WO2013074367A2 - Targeting advertisements to users of a social networking system based on events - Google Patents

Targeting advertisements to users of a social networking system based on events Download PDF

Info

Publication number
WO2013074367A2
WO2013074367A2 PCT/US2012/064189 US2012064189W WO2013074367A2 WO 2013074367 A2 WO2013074367 A2 WO 2013074367A2 US 2012064189 W US2012064189 W US 2012064189W WO 2013074367 A2 WO2013074367 A2 WO 2013074367A2
Authority
WO
WIPO (PCT)
Prior art keywords
users
user
social networking
networking system
event
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2012/064189
Other languages
English (en)
French (fr)
Other versions
WO2013074367A3 (en
Inventor
Giridhar Rajaram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Inc
Original Assignee
Facebook Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Facebook Inc filed Critical Facebook Inc
Priority to KR1020147016352A priority Critical patent/KR20140094615A/ko
Priority to JP2014542346A priority patent/JP6023208B2/ja
Priority to AU2012339935A priority patent/AU2012339935A1/en
Priority to CA2855008A priority patent/CA2855008C/en
Publication of WO2013074367A2 publication Critical patent/WO2013074367A2/en
Anticipated expiration legal-status Critical
Publication of WO2013074367A3 publication Critical patent/WO2013074367A3/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q10/40
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking

Definitions

  • This invention relates generally to social networking, and in particular to targeting advertisements to users of a social networking system based on events.
  • social networking systems have made it easier for users to share their interests and preferences in real-world concepts, such as their favorite movies, musicians, celebrities, brands, hobbies, sports teams, and activities. These interests may be declared by users in user profiles and may also be inferred by social networking systems. Users can also interact with these real-world concepts through multiple communication channels on social networking systems, including interacting with pages on the social networking system, sharing interesting articles about causes and issues with other users on the social networking system, and commenting on actions generated by other users on objects external to the social networking system. Although advertisers may have some success in targeting users based on interests and demographics, tools have not been developed to target users based on events.
  • a social networking system may have millions of users that have expressed intentions to attend events around the world, from small and informal social gatherings to major world events.
  • existing systems have not provided efficient mechanisms of targeting advertisements to these users based on events.
  • a social networking system may enable advertisers to target advertisements to users intending to attend events that include concepts, temporal information, and locations. Targeting criteria for advertisements may include worldwide current events and user- generated events. Using past event attendance history, location information, and social graph information, a social networking system may generate a predictive model to estimate probabilities of whether users will attend an event. Confidence scores may be generated for users for an event based on the predictive model. Advertisements may be targeted to users based on events using the confidence scores. Event targeting enables a social networking system to target user intent in real time. In one embodiment, event attendance by users may be used in a fuzzy matching algorithm by the social networking system in providing advertisements to users of the social networking system.
  • FIG. 1 is high level block diagram illustrating a process of targeting
  • FIG. 2 is a network diagram of a system for targeting advertisements to users of a social networking system based on targeted event criteria, showing a block diagram of the social networking system, in accordance with an embodiment of the invention.
  • FIG. 3 is high level block diagram illustrating an event targeting module that includes various modules for targeting advertisements to users of a social networking system based on targeted event criteria, in accordance with an embodiment of the invention.
  • FIG. 4 is a flowchart of a process of targeting advertisements to users of a social networking system based on targeted event criteria, in accordance with an embodiment of the invention.
  • a social networking system offers its users the ability to communicate and interact with other users of the social networking system. Users join the social networking system and add connections to a number of other users to whom they desire to be connected. Users of social networking system can provide information describing them which is stored as user profiles. For example, users can provide their age, gender, geographical location, education history, employment history and the like. The information provided by users may be used by the social networking system to direct information to the user. For example, the social networking system may recommend social groups, events, and potential friends to a user.
  • a social networking system may also enable users to explicitly express interest in a concept, such as celebrities, hobbies, sports teams, books, music, and the like. These interests may be used in a myriad of ways, including targeting advertisements and
  • a social graph includes nodes connected by edges that are stored on a social networking system.
  • Nodes include users and objects of the social networking system, such as web pages embodying concepts and entities, and edges connect the nodes. Edges represent a particular interaction between two nodes, such as when a user expresses an interest in a news article shared by another user about "America's Cup.”
  • the social graph may record interactions between users of the social networking system as well as interactions between users and objects of the social networking system by storing information in the nodes and edges that represent these interactions.
  • Custom graph object types and graph action types may be defined by third-party developers as well as administrators of the social networking system to define attributes of the graph objects and graph actions.
  • a graph object for a movie may have several defined object properties, such as a title, actors, directors, producers, year, and the like.
  • a graph action type such as "purchase,” may be used by a third-party developer on a website external to the social networking system to report custom actions performed by users of the social networking system. In this way, the social graph may be "open,” enabling third-party developers to create and use the custom graph objects and actions on external websites.
  • Third-party developers may enable users of the social networking system to express interest in web pages hosted on websites external to the social networking system. These web pages may be represented as page objects in the social networking system as a result of embedding a widget, a social plug-in, programmable logic or code snippet into the web pages, such as an iFrame. Any concept that can be embodied in a web page may become a node in the social graph on the social networking system in this manner. As a result, users may interact with many objects external to the social networking system that are relevant to a keyword or keyword phrase, such as "Justin Bieber." Each of the interactions with an object may be recorded by the social networking system as an edge.
  • the advertisements may reach a more receptive audience because the users have already performed an action that is related to the advertisement.
  • a merchandiser that sells Justin Bieber t-shirts, hats, and accessories may target ads for new merchandise to users that have recently performed one of multiple different types of actions, such as listening to Justin Bieber's song "Baby,” purchasing Justin Bieber's new fragrance, "Someday,” commenting on a fan page for Justin Bieber, and attending an event on a social networking system for the launch of a new Justin Bieber concert tour.
  • third-party developers to define custom object types and custom action types is further described in a related application, "Structured Objects and Actions on a Social Networking System," U.S.
  • Advertisers may engage with users of a social networking system through different communication channels, including direct advertisements, such as banner ads; indirect advertisements, such as sponsored stories; generating a fan base for a page on the social networking system; and developing applications that users may install on the social networking system.
  • direct advertisements such as banner ads
  • indirect advertisements such as sponsored stories
  • developing applications that users may install on the social networking system An advertiser would benefit from identifying users that are attending events related to the advertiser's product, brand, application, and the like because advertisers may more effectively target their advertisements.
  • a social networking system would benefit from increased advertising revenue by enabling advertisers to target users that may attend events related to the advertisers.
  • a social networking system may receive an event as part of targeting criteria for an advertisement from an advertiser, in one embodiment.
  • an advertiser may wish to target the 2011 Major League Baseball World Series.
  • Users of the social networking system may indicate that they are attending the major event by interacting with various content objects on the social networking system, such as a user submitting an RSVP to an event object for Game 1 of the World Series, a photo uploaded by a user of tickets to the event, a status update mentioning the event by a user, a check-in event at the stadium, an open graph action of purchasing tickets to the World Series on an external website, and the like.
  • Users may also indicate that they are going to watch the World Series at an informal gathering at a user's house.
  • Event targeting criteria may be loosely defined to include a broad range of users that have interacted with objects on the social networking system with respect to the event.
  • a targeting cluster generated from the targeting criteria may include users attending a specified event, users connected to other users attending the specified event, as well as any user that satisfies a rule including the specified event, such as users creating a check-in event with 50 miles of the event or users mentioning the event in a content post.
  • user attendance to events may be used by a social networking system as a feature in a fuzzy matching algorithm that targets advertisements from advertisers to users of the social networking system based on the content of the advertisements and the interests of users. Because an event includes a temporal component and a geographic location component, in addition to a conceptual component, a social networking system may deliver timely advertisements based on information about users' attendance at events.
  • FIG. 1 illustrates a high level block diagram of a process of targeting
  • the social networking system 100 includes an advertiser 102 that provides an ad object 104 that includes targeted event criteria 106 to the social networking system 100.
  • the targeted event criteria 106 may include any type of event, including major world events such as Hurricane Irene, Arab Spring, international sporting events, as well as smaller user- generated events such as a night out on the town, a small gathering at a user's house to watch the Super Bowl, and a meeting at a coffee shop for a group of users that are interested in a local political campaign.
  • the social networking system 100 may enable the targeted event criteria 106 to be as specific or as broad as desired by the advertiser 102. In one
  • specific events such as the San Francisco Giants vs. the San Diego Padres baseball game at 7: 15PM PST on September 13, 2011, may be included in the targeted event criteria 106.
  • types of events such as cocktail parties, movie night get-togethers, and dinner parties, may also be specified by the targeted event criteria 106.
  • the advertiser 102 may provide an ad object 104 without targeted event criteria 106.
  • the ad targeting module 118 may analyze the content of the ad object 104 to target the advertisement based on a fuzzy matching algorithm that may use event attendance information as a feature.
  • the targeted event criteria 106 is received by an event targeting module 114.
  • the event targeting module 114 analyzes information about users of the social networking system 100 to determine targeted users that have indicated intentions to attend the event described in the targeted event criteria 106 as well as targeted users that may be inferred to have intentions to attend the event described in the targeted event criteria 106.
  • the event targeting module 114 retrieves information about users from user profile objects 108, edge objects 110, and content objects 112.
  • User profile objects 108 include declarative profile information about users of the social networking system 100.
  • Edge objects 110 include information about user interactions with other objects on the social networking system 100, such as clicking on a link shared with the viewing user, sharing photos with other users of the social networking system, posting a status update message on the social networking system 100, and other actions that may be performed on the social networking system 100.
  • Content objects 112 include event objects created by users of the social networking system 100, status updates that may be associated with event objects, photos tagged by users to be associated with other objects in the social networking system 100, such as events, pages, and other users, and applications installed on the social networking system 100.
  • the event targeting module 114 analyzes the information about the users of the social networking system 100 retrieved from the user profile objects 108, edge objects 110, and content objects 112 to identify targeted user profile objects 116 that have been determined to have intentions to attend the event specified in the targeted event criteria 106.
  • the event targeting module 114 may also infer intentions to attend the event specified in the targeted event criteria 106 for identified targeted user profile objects 116 based on information in the user profile objects 108, edge objects 1 10, and content objects 112, such as past check-in events at the same location as the event specified in the targeted event criteria 106, other users connected to the inferred targeted user indicating that they are attending the event, and location information retrieved about users that are within a predetermined radius of the event.
  • confidence scores may be generated for user profile objects 108 based on the analyzed information about the users of the social networking system 100 to determine probabilities that users will attend the event.
  • a predetermined threshold confidence score may be used to infer that targeted users may attend the event.
  • Machine learning algorithms may be used in generating the confidence scores based on the information received about users.
  • a temporal proximity analysis may be performed by the event targeting module 114 to determine the targeted user profile objects 116. For example, a user may be determined to be located within a mile of the event just one hour prior to the start of the event. In that case, the temporal proximity of the user is very close to the event, so a greater confidence score may be assigned to that user. In another example, a user may be located within a mile of the event a week before the start of the event. In that case, the temporal proximity of the user is not less close, so a lower confidence score may be assigned to that user. In one embodiment, temporal proximity analysis may be performed as part of a fuzzy matching algorithm for targeting an advertisement to a user.
  • temporal proximity analysis may be used by the social networking system 100 in modifying bids for ads, such that timelier, and therefore more relevant, advertisements have higher bid prices for users with a closer temporal proximity to the event specified in the targeted event criteria 106.
  • the overall bid will change based on temporal proximity.
  • the bid may change on a per user basis based on the geographical proximity of the user to the event, based on location information received about the user.
  • the bid may change on a per user basis based on an affinity of the user for the event based on sentiment analysis, analyzing the frequency of status updates and past history of user interaction with similar events to determine the affinity of the user for the event.
  • a social networking system may identify groups of users who are attending the event through an analysis of the group's communications. In addition, the group of users may also check into the event together, causing the bid to change for that group of users.
  • An ad targeting module 118 receives the targeted user profile objects 116 identified by the event targeting module 114 for providing the advertisement embodied in the ad object 104 to the users associated with the targeted user profile objects 116.
  • the advertisement may be provided to users of the social networking system 100 through multiple communication channels, including mobile devices executing native applications, text messages to mobile devices, websites hosted on systems external to the social networking system 100, and ad delivery mechanisms available on the social networking system 100, such as sponsored stories, banner advertisements, and page posts.
  • FIG. 2 is a high level block diagram illustrating a system environment suitable for enabling preference portability for users of a social networking system, in accordance with an embodiment of the invention.
  • the system environment comprises one or more user devices 202, the social networking system 100, a network 204, and external websites 216.
  • different and/or additional modules can be included in the system.
  • the user devices 202 comprise one or more computing devices that can receive user input and can transmit and receive data via the network 204.
  • the user device 202 is a conventional computer system executing, for example, a Microsoft Windows-compatible operating system (OS), Apple OS X, and/or a Linux distribution.
  • the user device 202 can be a device having computer functionality, such as a personal digital assistant (PDA), mobile telephone, smart-phone, etc.
  • PDA personal digital assistant
  • the user device 202 is configured to communicate via network 204.
  • the user device 202 can execute an application, for example, a browser application that allows a user of the user device 202 to interact with the social networking system 100.
  • the user device 202 interacts with the social networking system 100 through an application programming interface (API) that runs on the native operating system of the user device 202, such as iOS and ANDROID.
  • API application programming interface
  • the network 204 uses standard communications technologies and/or protocols.
  • the network 204 can include links using technologies such as Ethernet, 802.11, worldwide interoperability for microwave access (WiMAX), 3G, 4G, CDMA, digital subscriber line (DSL), etc.
  • the networking protocols used on the network 204 can include multiprotocol label switching (MPLS), the transmission control protocol/Internet protocol (TCP/IP), the User Datagram Protocol (UDP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), and the file transfer protocol (FTP).
  • MPLS multiprotocol label switching
  • TCP/IP transmission control protocol/Internet protocol
  • UDP User Datagram Protocol
  • HTTP hypertext transport protocol
  • HTTP simple mail transfer protocol
  • FTP file transfer protocol
  • the data exchanged over the network 204 can be represented using technologies and/or formats including the hypertext markup language (HTML) and the extensible markup language (XML).
  • all or some of links can be encrypted using conventional encryption technologies such as secure sockets layer (SSL), transport layer security (TLS), and Internet Protocol security (IPsec).
  • SSL secure sockets layer
  • TLS transport layer security
  • IPsec Internet Protocol security
  • FIG. 2 contains a block diagram of the social networking system 100.
  • the social networking system 100 includes a user profile store 206, an event targeting module 114, an ad targeting module 118, a web server 208, an action logger 210, a content store 212, an edge store 214, and a bid modification module 218.
  • the social networking system 100 may include additional, fewer, or different modules for various applications.
  • Conventional components such as network interfaces, security functions, load balancers, failover servers, management and network operations consoles, and the like are not shown so as to not obscure the details of the system.
  • the web server 208 links the social networking system 100 via the network 204 to one or more user devices 202; the web server 208 serves web pages, as well as other web-related content, such as Java, Flash, XML, and so forth.
  • the web server 208 may provide the functionality of receiving and routing messages between the social networking system 100 and the user devices 202, for example, instant messages, queued messages (e.g., email), text and SMS (short message service) messages, or messages sent using any other suitable messaging technique.
  • the user can send a request to the web server 208 to upload information, for example, images or videos that are stored in the content store 212.
  • the web server 208 may provide API functionality to send data directly to native user device operating systems, such as iOS, ANDROID, webOS, and RIM.
  • the action logger 210 is capable of receiving communications from the web server 208 about user actions on and/or off the social networking system 100.
  • the action logger 210 populates an action log with information about user actions to track them.
  • Such actions may include, for example, adding a connection to the other user, sending a message to the other user, uploading an image, reading a message from the other user, viewing content associated with the other user, attending an event posted by another user, among others.
  • a number of actions described in connection with other objects are directed at particular users, so these actions are associated with those users as well.
  • An action log may be used by a social networking system 100 to track users' actions on the social networking system 100 as well as external websites that communication information back to the social networking system 100.
  • users may interact with various objects on the social networking system 100, including commenting on posts, sharing links, and checking-in to physical locations via a mobile device.
  • the action log may also include user actions on external websites.
  • an e-commerce website that primarily sells luxury shoes at bargain prices may recognize a user of a social networking system 100 through social plug-ins that enable the e-commerce website to identify the user of the social networking system. Because users of the social networking system 100 are uniquely identifiable, e-commerce websites, such as this luxury shoe reseller, may use the information about these users as they visit their websites.
  • the action log records data about these users, including viewing histories, advertisements that were clicked on, purchasing activity, and buying patterns.
  • User account information and other related information for users are stored as user profile objects 108 in the user profile store 206.
  • the user profile information stored in user profile store 206 describes the users of the social networking system 100, including biographic, demographic, and other types of descriptive information, such as work experience, educational history, gender, hobbies or preferences, location, and the like.
  • the user profile may also store other information provided by the user, for example, images or videos. In certain embodiments, images of users may be tagged with identification information of users of the social networking system 100 displayed in an image.
  • the user profile store 206 also maintains references to the actions stored in an action log and performed on objects in the content store 212.
  • the edge store 214 stores the information describing connections between users and other objects on the social networking system 100 in edge objects 110.
  • Some edges may be defined by users, allowing users to specify their relationships with other users. For example, users may generate edges with other users that parallel the users' real-life relationships, such as friends, co-workers, partners, and so forth. Other edges are generated when users interact with objects in the social networking system 100, such as expressing interest in a page on the social networking system, sharing a link with other users of the social networking system, and commenting on posts made by other users of the social networking system.
  • the edge store 214 stores edge objects that include information about the edge, such as affinity scores for objects, interests, and other users.
  • Affinity scores may be computed by the social networking system 100 over time to approximate a user's affinity for an object, interest, and other users in the social networking system 100 based on the actions performed by the user.
  • Multiple interactions between a user and a specific object may be stored in one edge object in the edge store 214, in one embodiment. For example, a user that plays multiple songs from Lady Gaga's album, "Born This Way,” may have multiple edge objects for the songs, but only one edge object for Lady Gaga.
  • An event targeting module 114 receives targeted event criteria 106 included in ad objects 104 that are stored in the content store 212, in one embodiment. Using information about users of the social networking system 100, from user profile objects 108 retrieved from the user profile store 206, edge objects 110 retrieved from the edge store 214, and content objects 112 retrieved from the content store 212, the event targeting module 114 may determine confidence scores that measure the likelihood that users may attend the event described in the targeted event criteria 106. Machine learning algorithms may be used to generate confidence scores based on past histories of users' behaviors in attending events. Additionally, machine learning algorithms may infer the attendance of users at events based on the information retrieved about the users and analysis of the temporal proximity of the users with respect to the events. As a result, the event targeting module 114 may identify users that are associated with the event described in the targeted event criteria 106.
  • An ad targeting module 118 may receive targeting criteria for advertisements for display to users of a social networking system 100.
  • the ad targeting module 118 provides advertisements to users of the social networking system 100 based on the targeting criteria of the advertisements.
  • targeted event criteria 106 may be received for advertisements and processed by the event targeting module 114. After the event targeting module 114 identifies users that are associated with the event described in the targeted event criteria 106, the ad targeting module 118 may target the advertisement to those identified users. Targeting criteria may also be received from advertisers to filter users by
  • Other filters may include filtering by interests, applications installed on the social networking system 100, groups, networks, and usage of the social networking system 100.
  • a bid modification module 218 may adjust bids for advertisements based on a number of factors.
  • a social networking system 100 may enable advertisers to modify a maximum bid for a click for users depending on temporal proximity analysis of the users. For example, an advertiser for parking garages near a sporting event stadium may wish to target an advertisement for the parking garages to users that intend to attend a game at the sporting event stadium. The advertiser may decide to increase their bid based on how close to the event users are in terms of temporal proximity, such as a check-in event near the stadium a day before the event and a status message update hours before the event.
  • the social networking system 100 may increase the bid price for users that are in close temporal proximity to an event because those users are more valuable based on their close temporal proximity to the event.
  • the bid modification module 218 may adjust bids for advertisements based on other factors, including the temporal proximity of users. Other factors used by the bid modification module 218 may include ad inventory, user behavior patterns, and location proximity of users. As a result, advertisers may reach more relevant audiences while the social networking system may benefit from increased engagement and advertising revenues.
  • FIG. 3 illustrates a high level block diagram of the event targeting module 114 in further detail, in one embodiment.
  • the event targeting module 114 includes a data gathering module 300, a temporal proximity analysis module 302, an event history analysis module 304, an event inference module 306, a confidence scoring module 308, and a machine learning module 310. These modules may perform in conjunction with each other or independently to develop a confidence scoring model for determining confidence scores for users to be targeted in a social networking system 100 based on the event targeting criteria.
  • a data gathering module 300 retrieves information about users with respect to an event described in targeted event criteria 106 in an ad object 104, including information from user profile objects 108, edge objects 110, and content objects 112.
  • the data gathering module 300 may retrieve user profile objects 108 that are associated with an event object matching the event described in the targeted event criteria 106 for users that have indicated that they will be attending the event.
  • the data gathering module 300 may also retrieve user profile objects 108 associated with users that have mentioned the event in a content post, such as a status update, comment, or photo upload.
  • the data gathering module 300 may retrieve user profile objects 108 of other users connected to users that are attending the event.
  • user profile objects 108 may be retrieved by the data gathering module 300 according to a temporal component, a geographic location component, and a conceptual component of the users matching the event described in the targeted criteria 106 in the ad object 104. For example, if an advertisement targeted a Major League Baseball game for the Giants vs. the Rockies that was happening within a day of a user's check-in event at a bar near the stadium where the game would be held, and if that user expressed an interest in the Giants, then the user profile object 108 for that user may be retrieved by the data gathering module 300 because the temporal component, the geographic location component, and the conceptual component of the user matches the event.
  • a temporal proximity analysis module 302 analyzes information about users of the social networking system 100 and their temporal proximity to an event described in targeted event criteria 106 of an ad object 108. In one embodiment, the temporal proximity analysis module 302 determines a temporal proximity for users associated with the user profile objects 108 retrieved by the data gathering module 300. Temporal proximity may be defined as a metric that measures the distance in temporal units between a user interested in a concept embodied in an event and the time of the event. For example, a status update that is posted by a user on the social networking system 100 that is related to baseball may have a close proximity to a baseball game if the status update was posted just hours before the baseball game.
  • the temporal proximity analysis module 302 may perform a temporal proximity analysis as part of a confidence scoring model that determines a confidence score for users that they will be attending the event.
  • the temporal proximity analysis module 302 may provide temporal proximity analysis for users of the social networking system 100 to the bid modification module 218 to modify bids for users with a close temporal proximity to events.
  • temporal proximity analysis of users may be used in a fuzzy matching algorithm to target users.
  • An event history analysis module 304 determines an analysis of the past event attendance history of users associated with retrieved user profile objects 106 by the data gathering module 300.
  • an event attendance history of each user associated with the retrieved user profile objects 106 is analyzed by the event history analysis module 304 in conjunction with the machine learning module 310 and the confidence scoring module 308 to determine a confidence score that each user will attend the event described in the targeted event criteria 106.
  • Attendance at an event for a user may be inferred by the event inference module 306 based on location proximity, temporal proximity to the event, as well as the event history analysis of the user, in one embodiment.
  • An event inference module 306 determines users that may be inferred to attend an event described in targeted event criteria 106 associated with an ad object 108.
  • a prediction model may be generated for an event described in the targeted event criteria 106 based on a number of factors, including a user's past event attendance history, behavior patterns of the user with respect to usage on the social networking system 100, and other characteristics of the user.
  • a confidence scoring module 308 may be used to determine confidence scores for users of the social networking system based on an event attendance prediction model for an event described in targeted event criteria 106. Confidence scores may be determined based on whether users exhibit features in the event attendance prediction model. As a user exhibits more features in the prediction model for an event, the confidence score for that user increases.
  • an event attendance prediction model includes features that are unique to the event. For example, a Major League Baseball game that is being targeted in San Francisco, CA may have unique features in the event attendance prediction model for the game in San Francisco, CA versus another Major League Baseball game in San Diego, CA because the San Francisco Giants have been having record attendance, selling out most games.
  • a user that may mention that they are attending a San Francisco Giants game in a comment, status update, or content item may have a high probability of attending the event simply because of the past history of attendance of Giants fans as indicated on the social networking system 100.
  • a similar comment by a Padres fan may not result in as high of a probability of the user attending event because a different prediction model may be used.
  • a prediction model for predicting users' attendance at events may be standardized for all events, including features such as users' past history of attendance at events based on check-in event history, as well as location confirmation using Global Positioning System capabilities on mobile devices.
  • Other features may include other information about users, such as location information from content items, keywords extracted from content items, whether users are connected to other users that are attending the event, and whether information about the user indicates that the user is interested in the same concept at the same location and at the same time as the concept, location, and time described in the event.
  • a machine learning module 310 is used in the event targeting module 114 to select features for prediction models generated for event attendance of events described in targeting criteria.
  • a social networking system 100 uses a machine learning algorithm to analyze features of a prediction model for predicting event attendance for users of the social networking system 100.
  • the machine learning module 310 may select user characteristics as features for the prediction model for an event, such as past user attendance for events, level of interest in the concept embodied in the event, whether other users connected to a user are attending the event, and whether information about a user indicating a time, location, and concept matches the time, location, and concept described in the event, using at least one machine learning algorithm.
  • a machine learning algorithm may be used to optimize the selected features for the prediction model based on conversion rates of advertisements targeted to users identified from the prediction model.
  • a selected feature may be removed based on a lack of engagement by users that exhibit the selected feature.
  • a selected feature for a prediction model may include a high affinity score for Starbucks Coffee based on numerous check-in events at Starbucks Coffee locations. However, suppose users exhibiting a high confidence score for checking into a Starbucks Coffee location in the next week based on numerous check-in events at Starbucks Coffee locations do not engage with the advertisement in expected numbers.
  • the machine learning algorithm may deselect that feature, the numerous check-in events, in the prediction model for determining confidence scores for users, in one embodiment.
  • the confidence score may be reduced by decreasing the weight placed on the check-in events.
  • User feedback mechanisms may include a social networking system enabling users to interact with the advertisement, such as clicking on a link to "X-out" the advertisement. This interaction informs the social networking system that the user was not interested in the advertisement, finding the ad offensive, repetitive, misleading, or not applicable to the user.
  • Another user feedback mechanism includes the social networking system analyzing further content items authored by users attending the event after the event has finished, such as status updates, page posts, photo uploads, check-in events, and adding new connections on the social networking system. Through this content analysis, valuable user feedback may be obtained.
  • FIG. 4 illustrates a flow chart diagram depicting a process of targeting
  • a social networking system 100 receives 402 targeting criteria for an advertisement that includes an event.
  • the event included in the targeting criteria may represent a recurring event, such as a daily visit to Starbucks in the morning, a weekly run around a golf course, or a nightly visit to a local pub, in one embodiment.
  • the event described in the targeting criteria for an advertisement includes a specific event, such as a music concert for a touring group, such as Britney Spears, that is happening on a specific night at a specified location.
  • Content items in a social networking system associated with the event are retrieved 404.
  • a status message update that includes the name of the artist playing in the music concert event may be retrieved 404.
  • Other types of content items including page posts, video uploads, check-in events, application installations, and application updates made on behalf of the user may also be retrieved 404.
  • content items that are associated with the event as a result of a mention of the event within the content item or otherwise linked to the event may also be retrieved 404.
  • a user may mention the event described in the targeting criteria in a comment to a content item posted on another user's profile.
  • the content item maybe retrieved even though the content item may not have mentioned the event.
  • a content item may be associated with an event object based on an association made by a user of the social networking system. In that embodiment, the content item associated with an event object for an event described in the targeting criteria would also be retrieved 404.
  • the social networking system determines 406 a plurality of users of the social networking system associated with the event based on the retrieved content items.
  • the retrieved content items are associated with users of the social networking system 100 that authored the content items. Those users are determined 406 by the social networking system to be associated with the event.
  • other users connected to the users that authored the retrieved content items may also be determined 406 to be associated with the event.
  • the other users connected to the users attending the event may be determined 406 to be associated with the event because of the indication of intent to attend the event demonstrated by the users planning to attend the event.
  • the social networking system 100 may determine 406 a plurality of users of the social networking system to be associated with the event based on a rule that uses the event. For example, users that are located within 50 miles of the event may be determined 406 to be associated with the event because a rule may be programmed to target those users.
  • confidence scores are determined 408 for the plurality of users based on the retrieved content items.
  • Confidence scores may be determined 408 based on a number of factors in an event attendance prediction model, including users' past event attendance history, geographic location confirmation using Global Positioning System capabilities on mobile devices, location information from content items, keywords extracted from content items, whether users are connected to other users that are attending the event, and whether information about the user indicates that the user is interested in the same concept at the same location and at the same time as the concept, location, and time described in the event.
  • the event attendance prediction model may be customized for the type of event being targeted. For example, sporting events may heavily weight an interest in the sport based on content items posted by users that include a mention of the sport, one or more sporting teams in the event, as well as applications installed on the social networking system 100 by the users that are targeted to that sport.
  • the advertisement is provided 410 to a subset of the plurality of users based on the confidence scores.
  • the advertisement may be provided 410 for display to a subset of the plurality of users based on a predetermined threshold confidence score. For example, a confidence score of 60% may be required to provide 410 the advertisement to a user of the social networking system 100.
  • the predetermined threshold confidence score may be determined by administrators of a social networking system 100, in one embodiment, based on empirical data regarding the effectiveness of the targeting of prior advertisements. In another embodiment, the predetermined threshold confidence score may be determined by the advertiser of the advertisement. In a further embodiment, a sample of the plurality of users are provided the advertisement based on confidence scores and other information known about users, such as close geographical proximity to the event and close temporal proximity to the event.
  • a software module is implemented with a computer program product comprising a computer-readable medium containing computer program code, which can be executed by a computer processor for performing any or all of the steps, operations, or processes described.
  • Embodiments of the invention may also relate to an apparatus for performing the operations herein.
  • This apparatus may be specially constructed for the required purposes, and/or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program may be stored in a non-transitory, tangible computer readable storage medium, or any type of media suitable for storing electronic instructions, which may be coupled to a computer system bus.
  • any computing systems referred to in the specification may include a single processor or may be architectures employing multiple processor designs for increased computing capability.
  • Embodiments of the invention may also relate to a product that is produced by a computing process described herein.
  • a product may comprise information resulting from a computing process, where the information is stored on a non-transitory, tangible computer readable storage medium and may include any embodiment of a computer program product or other data combination described herein.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Transfer Between Computers (AREA)
PCT/US2012/064189 2011-11-17 2012-11-08 Targeting advertisements to users of a social networking system based on events Ceased WO2013074367A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147016352A KR20140094615A (ko) 2011-11-17 2012-11-08 이벤트에 기반한 소셜 네트워킹 시스템의 사용자로의 광고 타겟팅
JP2014542346A JP6023208B2 (ja) 2011-11-17 2012-11-08 広告のターゲットをイベントに基づいてソーシャル・ネットワーキング・システムのユーザに設定する方法
AU2012339935A AU2012339935A1 (en) 2011-11-17 2012-11-08 Targeting advertisements to users of a social networking system based on events
CA2855008A CA2855008C (en) 2011-11-17 2012-11-08 Targeting advertisements to users of a social networking system based on events

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/299,322 US20130132194A1 (en) 2011-11-17 2011-11-17 Targeting advertisements to users of a social networking system based on events
US13/299,322 2011-11-17

Publications (2)

Publication Number Publication Date
WO2013074367A2 true WO2013074367A2 (en) 2013-05-23
WO2013074367A3 WO2013074367A3 (en) 2014-12-04

Family

ID=48427832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/064189 Ceased WO2013074367A2 (en) 2011-11-17 2012-11-08 Targeting advertisements to users of a social networking system based on events

Country Status (6)

Country Link
US (1) US20130132194A1 (enExample)
JP (1) JP6023208B2 (enExample)
KR (1) KR20140094615A (enExample)
AU (1) AU2012339935A1 (enExample)
CA (1) CA2855008C (enExample)
WO (1) WO2013074367A2 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011712A (ja) * 2013-06-28 2015-01-19 アザパ アールアンドディー アメリカズ インク デジタル情報収集および解析方法およびその装置
WO2015050503A1 (en) * 2013-10-04 2015-04-09 Yuuzoo Corporation System and method to serve one or more advertisements with different media formats to one or more devices
WO2016063615A1 (ja) * 2014-10-21 2016-04-28 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
US9716765B2 (en) 2013-05-27 2017-07-25 Huawei Technologies Co., Ltd. Information push method and apparatus
CN109684561A (zh) * 2018-12-24 2019-04-26 宿州学院 基于用户签到行为变化的深层语义分析的兴趣点推荐方法
US11107118B2 (en) * 2014-01-31 2021-08-31 Walmart Apollo, Llc Management of the display of online ad content consistent with one or more performance objectives for a webpage and/or website

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8868448B2 (en) 2000-10-26 2014-10-21 Liveperson, Inc. Systems and methods to facilitate selling of products and services
US9819561B2 (en) 2000-10-26 2017-11-14 Liveperson, Inc. System and methods for facilitating object assignments
US9432468B2 (en) 2005-09-14 2016-08-30 Liveperson, Inc. System and method for design and dynamic generation of a web page
US8738732B2 (en) 2005-09-14 2014-05-27 Liveperson, Inc. System and method for performing follow up based on user interactions
US8260846B2 (en) * 2008-07-25 2012-09-04 Liveperson, Inc. Method and system for providing targeted content to a surfer
US8762313B2 (en) 2008-07-25 2014-06-24 Liveperson, Inc. Method and system for creating a predictive model for targeting web-page to a surfer
US8805844B2 (en) 2008-08-04 2014-08-12 Liveperson, Inc. Expert search
US9892417B2 (en) 2008-10-29 2018-02-13 Liveperson, Inc. System and method for applying tracing tools for network locations
EP2556449A1 (en) 2010-04-07 2013-02-13 Liveperson Inc. System and method for dynamically enabling customized web content and applications
US8495143B2 (en) 2010-10-29 2013-07-23 Facebook, Inc. Inferring user profile attributes from social information
US8918465B2 (en) 2010-12-14 2014-12-23 Liveperson, Inc. Authentication of service requests initiated from a social networking site
US9350598B2 (en) 2010-12-14 2016-05-24 Liveperson, Inc. Authentication of service requests using a communications initiation feature
US9883326B2 (en) 2011-06-06 2018-01-30 autoGraph, Inc. Beacon based privacy centric network communication, sharing, relevancy tools and other tools
US10019730B2 (en) * 2012-08-15 2018-07-10 autoGraph, Inc. Reverse brand sorting tools for interest-graph driven personalization
KR101961504B1 (ko) 2011-06-06 2019-03-22 엔플루언스 미디어 인코포레이티드 소비자 주도형 광고 시스템
US8943002B2 (en) 2012-02-10 2015-01-27 Liveperson, Inc. Analytics driven engagement
US20130218667A1 (en) * 2012-02-21 2013-08-22 Vufind, Inc. Systems and Methods for Intelligent Interest Data Gathering from Mobile-Web Based Applications
US8805941B2 (en) 2012-03-06 2014-08-12 Liveperson, Inc. Occasionally-connected computing interface
US9875488B2 (en) 2012-03-30 2018-01-23 Rewardstyle, Inc. Targeted marketing based on social media interaction
US9563336B2 (en) 2012-04-26 2017-02-07 Liveperson, Inc. Dynamic user interface customization
US8977948B1 (en) * 2012-05-14 2015-03-10 Amdocs Software Systems Limited System, method, and computer program for determining information associated with an extracted portion of content
US9672196B2 (en) 2012-05-15 2017-06-06 Liveperson, Inc. Methods and systems for presenting specialized content using campaign metrics
US20130317910A1 (en) * 2012-05-23 2013-11-28 Vufind, Inc. Systems and Methods for Contextual Recommendations and Predicting User Intent
GB2502551A (en) * 2012-05-30 2013-12-04 Barclays Bank Plc Consumer tailored mobile wallet system
US20150199715A1 (en) * 2012-06-29 2015-07-16 Thomson Licensing System and method for recommending items in a social network
US8583659B1 (en) * 2012-07-09 2013-11-12 Facebook, Inc. Labeling samples in a similarity graph
US8938411B2 (en) 2012-08-08 2015-01-20 Facebook, Inc. Inferring user family connections from social information
US9883340B2 (en) * 2012-08-10 2018-01-30 Here Global B.V. Method and apparatus for providing group route recommendations
US9196008B2 (en) * 2012-08-13 2015-11-24 Facebook, Inc. Generating guest suggestions for events in a social networking system
US8972570B1 (en) * 2012-08-17 2015-03-03 Facebook, Inc. Implicit geolocation of social networking users
BR112015003030B1 (pt) * 2012-08-24 2022-03-08 Samsung Electronics Co., Ltd Método para recomendar um amigo, em um primeiro terminal, primeiro terminal para recomendar um amigo
US10311085B2 (en) * 2012-08-31 2019-06-04 Netseer, Inc. Concept-level user intent profile extraction and applications
US8595317B1 (en) 2012-09-14 2013-11-26 Geofeedr, Inc. System and method for generating, accessing, and updating geofeeds
US10402426B2 (en) 2012-09-26 2019-09-03 Facebook, Inc. Generating event suggestions for users from social information
US9225788B2 (en) * 2012-10-05 2015-12-29 Facebook, Inc. Method and apparatus for identifying common interest between social network users
WO2014071023A1 (en) * 2012-10-31 2014-05-08 Moses Christopher Systems and methods for improving scheduling inefficiencies using predictive models
US20140164062A1 (en) * 2012-12-06 2014-06-12 Capital One Financial Corporation Systems and methods for performing socio-graphic consumer segmentation for targeted advertising
US8655983B1 (en) 2012-12-07 2014-02-18 Geofeedr, Inc. System and method for location monitoring based on organized geofeeds
US8639767B1 (en) 2012-12-07 2014-01-28 Geofeedr, Inc. System and method for generating and managing geofeed-based alerts
US9942334B2 (en) 2013-01-31 2018-04-10 Microsoft Technology Licensing, Llc Activity graphs
US9524071B2 (en) 2013-02-05 2016-12-20 Microsoft Technology Licensing, Llc Threshold view
US8850531B1 (en) 2013-03-07 2014-09-30 Geofeedia, Inc. System and method for targeted messaging, workflow management, and digital rights management for geofeeds
US8612533B1 (en) 2013-03-07 2013-12-17 Geofeedr, Inc. System and method for creating and managing geofeeds
US9307353B2 (en) 2013-03-07 2016-04-05 Geofeedia, Inc. System and method for differentially processing a location input for content providers that use different location input formats
US9450907B2 (en) * 2013-03-14 2016-09-20 Facebook, Inc. Bundled event memories
US9317600B2 (en) 2013-03-15 2016-04-19 Geofeedia, Inc. View of a physical space augmented with social media content originating from a geo-location of the physical space
US8862589B2 (en) 2013-03-15 2014-10-14 Geofeedia, Inc. System and method for predicting a geographic origin of content and accuracy of geotags related to content obtained from social media and other content providers
US8849935B1 (en) 2013-03-15 2014-09-30 Geofeedia, Inc. Systems and method for generating three-dimensional geofeeds, orientation-based geofeeds, and geofeeds based on ambient conditions based on content provided by social media content providers
US9294583B1 (en) * 2013-03-15 2016-03-22 Google Inc. Updating event posts
US10007897B2 (en) 2013-05-20 2018-06-26 Microsoft Technology Licensing, Llc Auto-calendaring
US20130326375A1 (en) * 2013-08-07 2013-12-05 Liveperson, Inc. Method and System for Engaging Real-Time-Human Interaction into Media Presented Online
US9256688B2 (en) * 2013-08-09 2016-02-09 Google Inc. Ranking content items using predicted performance
US9953274B2 (en) * 2013-08-30 2018-04-24 Live Nation Entertainment, Inc. Biased ticket offers for actors identified using dynamic assessments of actors' attributes
US9628950B1 (en) 2014-01-12 2017-04-18 Investment Asset Holdings Llc Location-based messaging
WO2015116167A2 (en) * 2014-01-31 2015-08-06 Diienno David Bounded data based targeted marketing
US20150220982A1 (en) * 2014-01-31 2015-08-06 David DiIenno Bounded data based targeted marketing
WO2015149032A1 (en) 2014-03-28 2015-10-01 Brian Roundtree Beacon based privacy centric network communication, sharing, relevancy tools and other tools
US11386442B2 (en) 2014-03-31 2022-07-12 Liveperson, Inc. Online behavioral predictor
WO2015156798A1 (en) * 2014-04-09 2015-10-15 Empire Technology Development, Llc Identification by sound data
US20150310486A1 (en) * 2014-04-23 2015-10-29 Google Inc. Distributing offers at the time and location of an event
US9396354B1 (en) 2014-05-28 2016-07-19 Snapchat, Inc. Apparatus and method for automated privacy protection in distributed images
US9537811B2 (en) 2014-10-02 2017-01-03 Snap Inc. Ephemeral gallery of ephemeral messages
US20150356608A1 (en) * 2014-06-10 2015-12-10 Facebook, Inc. Selecting advertisement content for social networking system users based on types of location data associated with the users
US9113301B1 (en) 2014-06-13 2015-08-18 Snapchat, Inc. Geo-location based event gallery
US10318983B2 (en) * 2014-07-18 2019-06-11 Facebook, Inc. Expansion of targeting criteria based on advertisement performance
US10528981B2 (en) 2014-07-18 2020-01-07 Facebook, Inc. Expansion of targeting criteria using an advertisement performance metric to maintain revenue
US10425783B1 (en) * 2014-09-10 2019-09-24 West Corporation Providing data messaging support by intercepting and processing received short message service (SMS) messages at a customer support service
US10824654B2 (en) 2014-09-18 2020-11-03 Snap Inc. Geolocation-based pictographs
US11216869B2 (en) 2014-09-23 2022-01-04 Snap Inc. User interface to augment an image using geolocation
US9015285B1 (en) 2014-11-12 2015-04-21 Snapchat, Inc. User interface for accessing media at a geographic location
US9385983B1 (en) 2014-12-19 2016-07-05 Snapchat, Inc. Gallery of messages from individuals with a shared interest
US10311916B2 (en) 2014-12-19 2019-06-04 Snap Inc. Gallery of videos set to an audio time line
US9763039B2 (en) 2014-12-30 2017-09-12 Alcatel-Lucent Usa Inc. Controlling access to venue-related content, applications, and services
US10078851B2 (en) 2015-01-13 2018-09-18 Live Nation Entertainment, Inc. Systems and methods for leveraging social queuing to identify and prevent ticket purchaser simulation
US9466035B2 (en) 2015-01-13 2016-10-11 Songkick.Com B.V. Systems and methods for leveraging social queuing to facilitate event ticket distribution
US10102544B2 (en) 2015-01-13 2018-10-16 Live Nation Entertainment, Inc. Systems and methods for leveraging social queuing to simulate ticket purchaser behavior
US11049029B2 (en) * 2015-02-22 2021-06-29 Google Llc Identifying content appropriate for children algorithmically without human intervention
US20160260108A1 (en) * 2015-03-05 2016-09-08 David Brian Bracewell Occasion-based consumer analytics
KR20240064012A (ko) 2015-03-18 2024-05-10 스냅 인코포레이티드 지오-펜스 인가 프로비저닝
US10135949B1 (en) 2015-05-05 2018-11-20 Snap Inc. Systems and methods for story and sub-story navigation
AU2016270937B2 (en) 2015-06-02 2021-07-29 Liveperson, Inc. Dynamic communication routing based on consistency weighting and routing rules
US20170017998A1 (en) * 2015-07-17 2017-01-19 Adobe Systems Incorporated Determining context and mindset of users
US9485318B1 (en) 2015-07-29 2016-11-01 Geofeedia, Inc. System and method for identifying influential social media and providing location-based alerts
US20170032384A1 (en) * 2015-07-29 2017-02-02 Geofeedia, Inc. System and Method for Analyzing Social Media Users Based on User Content Posted from Monitored Locations
CN106529985B (zh) * 2015-09-15 2021-06-08 腾讯科技(深圳)有限公司 一种推广信息的投放方法、装置和系统
US10580023B2 (en) * 2015-11-06 2020-03-03 International Business Machines Corporation Event attendee origin prediction and impact analysis
US10354425B2 (en) 2015-12-18 2019-07-16 Snap Inc. Method and system for providing context relevant media augmentation
US20170364957A1 (en) * 2016-06-16 2017-12-21 Facebook, Inc. Identifying target audience for content distribution based on historical user activity
EP3497560B1 (en) 2016-08-14 2022-11-02 Liveperson, Inc. Systems and methods for real-time remote control of mobile applications
US10915911B2 (en) * 2017-02-03 2021-02-09 Snap Inc. System to determine a price-schedule to distribute media content
JP6392921B1 (ja) * 2017-03-17 2018-09-19 ヤフー株式会社 生成装置、生成方法、及び生成プログラム
US10582277B2 (en) 2017-03-27 2020-03-03 Snap Inc. Generating a stitched data stream
US10581782B2 (en) 2017-03-27 2020-03-03 Snap Inc. Generating a stitched data stream
US10581953B1 (en) * 2017-05-31 2020-03-03 Snap Inc. Real-time content integration based on machine learned selections
US11574322B2 (en) * 2017-10-19 2023-02-07 Meta Platforms, Inc. Identifying a location based on expected differences between online system users expected to be at the location and online system users previously at the location
US10783499B1 (en) * 2017-11-02 2020-09-22 Mh Sub I, Llc System and method for offering customers' appointments based on their predicted likelihood of accepting the appointment
KR102267646B1 (ko) * 2018-07-23 2021-06-22 (주)히든트랙 이벤트 정보를 제공하는 방법, 시스템 및 비일시성의 컴퓨터 판독 가능 기록 매체
US20200043046A1 (en) * 2018-08-03 2020-02-06 Facebook, Inc. Location prediction
US10740103B2 (en) 2018-10-26 2020-08-11 Google Llc Probabilistic techniques for formatting digital components
JP7149214B2 (ja) * 2019-03-27 2022-10-06 株式会社日立製作所 情報処理装置、およびユーザの行動促進方法
WO2020250781A1 (ja) * 2019-06-10 2020-12-17 株式会社Nttドコモ 推論装置
JP7472548B2 (ja) 2020-03-03 2024-04-23 株式会社Jvcケンウッド サーバ、試合表示システム、広告設定方法及び広告設定プログラム
KR102680051B1 (ko) 2021-08-05 2024-07-01 주식회사 니블스카이 서드파티 광고 설정 시스템 및 방법
CN115098792B (zh) * 2022-08-26 2022-11-08 天津恒达文博科技股份有限公司 展品推荐方法、装置、计算机可读存储介质及电子设备
JP7633440B2 (ja) * 2023-02-16 2025-02-19 株式会社電通 情報処理装置、情報処理方法及び情報処理プログラム
US20240338613A1 (en) * 2023-04-07 2024-10-10 Garuda Labs, Inc. Prediction of cancellations of booked events

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186769A1 (en) * 2003-03-21 2004-09-23 Mangold Bernard P. System and method of modifying the price paid by an advertiser in a search result list
US9117220B2 (en) * 2003-06-16 2015-08-25 Meetup, Inc. Web-based interactive meeting facility with revenue generation through sponsorship
US8799073B2 (en) * 2006-08-15 2014-08-05 Microsoft Corporation Computing system for monetizing calendar applications
US8229458B2 (en) * 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
US7672937B2 (en) * 2007-04-11 2010-03-02 Yahoo, Inc. Temporal targeting of advertisements
WO2009026395A1 (en) * 2007-08-20 2009-02-26 Facebook, Inc. Targeting advertisements in a social network
JP2009070064A (ja) * 2007-09-12 2009-04-02 Sony Corp 情報配信装置、情報受信装置、情報配信方法、情報受信方法及び情報配信システム
US8060406B2 (en) * 2008-09-26 2011-11-15 Microsoft Corporation Predictive geo-temporal advertisement targeting
US20100250335A1 (en) * 2009-03-31 2010-09-30 Yahoo! Inc System and method using text features for click prediction of sponsored search advertisements
US8997006B2 (en) * 2009-12-23 2015-03-31 Facebook, Inc. Interface for sharing posts about a live online event among users of a social networking system
JP2013522762A (ja) * 2010-03-12 2013-06-13 ライヴ マトリックス インコーポレイテッド スケジュールされたウェブベースイベントの対話型カレンダー
US8700540B1 (en) * 2010-11-29 2014-04-15 Eventbrite, Inc. Social event recommendations
US20120253935A1 (en) * 2011-03-31 2012-10-04 Nokia Corporation Method and apparatus for presenting alternative socio-spatial states of a user

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9716765B2 (en) 2013-05-27 2017-07-25 Huawei Technologies Co., Ltd. Information push method and apparatus
JP2015011712A (ja) * 2013-06-28 2015-01-19 アザパ アールアンドディー アメリカズ インク デジタル情報収集および解析方法およびその装置
WO2015050503A1 (en) * 2013-10-04 2015-04-09 Yuuzoo Corporation System and method to serve one or more advertisements with different media formats to one or more devices
US11107118B2 (en) * 2014-01-31 2021-08-31 Walmart Apollo, Llc Management of the display of online ad content consistent with one or more performance objectives for a webpage and/or website
WO2016063615A1 (ja) * 2014-10-21 2016-04-28 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
JPWO2016063615A1 (ja) * 2014-10-21 2017-08-03 ソニー株式会社 情報処理装置、情報処理方法及びプログラム
CN109684561A (zh) * 2018-12-24 2019-04-26 宿州学院 基于用户签到行为变化的深层语义分析的兴趣点推荐方法

Also Published As

Publication number Publication date
CA2855008C (en) 2017-06-06
CA2855008A1 (en) 2013-05-23
AU2012339935A1 (en) 2014-05-29
KR20140094615A (ko) 2014-07-30
WO2013074367A3 (en) 2014-12-04
JP6023208B2 (ja) 2016-11-09
JP2015509221A (ja) 2015-03-26
US20130132194A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
CA2855008C (en) Targeting advertisements to users of a social networking system based on events
US20130159110A1 (en) Targeting users of a social networking system based on interest intensity
US10685361B2 (en) Targeting advertisements to groups of social networking system users
JP6377625B2 (ja) 広告における製品に関するソーシャルコンテキストの提供
US20130085859A1 (en) Targeting Advertisements Based on User Interactions
US20130124298A1 (en) Generating clusters of similar users for advertisement targeting
US10528981B2 (en) Expansion of targeting criteria using an advertisement performance metric to maintain revenue
US20160232575A1 (en) Determining a number of cluster groups associated with content identifying users eligible to receive the content
AU2013363366B2 (en) Targeting objects to users based on search results in an online system
US10776817B2 (en) Selecting content for presentation to an online system user based on categories associated with content items
US20140052540A1 (en) Providing content using inferred topics extracted from communications in a social networking system
US9430782B2 (en) Bidding on search results for targeting users in an online system
US20130204710A1 (en) Sequencing display items in a social networking system
US10509816B2 (en) Runtime expansion of targeting criteria based on user characteristics
US10325287B2 (en) Advertising based on user trends in an online system
JP6633392B2 (ja) ソーシャル・ネットワーキング・システムにおけるスポンサ付きストーリのためのソーシャル・コンテキストの選択
US20180336598A1 (en) Iterative content targeting
US20140172564A1 (en) Targeting objects to users based on queries in an online system
US20190139094A1 (en) Presenting content to an online system user assigned to a stage of a classification scheme and determining a value associated with an advancement of the user to a succeeding stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849637

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2855008

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014542346

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012339935

Country of ref document: AU

Date of ref document: 20121108

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147016352

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12849637

Country of ref document: EP

Kind code of ref document: A2