WO2013075396A1 - 一种保温型铝电解槽槽内衬侧部复合块 - Google Patents

一种保温型铝电解槽槽内衬侧部复合块 Download PDF

Info

Publication number
WO2013075396A1
WO2013075396A1 PCT/CN2012/001414 CN2012001414W WO2013075396A1 WO 2013075396 A1 WO2013075396 A1 WO 2013075396A1 CN 2012001414 W CN2012001414 W CN 2012001414W WO 2013075396 A1 WO2013075396 A1 WO 2013075396A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
heat
block
silicon nitride
silicon carbide
Prior art date
Application number
PCT/CN2012/001414
Other languages
English (en)
French (fr)
Inventor
刘雅锋
邱阳
白斌
胡红武
杨昕东
孙康健
邹智勇
卢延峰
Original Assignee
中铝国际工程股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铝国际工程股份有限公司 filed Critical 中铝国际工程股份有限公司
Publication of WO2013075396A1 publication Critical patent/WO2013075396A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to a side lining composite block, and more particularly to a lining side composite block for a heat-insulating aluminum electrolytic cell tank in the field of aluminum electrolytic cell lining.
  • the traditional lining structure design of the electrolytic cell will reduce the heat income and heat dissipation, so that the electrolytic cell in the actual production There will be a cold trough phenomenon. Therefore, the insulation of the melt zone is particularly important for electrolytic cells produced at low voltage operation.
  • Most of the electrolytic cells in the existing production process use special insulation materials or paint insulation coating on the outer wall of the tank shell.
  • the newly constructed electrolyzers generally use the method of adding insulation between the side blocks and the tank shell to solve the production of cold. The problem of the tank is to ensure that the cell operates under low voltage conditions to maintain the thermal equilibrium and energy balance of the cell.
  • the existing electrolytic cell it is a preferable way to obtain the target production index by wrapping the thermal insulation layer on the outer wall of the tank shell due to external conditions; for the newly constructed electrolytic cell, although in the tank shell
  • the way of adding insulation between the side blocks can satisfy the thermal equilibrium and energy balance of the electrolyzer at low voltage, thus ensuring long-term stable production of the electrolyzer, but such insulation will be restricted by factors such as material properties, such as insulation resistance.
  • the thermal insulation layer may undergo deterioration or thinning in electrolytic production, so that it loses the original thermal insulation effect in the long-term production process of the electrolytic cell. Therefore, the thermal equilibrium relationship of the electrolytic cell is destroyed, which is not conducive to long-term stable production of the electrolytic cell.
  • the thermal insulation layer has a problem of poor compression strength and large shrinkage of the cathode paste under high temperature conditions, in actual production, the sum of the shrinkage width of the cathode paste and the shrinkage width of the thermal insulation layer may be greater than the increased width of the expansion of the cathode carbon block. Phenomenon, the gap created in the side of the electrolytic cell, thereby increasing the risk of seepage, which will seriously cause early damage of the electrolytic cell.
  • the invention provides a thermal insulation type aluminum electrolytic tank groove lining side composite block provided for solving the above technical problems, and aims to reduce the probability of occurrence of cracks in the side of the electrolytic cell while maintaining the performance of the thermal insulation layer material for a long period of time, and to ensure electrolysis for a long time.
  • the heat balance of the tank ensures long-term stable production of the electrolytic cell.
  • the present invention provides a thermal insulation type aluminum electrolytic cell groove lining side composite block, comprising a silicon nitride bonded silicon carbide side block, a groove shell and a shaped carbon block, in a silicon nitride bonded silicon carbide side block and A groove is formed on one side of the groove shell, and a heat insulation layer is arranged in the groove, and an electrolyte resistant vapor corrosion material is arranged between the heat insulation layer and the groove shell in the groove.
  • the groove has a horizontal frame and a vertical frame, and the insulation layer is installed in the horizontal frame and the vertical frame.
  • the groove depth is the sum of the thickness of the insulation layer and the thickness of the electrolyte resistant vapor corrosion material.
  • the net width of the silicon nitride-bonded silicon carbide side block is >75 mm, and the width of the silicon nitride-bonded silicon carbide side block is the sum of the groove depth and the net width of the silicon nitride-bonded silicon carbide side block, and the width of the horizontal frame and the vertical frame is 10 ⁇ 50mm.
  • Fig. 1 is a schematic view showing the structure of the side portion of the lining of the conventional insulated aluminum electrolytic tank.
  • FIG. 2 is a schematic view of a side composite part of a lining of an insulated aluminum electrolytic cell tank according to the present invention.
  • Figure 3 is a schematic view of the direction A in Figure 2;
  • Fig. 4 is an enlarged view of a portion I of Fig. 2;
  • Figure 5 is a schematic view showing the outer dimensions of the side composite block.
  • silicon nitride combined with silicon carbide side block; 2, shaped carbon block; 3, insulation layer; 4, silicon carbide refractory mud; 5, groove shell; 6, horizontal frame; 7, vertical frame.
  • a heat-insulating aluminum electrolytic cell lining side composite block comprises a rectangular silicon nitride bonded silicon carbide side block 1, a shell shell 5 and a shaped carbon block 2, which are combined with carbonization in silicon nitride.
  • the side of the silicon side block 1 is in contact with the groove shell 5, and the groove is provided with a horizontal frame 6 and a vertical frame 7 in the groove.
  • the heat insulation layer 3 is installed in the horizontal frame 6 and the vertical frame 7, and the heat insulation layer 3 is arranged in the groove.
  • An electrolyte resistant vapor corrosion resistant material 4 is disposed between the housing 5.
  • the side composite block with a length of 300 ⁇ 800mm the number of the horizontal frame and the vertical frame is 10, and the groove depth is the sum of the thickness of the insulation layer 3 and the thickness of the electrolyte resistant vapor corrosion material 4.
  • the net width of the silicon nitride-bonded silicon carbide side block 1 is >75 mm, and the width of the silicon nitride-bonded silicon carbide side block 1 is the sum of the groove depth and the net width of the silicon nitride-bonded silicon carbide side block 1, the horizontal frame 6 and the vertical frame 7 The width is 10 ⁇ 50mm.
  • a rectangular silicon nitride bonded silicon carbide side block 1 and a shaped carbon block 2 are bonded and bonded together by a binder, and are sintered and integrated into one body.
  • a plurality of horizontal frames and vertical frames may be arranged in the groove; Inside the frame and the vertical frame, and then sealed on the outside of the insulation layer with an electrolyte-resistant vapor corrosion material; the upper part of the profiled carbon block is provided with a sloped surface, and a groove is formed on the solid contact surface of the shaped carbon block 2 and the cathode paste, and the groove is made.
  • the solidified cathode paste is more compact and firm. Before the silicon nitride bonded silicon carbide side block and the shaped carbon block are sintered, it needs to be carefully selected according to the width dimension.
  • the length dimension of the shaped carbon block in each group of composite blocks is slightly larger than that of the silicon nitride bonded silicon carbide side block. It is 0 ⁇ 2mm, so as to avoid excessively large interstitial carbon block between adjacent side composite blocks after assembly, which increases the risk of leakage electrolyte and aluminum liquid in production.

Abstract

公开了一种保温型铝电解槽槽内衬侧部复合块,其包括氮化硅结合碳化硅侧块、槽壳和异型炭块,在氮化硅结合碳化硅侧块与槽壳接触一侧开有凹槽,凹槽内安装保温层,凹槽内保温层与槽壳之间用耐电解质蒸汽腐蚀材料密封。该内衬侧部复合块改变了传统的保温型电解槽内衬结构中熔体区保温层的安装形式,将保温层镶嵌在氮化硅结合碳化硅侧块凹槽内,采用耐电解质蒸汽腐蚀材料密封与氮化硅结合碳化硅侧块烧结成一体,有利于长期保持保温层材料性能,维持电解槽热平衡性能,可延长电解槽使用寿命。

Description

一种保温型铝电解槽槽内衬侧部复合块 技术领域
本发明涉及一种内衬侧部复合块, 尤其涉及一种铝电解槽槽内衬 领域的保温型铝电解槽槽内衬侧部复合块。
背景技术
目前, 国内铝电解行业中追求低极距、 低电压、 低能耗的生产操 作方式, 传统内衬结构设计的电解槽会出现热收入减少而散热量加大 的问题, 使电解槽在实际生产中会出现冷槽的现象。 因此, 对低电压 运行生产的电解槽来讲熔体区的保温尤为重要。 现有生产中的电解槽 大多采用在槽壳外壁包裹特殊保温材料或涂刷保温涂料的方式, 新施 工的电解槽普遍采用在侧部块与槽壳间添加保温层的方式来解决生产 中冷槽的问题, 从而保证电解槽在低电压条件下运行保持电解槽热平 衡与能量平衡的关系。 对现有生产的电解槽来讲, 由于受外部条件限 制, 通过在槽壳外壁包裹保温层的方式获取目标生产指标是一种可取 的方式; 对新施工的电解槽来讲, 虽然在槽壳与侧部块间增加保温层 的方式可以满足电解槽在低电压下热平衡与能量平衡关系, 从而保证 电解槽长期稳定生产, 但此种保温方式会受到材料性能等因素的制约, 如保温材料耐电解质蒸汽腐蚀性能、 保温材料在高温条件下压缩强度 和阴极糊料收缩性等指标的影响。 如果保温材料耐电解质蒸汽腐蚀性 和在高温条件下压缩强度比较差, 保温层在电解生产中会发生变质或 厚度变薄等现象, 使其在电解槽长期生产过程中失去原有的保温作用, 从而破坏电解槽热平衡关系, 不利于电解槽长期稳定生产。 另外, 如 果保温层在高温条件下压缩强度差和阴极糊收缩率大的问题共存, 在 实际生产中会存在阴极糊料收缩宽度与保温层收缩宽度之和大于阴极 炭块膨胀所增加的宽度的现象, 使电解槽侧部产生的缝隙, 从而增加 了渗槽风险, 严重的会导致电解槽早期破损。
发明内容
本发明是为解决上述技术问题而提供的一种保温型铝电解槽槽内 衬侧部复合块, 目的是在长期保持保温层材料性能的同时, 减少电解 槽侧部产生缝隙几率, 长期保证电解槽热平衡性, 保证电解槽长期稳 定生产。 为达上述目的本发明提出了一种保温型铝电解槽槽内衬侧部复合 块, 包括氮化硅结合碳化硅侧块、 槽壳和异型炭块, 在氮化硅结合碳 化硅侧块与槽壳接触一侧开有凹槽, 凹槽内设有保温层, 凹槽内保温 层与槽壳之间设有耐电解质蒸汽腐蚀材料。
所述的凹槽内设有横边框和纵边框, 保温层安装在横边框和纵边 框内。
对于长度在 300 ~ 800mm 的侧部复合块来讲, 横边框和纵边框条 数 10条。
凹槽深度为保温层厚度与耐电解质蒸汽腐蚀材料厚度之和。
氮化硅结合碳化硅侧块净宽度> 75mm, 氮化硅结合碳化硅侧块宽 度为凹槽深度和氮化硅结合碳化硅侧块净宽度之和, 横边框和纵边框 的宽度为 10 ~ 50mm。
本发明的优点效果: 改变了传统的保温型电解槽内衬结构中熔体 区保温层的安装形式, 将保温层镶嵌在氮化硅结合碳化硅侧块凹槽内, 采用碳化硅耐火泥密封烧结成一体, 有利于长期保持保温层材料性能, 维持电解槽热平衡性能, 可延长电解槽使用寿命, 具有很强的实际应 用价值。
附图说明
图 1为传统保温型铝电解槽槽内衬侧部结构示意图。
图 2为本发明保温型铝电解槽槽内衬侧部复合块示意图。
图 3是图 2的 A向示意图。
图 4是图 2的 I部放大图。
图 5是侧部复合块外形尺寸示意图。
图中: 1、 氮化硅结合碳化硅侧块; 2、 异型炭块; 3、 保温层; 4、 碳化硅耐火泥; 5、 槽壳; 6、 横边框; 7、 纵边框。
具体实施方式
下面结合附图对本发明作进一步说明。
如图所示, 本发明的一种保温型铝电解槽槽内衬侧部复合块, 包 括矩形氮化硅结合碳化硅侧块 1、 槽壳 5和异型炭块 2, 在氮化硅结合 碳化硅侧块 1与槽壳 5接触一侧开有凹槽, 凹槽内设有横边框 6和纵 边框 7, 将保温层 3安装在横边框 6和纵边框 7内, 凹槽内保温层 3与 槽壳 5之间设有耐电解质蒸汽腐蚀材料 4。 对于长度在 300 ~ 800mm的侧部复合块来讲, 横边框和纵边框条 数 10条, 凹槽深度为保温层 3厚度与耐电解质蒸汽腐蚀材料 4厚度 之和。
氮化硅结合碳化硅侧块 1净宽度 > 75mm, 氮化硅结合碳化硅侧块 1宽度为凹槽深度和氮化硅结合碳化硅侧块 1净宽度之和,横边框 6和 纵边框 7宽度为 10 ~ 50mm。
本发明将矩形氮化硅结合碳化硅侧块 1和异型炭块 2由粘结剂前 后粘结组合, 经烧结后复合成一体。 为增强氮化硅结合碳化硅侧块本 体强度, 保证氮化硅结合碳化硅侧块与槽壳间形成硬接触, 可在凹槽 中设多道横边框和纵边框; 将保温层安装在横边框和纵边框内, 然后 在保温层外侧用耐电解质蒸汽腐蚀材料密封; 异型炭块的侧面上部设 有斜面, 在异型炭块 2 与阴极糊扎固接触面上设有沟槽, 沟槽使扎固 的阴极糊更加密实, 牢固。 在氮化硅结合碳化硅侧块和异型炭块烧结 前, 需按宽度尺寸进行精心挑选, 每组复合块选材时异型炭块长度方 向尺寸要比氮化硅结合碳化硅侧块略大, 偏差为 0 ~ 2mm, 以免组装后 相邻侧部复合块异型炭块间缝过大, 增加生产中渗漏电解质及铝液的 风险。

Claims

1. 一种保温型铝电解槽槽内衬侧部复合块, 其特征在于, 包括氮 化硅结合碳化硅侧块、 槽壳和异型炭块, 在氮化硅结合碳化硅侧块与 槽壳接触一侧开有凹槽, 凹槽内设有保温层, 凹槽内保温层与槽壳之 间设有耐电解质蒸汽腐蚀材料。
2. 根据权利要求 1所述的保温型铝电解槽槽内衬侧部复合块, 其 特征在于, 所述的凹槽内设有横边框和纵边框, 保温层设在横边框和 纵边框内。
3. 根据权利要求 1所述的保温型铝电解槽槽内衬侧部复合块, 其 特征在于, 横边框和纵边框条数 10条。
4. 根据权利要求 1所述的保温型铝电解槽槽内衬侧部复合块, 其 特征在于, 凹槽深度为保温层厚度与耐电解质蒸汽腐蚀材料厚度之和。
5. 根据权利要求 1所述的保温型铝电解槽槽内衬侧部复合块, 其 特征在于, 氮化硅结合碳化硅侧块净宽度> 75111111, 氮化硅结合碳化硅 侧块宽度为凹槽深度和氮化硅结合碳化硅侧块净宽度之和, 横边框和 纵边框宽度为 10 ~ 50mm。
PCT/CN2012/001414 2011-11-21 2012-10-23 一种保温型铝电解槽槽内衬侧部复合块 WO2013075396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110369319.8A CN103122463B (zh) 2011-11-21 2011-11-21 一种保温型铝电解槽槽内衬侧部复合块
CN201110369319.8 2011-11-21

Publications (1)

Publication Number Publication Date
WO2013075396A1 true WO2013075396A1 (zh) 2013-05-30

Family

ID=48453599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001414 WO2013075396A1 (zh) 2011-11-21 2012-10-23 一种保温型铝电解槽槽内衬侧部复合块

Country Status (3)

Country Link
CN (1) CN103122463B (zh)
MY (1) MY173928A (zh)
WO (1) WO2013075396A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668329A (zh) * 2012-08-31 2014-03-26 沈阳铝镁设计研究院有限公司 侧部块复合填充材料结构
FR3023301B1 (fr) * 2014-07-04 2016-07-01 Rio Tinto Alcan Int Ltd Cuve d'electrolyse
CN105316703A (zh) * 2014-07-22 2016-02-10 沈阳铝镁设计研究院有限公司 保温型铝电解槽内衬结构
CN108048874A (zh) * 2017-12-29 2018-05-18 山西晋阳碳素有限公司 氮化硅结合炭块复合铝用侧部炭块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083489A1 (en) * 2003-03-17 2004-09-30 Norsk Hydro Asa Electrolysis cell and structural elements to be used therein
EP1366214B1 (en) * 2001-03-07 2004-12-15 MOLTECH Invent S.A. Aluminium-wettable porous ceramic material
CN1670257A (zh) * 2004-12-27 2005-09-21 沈阳铝镁设计研究院 一种铝电解槽内衬结构
US20050269202A1 (en) * 2002-03-30 2005-12-08 Vittorio De Nora Prevention of dissolution of metal-based aluminium production anodes
CN101423955A (zh) * 2008-11-21 2009-05-06 中国铝业股份有限公司 一种大型铝电解槽内衬结构
CN202369656U (zh) * 2011-11-22 2012-08-08 中国铝业股份有限公司 一种铝电解槽用侧部内衬

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2060215U (zh) * 1989-05-22 1990-08-08 夏福德 复合耐火砖
CN1279215C (zh) * 2004-04-09 2006-10-11 清华大学 高温炉体铝电解槽侧墙用异型Si3N4结合SiC砖
CN201908138U (zh) * 2010-12-17 2011-07-27 贵阳铝镁设计研究院有限公司 一种铝电解槽的保温内衬结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1366214B1 (en) * 2001-03-07 2004-12-15 MOLTECH Invent S.A. Aluminium-wettable porous ceramic material
US20050269202A1 (en) * 2002-03-30 2005-12-08 Vittorio De Nora Prevention of dissolution of metal-based aluminium production anodes
WO2004083489A1 (en) * 2003-03-17 2004-09-30 Norsk Hydro Asa Electrolysis cell and structural elements to be used therein
CN1670257A (zh) * 2004-12-27 2005-09-21 沈阳铝镁设计研究院 一种铝电解槽内衬结构
CN101423955A (zh) * 2008-11-21 2009-05-06 中国铝业股份有限公司 一种大型铝电解槽内衬结构
CN202369656U (zh) * 2011-11-22 2012-08-08 中国铝业股份有限公司 一种铝电解槽用侧部内衬

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG YONGCHUN ET AL.: "Improvement of lining structure of 60kA cradle type aluminum electrolytic cell", JIANGSU METALLURGY, March 1996 (1996-03-01), pages 49 AND 54 *

Also Published As

Publication number Publication date
CN103122463B (zh) 2015-07-22
CN103122463A (zh) 2013-05-29
MY173928A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
RU2389826C2 (ru) Катоды для алюминиевых электролизеров с пенографитовой облицовкой
CN101709485B (zh) 一种采用惰性阳极生产原铝的铝电解槽
RU2403324C2 (ru) Катоды для алюминиевых электролизеров с пазом неплоской конфигурации
WO2013075396A1 (zh) 一种保温型铝电解槽槽内衬侧部复合块
CN204080126U (zh) 设置有保温挡料装置的铝电解槽
CN201908138U (zh) 一种铝电解槽的保温内衬结构
CN101037775A (zh) 一种大型预焙铝电解槽内衬结构
CN201915153U (zh) 一种有利于铝电解槽保温的槽内衬结构
CN106400053A (zh) 基于阴极内衬整体成型的铝电解槽及其整体成型方法
CN202017827U (zh) 电热浓缩槽槽盖专用管
CN101985762A (zh) 一种连续阳极立式v型双斜面铝电解槽
RU2281986C1 (ru) Электролизер для получения алюминия из смеси расплавленных солей и глинозема
CN101423955A (zh) 一种大型铝电解槽内衬结构
CN203411621U (zh) 一种铝电解槽阴极内衬结构
CN103556182A (zh) 铝电解槽阴极炭块底部槽型耐火材料组合结构及制造方法
CN203700544U (zh) 一种铝电解槽阴极炭块底部槽型耐火材料组合结构
CN201751430U (zh) 新型铝电解槽侧部用异型碳块
CN102560544B (zh) 渗流式铝电解槽及稳定铝电解槽中铝液的方法
CN102022938B (zh) 一种基于热管的导流式铝电解槽
CN205934047U (zh) 阳极导杆及钢爪连接结构
CN201212063Y (zh) 一种节能环保型结构铝电解槽的阳极碳块
CN205676546U (zh) 便捷式玻璃钢电解槽
CN204385303U (zh) 一种铝电解残极余热预热新极装置
CN210569982U (zh) 一种新型电阻保温炉井式积木炉衬结构
CN101551193A (zh) 一种煅烧阴极碳块的煅烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014/05760

Country of ref document: TR

122 Ep: pct application non-entry in european phase

Ref document number: 12850772

Country of ref document: EP

Kind code of ref document: A1