbure dans le second réacteur.
Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 1 , dans lequel le volume du second réacteur piston est compris entre 0,5 et 1,5 fois le volume du premier réacteur discontinu.
Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 1 , dans lequel les effluents sortant du second réacteur piston entrent dans un ballon de décantation (17) permettant de récupérer un flux de soude (18) qui est réintroduit en un point du second réacteur piston situé environ à mi longueur dudit réacteur.
Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 1 , dans lequel la soude utilisée dans le second réacteur de prétraitement continu (16) est issue de la boucle de régénération de la soude de l'extracteur.
Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 4, dans lequel la soude utilisée dans le second réacteur de prétraitement continu (16) est prélevée eu un point (7) situé entre la sortie de la soude de l'extracteur (4) et l'oxydeur (9).
PCT/FR2012/000417 2011-11-24 2012-10-16 Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston WO2013076383A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147016895A KR101958509B1 (ko) 2011-11-24 2012-10-16 비연속식으로 작동하는 제 1 전처리 반응기와 그에 후속하는 피스톤식 제 2 전처리 반응기를 포함하는 황 화합물의 향상된 추출 디바이스
EP12788615.8A EP2782981A1 (fr) 2011-11-24 2012-10-16 Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston
RU2014125428/04A RU2605087C2 (ru) 2011-11-24 2012-10-16 Усовершенствованное устройство экстракции серосодержащих соединений, содержащее периодический реактор предварительной обработки, и реактор, работающий в режиме вытеснения предварительной обработки
JP2014542910A JP5872709B2 (ja) 2011-11-24 2012-10-16 バッチ様式で操作する第1の予備処理反応器と、その次の、ピストンタイプの第2の予備処理反応器とを含む、硫黄含有化合物を抽出するための改
CN201280057707.5A CN103946344B (zh) 2011-11-24 2012-10-16 用来萃取含硫化合物的改进的装置,包括以分批模式操作的第一预处理反应器和随后的活塞型的第二预处理反应器
IN4666CHN2014 IN2014CN04666A (fr) 2011-11-24 2012-10-16
US14/360,322 US9708550B2 (en) 2011-11-24 2012-10-16 Extraction of sulphur-containing compounds in a first pretreatment reactor operating in batch mode followed by a second pretreatment reactor of the piston type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/03593 2011-11-24
FR1103593A FR2983205B1 (fr) 2011-11-24 2011-11-24 Procede ameliore d'extraction de composes soufres utilisant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston

Publications (1)

Publication Number Publication Date
WO2013076383A1 true WO2013076383A1 (fr) 2013-05-30

Family

ID=47216351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000417 WO2013076383A1 (fr) 2011-11-24 2012-10-16 Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston

Country Status (9)

Country Link
US (1) US9708550B2 (fr)
EP (1) EP2782981A1 (fr)
JP (1) JP5872709B2 (fr)
KR (1) KR101958509B1 (fr)
CN (1) CN103946344B (fr)
FR (1) FR2983205B1 (fr)
IN (1) IN2014CN04666A (fr)
RU (1) RU2605087C2 (fr)
WO (1) WO2013076383A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015191372A1 (fr) * 2014-06-12 2015-12-17 Uop Llc Appareils et procédés pour le traitement de mercaptans

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB728589A (en) * 1951-10-04 1955-04-20 British Petroleum Co Improvements relating to the sweetening of mercaptan-containing hydrocarbon oils of petroleum origin
FR1114509A (fr) * 1953-11-03 1956-04-13 Electric Process Company Procédé perfectionné pour oxyder des substances oxydables à l'aide d'oxygène à l'état atomique
US2945889A (en) * 1955-12-21 1960-07-19 Gloria Oil And Gas Company Regeneration of spent caustic
US3474027A (en) * 1967-06-19 1969-10-21 Phillips Petroleum Co Plural stages of sulfur removal
US4081354A (en) 1975-11-03 1978-03-28 Uop Inc. Liquid-liquid extraction process
US4207174A (en) * 1978-08-16 1980-06-10 Uop Inc. Liquid-liquid extraction apparatus and process
US6749741B1 (en) 2001-12-20 2004-06-15 Uop Llc Apparatus and process for prewashing a hydrocarbon stream containing hydrogen sulfide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1002289A1 (ru) * 1981-05-06 1983-03-07 Всесоюзный научно-исследовательский институт углеводородного сырья Способ выделени низкокип щих меркаптанов из углеводородов
CN1510109A (zh) * 2002-12-20 2004-07-07 中国石油天然气股份有限公司 采用固体碱和剂-碱对液化石油气及轻烃深度脱硫的组合方法
AU2004320621B2 (en) * 2004-06-02 2010-08-26 Uop Llc Apparatus and process for extracting sulfur compounds from a hydrocarbon stream
US7772449B2 (en) * 2007-08-01 2010-08-10 Stone & Webster Process Technology, Inc. Removal of acid gases and sulfur compounds from hydrocarbon gas streams in a caustic tower
US9296956B2 (en) 2010-10-28 2016-03-29 Chevron U.S.A. Inc. Method for reducing mercaptans in hydrocarbons

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB728589A (en) * 1951-10-04 1955-04-20 British Petroleum Co Improvements relating to the sweetening of mercaptan-containing hydrocarbon oils of petroleum origin
FR1114509A (fr) * 1953-11-03 1956-04-13 Electric Process Company Procédé perfectionné pour oxyder des substances oxydables à l'aide d'oxygène à l'état atomique
US2945889A (en) * 1955-12-21 1960-07-19 Gloria Oil And Gas Company Regeneration of spent caustic
US3474027A (en) * 1967-06-19 1969-10-21 Phillips Petroleum Co Plural stages of sulfur removal
US4081354A (en) 1975-11-03 1978-03-28 Uop Inc. Liquid-liquid extraction process
US4207174A (en) * 1978-08-16 1980-06-10 Uop Inc. Liquid-liquid extraction apparatus and process
US6749741B1 (en) 2001-12-20 2004-06-15 Uop Llc Apparatus and process for prewashing a hydrocarbon stream containing hydrogen sulfide

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Handbook of Solvent Extraction", 1991, KRIEGER PUBLISHING COMPANY
GABELMAN, A.; HWANG, S.T.: "Hollow fiber membrane contactors", JOURNAL OF MEMBRANE SCIENCE, vol. 169, 1999, pages 61 - 106, XP004169166, DOI: doi:10.1016/S0376-7388(99)00040-X
MAHURANTHAKAM, C.M.R.; PAN, Q.; REMPEL, G.L.: "Residence time distribution and liquid holdup in Kenics@ KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system", CHEMICAL ENGINEERING SCIENCE, vol. 64, 2009, pages 3320 - 3328, XP026157565, DOI: doi:10.1016/j.ces.2009.04.001
P.A. SCHWEITZER: "Handbook of separation techniques for chemincal engineers", 1997, MC GRAW HILL
THERON, F.; LE SAUZE, N.; RICARD, A.: "Turbulent liquid-liquid dispersion in Sulzer SMX mixer", INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH, vol. 49, 2010, pages 623 - 632

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015191372A1 (fr) * 2014-06-12 2015-12-17 Uop Llc Appareils et procédés pour le traitement de mercaptans
US9523047B2 (en) 2014-06-12 2016-12-20 Uop Llc Apparatuses and methods for treating mercaptans

Also Published As

Publication number Publication date
RU2014125428A (ru) 2015-12-27
KR101958509B1 (ko) 2019-03-14
IN2014CN04666A (fr) 2015-09-18
FR2983205A1 (fr) 2013-05-31
CN103946344A (zh) 2014-07-23
JP5872709B2 (ja) 2016-03-01
CN103946344B (zh) 2016-03-23
US20140319025A1 (en) 2014-10-30
EP2782981A1 (fr) 2014-10-01
RU2605087C2 (ru) 2016-12-20
FR2983205B1 (fr) 2015-03-20
KR20140096140A (ko) 2014-08-04
JP2015501861A (ja) 2015-01-19
US9708550B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
US8454824B2 (en) Single vertical tower for treating a stream of rich caustic containing mercaptan compounds
EP2310110B1 (fr) Solution absorbante a base de n,n,n&#39;,n&#39;-tetramethylhexane-1,6-diamine et d&#39;une amine comportant des fonctions amine primaire ou secondaire et procede d&#39;elimination de composes acides d&#39;un effluent gazeux
JP5444402B2 (ja) 改良された分離方法
CA2514087C (fr) Procede de capture des mercaptans contenus dans une charge gazeuse
JP2021502896A (ja) 液化ガスの脱メルカプタンによるアルカリ液の再生方法
RU2605747C2 (ru) Способ и аппаратура для извлечения соединений серы в потоке углеводорода
FR2896509A1 (fr) Procede de capture des mercaptans contenus dans un gaz naturel par concentration.
EP2782981A1 (fr) Dispositif amélioré d&#39;extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d&#39;un second reacteur de pretraitement de type piston
FR2888247A1 (fr) Procede d&#39;elimination de l&#39;oxysulfure de carbone contenu dans une charge d&#39;hydrocarbures liquides
EP0922669B1 (fr) Procédé de récupération du soufre à haute pression
EP3369800B1 (fr) Procédé amelioré de régénération d&#39;une solution alcaline utilisée dans un procédé d&#39;extraction de composés soufrés ne comportant pas d&#39;étape de lavage
EP3369799B1 (fr) Procédé amélioré de régénération d&#39;une solution alcaline utilisée dans un procédé d&#39;extraction de composés soufrés comportant une étape de lavage
EP2782982A1 (fr) Dispositif amélioré d&#39;extraction de composés soufrés par extraction liquide liquide au moyen d&#39;une solution de soude avec étape de lavage final optimisée
WO2013076385A1 (fr) Procédé et dispositif améliorés d&#39;extraction des composés soufrés d&#39;une coupe hydrocarbonnée par extraction liquide liquide avec une solution de soude.
EP2596086B1 (fr) Procédé et installation de déshydratation par produit déliquescent
US9393526B2 (en) Process for removing one or more sulfur compounds and an apparatus relating thereto
US20230416420A1 (en) Method Of Preparing Functional Polymers
FR2771951A1 (fr) Procede de regeneration d&#39;une solution aqueuse contenant des ions ferreux ou ferriques avec de l&#39;eau oxygenee
BE584635A (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280057707.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788615

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012788615

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014542910

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14360322

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147016895

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014125428

Country of ref document: RU

Kind code of ref document: A