WO2013073178A1 - 原子炉水位計測システム - Google Patents

原子炉水位計測システム Download PDF

Info

Publication number
WO2013073178A1
WO2013073178A1 PCT/JP2012/007296 JP2012007296W WO2013073178A1 WO 2013073178 A1 WO2013073178 A1 WO 2013073178A1 JP 2012007296 W JP2012007296 W JP 2012007296W WO 2013073178 A1 WO2013073178 A1 WO 2013073178A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
reactor
water
level meter
meter
Prior art date
Application number
PCT/JP2012/007296
Other languages
English (en)
French (fr)
Inventor
由佳 松尾
藤雄 白石
泰志 後藤
伊藤 敏明
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP12850313.3A priority Critical patent/EP2782101A4/en
Priority to US14/359,197 priority patent/US20140270037A1/en
Publication of WO2013073178A1 publication Critical patent/WO2013073178A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/035Moderator- or coolant-level detecting devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/18Indicating, recording or alarm devices actuated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/288X-rays; Gamma rays or other forms of ionising radiation
    • G01F23/2885X-rays; Gamma rays or other forms of ionising radiation for discrete levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a reactor water level measurement system that measures the water level in a reactor.
  • the reactor has multiple water level gauges with different measurement ranges, calibrated according to the application.
  • a water level measuring device using a gamma thermometer disclosed in Patent Document 1 and a technique for measuring a water level using a differential pressure are known.
  • patent literature Japanese Patent Laid-Open No. 10-39083
  • the measurement ranges of these water level gauges are set to overlap.
  • a plurality of water level gauges may show different water level indication values depending on the state of the plant.
  • the operator needs to read the water level after recognizing the use of each water level gauge.
  • the water level gauge is designed so that it can be measured to the effective bottom level of the fuel in consideration of the accident, but in severe accidents, the water level can reach a point that cannot be measured by the conventional water level gauge. May fall.
  • a fuel area water level gauge is used to check the core flood, but if it is affected by a temperature rise in the reactor containment that exceeds the design conditions of the water level gauge, the fuel area water level gauge cannot measure. May occur.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a reactor water level measurement system capable of measuring the water level throughout the reactor pressure vessel.
  • a reactor water level measurement system has a condensing tank connected to a steam region of a reactor pressure vessel stored in a reactor containment vessel, and one end of the condensing tank described above.
  • Reference water column instrumentation pipe connected, first variable water column instrumentation pipe having one end connected to the reactor pressure vessel, the reference water column instrumentation pipe, and the first variable water column instrumentation pipe described above
  • a first water level meter of differential pressure measurement type that detects a head difference between the reference water column instrumentation pipe and the first fluctuating water column instrumentation pipe, and the first water level meter.
  • the first water level meter that detects the water level of the reactor pressure vessel, and the first containment based on the state of the reactor containment vessel or the reactor pressure vessel. Select the water level meter or the second water level meter mentioned above, and the detection result of the selected water level meter Based on, characterized in that an arithmetic unit for instructing and recording the water level in the reactor pressure vessel described above.
  • the water level can be measured throughout the reactor pressure vessel.
  • Embodiments of a reactor water level measurement system according to the present invention will be described with reference to the accompanying drawings.
  • the reactor water level measurement system according to the present invention will be described by applying it to a boiling water reactor.
  • the reactor water level measurement system according to the present invention can of course be applied to a pressurized water reactor or the like.
  • FIG. 1 is a configuration diagram showing a first embodiment of a reactor water level measurement system according to the present invention.
  • a reactor pressure vessel (pressure vessel) 2 to be measured by the reactor water level measurement system (water level measurement system) 1 accommodates the core 3.
  • the pressure vessel 2 is stored in a nuclear reactor containment vessel (containment vessel) 4.
  • the pressure vessel 2 has a condensing tank 11 and detection taps 12 to 14 on the side surface.
  • the condensing tank 11 is provided in the containment vessel 4 and connected to the vapor region of the pressure vessel 2.
  • the condensing tank 11 is connected to a reference water column instrumentation pipe (reference pipe) 21 at the bottom, and provides a reference head when detecting the water level.
  • the detection taps 12 to 14 are provided at predetermined positions of the pressure vessel 2 according to the measurement ranges of the differential pressure type water level meters 31 to 34, respectively.
  • One end of each of the fluctuating water column instrumentation pipes (fluctuation pipes) 22 to 24 as the first fluctuating water column instrumentation pipes is connected to the pressure vessel 2 via these detection taps 12 to 14.
  • the reference pipe 21 and the variable pipes 22 to 24 extend to the outside of the containment vessel 4, and the differential pressure type water level gauges 31 to 34 and the other ends are connected outside the containment vessel 4, respectively.
  • the differential pressure type water level gauges 31 to 34 are a narrow-band reactor water level gauge 31, a broadband reactor water level gauge 32, a fuel zone reactor water level gauge 33, and a reactor water level gauge 34 for water filling during regular inspection.
  • the differential pressure type water level meters 31 to 34 detect water head differences between the reference pipe 21 and the variable pipes 22 to 24.
  • the narrow-band reactor water level meter (narrow-band water level meter) 31 measures the water level in a narrow range where the water level fluctuation is predicted in a state including a normal operation state and a transient state.
  • the broadband reactor water level meter (broadband water level meter) 32 measures the water level in a wider range than the measurement range of the narrow band water level meter 31 predicted in a state including abnormal transient changes and accidents.
  • the fuel region reactor water level meter (fuel region water level meter) 33 measures the water level lower than the measurement range of the broadband water level meter 32 in a state including after the accident, and is used, for example, for core flood confirmation.
  • the water level gauge for water filling during regular inspection (water level meter for water filling during regular inspection) 34 measures the water level from the upper part of the fuel to the reactor well, which is the water level assumed during the periodic inspection of the nuclear power plant.
  • the differential pressure type water level gauges 31 to 34 are calibrated based on the state of the reactor. For example, the narrow band water level gauge 31 and the broadband water level gauge 32 use the pressure and temperature during rated operation as calibration conditions. The fuel area water level gauge 33 and the water leveling reactor water level gauge 34 during regular inspection are calibrated at atmospheric pressure.
  • an in-reactor non-differential pressure type water level gauge 35 is provided in the pressure vessel 2.
  • the in-reactor non-differential pressure type water level gauge 35 is a second water level gauge having a configuration and method different from those of the differential pressure type water level gauges 31 to 34.
  • a gamma thermometer that detects a water level using a temperature difference caused by gamma rays or the like. It is. The gamma thermometer not only detects the water level using gamma rays, but also can detect the water level from the temperature difference depending on the presence or absence of water using a heater provided in the gamma thermometer as a heat source.
  • the in-reactor non-differential pressure level gauge 35 is provided inside the core shroud surrounding the core 3 or outside the core shroud.
  • the non-reactor non-differential water level gauge 36 is a second water level gauge having a configuration different from that of the differential pressure type water level gauges 31 to 34, and is a water level gauge that detects the water level using, for example, gamma rays, neutron beams, and ultrasonic waves. is there.
  • the non-differential pressure level water gauge 35 inside the reactor and the non-differential pressure level water gauge 36 outside the reactor can measure the water level overlapping with the water level measurement range of the differential pressure level gauges 31-34. It is possible to detect the water level at the bottom of the pressure vessel 2 lower than the lower end of the effective fuel length, which is lower than the range that can be measured by the fuel area water level meter 33. It is preferable that a plurality of non-differential pressure level gauges 35 and 36 are provided in multiple sections in and out of the pressure vessel 2 and the water level is measured at a plurality of detection points in the vertical direction. When the core 3 is damaged, the water level gauge may also be damaged. However, by providing a plurality of detection points, it can be confirmed that the reactor water is contained by the water level gauge having no abnormality in output.
  • the reactor pressure gauge (pressure gauge) 41 is connected to the reference pipe 21 outside the containment vessel 4 and measures the pressure in the pressure vessel 2.
  • the first thermometer 42 is provided in the dry well 5 in the storage container 4 and detects the atmospheric temperature of the dry well 5.
  • the second thermometer 43 is provided on the surface of the reference pipe 21 near the condensing tank 11 in the storage container 4 and measures the surface temperature of the reference pipe 21 near the condensing tank 11.
  • the third thermometer 44 is provided on the surface of the fluctuation pipe 24 connected to the fuel region water level gauge 33 in the containment vessel 4 and measures the surface temperature of the fluctuation pipe 24.
  • differential pressure type water level meters 31 to 34 are connected to the arithmetic unit 20, and the obtained detection results are output to the arithmetic unit 20.
  • the arithmetic unit 20 instructs and records the water level, pressure, temperature, and the like from the detection result transmitted from each measuring device.
  • a display device and an input device are connected to the arithmetic device 20.
  • the arithmetic device 20 displays the acquired instruction value on a display device, or inputs to the arithmetic device 20 via the input device.
  • the arithmetic unit 20 detects the state of the containment vessel 4 or the pressure vessel 2 and indicates and records the water level from the differential pressure type water level gauges 31 to 34 and the non-differential pressure type water level gauges 35 and 36 based on the detected state. Select the water level meter to be used.
  • FIG. 2 is a flowchart for explaining the selection process when the reactor pressure drops.
  • the selection process at the time of the reactor pressure drop is a process assumed in the process of depressurizing the reactor at the time of transient and accident.
  • step S1 the arithmetic unit 20 acquires the reactor pressure saturation temperature from the first thermometer 42 and the atmospheric temperature of the dry well 5 and the reactor pressure measured by the pressure gauge 41, and compares them.
  • step S ⁇ b> 2 the arithmetic unit 20 determines whether the atmospheric temperature of the dry well 5 is higher than the reactor pressure saturation temperature.
  • the arithmetic unit 20 determines whether or not the water level measurement by the differential pressure type water level gauges 31 to 34 is impossible in step S3. For example, the arithmetic unit 20 records the history of instruction values obtained from the differential pressure type water level gauges 31 to 34 of a plurality of channels, and detects the presence or absence of an abnormality from an increase in variation.
  • step S4 If the arithmetic unit 20 determines that the differential pressure type water level meters 31 to 34 cannot measure the water level, in step S4, at least the non-differential pressure level water level gauge 35 inside the reactor and the non-differential pressure level water level gauge 36 outside the reactor are at least. Select one. Thereafter, the arithmetic unit 20 measures the water level using the non-differential pressure type water level gauges 35 and 36 as the indicated value of the water level and outputs it to the operator.
  • the reactor pressure saturation temperature is equal to or higher than the dry well atmosphere temperature (NO in step S2), or the differential pressure type water level meter can be measured. If it is determined (NO in step S3), the water level is continuously measured by the differential pressure type water level gauges 31-34.
  • Such a water level measurement system 1 automatically switches to the non-differential pressure level gauges 35 and 36 based on the state of the pressure vessel 2 and the containment vessel 4 even when the differential pressure type water level meters 31 to 34 cannot be measured.
  • the reactor water level can be measured even during transients and accidents.
  • the water level measurement system 1 can measure the water level with a water level meter that is different from the differential pressure type and can ensure reliability, and can ensure diversity in measurement.
  • FIG. 3 is a flowchart for explaining the selection process when the reactor water level is lowered.
  • the selection process when the reactor water level is lowered is a process assumed in the process of lowering the reactor water level during a transient or accident.
  • step S11 the arithmetic unit 20 determines whether or not the reactor water level is lower than a preset water level (for example, L-2 or L-1.5). At this time, the arithmetic unit 20 makes a determination using the indication value of the broadband water level gauge 32. When it is determined that the reactor water level is equal to or higher than the set water level, the arithmetic unit 20 continues to instruct and record the water level using the currently selected water level gauge.
  • a preset water level for example, L-2 or L-1.5
  • the arithmetic unit 20 compares the reactor pressure obtained from the pressure gauge 41 with a preset set pressure (for example, 50 kPa) in step S12, and It is determined whether or not the pressure is smaller. When it is determined that the reactor pressure is equal to or higher than the set pressure, the arithmetic unit 20 continues to instruct and record the water level using the currently selected water level gauge.
  • a preset set pressure for example, 50 kPa
  • step S 13 the fuel area water level meter 33 is selected in step S13.
  • step S ⁇ b> 14 the arithmetic unit 20 determines whether or not the water level measurement by the fuel area water level meter 33 is possible. For example, the arithmetic unit 20 observes fluctuations in the indicated value of the fuel area water level meter 33. When the fluctuation is not detected, the arithmetic unit 20 determines that measurement is impossible because there is a possibility that an abnormality such as evaporation or leakage occurs in the water contained in the reference pipe 21. When the water level falls below the lower limit of the measurement range of the fuel area water level meter 33, the arithmetic unit 20 determines that measurement is impossible.
  • the arithmetic unit 20 When it is determined that the water level can be measured by the fuel area water level gauge 33, the arithmetic unit 20 continues to instruct and record the water level by the fuel area water level gauge 33. When it is determined that the fuel level water level meter 33 cannot measure the water level, the arithmetic unit 20 determines in step S15 at least one of the in-reactor non-differential pressure type water level meter 35 and the non-reactor non-differential pressure type water level meter 36. select. Thereafter, the arithmetic unit 20 instructs and records the water level using the non-differential pressure level gauges 35 and 36.
  • the fuel region level gauge 33 measures the water level outside the core shroud
  • the in-reactor non-differential pressure level gauge 35 is the core.
  • the water level in the shroud will be measured.
  • the arithmetic unit 20 preferably outputs the fact that the water level is in the core shroud. The operator can easily determine that the monitoring area has been changed by checking whether the water level indication value is inside the core shroud or outside the core shroud.
  • the arithmetic unit 20 when an abnormality is detected in any of the in-reactor non-differential pressure level gauges 35, the arithmetic unit 20 has an abnormality.
  • the water level of the pressure vessel 2 is instructed and recorded based on the detection result of the water level meter other than the detected water level meter. Thereby, the water level measurement system 1 can confirm that there is reactor water at the place where the normal in-reactor non-differential pressure type water level gauge 35 is installed.
  • Such a water level measurement system 1 is a fuel region water level meter that is calibrated at atmospheric pressure, which is an abnormal transient or accident condition, when the reactor water level and the reactor pressure become lower than the set water level and the set pressure. 33 is selected. Thereby, the water level measurement system 1 can sufficiently eliminate the influence of the instruction difference due to the reactor pressure, and can accurately monitor the water level at the upper end of the fuel effective length (TAF).
  • TAF fuel effective length
  • the water level measurement system 1 can ensure the reliability of the reactor water level instruction by selecting the non-differential pressure level gauges 35 and 36. . That is, the non-differential pressure level water level gauge 35 inside the reactor and the non-differential pressure level water level gauge 36 outside the reactor are configured so as to be able to detect the water level below the lower limit of the measurement range of the fuel area water level gauge 33. Even when the reactor water level falls and the water level indication of the fuel area water level gauge 33 falls below the lower limit of the measurement range, the measurement range can be expanded and the water level can be easily confirmed.
  • FIG. 4 is a flowchart for explaining the selection process when the water level is lower than the TAF.
  • the selection process at the time of lowering the water level than TAF is a process assumed when, for example, the reflooding of the core 3 is confirmed after the selection process at the time of lowering the water level in FIG.
  • step S21 the arithmetic device 20 determines whether the fuel level water level meter 33 can measure the water level. Make a decision. Specifically, it is determined whether or not the water level can be measured by the fuel area water level meter 33 as a result of water filling of the reference pipe 21 and the variable pipe 24 connected to the fuel area water level gauge 33.
  • the arithmetic unit 20 selects the fuel area water level meter 33 and uses it for indicating / recording the water level in step S22.
  • the arithmetic unit 20 can confirm the reflooding of the core 3 at the water level outside the core shroud, which is the water level obtained from the fuel area water level gauge 33.
  • step S23 it is determined whether or not the reactor pressure is higher than a set pressure (for example, 50 kPa).
  • the arithmetic unit 20 selects at least one of the in-reactor non-differential pressure type water level gauge 35 and the non-reactor non-differential pressure type water level gauge 36 in step S24. Thereafter, the arithmetic unit 20 measures the water level using the non-differential pressure type water level gauges 35 and 36 as the indicated value of the water level and outputs it to the operator. The computing device 20 confirms reflooding of the core 3 by using the outputs of the non-differential pressure level gauges 35 and 36.
  • the arithmetic unit 20 records the history of the broadband water level gauge 32 and the water level gauge 34 for water filling during regular inspection in step S25, and outputs the history. It is determined whether or not there is a fluctuation.
  • Step S26 the water level meter 34 for regular filling is selected, and the water level is indicated and recorded.
  • reflooding of the core 3 is confirmed. This is because the influence of the reactor pressure on the water level gauge 34 for water filling during regular inspection calibrated at atmospheric pressure can be sufficiently eliminated, and it is considered that the fluctuation pipe 23 of the water level gauge 34 for regular water filling was filled with reactor water. It is.
  • the fuel level gauge 33, the non-differential pressure level gauges 35 and 36, or the water level gauge 34 for water filling during regular inspection are used when the water level is measured by the arithmetic unit 20 when the core 3 is reflooded. Any of the above can be suitably selected according to the situation, so that the water level can be easily confirmed.
  • the water level measurement system 1 in the first embodiment has a water level meter having a plurality of configurations, and performs various selection processes shown in FIGS. 2 to 4 described above, so that various states such as a reactor pressure and a reactor water level are obtained.
  • the water level meter that is most suitable for water level measurement can be selected according to the variety. As a result, since the water level measurement system 1 can present a highly reliable water level instruction value, the operator can easily check the water level.
  • the water level measurement system 1 can also be used as follows by utilizing the advantages of having the differential pressure type water level gauges 31 to 34 and the non-differential pressure type water level gauges 35 and 36.
  • the water level measurement system 1 calibrates the differential pressure level gauges 31 to 34 using the non-differential pressure level gauges 35 and 36 that measure the water level by using a gamma ray, which is not affected by the specific gravity of the liquid. can do.
  • the arithmetic unit 20 compares the outputs of the differential pressure type water level gauges 31 to 34 with the outputs of the non-differential pressure type water level gauges 35 and 36 (water level outside the core shroud), and obtains a coefficient between them.
  • the arithmetic unit 20 calibrates the outputs of the differential pressure type water level gauges 31 to 34 using this coefficient. As a result, the arithmetic unit 20 can confirm the calibrated water level indication value from the differential pressure type water level gauges 31 to 34, and can measure the water level outside the core shroud more accurately.
  • non-differential pressure level gauges 35 and 36 as the second level gauges may be a plurality of water level gauges using different methods (for example, gamma rays, neutron rays, ultrasonic waves), or the non-differential pressure level gauges 35 and 36 may be Diversity of measurement can be ensured by providing multiple sections.
  • the arithmetic unit 20 detects the overscaled or downscaled non-differential pressure level water level.
  • Non-differential pressure type water level gauges 35 and 36 other than the total 35 and 36 are selected.
  • the arithmetic unit 20 records each history and calculates the variation of the indicated value between the sections.
  • the variation increases, that is, when an abnormality is detected, the arithmetic unit 20 uses the non-differential pressure level gauges 35 and 36 (normal non-differential pressure level gauges 35) other than the non-differential pressure level gauges 35 and 36 indicating an abnormal value. , 36).
  • the water level measurement system 1 can indicate and record the water level more accurately.
  • the water level measurement system 51 in the second embodiment is different from the first embodiment in that a severe accident measurement water level meter 55 is provided in place of or together with the non-differential pressure type water level meters 35 and 36. It is a point to have.
  • FIG. 5 is a configuration diagram showing a second embodiment of the reactor water level measurement system according to the present invention.
  • Reactor coolant recirculation flow system (recirculation flow system) 52 is connected to the pressure vessel 2.
  • the recirculation flow system 52 includes a reactor coolant recirculation flow system pump (recirculation flow system pump) 53, and a reactor coolant recirculation flow system pipe connected upstream of the recirculation flow system pump 53 ( Recirculation flow system piping) 54.
  • the water level measurement system 51 includes an SA measurement variable water column instrumentation pipe (SA variable pipe) 56, an SA measurement reference water column instrumentation pipe (SA reference pipe) 57, and an SA measurement water level gauge (SA water level gauge). 55.
  • SA variable pipe SA measurement variable water column instrumentation pipe
  • SA reference pipe SA measurement reference water column instrumentation pipe
  • SA water level gauge SA water level gauge
  • the SA variable pipe 56 (second variable water column instrumentation pipe) has one end connected to the recirculation flow system pipe 54. One end of the SA reference pipe 57 is connected to the reference pipe 21.
  • the SA water level gauge 55 is connected to the other end of the SA variable pipe 56 and the SA reference pipe 57 (reference water column instrumentation pipe), respectively, and detects the water head difference between the SA variable pipe 56 and the SA reference pipe 57.
  • the SA water level meter 55 is an example of a second water level meter having a configuration different from the differential pressure type water level meters 31 to 34 as the first water level meter.
  • the SA water level meter 55 is connected to the arithmetic device 20 (not shown), and outputs the detection result to the arithmetic device 20.
  • the SA water level meter 55 is a water level meter capable of detecting a water level below the lower limit of the measurable range of the fuel area water level meter 33 as described above. For this reason, it can replace with the non-differential pressure type water level gauges 35 and 36 in 1st Embodiment, or can measure the water level of the pressure vessel 2 with the non-differential pressure type water level gauges 35 and 36. Specifically, for example, in each of the selection processes in FIGS. 2 to 4, the SA water level meter 55 is selected instead of or together with the non-differential pressure level meter 35, 36. be able to.
  • the SA water level gauge 55 may be configured as shown in FIGS.
  • FIG. 6 is a configuration diagram of a water level measurement system 61 as a first modification of the water level measurement system 51 of the second embodiment.
  • the CUW 62 has a reactor coolant purification equipment system bottom line pipe (CUW bottom line pipe) 63.
  • the water level measurement system 61 includes an SA variable pipe 56, an SA reference pipe 57, and an SA water level gauge 55.
  • the SA variable pipe 56 (third variable water column instrumentation pipe) has one end connected to the CUW bottom line pipe 63. One end of the SA reference pipe 57 is connected to the reference pipe 21.
  • the SA water level meter 55 is connected to the other ends of the SA variable pipe 56 and the SA reference pipe 57, respectively, and detects the water head difference between the SA variable pipe 56 and the SA reference pipe 57.
  • FIG. 7 is a configuration diagram of a water level measurement system 71 as a second modification of the water level measurement system 51 of the second embodiment.
  • the detection vessel 72 is provided in the pressure vessel 2.
  • the detection tap 72 is provided at a position where the SA water level meter 55 can detect the water level below the effective lower end of the fuel and to the bottom of the pressure vessel 2.
  • the water level measurement system 71 includes an SA variable pipe 56, an SA reference pipe 57, and an SA water level gauge 55.
  • the SA variable pipe 56 (fourth variable water column instrumentation pipe) has one end connected to the detection tap 72.
  • One end of the SA reference pipe 57 is connected to the reference pipe 21.
  • the SA water level meter 55 is connected to the other ends of the SA variable pipe 56 and the SA reference pipe 57, respectively, and detects the water head difference between the SA variable pipe 56 and the SA reference pipe 57.
  • the water level measurement systems 51, 61, and 71 shown in FIGS. 5 to 7 have the same effects as those of the first embodiment, and are not measurable by the water level measurement system 1 of the first embodiment. Can be measured, and the measurement range can be expanded uniformly by the differential pressure measurement method.
  • each selection process shown in FIGS. 2 to 4 is automatically performed by the arithmetic unit 20
  • the operator may perform the selection manually.
  • the arithmetic unit 20 displays various information such as the state of the pressure vessel 2 and the containment vessel 4 for selecting the water level meter on the display device, and allows the operator to select the water level meter.
  • the arithmetic unit 20 instructs an operator's selection result via an input device.
  • the water level measurement system in 1st and 2nd embodiment demonstrated as an example the case provided with the non-differential pressure type water level meter 35 and the non-differential pressure type water level meter 36 outside a reactor as a non-differential pressure type water level meter, As shown in FIGS. 8 and 9, either the in-reactor non-differential pressure type water level gauge 35 or the non-reactor non-differential pressure type water level gauge 36 may be provided.
  • the present invention is used in all reactor water level measurement systems in which the reactor is cooled with water.
  • Reactor water level measurement system water level measurement system
  • Reactor pressure vessel pressure vessel
  • Reactor containment vessel containment vessel
  • Condensation tank 20
  • Computing device 21
  • Reference water column instrumentation piping (reference piping) 22-24 Fluctuating water column instrumentation piping (variable piping)
  • Narrow-band reactor water level gauge Narrow-band water level gauge
  • Broadband reactor water level gauge Broadband water level gauge
  • Fuel area reactor water level gauge (fuel area water level gauge) Reactor water level meter for water filling during regular inspection (Water level meter for water filling during regular inspection)
  • Non-differential pressure type water level gauge in reactor 36
  • Non-differential pressure type water level gauge outside reactor 52
  • Reactor coolant recirculation flow system recirculation flow system
  • Reactor coolant recirculation flow system pump Recirculation flow system pump
  • Reactor coolant recirculation flow system piping 55 Sever

Abstract

原子炉圧力容器全体を通して水位計測が可能である原子炉水位計測システムを提供する。 圧力容器(2)の蒸気領域に接続された凝縮槽(11)と、凝縮槽(11)に一端が接続された基準配管(21)と、圧力容器(2)に一端が接続された変動配管(22)~(24)と、基準配管(21)および変動配管(22)~(24)の他端と接続され、基準配管(21)および変動配管(22)~(24)の水頭差を検出する差圧式水位計(31)~(34)と、圧力容器2の水位を検出する非差圧式水位計(35)、(36)と、格納容器(4)または圧力容器(2)の状態に基づいて、差圧式水位計(31)~(34)または非差圧式水位計(35)、(36)を選択し、選択された水位計の検出結果に基づいて圧力容器2の水位を指示・記録する演算装置(20)とを備えた。

Description

原子炉水位計測システム
 本発明は、炉内の水位を計測する原子炉水位計測システムに関する。
 原子炉は、用途に応じて校正された、異なる計測範囲を有する複数の水位計を有する。従来、特許文献1に開示されたガンマサーモメータを用いた水位計測装置や、差圧を利用して水位を計測する技術が知られている。
このようなものとして、日本国の公開特許公報、特開平10-39083号公報(以下、特許文献という)がある。
特開平10-39083号公報
 これら水位計の計測範囲は、オーバーラップするように設けられる。しかし、校正条件の違いから、プラントの状態によって複数の水位計が異なる水位指示値を示す場合がある。これに伴い、過渡時や事故時などのプラントの状態が大きく変化する場合においては、運転員が各水位計の用途を認識した上で水位を読み取る必要がある。
 また、水位計は、事故時を考慮して燃料有効下端レベルまで計測できるように設計されているものの、苛酷事故時においては、従来の水位計では想定されていない計測不可能な地点まで水位が低下する恐れがある。
 さらに、炉心冠水確認用として燃料域水位計が用いられるが、水位計の設計条件を上回る原子炉格納容器内の温度上昇の影響を受けた場合には、燃料域水位計では計測不能となる事象が発生する恐れがある。
 本発明はこのような事情を考慮してなされたもので、原子炉圧力容器全体を通して水位計測が可能である原子炉水位計測システムを提供することを目的とする。
 本発明に係る原子炉水位計測システムは、上述した課題を解決するために、原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、前述の凝縮槽に一端が接続された基準水柱計装配管と、前述の原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、前述の基準水柱計装配管および前述の第1の変動水柱計装配管の他端と接続され、前述の基準水柱計装配管および前述の第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の水位計と、前述の第1の水位計とは異なる構成を有し、前述の原子炉圧力容器の水位を検出する第2の水位計と、前述の原子炉格納容器または前述の原子炉圧力容器の状態に基づいて、前述の第1の水位計または前述の第2の水位計を選択し、選択された水位計の検出結果に基づいて前述の原子炉圧力容器の水位を指示・記録する演算装置とを備えたことを特徴とする。
 本発明に係る原子炉水位計測システムにおいては、原子炉圧力容器全体を通して水位を計測することができる。
本発明に係る原子炉水位計測システムの第1実施形態を示す構成図。 原子炉圧力低下時における選択処理を説明するフローチャート。 原子炉水位低下時における選択処理を説明するフローチャート。 TAFより水位低下時における選択処理を説明するフローチャート。 本発明に係る原子炉水位計測システムの第2実施形態を示す構成図。 第2実施形態の水位計測システムの第1の変形例としての水位計測システムの構成図。 第2実施形態の水位計測システムの第2の変形例としての水位計測システムの構成図。 第1実施形態の水位計測システムの第1の変形例としての水位計測システムの構成図。 第1実施形態の水位計測システムの第2の変形例としての水位計測システムの構成図。
 本発明に係る原子炉水位計測システムの実施形態を添付図面に基づいて説明する。各実施形態においては、本発明に係る原子炉水位計測システムを沸騰水型原子炉に適用して説明する。但し、本発明に係る原子炉水位計測システムには加圧水式型原子炉等にも適用できることは勿論である。
 [第1実施形態]
 図1は、本発明に係る原子炉水位計測システムの第1実施形態を示す構成図である。
 原子炉水位計測システム(水位計測システム)1の計測対象となる原子炉圧力容器(圧力容器)2は、炉心3を収容する。また、圧力容器2は、原子炉格納容器(格納容器)4に格納される。圧力容器2は、側面において凝縮槽11および検出タップ12~14を有する。
 凝縮槽11は、格納容器4内に設けられ、圧力容器2の蒸気領域に接続される。凝縮槽11は、底部において基準水柱計装配管(基準配管)21と接続され、水位検出時に基準水頭を与える。検出タップ12~14は、差圧式水位計31~34の計測範囲に応じて圧力容器2の所定位置にそれぞれ設けられる。第1の変動水柱計装配管としての変動水柱計装配管(変動配管)22~24は、これら検出タップ12~14を介して圧力容器2に一端が接続される。基準配管21および変動配管22~24は、格納容器4外まで伸びており、それぞれ格納容器4外で差圧式水位計31~34と他端が接続される。
 差圧式水位計31~34は、狭帯域原子炉水位計31、広帯域原子炉水位計32、燃料域原子炉水位計33および定検時水張り用原子炉水位計34である。差圧式水位計31~34は、基準配管21および変動配管22~24の水頭差を検出する。
 狭帯域原子炉水位計(狭帯域水位計)31は、通常運転状態および過渡状態を含む状態で予測される、水位変動が狭い範囲の水位を計測する。広帯域原子炉水位計(広帯域水位計)32は、異常な過渡変化時や事故時を含む状態で予測される、狭帯域水位計31の計測範囲より広い範囲の水位を計測する。燃料域原子炉水位計(燃料域水位計)33は、事故後を含む状態で、広帯域水位計32の計測範囲より低い水位を計測し、例えば炉心冠水確認用として用いられる。定検時水張り用原子炉水位計(定検時水張り用水位計)34は、原子力発電プラントの定期検査時に想定される水位である燃料上部から原子炉ウェルまでの水位を計測する。
 原子炉の運転状態に応じて原子炉圧力および温度は異なるため、水頭水などの比容積は変動する。従って正確な水位を計測するためには、この比容積などを補正する必要が生じる。このため、差圧式水位計31~34は、原子炉の状態に基づき校正が行われる。例えば、狭帯域水位計31および広帯域水位計32は、定格運転時における圧力および温度を校正条件として用いる。燃料域水位計33および定検時水張り用原子炉水位計34は大気圧で校正される。
 圧力容器2内には、原子炉内非差圧式水位計35が設けられる。原子炉内非差圧式水位計35は、差圧式水位計31~34とは異なる構成および方式を有する第2の水位計であり、例えばガンマ線などによる温度差を用いて水位を検出するガンマサーモメータである。ガンマサーモメータは、ガンマ線を用いて水位を検出するだけでなく、ガンマサーモメータに設けられたヒータを熱源として、水の有無による温度差から水位を検出することができる。このため事故時等でガンマ線によるガンマヒーティングの効果が期待できなくなった場合であってもヒータを熱源として水位検出ができる。原子炉内非差圧式水位計35は、炉心3を囲む炉心シュラウド内や炉心シュラウド外に設けられる。
 圧力容器2外であって格納容器4内には、原子炉外非差圧式水位計36が設けられる。原子炉外非差圧式水位計36は、差圧式水位計31~34とは異なる構成を有する第2の水位計であり、例えばガンマ線、中性子線、超音波を用いて水位を検出する水位計である。
 原子炉内非差圧式水位計35および原子炉外非差圧式水位計36(非差圧式水位計35、36)は、差圧式水位計31~34の水位計測範囲と重複して水位の計測が可能であり、かつ燃料域水位計33が計測可能な範囲より低い水位である、燃料有効長下端より低い圧力容器2底部の水位まで検出できる。非差圧式水位計35、36は、圧力容器2内外に複数本、多区分に設けられ、また、上下方向に亘って複数の検出点で水位を計測することが好ましい。炉心3が損傷した際に水位計も損傷する恐れがあるが、複数の検出点を設けることにより出力に異常のない水位計により炉水が内包されていることを確認できる。
 格納容器4内には、圧力容器2のプロセス状態を検出するための種々の計測機器が設けられる。例えば、原子炉圧力計(圧力計)41は、格納容器4外であって基準配管21に接続され、圧力容器2の圧力を計測する。第1の温度計42は、格納容器4内のドライウェル5に設けられ、ドライウェル5の雰囲気温度を検出する。第2の温度計43は、格納容器4内であって凝縮槽11付近の基準配管21の表面に設けられ、凝縮槽11付近の基準配管21の表面温度を計測する。第3の温度計44は、格納容器4内であって燃料域水位計33と接続される変動配管24の表面に設けられ、変動配管24の表面温度を計測する。
 これら差圧式水位計31~34、非差圧式水位計35、36、圧力計41、および温度計42~44は、演算装置20に接続されており、得られた検出結果を演算装置20に出力する。演算装置20は、各計測機器より送信される検出結果から水位、圧力、温度などを指示・記録する。演算装置20には、表示装置および入力装置が接続される。演算装置20は、取得した指示値を表示装置に表示したり、入力装置を介して演算装置20への入力を行ったりする。
 演算装置20は、格納容器4または圧力容器2の状態を検出し、検出された状態に基づいて差圧式水位計31~34および非差圧式水位計35、36の中から水位の指示・記録に用いる水位計を選択する。以下、演算装置20が水位計を選択する際の処理として、原子炉圧力低下時、原子炉水位低下時、および燃料有効長上端(TAF= Top of Active Fuel)より水位低下時における選択処理を説明する。
 図2は、原子炉圧力低下時における選択処理を説明するフローチャートである。この原子炉圧力低下時における選択処理は、過渡時および事故時の原子炉の減圧過程において想定される処理である。
 ステップS1において、演算装置20は、第1の温度計42からドライウェル5の雰囲気温度、および圧力計41で計測される原子炉圧力から原子炉圧力飽和温度を取得し、比較する。ステップS2において、演算装置20は、ドライウェル5の雰囲気温度が原子炉圧力飽和温度より大きいか否かを判定する。
 ドライウェル5の雰囲気温度の方が大きい場合、差圧式水位計31~34と接続された基準配管21の内包水が蒸発する恐れがある。このため、演算装置20は、ドライウェル5の雰囲気温度の方が大きいと判定した場合、ステップS3において、差圧式水位計31~34による水位計測が不能であるか否かの判定を行う。例えば、演算装置20は、複数チャンネルの差圧式水位計31~34から得られる指示値の履歴を記録し、ばらつきの増大などから異常の有無を検出する。
 演算装置20は、差圧式水位計31~34では水位の計測が不能であると判断した場合、ステップS4において、原子炉内非差圧式水位計35および原子炉外非差圧式水位計36の少なくとも一方を選択する。演算装置20は、以降においては水位の指示値に非差圧式水位計35、36を用いて水位を計測し運転員へ出力する。
 なお、温度比較ステップS2または計測可否判定ステップS3において、原子炉圧力飽和温度はドライウェル雰囲気温度以上であると判定された場合(ステップS2のNO)、または差圧式水位計が計測可能であると判定された場合(ステップS3のNO)については、引き続き差圧式水位計31~34により水位が計測される。
 このような水位計測システム1は、差圧式水位計31~34が計測不能な場合であっても、圧力容器2および格納容器4の状態に基づいて非差圧式水位計35、36に自動で切替え、過渡時および事故時においても原子炉水位を計測可能とする。これにより、水位計測システム1は、差圧式とは異なる方式であって信頼性が確保できる水位計で水位を計測でき、計測に多様性を確保することができる。
 次に、原子炉水位低下時における選択処理について説明する。
 図3は、原子炉水位低下時における選択処理を説明するフローチャートである。この原子炉水位低下時における選択処理は、過渡時および事故時の原子炉の水位低下過程において想定される処理である。
 ステップS11において、演算装置20は、原子炉水位が予め設定された設定水位(例えばL-2やL-1.5)より小さいか否かを判定する。このとき、演算装置20は、広帯域水位計32の指示値を用いて判定する。演算装置20は、原子炉水位が設定水位以上であると判定した場合には、引き続き現在選択中の水位計を用いて水位を指示・記録する。
 演算装置20は、原子炉水位が設定水位より低いと判定した場合、ステップS12において、圧力計41より得られた原子炉圧力と予め設定された設定圧力(例えば50kPa)とを比較し、原子炉圧力の方が小さいか否かの判定を行う。演算装置20は、原子炉圧力が設定圧力以上であると判定した場合、引き続き現在選択中の水位計を用いて水位を指示・記録する。
 演算装置20は原子炉圧力の方が小さいと判定した場合、ステップS13において、燃料域水位計33を選択する。ステップS14において、演算装置20は、燃料域水位計33による水位計測が可能であるか否かの判定を行う。例えば、演算装置20は、燃料域水位計33の指示値の変動を観察する。演算装置20は、変動が検出されない場合には基準配管21の内包水に蒸発または漏えいなどの異常が発生している恐れがあるため、計測不能であると判定する。また、水位が燃料域水位計33の計測範囲の下限を下回った場合、演算装置20は計測不能であると判定する。
 演算装置20は、燃料域水位計33による水位計測が可能であると判定した場合には、引き続き燃料域水位計33により水位を指示・記録する。演算装置20は、燃料域水位計33では水位の計測が不能であると判断した場合、ステップS15において、原子炉内非差圧式水位計35および原子炉外非差圧式水位計36の少なくとも一方を選択する。演算装置20は、以降においては非差圧式水位計35、36を用いて水位を指示・記録する。
 ここで、原子炉内非差圧式水位計35が炉心シュラウド内に設けられる場合、燃料域水位計33は炉心シュラウド外の水位を計測するのに対し、原子炉内非差圧式水位計35は炉心シュラウド内の水位を計測することになる。このため、演算装置20は、原子炉内非差圧式水位計35で得られた水位を指示値として用いる場合には、炉心シュラウド内の水位である旨を併せて出力するのが好ましい。運転員は、水位指示値が炉心シュラウド内か炉心シュラウド外かを確認できることで、監視領域が変更となったことを容易に判断できる。
 また、原子炉内非差圧式水位計35が炉心シュラウド内に複数箇所設置された場合において、いずれかの原子炉内非差圧式水位計35に異常が検出された場合、演算装置20は異常が検出された水位計以外の水位計の検出結果に基づいて圧力容器2の水位を指示・記録する。これにより、水位計測システム1は、正常な原子炉内非差圧式水位計35の設置場所には、炉水があることを確認できる。
 このような水位計測システム1は、原子炉水位および原子炉圧力が設定水位および設定圧力よりも小さくなった場合には、異常過渡時や事故時条件である大気圧で校正された燃料域水位計33を選択する。これにより、水位計測システム1は、原子炉圧力による指示差影響を充分に排除でき、燃料有効長上端(TAF)の水位を精度よく監視できる。
 また、水位計測システム1は、燃料域水位計33による水位の計測が不可能である場合には、非差圧式水位計35、36を選択することで原子炉水位の指示の信頼性を確保できる。すなわち、原子炉内非差圧式水位計35および原子炉外非差圧式水位計36は、燃料域水位計33の計測範囲の下限以下の水位を検出できるように構成されたため、過渡時および事故時に原子炉水位が低下し、燃料域水位計33の水位指示が計測範囲の下限を下回った場合であっても計測範囲の拡大が図れ、水位の確認が容易となる。
 次に、TAFより水位が低下した場合における選択処理について説明する。
 図4は、TAFより水位低下時における選択処理を説明するフローチャートである。このTAFより水位低下時における選択処理は、例えば図3の水位低下時における選択処理の後、炉心3の再冠水を確認する際に想定される処理である。
 過渡時および事故時に原子炉水位が低下し、演算装置20はTAFを下回ったことを検出した場合、ステップS21において、演算装置20は、燃料域水位計33による水位の計測が可能か否かの判定を行う。具体的には、燃料域水位計33と接続された基準配管21および変動配管24に水張りが行われた結果、燃料域水位計33で水位計測が可能となったか否かの判定を行う。
 演算装置20は、燃料域水位計33で水位計測が可能であると判定した場合、ステップS22において、燃料域水位計33を選択し水位の指示・記録に用いる。演算装置20は、燃料域水位計33から得られる水位である炉心シュラウド外の水位で、炉心3の再冠水を確認することができる。
 一方、演算装置20は、燃料域水位計33による水位計測が不可能であると判定した場合、すなわち基準配管21および変動配管24に水張りが行われず燃料域水位計33の信頼性が低い場合、ステップS23において、原子炉圧力は設定圧力(例えば50kPa)より大きいか否かの判定を行う。
 演算装置20は、原子炉圧力は設定圧力より大きいと判定した場合、ステップS24において、原子炉内非差圧式水位計35および原子炉外非差圧式水位計36の少なくとも一方を選択する。演算装置20は、以降においては水位の指示値に非差圧式水位計35、36を用いて水位を計測し運転員へ出力する。演算装置20は、非差圧式水位計35、36の出力を用いることで、炉心3の再冠水を確認する。
 一方、演算装置20は、圧力判定ステップS23において原子炉圧力は設定圧力以下であると判定した場合、ステップS25において、広帯域水位計32および定検時水張り用水位計34の履歴を記録し、出力に変動があるか否かの判定を行う。
 演算装置20は広帯域水位計32および定検時水張り用水位計34の出力に変動があると判定した場合、ステップS26において、定検時水張り用水位計34を選択し、水位を指示・記録することで、炉心3の再冠水を確認する。これは、大気圧で校正された定検時水張り用水位計34に対する原子炉圧力による影響を充分排除でき、定検時水張り用水位計34の変動配管23に炉水によって水張りされたと考えられるためである。
 このような水位計測システム1は、演算装置20により、炉心3の再冠水時における水位計測の際には燃料域水位計33、非差圧式水位計35、36または定検時水張り用水位計34のいずれかを状況に応じて好適に選択することができるため、水位の確認が容易となる。
 第1実施形態における水位計測システム1は、複数の構成からなる水位計を有し、かつ上述した図2~図4の各選択処理を行うことで、原子炉圧力や原子炉水位などの各種状態に応じて、水位計測に最適な水位計を多様性を持って選択することができる。この結果、水位計測システム1は、信頼度の高い水位指示値を提示することができるため、運転員は水位を容易に確認することができる。
 なお、水位計測システム1は、差圧式水位計31~34および非差圧式水位計35、36を有する利点を利用して、以下のように用いることもできる。
 圧力容器2内に水とは異なる比重の液体(例えば海水、ホウ酸水)が注入された場合、水と水以外の液体とは密度が異なる。このため、水の比重で校正された差圧式水位計31~34の指示値は影響を受ける。
 これに対し、水位計測システム1は、液体の比重により影響を受けない、ガンマ線などを利用する方式で水位を計測する非差圧式水位計35、36を用いて差圧式水位計31~34を校正することができる。
 演算装置20は、差圧式水位計31~34の出力と非差圧式水位計35、36の出力(炉心シュラウド外の水位)とを比較し、両者間の係数を求める。演算装置20は、この係数を用いて差圧式水位計31~34の出力を校正する。これにより、演算装置20は、差圧式水位計31~34より校正後の水位指示値を確認でき、炉心シュラウド外の水位をより精度よく計測できる。
 また、第2の水位計としての非差圧式水位計35、36を異なる方式(例えば、ガンマ線、中性子線、超音波)を用いた複数の水位計としたり、非差圧式水位計35、36を多区分に設けたりすることで、計測の多様性を確保することができる。
 例えば、演算装置20は、各非差圧式水位計35、36より得られる水位指示値のうち、オーバースケールやダウンスケールした数値がある場合、オーバースケールやダウンスケールした数値を検出した非差圧式水位計35、36以外の非差圧式水位計35、36を選択する。
 また、演算装置20は、それぞれの履歴を記録し区分間の指示値のばらつきを計算する。演算装置20は、ばらつきが増大した場合、すなわち異常が検出された場合、異常値を示す非差圧式水位計35、36以外の非差圧式水位計35、36(正常な非差圧式水位計35、36)を選択する。
 これにより、水位計測システム1は、より精度よく水位を指示・記録することができる。
 [第2実施形態]
 第2実施形態における水位計測システム51が第1実施形態と異なる点は、非差圧式水位計35、36に代えて、または非差圧式水位計35、36と共に、シビアアクシデント計測用水位計55を有する点である。シビアアクシデント計測(SA= Severe Accident)用水位計55は、燃料域水位計33の計測可能範囲下限以下である燃料有効長下端より低い圧力容器2底部までの水位の検出できる水位計である。
 その他の校正については、第1実施形態とほぼ同様であるため、第1実施形態と対応する構成および部分については同一の符号を付し、または図示を省略し、重複する説明を省略する。
 図5は、本発明に係る原子炉水位計測システムの第2実施形態を示す構成図である。
 圧力容器2には、原子炉冷却材再循環流量系(再循環流量系)52が接続される。この再循環流量系52は、原子炉冷却材再循環流量系ポンプ(再循環流量系ポンプ)53、および再循環流量系ポンプ53の上流側に接続された原子炉冷却材再循環流量系配管(再循環流量系配管)54を有する。
 水位計測システム51は、SA計測用変動水柱計装配管(SA用変動配管)56、SA計測用基準水柱計装配管(SA用基準配管)57、およびSA計測用水位計(SA用水位計)55を有する。
 SA用変動配管56(第2の変動水柱計装配管)は、一端が再循環流量系配管54に接続される。SA用基準配管57は、一端が基準配管21に接続される。SA用水位計55は、SA用変動配管56およびSA用基準配管57(基準水柱計装配管)の他端にそれぞれ接続され、SA用変動配管56およびSA用基準配管57の水頭差を検出する。SA用水位計55は、第1の水位計としての差圧式水位計31~34とは異なる構成を有する第2の水位計の一例である。SA用水位計55は、図示はしないが演算装置20と接続されており、検出結果を演算装置20へ出力する。
 SA用水位計55は、上述した通り、燃料域水位計33の計測可能範囲下限以下の水位が検出できる水位計である。このため、第1実施形態における非差圧式水位計35、36に代えて、または非差圧式水位計35、36と共に、圧力容器2の水位を計測することができる。具体的には、例えば図2~4における各選択処理において、非差圧式水位計35、36が選択される代わりに、または非差圧式水位計35、36と共に、SA用水位計55を選択することができる。
 なお、SA用水位計55は、図6および図7のように構成してもよい。
 図6は、第2実施形態の水位計測システム51の第1の変形例としての水位計測システム61の構成図である。
 圧力容器2には、原子炉冷却材浄化設備系(CUW = Clean Up Water)62が接続される。このCUW62は、原子炉冷却材浄化設備系ボトムライン配管(CUWボトムライン配管)63を有する。
 水位計測システム61は、SA用変動配管56、SA用基準配管57、およびSA用水位計55を有する。
 SA用変動配管56(第3の変動水柱計装配管)は、一端がCUWボトムライン配管63に接続される。SA用基準配管57は、一端が基準配管21に接続される。SA用水位計55は、SA用変動配管56およびSA用基準配管57の他端にそれぞれ接続され、SA用変動配管56およびSA用基準配管57の水頭差を検出する。
 図7は、第2実施形態の水位計測システム51の第2の変形例としての水位計測システム71の構成図である。
 圧力容器2には、検出タップ72が設けられる。この検出タップ72は、SA用水位計55が燃料有効下端より低く圧力容器2底部までの水位を検出できる位置に設けられる。
 水位計測システム71は、SA用変動配管56、SA用基準配管57、およびSA用水位計55を有する。
 SA用変動配管56(第4の変動水柱計装配管)は、一端が検出タップ72に接続される。SA用基準配管57は、一端が基準配管21に接続される。SA用水位計55は、SA用変動配管56およびSA用基準配管57の他端にそれぞれ接続され、SA用変動配管56およびSA用基準配管57の水頭差を検出する。
 以上、図5~図7に示す水位計測システム51、61、71は、水位計測システム51は、第1実施形態と同様の効果を奏する上、第1実施形態の水位計測システム1では計測できない領域についても計測でき、一様に差圧計測方式にて計測範囲の拡張ができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、図2~図4に示す各選択処理は、演算装置20が自動で行う例を説明したが、選択を運転員が手動で行ってもよい。この場合、演算装置20は、表示装置に水位計を選択するための圧力容器2や格納容器4の状態などの各種情報を表示し、運転員に水位計を選択させる。また、演算装置20は、運転員の選択結果を入力装置を介して指示させる。
 また、第1および第2実施形態における水位計測システムは、非差圧式水位計として原子炉内非差圧式水位計35および原子炉外非差圧式水位計36を備える場合を例に説明したが、図8および図9に示すように、原子炉内非差圧式水位計35、あるいは、原子炉外非差圧式水位計36のいずれか一方を備えてもよい。
 本発明は、原子炉を水にて冷却する形式の全ての原子炉水位計測システムに利用される。
1、51、61、71 原子炉水位計測システム(水位計測システム)
2 原子炉圧力容器(圧力容器)
4 原子炉格納容器(格納容器)
11 凝縮槽
20 演算装置
21 基準水柱計装配管(基準配管)
22~24 変動水柱計装配管(変動配管)
31 狭帯域原子炉水位計(狭帯域水位計)
32 広帯域原子炉水位計(広帯域水位計)
33 燃料域原子炉水位計(燃料域水位計)
34 定検時水張り用原子炉水位計(定検時水張り用水位計)
35 原子炉内非差圧式水位計
36 原子炉外非差圧式水位計
52 原子炉冷却材再循環流量系(再循環流量系)
53 原子炉冷却材再循環流量系ポンプ(再循環流量系ポンプ)
54 原子炉冷却材再循環流量系配管(再循環流量系配管)
55 シビアアクシデント計測用水位計(SA用水位計)
56 シビアアクシデント(SA)計測用変動水柱計装配管(SA用変動配管)
57 シビアアクシデント(SA)計測用基準水柱計装配管(SA用基準配管)
62 原子炉冷却材浄化設備系(CUW)
63 原子炉冷却材浄化設備系ボトムライン配管(CUWボトムライン配管)

Claims (17)

  1.  原子炉格納容器に格納された原子炉圧力容器の蒸気領域に接続された凝縮槽と、
     前記凝縮槽に一端が接続された基準水柱計装配管と、
     前記原子炉圧力容器に一端が接続された第1の変動水柱計装配管と、
     前記基準水柱計装配管および前記第1の変動水柱計装配管の他端と接続され、前記基準水柱計装配管および前記第1の変動水柱計装配管の水頭差を検出する差圧計測式の第1の水位計と、
     前記第1の水位計とは異なる構成を有し、前記原子炉圧力容器の水位を検出する第2の水位計と、
     前記原子炉格納容器または前記原子炉圧力容器の状態に基づいて、前記第1の水位計または前記第2の水位計を選択し、選択された水位計の検出結果に基づいて前記原子炉圧力容器の水位を指示・記録する演算装置とを備えたことを特徴とする原子炉水位計測システム。
  2.  前記第2の水位計は、前記原子炉圧力容器内または前記原子炉圧力容器外に配置され、前記差圧計測式とは異なる方式で前記原子炉圧力容器の水位を検出する請求項1記載の原子炉水位計測システム。
  3.  前記第1の水位計は、
     水位変動が狭い範囲の水位を計測する狭帯域水位計と、
     前記狭帯域水位計の計測範囲より広い範囲の水位を計測する広帯域水位計と、
     前記広帯域水位計の計測範囲より低い水位を計測する燃料域水位計と、
     定期検査時に想定される水位を計測する定期検査時水張り用水位計とを有し、
     前記第2の水位計は、前記原子炉圧力容器の水位が前記燃料域水位計の計測範囲よりも低い水位を計測範囲とする請求項1または2記載の原子炉水位計測システム。
  4.  前記演算装置は、前記原子炉格納容器のドライウェルの雰囲気温度と、原子炉圧力の飽和温度を取得し、前記ドライウェルの雰囲気温度が前記原子炉圧力の飽和温度より大きい場合、前記第2の水位計を選択する請求項1~3のいずれか一項記載の原子炉水位計測システム。
  5.  前記演算装置は、前記広帯域水位計により検出された水位が設定水位よりも小さく、かつ前記原子炉圧力が設定圧力より小さい場合、前記燃料域水位計を選択し、
     さらに前記燃料域水位計が計測不能である場合、前記第2の水位計を選択する請求項3記載の原子炉水位計測システム。
  6.  前記演算装置は、水位が前記燃料域水位計の計測範囲の下限を下回った場合、前記第2の水位計を選択する請求項5記載の原子炉水位計測システム。
  7.  前記基準水柱計装配管および前記変動水柱計装配管に水張りが行われ前記燃料域水位計が計測可能となった場合、前記演算装置は、前記燃料域水位計を選択する請求項5記載の原子炉水位計測システム。
  8.  前記基準水柱計装配管および前記変動水柱計装配管に水張りが行われず、かつ前記原子炉圧力が前記設定圧力より大きい場合、前記演算装置は前記第2の水位計を選択する請求項5記載の原子炉水位計測システム。
  9.  前記基準水柱計装配管および前記変動水柱計装配管に水張りが行われない場合、
     前記演算装置は、前記原子炉圧力が前記設定圧力以下であり、かつ前記広帯域水位計および定検時水張り用水位計の出力の変動を検出した場合、前記定検時水張り用水位計を選択する請求項5記載の原子炉水位計測システム。
  10.  前記原子炉圧力容器に接続された原子炉冷却材再循環流量系配管と、
     前記原子炉冷却材再循環流量系配管に一端が接続された第2の変動水柱計装配管とをさらに備え、
     前記第2の水位計は、前記基準水柱計装配管および前記第2の変動水柱計装配管の他端と接続され、前記基準水柱計装配管および前記第2の変動水柱計装配管の水頭差を検出する差圧計測式の水位計である請求項1記載の原子炉水位計測システム。
  11.  前記原子炉圧力容器に接続された原子炉冷却材浄化設備系配管と、
     前記原子炉冷却材浄化設備系配管に一端が接続された第3の変動水柱計装配管とをさらに備え、
     前記第2の水位計は、前記基準水柱計装配管および前記第3の変動水柱計装配管の他端と接続され、前記基準水柱計装配管および前記第3の変動水柱計装配管の水頭差を検出する差圧計測式の水位計である請求項1記載の原子炉水位計測システム。
  12.  原子炉圧力容器内における燃料有効長下端より下方の水位を検出可能な位置に一端が接続された第4の変動水柱計装配管をさらに備え、
     前記第2の水位計は、前記基準水柱計装配管および前記第4の変動水柱計装配管の他端と接続され、前記基準水柱計装配管および前記第4の変動水柱計装配管の水頭差を検出する差圧計測式の水位計である請求項1記載の原子炉水位計測システム。
  13.  前記第2の水位計は、前記原子炉圧力容器の炉心シュラウド内に配置された水位計であり、
     前記演算装置は、選択された前記第2の水位計に基づいて出力された水位は前記炉心シュラウド内の水位である旨を、前記水位と共に出力する請求項1~3記載の原子炉水位計測システム。
  14.  前記第1の水位計および前記第2の水位計は、計測範囲が重複し、
     前記演算装置は、前記第1の水位計と前記第2の水位計の検出値により求まる前記原子炉圧力容器の水位を比較し、両者の水位が異なる場合、前記第1の水位計と前記第2の水位計との間の係数を求め、前記係数に基づいて前記第1の水位計の検出値を校正する請求項1~3記載の原子炉水位計測システム。
  15.  前記第2の水位計は、異なる方式により水位を計測する複数の水位計であり、
     前記演算装置は、複数の前記第2の水位計より得られる検出結果のうち、オーバースケールまたはダウンスケールした数値がある場合、前記オーバースケールまたはダウンスケールした数値を検出した水位計以外の水位計を選択する請求項1~3記載の原子炉水位計測システム。
  16.  前記第2の水位計は、異なる方式により水位を計測し、多区分に設けられた複数の水位計であり、
     前記演算装置は、区分間の指示値のばらつきを計算し、ばらつきが増大した場合、異常値を示す前記第2の水位計以外の水位計を選択する請求項1~3記載の原子炉水位計測システム。
  17.  前記第2の水位計は、炉心シュラウド内に複数箇所設置され、
     前記演算装置は、いずれかの前記第2の水位計に異常が検出された場合、異常が検出された前記第2の水位計以外の水位計の検出結果に基づいて前記原子炉圧力容器の水位を指示・記録する請求項1~3記載の原子炉水位計測システム。
PCT/JP2012/007296 2011-11-18 2012-11-14 原子炉水位計測システム WO2013073178A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12850313.3A EP2782101A4 (en) 2011-11-18 2012-11-14 WATER LEVEL MEASUREMENT SYSTEM FOR A REACTOR
US14/359,197 US20140270037A1 (en) 2011-11-18 2012-11-14 Reactor water level measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253143A JP5677274B2 (ja) 2011-11-18 2011-11-18 原子炉水位計測システム
JP2011-253143 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073178A1 true WO2013073178A1 (ja) 2013-05-23

Family

ID=48429272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007296 WO2013073178A1 (ja) 2011-11-18 2012-11-14 原子炉水位計測システム

Country Status (4)

Country Link
US (1) US20140270037A1 (ja)
EP (1) EP2782101A4 (ja)
JP (1) JP5677274B2 (ja)
WO (1) WO2013073178A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596597A (zh) * 2014-01-03 2015-05-06 黄东升 浓缩锅水份发蒸量标定法
CN104681109A (zh) * 2015-03-12 2015-06-03 中广核工程有限公司 一种核电厂压力容器水位测量装置及方法
CN110265160A (zh) * 2019-06-19 2019-09-20 岭澳核电有限公司 核电站压力容器水位监测方法及装置
CN110277181A (zh) * 2019-06-19 2019-09-24 岭澳核电有限公司 核电站压力容器水位监测方法及装置
US11280660B2 (en) 2019-06-05 2022-03-22 Ge-Hitachi Nuclear Energy Americas Llc System and method using time-domain reflectometry to measure a level of a liquid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895599A (zh) * 2017-10-12 2018-04-10 中广核研究院有限公司 一种稳压器水位测量方法及稳压器
CN108538413B (zh) * 2018-03-06 2019-11-01 哈尔滨工程大学 一种用于研究冷凝水箱热工水力特性的实验装置及实验方法
CN109473185B (zh) * 2018-11-13 2022-07-29 中国核动力研究设计院 一种自动化学停堆系统的测试装置及其测试方法
JP7166158B2 (ja) * 2018-12-05 2022-11-07 株式会社東芝 原子炉燃料状態監視装置、方法及びプログラム
JP7349123B2 (ja) * 2019-03-18 2023-09-22 株式会社ヒラカワ ボイラの水位測定装置
CN112102976B (zh) * 2019-06-18 2024-02-02 国家电投集团科学技术研究院有限公司 用于高温蒸汽喷放冷凝温度测量的水下可移动式测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119295A (en) * 1981-01-19 1982-07-24 Hitachi Ltd Alarm device of reactor core water level
JPH1039083A (ja) 1996-07-18 1998-02-13 Toshiba Corp 炉内情報監視装置
JP2000065979A (ja) * 1998-08-26 2000-03-03 Toshiba Corp 炉心流量監視システム
JP2001324590A (ja) * 2000-05-17 2001-11-22 Toshiba Eng Co Ltd 原子炉水位計測システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870278A (en) * 1988-06-08 1989-09-26 Shell Oil Company Wide-range fluid level detector
JP3194075B2 (ja) * 1995-11-13 2001-07-30 株式会社日立製作所 液位測定装置
JPH10274554A (ja) * 1997-03-31 1998-10-13 Toshiba Corp 圧力容器の液位測定装置
US6938635B2 (en) * 2002-07-26 2005-09-06 Exxonmobil Research And Engineering Company Level switch with verification capability
US7342531B2 (en) * 2006-02-21 2008-03-11 Rosemount Tank Radar Ab Redundant level measurement in radar level gauging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119295A (en) * 1981-01-19 1982-07-24 Hitachi Ltd Alarm device of reactor core water level
JPH1039083A (ja) 1996-07-18 1998-02-13 Toshiba Corp 炉内情報監視装置
JP2000065979A (ja) * 1998-08-26 2000-03-03 Toshiba Corp 炉心流量監視システム
JP2001324590A (ja) * 2000-05-17 2001-11-22 Toshiba Eng Co Ltd 原子炉水位計測システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782101A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596597A (zh) * 2014-01-03 2015-05-06 黄东升 浓缩锅水份发蒸量标定法
CN104681109A (zh) * 2015-03-12 2015-06-03 中广核工程有限公司 一种核电厂压力容器水位测量装置及方法
US11280660B2 (en) 2019-06-05 2022-03-22 Ge-Hitachi Nuclear Energy Americas Llc System and method using time-domain reflectometry to measure a level of a liquid
CN110265160A (zh) * 2019-06-19 2019-09-20 岭澳核电有限公司 核电站压力容器水位监测方法及装置
CN110277181A (zh) * 2019-06-19 2019-09-24 岭澳核电有限公司 核电站压力容器水位监测方法及装置
CN110277181B (zh) * 2019-06-19 2021-08-03 岭澳核电有限公司 核电站压力容器水位监测方法及装置

Also Published As

Publication number Publication date
JP2013108810A (ja) 2013-06-06
EP2782101A1 (en) 2014-09-24
US20140270037A1 (en) 2014-09-18
JP5677274B2 (ja) 2015-02-25
EP2782101A4 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5677274B2 (ja) 原子炉水位計測システム
JP2013108810A5 (ja)
ES2380113T3 (es) Procedimiento y dispositivo para vigilar el nivel de llenado de un líquido en un recipiente para líquidos
US7926345B2 (en) Apparatus for measuring a filling level
EP2784781B1 (en) Reactor water level measuring system
US20090180514A1 (en) Transformer and a method of monitoring an operation property of the transformer
EP2801979B1 (en) Atomic reactor state monitoring device and monitoring method thereof
JP2015522816A (ja) 容器に収容されている液体の液位を検出する装置
MX2012014842A (es) Metodos y aparatos para monitorear las condiciones del nucleo de un reactor nuclear.
CN204178730U (zh) 压水堆核电站压力容器水位测量装置
JP5815100B2 (ja) 原子炉水位計測システム
US8831162B2 (en) Apparatus and method for measuring a temperature of coolant in a reactor core, and apparatus for monitoring a reactor core
RU2502964C2 (ru) Уплотнительное устройство для устройства измерения уровня заполнения в напорном резервуаре ядерной технической установки
JP6104594B2 (ja) 内圧試験装置
WO2012096165A1 (ja) 水位計測システムおよびその非凝縮性ガス排出装置
JP6004834B2 (ja) 原子炉水位計
US4414177A (en) Liquid level, void fraction, and superheated steam sensor for nuclear reactor cores
KR102590507B1 (ko) 핵 연료 고장 방지 방법
JP5802550B2 (ja) 水位計測装置
JP6489904B2 (ja) 非常時における原子炉水位計測方法及びその装置
US4521371A (en) Vessel liquid level indication
JP6896586B2 (ja) 原子炉水位計
Hashemian Predictive maintenance in nuclear power plants through online monitoring
JP2001324590A (ja) 原子炉水位計測システム
JP6415248B2 (ja) 計器診断方法、計器診断プログラム、記憶媒体および計器診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012850313

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14359197

Country of ref document: US