FR2983205A1 - Dispositif ameliore d'extraction de composes soufres comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston - Google Patents

Dispositif ameliore d'extraction de composes soufres comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston Download PDF

Info

Publication number
FR2983205A1
FR2983205A1 FR1103593A FR1103593A FR2983205A1 FR 2983205 A1 FR2983205 A1 FR 2983205A1 FR 1103593 A FR1103593 A FR 1103593A FR 1103593 A FR1103593 A FR 1103593A FR 2983205 A1 FR2983205 A1 FR 2983205A1
Authority
FR
France
Prior art keywords
reactor
sodium hydroxide
pretreatment
piston
soda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1103593A
Other languages
English (en)
Other versions
FR2983205B1 (fr
Inventor
Frederic Augier
Arnaud Baudot
Jeremy Gazarian
Le Cocq Damien Leinekugel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1103593A priority Critical patent/FR2983205B1/fr
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to PCT/FR2012/000417 priority patent/WO2013076383A1/fr
Priority to KR1020147016895A priority patent/KR101958509B1/ko
Priority to JP2014542910A priority patent/JP5872709B2/ja
Priority to IN4666CHN2014 priority patent/IN2014CN04666A/en
Priority to EP12788615.8A priority patent/EP2782981A1/fr
Priority to RU2014125428/04A priority patent/RU2605087C2/ru
Priority to US14/360,322 priority patent/US9708550B2/en
Priority to CN201280057707.5A priority patent/CN103946344B/zh
Publication of FR2983205A1 publication Critical patent/FR2983205A1/fr
Application granted granted Critical
Publication of FR2983205B1 publication Critical patent/FR2983205B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/02Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with aqueous alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/12Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one alkaline treatment step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G19/00Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
    • C10G19/08Recovery of used refining agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/08Inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/30Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step
    • C10G53/06Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step including only extraction steps, e.g. deasphalting by solvent treatment followed by extraction of aromatics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude faisant appel à une unité de prétraitement (2) de la charge à traiter placée en amont de l'unité d'extraction (4) à la soude, ladite unité de prétraitement étant constituée d'un premier réacteur de prétraitement fonctionnant en discontinu suivi d'un second réacteur continu de type piston fonctionnant en régime piston.

Description

Domaine de l'invention : L'invention se rapporte au domaine de l'extraction des composés soufrés tels que les mercaptans, le COS et l'H2S d'une coupe hydrocarbonée. Cette extraction sélective se fait en mettant en contact la charge hydrocarbonée en phase liquide avec une solution de soude. Art antérieur : L'extraction des composés soufrés d'une coupe hydrocarbure (essence, GPL...) par extraction liquide-liquide avec une solution de soude est bien connue dans l'état de la technique. Lorsque la majorité des espèces soufrées sont des mercaptans, ou thiols, un type de procédé très répandu consiste à réaliser une extraction des espèces soufrées à l'aide d'une solution de soude tournant en boucle dans le procédé, comme décrit dans le brevet US 4,081,354. Les espèces soufrées de type mercaptan se dissocient en thiolates de sodium dans la soude. Après extraction, la soude chargée en thiolates de sodium est oxydée à l'air en présence d'un catalyseur dissous, par exemple à base de phtalocyanine de cobalt. Ainsi, les espèces de type thiolates de sodium sont converties en disulfures. La solution de soude riche en disulfure est mise en contact avec une phase hydrocarbure, ce qui permet d'extraire les disulfures et ainsi de régénérer la soude qui peut être réutilisée en tête de colonne d'extraction liquide-liquide. Les paramètres associés à l'oxydation sont choisis de manière à oxyder la quasi-totalité des thiolates de sodium présents dans la soude. Le procédé permet donc de désoufrer partiellement ou totalement une coupe hydrocarbure, et génère un autre effluent organique très chargé en espèces soufrées. Un problème inhérent à ce type de procédé est le fait que certaines espèces chimiques comme le COS ou l'H2S forment de manière irréversible des sels en présence de soude, sels qui s'accumulent dans la boucle de soude. Une trop grande quantité de sels dans la boucle de soude finit par limiter ses performances. Pour cette raison, des purges et des appoints réguliers sont opérés sur la boucle. Une autre pratique très répandue consiste à prétraiter l'hydrocarbure en amont de la colonne d'extraction, dans une enceinte contenant une solution de soude. Ce prétraitement a pour effet de consommer une partie des espèces soufrées, notamment les espèces formant des sels. La solution de soude utilisée au prétraitement n'est pas régénérée. Cette étape de prétraitement peut être réalisée dans une enceinte séparée, ou dans la même enceinte que la colonne d'extraction, si cette dernière est cloisonnée en 2 capacités distinctes, comme décrit dans le brevet US 6,749,741.
Ainsi, l'extraction des espèces soufrées est généralement réalisée en deux étapes : - l'étape de prétraitement : extraction du COS et de l'H2S résiduel ; - l'étape d'extraction continue à contre-courant des mercaptans : étape située en aval de l'étape de prétraitement. Le prétraitement est généralement discontinu, et consiste à injecter la charge dans une capacité remplie d'une solution de soude qui est changée périodiquement. Du fait du fonctionnement discontinu du prétraitement, la concentration en soude diminue avec le temps, de même que ses performances d'extraction. Lorsque les performances du prétraitement sont trop faibles, la phase aqueuse contenant la soude est renouvelée, ce qui peut être réalisé par exemple entre 1 et 10 fois par mois suivant les procédés et la taille de l'enceinte servant au prétraitement. La concentration initiale en soude est généralement fixée à une teneur comprise entre 2% et 10% poids.
L'extraction à contre-courant à la soude de la phase hydrocarbure sortant du prétraitement peut être réalisée dans différents types de colonnes d'extraction. On connaît de nombreuses technologies, comme par exemple celles reportées dans le Handbook of Solvent Extraction (Krieger Publishing Company, 1991). Ces colonnes sont généralement conçues pour générer au moins 2 étages théoriques d'extraction. Une technologie de colonne d'extraction souvent rencontrée est celle des plateaux perforés à déversoirs, car l'extraction à contre-courant à la soude est souvent réalisée avec un débit de soude bien plus faible que le débit d'hydrocarbure. Le rapport entre les débits volumiques d'hydrocarbure et de soude peut varier entre 5 et 40. La teneur en soude dans la boucle est généralement fixée à une teneur comprise entre 15 et 25% poids. Le fonctionnement discontinu du prétraitement présente l'avantage de maximiser ses performances par rapport à un fonctionnement en continu dans un réacteur de type parfaitement agité. De ce fait, les teneurs en COS et H2S sont en moyenne fortement diminuées par l'étape de prétraitement. Par contre les espèces soufrées sortant du prétraitement, y compris les espèces majoritaires de type mercaptans, ont des concentrations fluctuantes en fonction de l'âge de la solution de soude utilisée dans l'enceinte de prétraitement. Les fluctuations en soufre total peuvent ainsi par exemple varier du simple au double en entrée de colonne d'extraction à contre-courant. Les fluctuations de concentrations posent plusieurs problèmes, car les étapes d'extraction des mercaptans, d'oxydation des thiolates de sodium et de régénération de la soude fonctionnent en régime permanent. Ainsi, plusieurs problèmes peuvent apparaître : 1) Lorsque la soude utilisée au prétraitement est en fin de vie, la quantité de mercaptans sortant du prétraitement peut être aussi élevée qu'en entrée de prétraitement, voire supérieure du fait d'un relargage de mercaptans lié à l'accumulation antérieure d'une forte quantité de thiolates de sodium et à la trop faible concentration en soude. Ainsi des vagues de concentrations élevées en soufre total peuvent être présentes en entrée d'extraction à contre-courant, ce qui peut potentiellement générer des pertes d'efficacité d'extraction liquide-liquide dans la colonne si le débit de soude dans la boucle n'est pas suffisant pour traiter les concentrations les plus hautes. De plus, les vagues de mercaptans dans l'hydrocarbure génèrent ensuite des vagues de thiolates de sodium dans la soude en pied d'extracteur. La trop forte concentration en thiolates de sodium dans l'oxydeur peut amener à une conversion partielle en disulfure et donc un renvoi de thiolates de sodium en quantité dans la soude régénérée, en tête de colonne d'extraction.
Ceci peut également diminuer les performances de la colonne d'extraction. 2) Inversement en début de cycle de prétraitement, l'hydrocarbure entrant dans la colonne d'extraction à contre-courant contient peu de soufre, donc la concentration en thiolates de sodium dans la soude en pied d'extraction est faible. Dans l'oxydeur, la quantité d'air est alors en excès. L'oxygène dissout dans la soude n'est pas consommé par les thiolates de sodium résiduels, et est directement renvoyé dans l'extracteur avec la soude régénérée. L'oxygène présent dans la soude régénérée peut alors réagir avec les mercaptans et produire des disulfures au sein de l'extracteur. Ces disulfures sont alors extraits par la phase hydrocarbure à traiter directement dans la colonne d'extraction, donc les performances globales du procédé sont diminuées. Ainsi, les fluctuations de concentration en espèces soufrées dans la coupe hydrocarbure à traiter peuvent potentiellement générer une baisse d'efficacité du procédé, ce qui se traduit par une augmentation des concentrations en espèces soufrées dans la phase hydrocarbure sortant de la colonne d'extraction à contre-courant. Description sommaire des figures : La figure 1 représente une version du dispositif selon l'art antérieur. Le prétraitement est réalisé dans une unique enceinte (2). La colonne d'extraction (4) est alimentée par la charge issue du prétraitement (3) et par la soude régénérée (6). La boucle de régénération de la soude se compose d'un oxydeur (9) et d'un ballon de décantation triphasique (12) permettant de séparer l'air injecté en (8) et soutiré en (14), d'une phase organique injectée en (10) et soutirée en (13) dont le but est d'extraire des disulfures formés dans l'oxydeur. La soude régénérée est réinjectée dans la colonne d'extraction via (6). La figure 2 représente une version de l'invention pour laquelle le prétraitement est réalisé dans en deux étapes : une première étape discontinue (2) et une deuxième étape dans un réacteur co-courant continu de type piston (16). De la soude fraîche est introduite dans le réacteur (16) au point (15) Le mélange soude et phase hydrocarbure est séparé dans le ballon de décantation (17), puis la phase hydrocarbonée est injectée en pied de colonne d'extraction (4). La boucle de régénération de la soude est identique à celle de la figure 1. Une partie de la soude de prétraitement est extraite par la ligne (18).
La figure 3 représente un exemple d'évolution de la teneur en soufre sous forme mercaptan (trait gras), en soufre sous forme COS (pointillés) et sous forme H2S (trait fin) dans la phase hydrocarbure en sortie de colonne d'extraction durant la durée totale d'utilisation de la soude de prétraitement dans un procédé selon l'art antérieur avec un unique réacteur de prétraitement discontinu à la soude. La figure 4 représente un exemple d'évolution de la teneur en soufre sous forme mercaptan (trait gras), en soufre sous forme COS (pointillés) et sous forme H2S (trait fin) dans la phase hydrocarbure en sortie de colonne d'extraction durant la durée totale d'utilisation de la soude dans l'étage discontinu du système de prétraitement du procédé selon l'invention. Description sommaire de l'invention Le procédé selon l'invention propose de remédier partiellement aux problèmes de performance du procédé d'extraction liés aux fluctuations des teneurs en composés soufrés du flux obtenu en sortie d'étage de prétraitement. L'objet de l'invention est de réaliser un prétraitement qui génère moins de fluctuations en composés soufrés que dans le prétraitement décrit selon l'art antérieur, tout en améliorant son fonctionnement.
Selon l'invention, le prétraitement de la charge hydrocarbure est réalisé en 2 étapes : une étape réalisée en mode discontinu, avec un volume d'environ moitié de celui de l'étape de prétraitement selon l'art antérieur, et une deuxième étape réalisée en continue.
La deuxième étape de prétraitement, appelée ici étape continue, est composée d'un réacteur alimenté en co-courant, ascendant ou descendant, entre la phase hydrocarbure à raffiner et une phase soude. Les deux phases sont en contact dans le réacteur ce qui permet de poursuivre l'extraction des différentes espèces chimiques acides présentes dans l'hydrocarbure.
La soude utilisée ici peut être une solution de soude neuve, comprise entre 5% et 21%, mais peut aussi être une solution de soude usée récupérée de la boucle principale du procédé d'extraction, par exemple lors des purges réalisées pour renouveler la composition de la soude.
Par un effet inattendu, il s'est avéré que la solution d'un prétraitement composé d'un premier réacteur discontinu suivi d'un second réacteur continu travaillant en écoulement piston était plus performante qu'un seul réacteur discontinu de taille totale équivalente et consommant la même quantité de soude, selon l'art antérieur.
L'invention présente aussi de meilleures performances qu'un réacteur continu de taille totale identique, et ce même à niveaux identiques de consommation en soude. Selon un mode préféré de l'invention, l'étape continue est réalisée dans un réacteur de type piston. Le caractère piston du réacteur signifie que les phases sont transportées dans une direction privilégiée, que les compositions des deux phases évoluent progressivement depuis l'entrée jusqu'à la sortie du réacteur, et il n'y a pas de mélange axial entre les différentes espèces réactives.
L'homme du métier connaît l'ouvrage « Génie de la réaction chimique », édition tec&doc, qui explique le concept de réacteur piston. Le caractère piston du réacteur est classiquement associé à un nombre de Peclet, défini comme suit : Pe = UL D où U est la vitesse moyenne de passage de l'hydrocarbure dans le réacteur, L est la longueur du réacteur, Dax est le coefficient de dispersion axiale de l'hydrocarbure dans le réacteur. La gamme usuelle du nombre de Peclet est 1 <Pe<50. De manière préférée, la gamme de Peclet dans le cadre de la présente invention est 3<Pe<10, et de manière encore préférée 3<Pe<5 La vitesse linéaire U se détermine comme le rapport du débit volumique de phase hydrocarbure sur la section du réacteur. Le coefficient de dispersion axial de la phase hydrocarbure Dax se détermine par une mesure de traçage, par exemple de type colorimètrique, qui consiste à introduire en entrée du réacteur une tranche colorée et à suivre son évolution en sortie de réacteur. Le signal de sortie, plus ou moins étalé, se relie au coefficient de dispersion axial par des méthodes bien connues de l'homme du métier. De manière préférée, le réacteur piston sera rempli avec un garnissage de type mélangeur statique. Plusieurs fournisseurs industriels proposent des géométries de mélangeurs statiques. On peut citer en particulier et de manière non exclusive les modèles de contacteurs statiques de type SMX® vendu par Sulzer Chemtech ou le modèle KMX® commercialisé par la société Kenics (P.A. Schweitzer, Handbook of separation techniques for chemincal engineers, 3rd Ed., Mc Graw Hill, NY, 1997; Theron, F.; Le Sauze, N.; Ricard, A., Turbulent liquid-liquid dispersion in Sulzer SMX mixer, Industrial and Engineering Chemistry Research 49 (2010) 623-632; Mahuranthakam, C.M.R.; Pan, Q.; Rempel, G.L., Residence time distribution and liquid holdup in Kenics® KMX static mixer with hydrogenated nitrile butadiene rubber solution and hydrogen gas system, Chemical Engineering Science 64 (2009) 3320-3328).
De manière préférée, on pourra également assurer le contactage de la phase hydrocarbure avec la soude en écoulement continu co-courant au moyen d'un contacteur membranaire (Gabelman, A.; Hwang, S.T., Hollow fiber membrane contactors, Journal of Membrane Science 169 (1999) 61-106). Une géométrie de membrane au sein du contacteur membranaire de type fibre creuse est particulièrement adpatée car elle offre une compacité très importante et permet de controler de manière indépendante la circulation des deux phases en contact indépendamment.
Selon une variante préférée du procédéselon la présente invention, la soude utilisée dans le second réacteur de prétraitement continu (16) est issue de la boucle de régénération de la soude de l'extracteur. Selon une autre variante de manière encore davantage préférée, la soude utilisée dans le second réacteur de prétraitement continu (16) est prélevée entre la sortie de la soude de l'extracteur (4) et I'oxydeur (9). Description détaillée de l'invention : La présente invention concerne un procédé d'extraction de composés soufrés présents dans un hydrocarbure, dans le cas où les espèces soufrées majoritaires sont des mercaptans, notés RSH, par exemple méthanethiol CH3SH, éthanethiol C2H5SH, propanethiol C3H7SH, et ou d'autres espèces soufrées sont également présentes, comme le sulfure d'hydrogène H2S ou l'oxysulfure de carbone COS.
La figure 1 illustre un procédé utilisé pour extraire les espèces soufrées selon l'art antérieur. La coupe hydrocarbure 1 rentre dans une enceinte de prétraitement 2 pré-remplie d'une solution de soude diluée à une concentration comprise entre 2% et 10% poids. La charge hydrocarbure traitée sort du prétraitement par la conduite 3. La solution de soude dans l'enceinte (2) est renouvelée selon un cycle de fonctionnement compris entre 3 et 30 jours, et selon l'âge de la soude, le prétraitement extrait une quantité variable d'espèces soufrées, dont les mercaptans. L'hydrocarbure entre ensuite dans une colonne d'extraction à contre-courant (4), par le bas de la colonne. La colonne d'extraction (4) est également alimentée par une solution de soude régénérée (6), en tête de colonne. La concentration en soude est alors comprise entre 15 et 25%. La colonne(4) a pour fonction d'extraire la majorité des mercaptans encore présents dans l'hydrocarbure. L'hydrocarbure ainsi raffiné sort de la colonne (4) par la conduite (5). La soude sortant de la colonne (4) par la conduite (7) dite soude usée est chargée en espèces de types thiolates de sodium RS-Na, correspondant aux mercaptans extraits, dissociés et recombinés avec les ions sodium Na+.
Le flux (7) entre dans un réacteur d'oxydation, également alimenté en air par la conduite (8). La présence d'air et d'un catalyseur dissous dans la solution de soude favorisent la réaction d'oxydation des thiolates de sodium en disulfures notés RSSR. Le catalyseur utilisé peut être de la famille des phtalocyanines de cobalt. Le milieu polyphasique sortant du réacteur par la conduite (11) est envoyé vers une enceinte de séparation (12). Un flux (10) de coupe essence ou d'un autre hydrocarbure est injecté dans la solution de soude en amont de l'enceinte (12), par exemple dans la conduite (11). Il peut aussi être injecté dans la conduite (7). Ce flux permet d'extraire les disulfures et de récupérer par décantation dans l'enceinte (12) une coupe hydrocarbure très enrichie en espèces soufrées (13). L'air appauvri sort du ballon de décantation (12) par la conduite (14). La soude ainsi régénérée est renvoyée en tête de colonne d'extraction (4) par la conduite (6). Parfois un ballon de séparation est rajouté sur la ligne (6) afin d'optimiser l'extraction des disulfures avec la coupe hydrocarbure. Dans ce cas, la coupe hydrocarbure (10) utilisée pour extraire les disulfures est injectée dans la ligne (6), et elle décante ensuite dans le ballon de séparation supplémentaire. La coupe hydrocarbure sortant alors du ballon supplémentaire est envoyée dans la ligne (7). La figure 2 illustre une version du procédé selon l'invention. Une deuxième étape de prétraitement a été rajoutée au schéma du procédé. Cette deuxième étape est composée d'un réacteur continu (16) alimenté par l'hydrocarbure sortant de la première étape de prétraitement en discontinu (2). Le réacteur (16) est également alimenté par une phase soude (15) injectée dans la conduite acheminant l'hydrocarbure entre les deux étapes, ou injectée directement dans le réacteur.
La soude injectée est à une concentration comprise entre 6% et 21% poids dans l'eau. De manière préférée la soude introduite présente une concentration en soude comprise en 6% et 15% et de manière encore plus préférée dans une gamme comprise entre 6% et 10%.
De manière préférée, le volume du second réacteur piston est compris entre 0,1 et 3 fois, et de manière préférée entre 0,5 et 1,5 fois le volume du premier réacteur discontinu.
Le débit de soude est faible par rapport au débit d'hydrocarbure, le ratio de débit volumique entre la charge hydrocarbure et la soude est compris entre 10 et 100000, et préférentiellement entre 500 et 3000. Les deux phases soude et hydrocarbure circulent à co-courant dans le réacteur.
Le caractère piston dans le réacteur peut être assuré de différentes manières, par exemple en divisant le volume du réacteur en compartiments distincts, séparés par des chicanes. Le mélange diphasique sortant du réacteur (16) est envoyé vers un décanteur (17) pour séparer la phase soude (18) de la phase hydrocarbure (3), acheminée quant à elle vers la colonne d'extraction à contre-courant (4). La soude (18) peut être réintroduite en un point du second réacteur piston situé environ à mi longueur dudit réacteur. Une variante du procédé consiste à recycler une partie du flux (18) de soude vers l'entrée du réacteur continu (16), de manière à augmenter le débit de soude dans ledit réacteur. La soude utilisée dans le second réacteur de prétraitement continu (16) peut être issue de la boucle de régénération de la soude de l'extracteur, et, de manière préférée en un point (7), situé entre la sortie de la soude de l'extracteur (4) et l'oxydeur (9). Exemples : L'invention sera mieux comprise à la lecture des exemples qui suivent. Exemple 1 (selon l'art antérieur) On considère une unité d'extraction des mercaptans présents dans une phase hydrocarbure de type GPL, mélange d'alcanes et d'alcènes à 2,3 et 4 atomes de carbones. Le procédé est en tout point similaire à celui décrit en figure 1. Le prétraitement est composé d'un ballon de prélavage de 12 m3 rempli au 2/3 d'une solution de soude à 6% poids, renouvelée tous les 9 jours.
La charge hydrocarbure à traiter a un débit de 30 m3/h, et contient 146 ppm (poids S) de methylmercaptans, 10 ppm (poids S) de COS et 7 ppm (poids S) de H2S. On obtient par simulation la composition de l'hydrocarbure en sortie de prétraitement en fonction du temps. Les teneurs en RSH, COS et H2S sont reportées en figure 3. La teneur en RSH varie fortement entre le début et la fin de vie de la soude, en l'occurrence sur une durée de 9 jours, ce qui est néfaste au bon fonctionnement global du procédé. Par contre, on observe qu'environ 60% du COS et 20% de l'H2S sont extraits lors du prétraitement, ce qui permet de minimiser la consommation de soude au niveau de l'extracteur.
On obtient également par simulation la teneur moyenne en soufre dans le GPL raffiné sortant du procédé, qui est de 2,05 ppm (poids S). Exemple 2 (selon l'art antérieur) Cet exemple constitue la version continue selon l'art antèrieur. Il s'agit de remplacer l'étape de prétraitement en discontinu par une étape en continu, dans un réacteur à co-courant. Le volume du réacteur de prétraitement est identique au ballon utilisé dans l'exemple 1, soit 12 m3. La quantité de soude également inchangée, est maintenant introduite en continu dans la réacteur, avec un débit d'injection et de soutirage constant. Le débit de soude à 6% injecté est de 3,7 10-2 m3/hr. L'intéret de cette mise en oeuvre dans le réacteur de prétraitement est évidemment de fonctionner en stationnaire, c'est à dire de stabiliser les concentrations en sortie de prétraitement. En ce sens, cette solution est pertinente, permettant de baisser significativement la teneur moyenne en soufre dans le GPL raffiné sortant du procédé. On obtient par simulation une teneur moyenne en soufre dans le GPL raffiné de 1,27 ppm (poids S). Cette solution pose cependant un problème en terme d'efficacité de prétraitement, comme l'illustrent la teneur en COS dans la phase hydrocarbure en sortie de prétraitement obtenues par simulation. En effet ce mode de fonctionne s'avère peu efficace en terme d'hydrolyse des COS, car 50% poids seulement des COS entrant sont convertis dans cette étape, c'est à dire sensiblement moins qu'en utilisant un prétraitement discontinu (exemple 1). Cela entraine une consommation accrue de la soude au niveau de l'extracteur. Cette solution d'un seul réacteur de prétraitement fonctionnant en continu ne remplace donc pas efficacement le prétraitement en mode discontinu.
Exemple 3 (selon l'invention) Le même procédé comporte maintenant une étape de prétraitement supplémentaire, de type réacteur continu à co-courant à écoulement piston, tel que décrit en figure 2 qui est positionné en aval du réacteur de prétraitement discontinu.
Le volume du réacteur discontinu est de 6 m3, et le volume du réacteur continu est de 6 m3, de sorte que le volume total du prétraitement est identique à l'exemple 1. Le réacteur de prétraitement discontinu est rempli au 2/3 de soude à 6% (poids), renouvelée tous les 4,5 jours. La composition de la charge et son débit sont inchangés par rapport à l'exemple 1 Le réacteur piston continu est alimenté par de la soude à 18% (poids) à un débit de 2 L/hr, si bien que la quantité totale de soude dans les deux étapes de prétraitement est identique à celle de l'unique étape de prétraitement de l'exemple 1. La composition de la phase hydrocarbure sortant du prétraitement obtenue par simulation est reportée en figure 4 en fonction du temps. Elle fluctue avec une amplitude diminuée par rapport à l'art antérieur. Cela permet de minimiser la consommation de soude au niveau de l'extracteur, tout en opérant une extraction des RSH dans l'extracteur très efficace. En effet, on obtient par simulation une teneur moyenne en soufre dans l'hydrocarbure en sortie de procédé, c'est à dire mesurée en tête de colonne d'extraction, de 1,23 ppm (poids S). Cela représente une réduction de 40% du niveau de soufre en sortie par rapport au procédé selon l'art antérieur (exemple 1).

Claims (5)

  1. REVENDICATIONS1. Procédé d'extraction des composés soufrés d'une coupe REVENDICATIONS1. Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude faisant appel à une unité de prétraitement (2) de la charge à traiter placée en amont de l'unité d'extraction (4) à la soude, ladite unité de prétraitement étant constituée d'un premier réacteur de prétraitement fonctionnant en discontinu suivi d'un second réacteur continu de type piston fonctionnant en régime piston avec un nombre de Peclet Pe=-UL compris entre Da, 3 et 10, et préférentiellement compris entre 3 et 5, U désignant la vitesse linéaire d'écoulement de la phase hydrocarbure dans le réacteur, L la longueur du réacteur, et Dax le coefficient de dispersion axial de la phase hydrocarbure dans le second réacteur.
  2. 2. Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 1, dans lequel le volume du second réacteur piston est compris entre 0,5 et 1,5 fois le volume du premier réacteur discontinu.
  3. 3. Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 1, dans lequel les effluents sortant du second réacteur piston entrent dans un ballon de décantation (17) permettant de récupérer un flux de soude (18) qui est réintroduit en un point du second réacteur piston situé environ à mi longueur dudit réacteur.
  4. 4. Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 1, dans lequel la soude utilisée dans le second réacteur de prétraitement continu (16) est issue de la boucle de régénération de la soude de l'extracteur.
  5. 5. Procédé d'extraction des composés soufrés d'une coupe hydrocarbure de type essence ou GPL par extraction liquide-liquide avec une solution de soude selon la revendication 4, dans lequel la soude utilisée dans le second réacteur de prétraitement continu (16) est prélevée eu un point (7) situé entre la sortie de la soude de l'extracteur (4) et l'oxydeur (9).
FR1103593A 2011-11-24 2011-11-24 Procede ameliore d'extraction de composes soufres utilisant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston Active FR2983205B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR1103593A FR2983205B1 (fr) 2011-11-24 2011-11-24 Procede ameliore d'extraction de composes soufres utilisant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston
KR1020147016895A KR101958509B1 (ko) 2011-11-24 2012-10-16 비연속식으로 작동하는 제 1 전처리 반응기와 그에 후속하는 피스톤식 제 2 전처리 반응기를 포함하는 황 화합물의 향상된 추출 디바이스
JP2014542910A JP5872709B2 (ja) 2011-11-24 2012-10-16 バッチ様式で操作する第1の予備処理反応器と、その次の、ピストンタイプの第2の予備処理反応器とを含む、硫黄含有化合物を抽出するための改
IN4666CHN2014 IN2014CN04666A (fr) 2011-11-24 2012-10-16
PCT/FR2012/000417 WO2013076383A1 (fr) 2011-11-24 2012-10-16 Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston
EP12788615.8A EP2782981A1 (fr) 2011-11-24 2012-10-16 Dispositif amélioré d'extraction de composés soufrés comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston
RU2014125428/04A RU2605087C2 (ru) 2011-11-24 2012-10-16 Усовершенствованное устройство экстракции серосодержащих соединений, содержащее периодический реактор предварительной обработки, и реактор, работающий в режиме вытеснения предварительной обработки
US14/360,322 US9708550B2 (en) 2011-11-24 2012-10-16 Extraction of sulphur-containing compounds in a first pretreatment reactor operating in batch mode followed by a second pretreatment reactor of the piston type
CN201280057707.5A CN103946344B (zh) 2011-11-24 2012-10-16 用来萃取含硫化合物的改进的装置,包括以分批模式操作的第一预处理反应器和随后的活塞型的第二预处理反应器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1103593A FR2983205B1 (fr) 2011-11-24 2011-11-24 Procede ameliore d'extraction de composes soufres utilisant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston

Publications (2)

Publication Number Publication Date
FR2983205A1 true FR2983205A1 (fr) 2013-05-31
FR2983205B1 FR2983205B1 (fr) 2015-03-20

Family

ID=47216351

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1103593A Active FR2983205B1 (fr) 2011-11-24 2011-11-24 Procede ameliore d'extraction de composes soufres utilisant un premier reacteur de pretraitement fonctionnant en discontinu suivi d'un second reacteur de pretraitement de type piston

Country Status (9)

Country Link
US (1) US9708550B2 (fr)
EP (1) EP2782981A1 (fr)
JP (1) JP5872709B2 (fr)
KR (1) KR101958509B1 (fr)
CN (1) CN103946344B (fr)
FR (1) FR2983205B1 (fr)
IN (1) IN2014CN04666A (fr)
RU (1) RU2605087C2 (fr)
WO (1) WO2013076383A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9523047B2 (en) 2014-06-12 2016-12-20 Uop Llc Apparatuses and methods for treating mercaptans

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB728589A (en) * 1951-10-04 1955-04-20 British Petroleum Co Improvements relating to the sweetening of mercaptan-containing hydrocarbon oils of petroleum origin
FR1114509A (fr) * 1953-11-03 1956-04-13 Electric Process Company Procédé perfectionné pour oxyder des substances oxydables à l'aide d'oxygène à l'état atomique
US2945889A (en) * 1955-12-21 1960-07-19 Gloria Oil And Gas Company Regeneration of spent caustic
US3474027A (en) * 1967-06-19 1969-10-21 Phillips Petroleum Co Plural stages of sulfur removal
US4207174A (en) * 1978-08-16 1980-06-10 Uop Inc. Liquid-liquid extraction apparatus and process
US6749741B1 (en) * 2001-12-20 2004-06-15 Uop Llc Apparatus and process for prewashing a hydrocarbon stream containing hydrogen sulfide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039389A (en) 1975-11-03 1977-08-02 Uop Inc. Liquid-liquid extraction apparatus
SU1002289A1 (ru) * 1981-05-06 1983-03-07 Всесоюзный научно-исследовательский институт углеводородного сырья Способ выделени низкокип щих меркаптанов из углеводородов
CN1510109A (zh) * 2002-12-20 2004-07-07 中国石油天然气股份有限公司 采用固体碱和剂-碱对液化石油气及轻烃深度脱硫的组合方法
BRPI0418874B1 (pt) * 2004-06-02 2013-09-10 aparelho e processo para converter compostos de enxofre em uma corrente de hidrocarboneto, e, aparelho para contatar a corrente de hidrocarboneto contendo compostos de enxofre com Álcali
US7772449B2 (en) * 2007-08-01 2010-08-10 Stone & Webster Process Technology, Inc. Removal of acid gases and sulfur compounds from hydrocarbon gas streams in a caustic tower
US9296956B2 (en) 2010-10-28 2016-03-29 Chevron U.S.A. Inc. Method for reducing mercaptans in hydrocarbons

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB728589A (en) * 1951-10-04 1955-04-20 British Petroleum Co Improvements relating to the sweetening of mercaptan-containing hydrocarbon oils of petroleum origin
FR1114509A (fr) * 1953-11-03 1956-04-13 Electric Process Company Procédé perfectionné pour oxyder des substances oxydables à l'aide d'oxygène à l'état atomique
US2945889A (en) * 1955-12-21 1960-07-19 Gloria Oil And Gas Company Regeneration of spent caustic
US3474027A (en) * 1967-06-19 1969-10-21 Phillips Petroleum Co Plural stages of sulfur removal
US4207174A (en) * 1978-08-16 1980-06-10 Uop Inc. Liquid-liquid extraction apparatus and process
US6749741B1 (en) * 2001-12-20 2004-06-15 Uop Llc Apparatus and process for prewashing a hydrocarbon stream containing hydrogen sulfide

Also Published As

Publication number Publication date
US9708550B2 (en) 2017-07-18
RU2605087C2 (ru) 2016-12-20
KR101958509B1 (ko) 2019-03-14
CN103946344A (zh) 2014-07-23
CN103946344B (zh) 2016-03-23
FR2983205B1 (fr) 2015-03-20
JP2015501861A (ja) 2015-01-19
RU2014125428A (ru) 2015-12-27
WO2013076383A1 (fr) 2013-05-30
IN2014CN04666A (fr) 2015-09-18
KR20140096140A (ko) 2014-08-04
US20140319025A1 (en) 2014-10-30
EP2782981A1 (fr) 2014-10-01
JP5872709B2 (ja) 2016-03-01

Similar Documents

Publication Publication Date Title
US8454824B2 (en) Single vertical tower for treating a stream of rich caustic containing mercaptan compounds
EP2310110B1 (fr) Solution absorbante a base de n,n,n&#39;,n&#39;-tetramethylhexane-1,6-diamine et d&#39;une amine comportant des fonctions amine primaire ou secondaire et procede d&#39;elimination de composes acides d&#39;un effluent gazeux
JP5444402B2 (ja) 改良された分離方法
JP2021502896A (ja) 液化ガスの脱メルカプタンによるアルカリ液の再生方法
RU2605747C2 (ru) Способ и аппаратура для извлечения соединений серы в потоке углеводорода
FR2896509A1 (fr) Procede de capture des mercaptans contenus dans un gaz naturel par concentration.
FR2983205A1 (fr) Dispositif ameliore d&#39;extraction de composes soufres comportant un premier reacteur de pretraitement fonctionnant en discontinu suivi d&#39;un second reacteur de pretraitement de type piston
FR2873711A1 (fr) Procede de capture des mercaptans contenus dans une charge gazeuse
EP0922669B1 (fr) Procédé de récupération du soufre à haute pression
EP3369799B1 (fr) Procédé amélioré de régénération d&#39;une solution alcaline utilisée dans un procédé d&#39;extraction de composés soufrés comportant une étape de lavage
EP3369800B1 (fr) Procédé amelioré de régénération d&#39;une solution alcaline utilisée dans un procédé d&#39;extraction de composés soufrés ne comportant pas d&#39;étape de lavage
FR2888247A1 (fr) Procede d&#39;elimination de l&#39;oxysulfure de carbone contenu dans une charge d&#39;hydrocarbures liquides
EP2782982A1 (fr) Dispositif amélioré d&#39;extraction de composés soufrés par extraction liquide liquide au moyen d&#39;une solution de soude avec étape de lavage final optimisée
EP2596086B1 (fr) Procédé et installation de déshydratation par produit déliquescent
WO2013076385A1 (fr) Procédé et dispositif améliorés d&#39;extraction des composés soufrés d&#39;une coupe hydrocarbonnée par extraction liquide liquide avec une solution de soude.
US9393526B2 (en) Process for removing one or more sulfur compounds and an apparatus relating thereto
US20230416420A1 (en) Method Of Preparing Functional Polymers
BE584635A (fr)
BE841230A (fr) Procede pour la separation de composants gazeux

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13