WO2013072264A1 - Wärmedämmendes isolationselement für hochtemperaturanwendungen und ein verfahren zu seiner herstellung - Google Patents

Wärmedämmendes isolationselement für hochtemperaturanwendungen und ein verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2013072264A1
WO2013072264A1 PCT/EP2012/072346 EP2012072346W WO2013072264A1 WO 2013072264 A1 WO2013072264 A1 WO 2013072264A1 EP 2012072346 W EP2012072346 W EP 2012072346W WO 2013072264 A1 WO2013072264 A1 WO 2013072264A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
temperature
gas
heat
elements
Prior art date
Application number
PCT/EP2012/072346
Other languages
English (en)
French (fr)
Inventor
Uwe Scheithauer
Kristin Haderk
Sebastian Reuber
Adrian Goldberg
Original Assignee
Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung filed Critical Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung
Publication of WO2013072264A1 publication Critical patent/WO2013072264A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/002Producing shaped prefabricated articles from the material assembled from preformed elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7691Heat reflecting layers or coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the invention relates to a thermal insulation element for high temperature applications and a manufacturing method thereof.
  • thermal insulation or heat insulation is a problem to be solved in many areas of technology. Certain temperatures should be kept for long periods or not exceeded or undercut, and this should be achieved with the least possible effort for heating or cooling. Often, the required size for thermal insulation or insulation also plays a role. Thus, materials with low thermal conductivity are used, such as polymeric foams or ceramic porous elements. Their insulating or insulating effect is limited. Polymeric foams can not be used at higher temperatures. Thus, so-called vacuum insulation panels have been used. These are filled with a porous material and closed gas-tight to the outside with metallic or polymeric films. The interior is largely evacuated, so that a strong compared to the ambient atmosphere reduced internal pressure is maintained. Metallic films have the disadvantage that their gas tightness can not be maintained long-term stability. In addition, they are susceptible to corrosion and can not be used without disadvantages even at elevated temperatures.
  • a seal with polymeric films can only be used in a relatively narrow temperature window up to 90 ° C. For high temperature applications their use is eliminated. It is therefore an object of the invention to provide opportunities for effective thermal insulation and insulation, which can also be used for high temperature applications at temperatures above 100 ° C, preferably above 500 ° C and thereby the required space requirement and the temperature at the outer surface over conventional Solutions is reduced.
  • An inventive thermal insulating element for high temperature applications has an outer gas-tight envelope. Inside the tube, a pressure below the atmospheric pressure is maintained and the shell is formed of a ceramic material. In addition, the shell is closed gas-tight by means of a temperature-stable filler material in a joint region or at an opening materially. Alone or in addition, however, a closure can also be achieved by means of a positive connection. In this case, different ceramic materials can be used for the shell. These are preferably alumina, zirconia, yttrium 2 bililloner Zirkonoxid, per se known LTCC ceramic, HTCC ceramic or synthetic cordierite.
  • soldering materials can be used for the cohesive and gas-tight connection.
  • the selection can be made taking into account the maximum operating temperature.
  • the melting temperature of the solder material should be above this temperature.
  • This can be silver-based active solders in which ⁇ 2 is contained or even glass solders, as they are already used for example for the sealing and connection of elements of high-temperature fuel cells and already belong as such to the prior art.
  • a filler material and a suspension can be used in the particles of the respective ceramic, with which the shell is formed, are included. The suspension can then be applied to surfaces of an opening and a cover element or in a joint region of the shell-forming elements. In a heat treatment can then be made by sintering a gas-tight connection.
  • a cavity in the interior of the shell can be filled with a temperature-stable porous material.
  • a temperature-stable porous material This can be a porous one
  • pyrogenic silica used for filling in vacuum insulation elements in the low-temperature range. This can also be done in airgel form.
  • stiffening elements can also be used or formed within the envelope, which form a support structure.
  • a supporting structure can be formed with a column-shaped element, a honeycomb-shaped and / or wave-shaped structure, which fulfills a distance-maintaining function. They should be designed so that a small thermal conductivity can be achieved. This can be achieved with small cross-sectional areas which are oriented perpendicular to the direction in which the heat conduction is to be reduced. 3 the.
  • These may be fibers, hollow fibers, tubular elements or web-shaped elements.
  • thermo conduction in particular in the case of insulation elements evacuated in the interior, is reduced compared to the proportion of heat radiation, it is advantageous to arrange at least one heat-reflecting planar element in the interior of the envelope. Alone or in addition, a heat-reflecting coating can also be formed.
  • An opacifier may be added to a suspension or used in a post-coating. Suitable opacifiers may be in their composition adapted powder systems of infrared-active oxides or carbides, in particular SiC powder, zirconium-silica compounds, zirconium dioxide or aluminum dioxide.
  • One or more heat-reflecting sheetlike elements should also be oriented so that they are perpendicular or at least nearly perpendicular to the
  • planar elements should be arranged at a distance from each other, and thereby also aligned as nearly as possible parallel to each other, so that even in the interstices a reduced pressure relative to the surroundings of the insulating element can be maintained.
  • These may be thin metal foils, for example aluminum foils or, at higher temperatures, ceramic foils.
  • a heat reflective coating can be formed in various ways known in the art. The order can be made, for example, in thick film technology with a paste containing metallic particles, which is later cured and forms a metal layer.
  • Thermal radiation can also be reduced with the filling within the shell or the elements for the support structure, since the radiation is reflected at the surfaces in different directions, so that a smaller
  • At least a portion of the shell forming the wall is curved. So can one area of the wall or it can be two oppositely arranged
  • Walls are convex. As a result, the deficit of ceramic workpieces against mechanical tensile effect can be reduced.
  • the inner and / or outer wall of the shell with a gas-tight temperature-stable coating to improve the gas tightness to the environment.
  • This may be a glaze that is sufficiently temperature stable. It can also be used the same material, which can also be used for gas-tight joining and closing.
  • an insulation element it is possible to proceed in such a way that, in a first method step, one or more elements forming the shell are brought into a form by means of a ceramic molding process in which a cavity can be formed inside the shell.
  • the one or the shell forming elements are then sintered. Subsequently, an opening in the shell is closed with a cover element and thereby connected with a temperature-stable filler material and gas-tight together.
  • a reduced pressure and / or an elevated temperature is maintained, so that inside the envelope a reduced internal pressure after closing is maintained. If the closure of the shell is carried out only at an elevated temperature, the internal pressure is reduced on cooling.
  • the cavity within the shell can be filled with a temperature-stable porous material. Suitable materials have already been mentioned. After filling then the internal pressure reduction and the
  • At least one heat-reflecting sheet element can be arranged within the envelope or it can be applied to a heat-reflecting coating.
  • Heat-reflecting sheet-like elements can be clamped in joints of elements which form the shell, if a suitable geometry of the shell-forming elements has been selected.
  • planar elements can also be arranged as a stack one above the other and connected to one another with spacers. Such a stack can then be inserted into the cavity of the envelope.
  • Such sheet elements need not be impermeable to radiation over the entire surface. There may also be perforations or other openings for pressure equalization thereto.
  • an opacifier can also be used. Thus, some or all elements can be soaked, whereby the proportion of heat radiation can also be reduced.
  • a heat-reflecting inner coating can also be formed before joining and closing.
  • the shaping of the shell forming elements can be done by deep drawing, slip, injection molding and / or extrusion. It may be the elements forming the wall of the shell but also elements for an inner support structure. The latter can preferably be prepared by extrusion before sintering as a green body. Column or bar-shaped elements can be formed on elements with which the envelope is formed, immediately at the molding and made of the same material as the rest.
  • the elements forming the wall of the shell may also be made of a plurality of ceramic foils which are laminated together and then sintered. They should be gastight in total.
  • Such or other elements can be folded twice at outer edges. As a result, no additional spacers or a support structure are mandatory. Overlaps make it possible to achieve a gastight connection. In the production, in which the shell is essentially made from a single correspondingly folded film, a reduction in the number of gas-tight seams or joints to be sealed is achieved.
  • a gas-tight cavity in which a defined and known atmosphere is included.
  • a defined and known atmosphere can be, for example, an inert atmosphere.
  • a noble gas such as argon contained therein.
  • the cavity can thus be used for a referencing and be contained therein at least one suitable sensor. The conditions within this cavity should be kept permanently constant.
  • Figure 1 is a sectional view of an example of an insulation element according to the invention, which is formed with laminated and sintered ceramic films together;
  • Figure 2 is a sectional view of an example of an insulation element according to the invention with a plurality of sheet-like heat-reflecting elements arranged inside; 7
  • Figure 3 is a sectional view of an example of an insulation element according to the invention with an open-pore ceramic foam body arranged inside;
  • Figure 4 is a sectional view of an example of an insulation element according to the invention with an empty cavity in the interior;
  • FIG. 5 is a sectional view of an example of an insulating element according to the invention with a curved wall
  • FIG. 6 shows an example of a support structure.
  • FIG. 1 shows an example of a heat-insulating element 1 according to the invention.
  • the outer shell 2 is formed from a plurality of mutually laminated and sintered films of LTCC ceramic.
  • the stacked films have been brought by cutting or punching in a mold with a cavity 4 has been formed in the interior.
  • An opening 2.2 was formed in the two upper foils.
  • the opening 2.2 can be closed with a cover element 2.3, which is also formed with a film made of LTCC ceramic.
  • the films forming the shell 2 were sintered just before the closure of the opening 2.2, just as the cover element 2.3 was sintered.
  • the cavity 4 can be filled with a highly porous material, preferably fumed silica.
  • a glass solder 2.4 of pasty consistency the melting point of which is above the operating temperature of the insulating element 1, is applied to the surface of the uppermost LTCC film around the opening 2.2.
  • the sintered cover element 2.3 is placed on this area coated with the glass solder 2.4.
  • the cover element 2.3 may be coated with the glass solder 2.4.
  • the opening 2.2 is gas-tight closed by the solidified glass solder 2.4 and the reduced internal pressure, which could be further reduced by the temperature reduction, can be permanently maintained.
  • the individual LTCC ceramic films had a thickness of 0.22 mm.
  • FIG. 2 shows a sectional view of a further example of an insulation element 1 according to the invention with a plurality of sheet-like heat-reflecting elements 3 arranged inside.
  • the sheath 2 has been made from synthetically produced cordierite C410. This is self-glazing in a sintering and therefore permanently gas-tight in an improved form.
  • two similar elements have been formed into a shape in which a cavity has been formed with the two joined elements when the two elements forming the sheath are assembled and joined together accordingly.
  • the outer edges of the two elements form a circumferential flange and thus the joint area 2.1.
  • a silver-based solder in which in addition to silver and copper also 10% TiH 2 was introduced, was introduced into the joint area 2.1. Particles of the solder were contained in a suspension.
  • the solder had a soldering temperature of 900 ° C.
  • the solidification temperature was 780 ° C.
  • a pure silver solder with 10% ⁇ 2 has a soldering temperature of 1000 ° C and a solidification temperature of 960 ° C.
  • the radiation transmitted by radiation can be reduced, since the plates act as reflectors for this radiation. Due to the reduced internal pressure which also prevails between the plates, the heat conduction can be reduced, so that the overall effect of the insulation element 1 can be improved.
  • the spacers held the reflective sheet-like elements 3 at a distance of 0.02 mm.
  • the shell 2 had a thickness of 0.5 mm to 1 mm.
  • the gas-tight closure of the shell 2 and the internal pressure reduction can, as already explained, for example, according to Figure 1, are performed. It is only the melting temperature of the solder to note.
  • FIG. 3 shows a sectional view of an example of an insulation element 1 according to the invention with an open-pored ceramic foam body 5 arranged inside.
  • the foam body has been produced from silicon dioxide or silica with the known Schwarzwalder process and had a porosity of 90%.
  • the shell 2 was produced by the method as described, for example, according to FIG. 2 and sealed gas-tight.
  • FIG. 4 shows a sectional illustration of an example of an insulation element 1 according to the invention with an empty cavity 4 in the interior. Like the examples according to FIGS. 2 and 3, this example can also be produced and sealed gas-tight.
  • FIG. 5 shows a sectional illustration of an example of an insulation element 1 according to the invention with a convexly curved wall of the shell 2.
  • Reinforced web-shaped elements 2.4 are provided on the inner wall of the shell 2, with which the strength and stability can be further increased in addition to the arched shape. 10
  • FIG. 6 shows a support structure 6, which can be produced by extrusion of a ceramic and subsequent sintering.
  • the support structure 6 can then be inserted into the cavity 4 of a shell 2 before closing and thus the strength and stability can be increased.
  • the wall thickness of the casing 2 can be kept small and the force effect of the increased ambient pressure compared to the reduced internal pressure within the casing 2 can be compensated.
  • the webs 6.1 of the support structure 6 should be kept as narrow as possible, so that the thermal conductivity can be kept small.
  • the free spaces within the support structure 6 can be filled with a highly porous material, which also has a low thermal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft ein wärmedämmendes Isolationselement für Hochtemperaturanwendungen und ein Herstellungsverfahren dazu. Aufgabe der Erfindung ist es, Möglichkeiten für eine effektive Wärmedämmung und -Isolation anzugeben, die auch für Hochtemperaturanwendungen bei Temperaturen oberhalb 100 °C, bevorzugt oberhalb 500 °C eingesetzt werden können und dabei der erforderliche Raumbedarf sowie die Temperatur an der äußeren Oberfläche gegenüber herkömmlichen Lösungen reduziert ist. Ein erfindungsgemäßes wärmedämmendes Isolationselement für Hochtemperaturanwendungen weist eine äußere gasdichte Hülle auf. Im Inneren der Hülle ist ein Druck unterhalb des Atmosphärendrucks eingehalten und die Hülle ist aus einem keramischen Werkstoff gebildet. Außerdem ist die Hülle mittels eines temperaturstabilen Zusatzwerkstoffes in einem Fugenbereich oder an einer Öffnung stoffschlüssig gasdicht verschlossen. Allein oder zusätzlich kann aber auch ein Verschließen durch eine formschlüssige Verbindung erreicht werden. Dabei können für die Hülle verschiedene keramische Werkstoffe eingesetzt werden.

Description

Wärmedämmendes Isolationselement für Hochtemperaturanwendungen und ein Verfahren zu seiner Herstellung
Die Erfindung betrifft ein wärmedämmendes Isolationselement für Hochtemperaturanwendungen und ein Herstellungsverfahren dazu.
Die ausreichende Wärmedämmung bzw. Wärmeisolation ist in vielen Bereichen der Technik ein zu lösendes Problem. Bestimmte Temperaturen sollen über lange Zeiträume gehalten oder nicht über- oder auch unterschritten werden, wobei dies auch mit möglichst geringem Aufwand für Heizung oder Kühlung erreicht werden soll. Dabei spielt häufig auch die erforderliche Baugröße für eine Wärmedämmung oder Isolation eine Rolle. So werden Werkstoffe mit geringer thermischer Leitfähigkeit eingesetzt, wie dies beispielsweise polymere Schäume oder keramische poröse Elemente sind. Deren wärmedämmende oder isolierende Wirkung ist aber begrenzt. Polymere Schäume können bei höheren Temperaturen nicht eingesetzt werden. So hat man sogenannte Vakuumisolationspaneele zum Einsatz gebracht. Diese sind mit einem porösen Material gefüllt und nach außen gasdicht mit metallischen oder polymeren Folien verschlossen. Das Innere ist weitestgehend evakuiert, so dass ein stark gegenüber der Umgebungsatmosphäre reduzierter Innendruck eingehalten wird. Metallische Folien haben den Nachteil, dass ihre Gasdichtheit nicht langzeitstabil eingehalten werden kann. Außerdem sind sie gegenüber Korrosion anfällig und auch bei erhöhten Temperaturen nicht ohne Nachteile einsetzbar.
Eine Abdichtung mit polymeren Folien kann nur in einem relativ engen Temperaturfenster bis maximal 90 ° C genutzt werden. Für Hochtemperaturanwendungen scheidet ihre Nutzung aus. Es ist daher Aufgabe der Erfindung, Möglichkeiten für eine effektive Wärmedämmung und -Isolation anzugeben, die auch für Hochtemperaturanwendungen bei Temperaturen oberhalb 100 °C, bevorzugt oberhalb 500 °C eingesetzt werden können und dabei der erforderliche Raumbedarf sowie die Temperatur an der äußeren Oberfläche gegenüber herkömmlichen Lösungen re- duziert ist.
Erfindungsgemäß wird diese Aufgabe mit Isolationselementen, die die Merkmale des Anspruchs 1 aufweisen, gelöst. Sie können mit einem Verfahren gemäß Anspruch 9 hergestellt werden. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind mit in untergeordneten Ansprüchen bezeichneten Merkmalen realisierbar.
Ein erfindungsgemäßes wärmedämmendes Isolationselement für Hochtemperaturanwendungen weist eine äußere gasdichte Hülle auf. Im Inneren der Hül- le ist ein Druck unterhalb des Atmosphärendrucks eingehalten und die Hülle ist aus einem keramischen Werkstoff gebildet. Außerdem ist die Hülle mittels eines temperaturstabilen Zusatzwerkstoffes in einem Fugenbereich oder an einer Öffnung stoffschlüssig gasdicht verschlossen. Allein oder zusätzlich kann aber auch ein Verschließen durch eine formschlüssige Verbindung erreicht werden. Dabei können für die Hülle verschiedene keramische Werkstoffe eingesetzt werden. Bevorzugt sind dies Aluminiumoxid, Zirkonoxid, Yttrium- sta- 2 bilisiertes Zirkonoxid, an sich bekannte LTCC- Keramik, HTCC-Keramik oder synthetisches Cordierit.
Für die stoffschlüssige und gasdichte Verbindung können geeignete Lotwerk- Stoffe eingesetzt werden. Die Auswahl kann unter Berücksichtigung der maximalen Einsatztemperatur erfolgen. Dabei sollte die Schmelztemperatur des Lotwerkstoffs oberhalb dieser Temperatur liegen. Dies können Silber-basierte Aktivlote in denen ΤΊΗ2 enthalten ist oder auch Glaslote sein, wie sie beispielsweise für die Abdichtung und Verbindung von Elementen an Hochtem- peraturbrennstoffzellen bereits zum Einsatz kommen und bereits als solche zum Stand der Technik gehören. Als Zusatzwerkstoff kann auch eine Suspension eingesetzt werden, in der Partikel der jeweiligen Keramik, mit der die Hülle gebildet wird, enthalten sind. Die Suspension kann dann auf Flächen einer Öffnung und eines Deckelelements oder in einem Fugenbereich von die Hülle bildenden Elementen aufgetragen werden. Bei einer Wärmebehandlung kann dann durch Sinterung eine gasdichte Verbindung hergestellt werden. Es besteht aber auch die Möglichkeit aus einer Schmelze bei einer Wärmebehandlung durch einen Phasenwechsel der Schmelze eine gasdichte Verbindung zu erhalten, wenn geeignete Gläser oder Glaskeramik mit einer geeigne- ten Schmelztemperatur eingesetzt werden. Die Wärmebehandlung und auch die nachfolgende Abkühlung können bei reduziertem Druck, beispielsweise in einem Vakuumofen durchgeführt werden.
Bevorzugt kann ein Hohlraum im Inneren der Hülle mit einem temperatur- stabilen porösen Werkstoff befüllt sein. Dies kann ein poröser
Keramikwerkstoff in Form eines Schaumes oder Granulats sein. Es besteht aber auch die Möglichkeit bei Vakuumisolationselementen im Niedertemperaturbereich eingesetzte pyrogene Kieselsäure für die Befüllung zu nutzen. Dies kann auch in Aerogelform erfolgen. Allein oder zusätzlich dazu können auch Versteifungselemente innerhalb der Hülle eingesetzt bzw. ausgebildet werden, die eine Stützstruktur bilden. Eine Stützstruktur kann mit eine abstands- haltende Funktion erfüllenden säulenförmigen Elementen, einer wabenförmi- gen und/oder wellenförmigen Struktur gebildet sein. Dabei sollten diese so ausgebildet sein, dass eine kleine thermische Leitfähigkeit erreicht werden kann. Dies kann mit kleinen Querschnittsflächen, die senkrecht zur Richtung in der die Wärmeleitung reduziert werden soll, ausgerichtet sind, erreicht wer- 3 den. Es kann sich dabei um Fasern, Hohlfasern, rohrförmige Elemente oder stegförmige Elemente handeln.
Da bei höheren Temperaturen der Anteil der durch thermische Leitung über- tragene Wärmeanteil, insbesondere bei im Inneren evakuierten Isolationselementen gegenüber dem Anteil der durch Wärmestrahlung übertragen wird, kleiner wird, ist es vorteilhaft im Inneren der Hülle mindestens ein wärmereflektierendes flächiges Element anzuordnen. Allein oder zusätzlich kann auch eine wärmereflektierende Beschichtung ausgebildet werden.
Es kann auch ein Trübungsmittel eingesetzt werden, mit dem die Reflexion und Absorption von Wärmestrahlung reduziert werden kann. Ein Trübungsmittel kann einer Suspension zugesetzt oder bei einer nachträglichen Beschichtung eingesetzt werden. Geeignete Trübungsmittel können in ihrer Komposition angepasste Pulversysteme aus infrarot-aktiven Oxiden oder Car- biden, insbesondere SiC-Pulver, Zirkonium-Kieselsäure-verbindungen, Zirkondioxid oder Aluminiumdioxid sein.
Ein oder mehrere wärmereflektierende flächige Elemente sollten ebenfalls so ausgerichtet sein, dass sie senkrecht oder zumindest nahezu senkrecht zur
Richtung in der die Wärmeleitung reduziert werden soll, ausgerichtet sind. Mehrere flächige Elemente sollten in einem Abstand zueinander, und dabei auch möglichst nahezu parallel zueinander ausgerichtet, angeordnet sein, so dass auch in den Zwischenräumen ein gegenüber der Umgebung des Isolati- onselements reduzierter Druck eingehalten werden kann. Dabei kann es sich um dünne Metallfolien, beispielsweise Aluminiumfolien oder bei höheren Temperaturen um keramische Folien handeln. Eine wärmereflektierende Beschichtung kann auf verschiedene an sich bekannte Art und Weise ausgebildet werden. Der Auftrag kann beispielsweise in Dickschichttechnik mit einer me- tallische Partikel enthaltenden Paste erfolgen, die später ausgehärtet wird und eine Metallschicht bildet.
Wärmestrahlung kann auch mit der Befüllung innerhalb der Hülle oder den Elementen für die Stützstruktur reduziert werden, da die Strahlung an den Oberflächen in verschiedene Richtungen reflektiert wird, so dass ein kleinerer
Anteil der Wärmestrahlung in die nicht erwünschte Richtung, in der die maxi- 4 male Isolationswirkung erreicht werden soll, reflektiert wird.
Aus Festigkeits- und Stabilitätsgründen ist es günstig, dass mindestens ein Teilbereich der die Hülle bildenden Wand gewölbt ausgebildet ist. So kann ein Bereich der Wand oder es können zwei sich gegenüberliegend angeordnete
Wände konvex gewölbt sein. Dadurch kann das Defizit keramischer Werkstücke gegenüber mechanischer Zugspannungswirkung reduziert werden.
Es besteht auch die Möglichkeit, die innere und/oder äußere Wandung der Hülle mit einer gasdichten temperaturstabilen Beschichtung zu versehen, um die Gasdichtheit gegenüber der Umgebung zu verbessern. Dabei kann es sich um eine Glasur handeln, die ausreichend temperaturstabil ist. Es kann auch der gleiche Werkstoff eingesetzt werden, der auch für das gasdichte Fügen und Verschließen eingesetzt werden kann.
Bei der Herstellung eines Isolationselements kann so vorgegangen werden, dass in einem ersten Verfahrensschritt ein oder mehrere die Hülle bildende Elemente mit einem keramischen Formgebungsverfahren in eine Form gebracht werden, bei dem innerhalb der Hülle ein Hohlraum ausgebildet werden kann.
Das eine oder die die Hülle bildenden Elemente werden dann gesintert. Im Anschluss daran wird eine Öffnung in der Hülle mit einem Deckelelement verschlossen und dabei mit einem temperaturstabilen Zusatzwerkstoff stoff- schlüssig und gasdicht miteinander verbunden.
Mehrere die Hülle bildende Elemente werden miteinander gefügt und im Fugenbereich zwischen den Elementen wird mittels eines temperaturstabilen Zusatzwerkstoffs eine stoffschlüssige gasdichte Verbindung hergestellt.
Vor dem Verschließen mit dem Verbinden wird ein reduzierter Druck und/oder eine erhöhte Temperatur eingehalten, so dass im Inneren der Hülle ein gegenüber der Umgebung reduzierter Innendruck nach dem Verschließen eingehalten wird. Wird das Verschließen der Hülle lediglich bei einer erhöhten Temperatur durchgeführt, reduziert sich der Innendruck bei einer Abkühlung.
Nach dem Verschließen kann dieser Innendruck dauerhaft beibehalten wer- den. Der Anteil an innerhalb der Hülle eingeschlossener Luft bzw. eines Gases kann so verringert sein, wodurch die thermische Leitfähigkeit und auch die Wärmeleitung über eine Gasphase verringert wird. Selbstverständlich kann diese Wirkung mit sehr kleinen Innendrücken in der Nähe des Vakuums weiter verbessert werden.
Vor dem Verschließen einer Öffnung oder während des Fügens von Teilen der Hülle kann der Hohlraum innerhalb der Hülle mit einem temperaturstabilen porösen Werkstoff befüllt werden. Geeignete Werkstoffe sind bereits genannt worden. Nach der Befüllung kann dann die Innendruckreduzierung und das
Verschließen bzw. stoffschlüssige Fügen durchgeführt werden.
Bei diesem Verfahrensschritt oder an Stelle dessen kann mindestens ein wärmereflektierendes flächiges Element innerhalb der Hülle angeordnet werden oder es kann eine wärmereflektierende Beschichtung aufgebracht werden. Wärmereflektierende flächige Elemente können in Fugen von Elementen, die die Hülle bilden klemmend befestigt werden, wenn eine hierfür geeignete Geometrie der die Hülle bildenden Elemente gewählt worden ist. Mehrere solcher flächigen Elemente können auch als Stapel übereinander angeordnet und mit Abstandshaltern miteinander verbunden sein. Ein solcher Stapel kann dann in den Hohlraum der Hülle eingesetzt werden. Solche flächigen Elemente müssen nicht für Strahlung über die gesamte Fläche undurchlässig sein. Es können auch Perforationen oder andere Durchbrechungen für einen Druckausgleich daran vorhanden sein. An Stelle einer Beschichtung kann auch ein Trübungsmittel eingesetzt werden. Damit können einige oder alle Elemente getränkt werden, wodurch der Anteil der Wärmestrahlung ebenfalls reduziert werden kann.
Allein oder zusätzlich kann vor dem Fügen und Verschließen auch eine wär- mereflektierende Innenbeschichtung ausgebildet werden.
Die Formgebung der die Hülle bildenden Elemente kann durch Tiefziehen, Schlicker-, Spritzguss und/oder Extrudieren erfolgen. Dabei kann es sich um die die Wand der Hülle bildenden Elemente aber auch um Elemente für eine innere Stützstruktur handeln. Letztgenannte können bevorzugt durch Extrusi- on vor einer Sinterung als Grünkörper hergestellt werden. Säulen- oder stegförmige Elemente können an Elementen mit denen die Hülle gebildet wird, unmittelbar bei der Formgebung ausgeformt und aus demselben Werkstoff, wie der Rest hergestellt werden.
Die die Wand der Hülle bildenden Elemente können auch aus mehreren keramischen Folien, die miteinander laminiert und dann versintert werden, hergestellt werden. Sie sollten in Summe gasdicht sein.
Solche oder auch andere Elemente können an äußeren Rändern doppelt gefaltet werden. Dadurch sind keine zusätzlichen Abstandshalter oder eine Stützstruktur zwingend erforderlich. Durch Überlappungen kann eine gasdichte Verbindung erreicht werden. Bei der Fertigung, bei der die Hülle im Wesentlichen aus einer einzigen entsprechend gefalteten Folie erfolgt, wird eine Reduzierung der Anzahl von gasdicht zu verschließenden Nahtstellen bzw. Fugen erreicht.
Es besteht auch die Möglichkeit im Inneren der Hülle einen gasdichten Hohlraum vorzusehen, in dem eine definierte und bekannte Atmosphäre enthalten ist. Dies kann beispielsweise eine inerte Atmosphäre sein. Es kann ein Edelgas, wie Argon darin enthalten sein. Der Hohlraum kann so für eine Referenzierung genutzt werden und darin mindestens ein geeigneter Sensor enthalten sein. Die Bedingungen innerhalb dieses Hohlraums sollten dauerhaft konstant gehalten werden.
Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.
Dabei zeigen:
Figur 1 eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isolationselements, das mit miteinander laminierten und versinterten keramischen Folien gebildet ist;
Figur 2 eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isolationselements mit mehreren im Inneren angeordneten flächigen wärmereflektierenden Elementen; 7
Figur 3 eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isolationselements mit einem im Inneren angeordneten offenporigen keramischen Schaumkörper;
Figur 4 eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isolationselements mit einem leeren Hohlraum im Inneren;
Figur 5 eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isola- tionselements mit gewölbter Wand und
Figur 6 ein Beispiel einer Stützstruktur.
In Figur 1 ist ein Beispiel eines erfindungsgemäßen wärmedämmenden Isola- tionselements 1 gezeigt. Dabei ist die äußere Hülle 2 aus mehreren miteinander laminierten und versinterten Folien einer LTCC- Keramik gebildet. Die übereinander gestapelten Folien sind durch Schneiden oder Stanzen in eine Form gebracht worden, mit der im Inneren ein Hohlraum 4 ausgebildet worden ist. In den beiden oberen Folien wurde eine Öffnung 2.2 ausgebildet. Die Öffnung 2.2 kann mit einem Deckelelement 2.3, das ebenfalls mit einer Folie aus der LTCC-Keramik gebildet ist, verschlossen werden. Die die Hülle 2 bildenden Folien wurden vor dem Verschließen der Öffnung 2.2 genauso, wie das Deckelelement 2.3 gesintert. Vor dem Verschließen der Öffnung 2.2 kann der Hohlraum 4 mit einem hochporösen Werkstoff, bevorzugt pyrogene Kieselsäure ausgefüllt werden.
Nach dem Befüllen wird an der Oberfläche der obersten LTCC-Folie um die Öffnung 2.2 herum ein Glaslot 2.4 in pastöser Konsistenz aufgetragen, dessen Schmelztemperatur oberhalb der Einsatztemperatur des Isolationselements 1 liegt. Auf diesen mit dem Glaslot 2.4 beschichteten Bereich wird das gesinterte Deckelement 2.3 aufgelegt. Dabei kann auch das Deckelelement 2.3 mit dem Glaslot 2.4 beschichtet sein.
Durch den Einsatz von Keramikfolien können die verschiedensten Geometrien und Dimensionierungen für wärmedämmende Isolationselemente hergestellt 8 werden.
Dann wird eine Wärmebehandlung bis zu einer Temperatur oberhalb der Schmelztemperatur des Glaslots durchgeführt. Dabei wird im Ofen der Innendruck soweit als möglich reduziert. Günstig sind Innendrücke in der Nähe des Hochvakuums.
Nach einer Abkühlung ist die Öffnung 2.2 gasdicht durch das erstarrte Glaslot 2.4 verschlossen und der reduzierte Innendruck, der durch die Temperaturabsenkung weiter reduziert werden konnte, kann dauerhaft beibehalten werden. Die einzelnen LTCC-Keramikfolien hatten eine Dicke von 0,22 mm.
In Figur 2 ist eine Schnittdarstellung eines weiteren Beispiels eines erfindungsgemäßen Isolationselements 1 mit mehreren im Inneren angeordneten flächigen wärmereflektierenden Elementen 3 gezeigt. Bei diesem Beispiel ist die Hülle 2 aus synthetisch hergestelltem Cordierit C410 hergestellt worden. Dieses ist bei einer Sinterung selbstglasierend und daher in verbesserter Form dauerhaft gasdicht. Für die Hülle 2 wurden zwei gleiche Elemente in eine Form gebracht, bei der mit den zwei gefügten Elementen ein Hohlraum ausgebildet worden ist, wenn die beiden die Hülle bildenden Elemente entsprechend miteinander montiert und gefügt werden. Die äußeren Ränder der beiden Elemente bilden einen umlaufenden Flansch und damit den Fugenbereich 2.1.
Für die gasdichte Verbindung der beiden gesinterten Elemente, die die Hülle 2 bilden, wurde in den Fugenbereich 2.1 ein silberbasiertes Lot, in dem neben Silber und Kupfer auch 10 % TiH2 enthalten war, eingebracht. Dabei waren Partikel des Lotes in einer Suspension enthalten. Das Lot hatte eine Löttemperatur von 900 °C. Die Verfestigungstemperatur lag bei 780 °C. Ein reines Silberlot mit 10 % ΤΊΗ2 hat eine Löttemperatur von 1000 °C und eine Verfestigungstemperatur von 960 °C.
Vor dem Verschließen der Hülle 2 mit dem Lot wurden flächige, übereinander gestapelt angeordnete 0.02 mm dicke Aluminiumplatten/-folien, die mit zwischen den Platten angeordneten Abstandshaltern versehen waren, in den Hohlraum 4 eingesetzt. Diese Platten bilden wärmereflektierende flächige 9
Elemente 3. Dadurch kann nach dem Verschließen der Hülle 2 bei reduziertem Innendruck auch die durch Strahlung übertragene Wärme reduziert werden, da die Platten als Reflektoren für diese Strahlung wirken. Durch den reduzierten Innendruck, der auch zwischen den Platten herrscht, kann die Wärmelei- tung reduziert werden, so dass die Gesamtwirkung des Isolationselements 1 verbessert werden kann. Die Abstandshalter hielten die reflektierenden flächigen Elemente 3 in einem Abstand von 0,02 mm. Die Hülle 2 hatte eine Dicke von 0,5 mm bis 1 mm. In nicht dargestellter Form besteht die Möglichkeit in den verbliebenen Hohlraum 4, also auch zwischen wärmereflektierenden flächigen Elementen 3 einen hochporösen Werkstoff einzusetzen, mit dem die Isolationswirkung weiter verbessert werden kann. Das gasdichte Verschließen der Hülle 2 und die Innendruckreduzierung kann, wie bereits zum Beispiel gemäß Figur 1 erläutert, durchgeführt werden. Es ist dabei lediglich die Schmelztemperatur des Lotes zu beachten.
Die Figur 3 zeigt eine Schnittdarstellung eines Beispiels eines erfind ungsge- mäßen Isolationselements 1 mit einem im Inneren angeordneten offenporigen keramischen Schaumkörper 5. Der Schaumkörper ist aus Siliciumdioxid oder Kieselsäure mit dem bekannten Schwarzwalder-Verfahren hergestellt worden und hatte eine Porosität von 90 %. Die Hülle 2 wurde mit dem Verfahren, wie es zum Beispiel nach Figur 2 beschrieben worden ist, hergestellt und gasdicht verschlossen.
In Figur 4 ist eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isolationselements 1 mit einem leeren Hohlraum 4 im Inneren gezeigt. Auch dieses Beispiel kann, wie die Beispiele nach den Figuren 2 und 3 hergestellt und gasdicht verschlossen werden.
Die Figur 5 zeigt eine Schnittdarstellung eines Beispiels eines erfindungsgemäßen Isolationselements 1 mit konvex gewölbter Wand der Hülle 2. An der inneren Wandung der Hülle 2 sind zur Verstärkung stegförmige Elemente 2.4 ausgebildet, mit denen neben der gewölbten Form die Festigkeit und Stabilität weiter erhöht werden kann. 10
Die Figur 6 zeigt eine Stützstruktur 6, die durch Extrusion einer Keramik und anschließender Sinterung hergestellt werden kann. Die Stützstruktur 6 kann dann in den Hohlraum 4 einer Hülle 2 vor dem Verschließen eingesetzt werden und damit die Festigkeit und Stabilität erhöht werden. Dadurch kann die Wandstärke der Hülle 2 klein gehalten werden und die Kraftwirkung des erhöhten Umgebungsdruckes gegenüber dem reduzierten Innendruck innerhalb der Hülle 2 kompensiert werden. Die Stege 6.1 der Stützstruktur 6 sollten so schmal als möglich gehalten werden, so dass die thermische Leitfähigkeit klein gehalten werden kann. Die Freiräume innerhalb der Stützstruktur 6 können mit einem hochporösen Werkstoff ausgefüllt werden, der ebenfalls eine geringe thermische Leitfähigkeit aufweist.

Claims

11 Patentansprüche
1. Wärmedämmendes Isolationselement für Hochtemperaturanwendungen, das eine äußere gasdichte Hülle aufweist und im Inneren der Hülle ein Druck unterhalb des Atmosphärendrucks eingehalten ist, dadurch gekennzeichnet, dass
die Hülle (2) aus einem keramischen Werkstoff gebildet ist und die Hülle (2) mittels eines temperaturstabilen Zusatzwerkstoffes und/oder durch eine Sinterung in einem Fugenbereich (2.1) oder an einer Öffnung stoffschlüssig und/oder formschlüssig gasdicht verschlossen ist.
2. Isolationselement nach Anspruch 1, dadurch gekennzeichnet, dass ein Hohlraum im Inneren der Hülle (2) mit einem temperaturstabilen porösen Werkstoff befüllt ist und/oder
Versteifungselemente innerhalb der Hülle (2) eine Stützstruktur bilden.
3. Isolationselement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Stützstruktur mit eine abstandshaltende Funktion erfüllenden säulenförmigen, stegförmigen Elementen (2.4), einer wabenförmigen und/oder wellenförmigen Struktur gebildet ist.
4. Isolationselement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Inneren der Hülle (2) mindestens ein wärmereflektierendes flächiges Element (3) angeordnet und/oder eine wärmereflektierende Beschichtung auf der Hülle (2) und/oder einem Element (3) ausgebildet ist/sind.
5. Isolationselement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Teilbereich der die Hülle (2) bildenden Wand gewölbt ist.
6. Isolationselement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hülle mit einem offenporigen Schaum, der bevorzugt aus einem keramischen Werkstoff besteht, einem Granulat und/oder einem Aerogel, insbesondere pyrogener Kieselsäure befüllt ist. 12
Isolationselement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die innere und/oder äußere Wandung der Hülle (2) mit einer gasdichten temperaturstabilen Beschichtung versehen ist.
Isolationselement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein gasdichter Hohlraum im Inneren der Hülle (2) vorhanden ist, der mit einer definierten, bekannten Atmosphäre befüllt ist.
Verfahren zur Herstellung eines Isolationselements nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Verfahrensschritt a) ein oder mehrere die Hülle (2) bildende Elemente mit einem keramischen Formgebungsverfahren in eine Form gebracht werden, bei dem innerhalb der Hülle ein Hohlraum ausgebildet wird; b) das/die die Hülle (2) bildende(n) Element(e) gesintert
wird/werden und c) eine Öffnung der Hülle (2) mit einem Deckelelement und einem temperaturstabilen Zusatzwerkstoff stoffschlüssig und gasdicht miteinander verbunden werden oder mehrere die Hülle bildende Elemente gefügt und im Fugenbereich zwischen den Elementen mittels eines temperaturstabilen Zusatzwerkstoffs eine stoffschlüssige gasdichte Verbindung hergestellt wird; wobei im Verfahrensschritt c) ein reduzierter Druck und/oder eine erhöhte Temperatur eingehalten wird, so dass im Inneren der Hülle ein gegenüber der Umgebung reduzierter Innendruck eingehalten wird.
Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass vor oder während des Verfahrensschritts c) der Hohlraum innerhalb der Hülle (2) mit einem temperaturstabilen porösen Werkstoff befüllt wird. 13
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass vor oder während des Verfahrensschritts c) mindestens ein wärmereflektierendes flächiges Element (3) innerhalb der Hülle (2) angeordnet oder eine wärmereflektierende Beschichtung aufgebracht wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die die Hülle (2) bildenden Elemente vor oder nach dem Fügen oder Verschließen einer Öffnung mit einer gasdichten Beschichtung an der gesamten Oberfläche versehen werden.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass das keramische Formgebungsverfahren ausgewählt ist aus Tiefziehen, Schlicker-, Spritzguss und Extrudieren.
PCT/EP2012/072346 2011-11-15 2012-11-12 Wärmedämmendes isolationselement für hochtemperaturanwendungen und ein verfahren zu seiner herstellung WO2013072264A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011119219.4A DE102011119219B4 (de) 2011-11-15 2011-11-15 Verfahren zur Herstellung eines wärmedämmenden Isolationselements für Hochtemperaturanwendungen
DE102011119219.4 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013072264A1 true WO2013072264A1 (de) 2013-05-23

Family

ID=47143936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/072346 WO2013072264A1 (de) 2011-11-15 2012-11-12 Wärmedämmendes isolationselement für hochtemperaturanwendungen und ein verfahren zu seiner herstellung

Country Status (2)

Country Link
DE (1) DE102011119219B4 (de)
WO (1) WO2013072264A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202013104133U1 (de) * 2013-09-11 2013-10-15 Michael Sorge Polymerwerkstoff auf Basis nachwachsender Rohstoffe
CN116214823A (zh) * 2022-12-26 2023-06-06 东莞市鸿艺电子有限公司 一种新型轻质真空隔热模组的制作工艺及其真空隔热模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2837779A (en) * 1953-09-15 1958-06-10 Harold W Jacobs Insulation product
US3156975A (en) * 1959-02-16 1964-11-17 Evacuated Insulation Res Ltd Method of making heat insulating panels
GB2161906A (en) * 1984-06-05 1986-01-22 Morganite Ceramic Fibres Ltd Thermal insulators
JP2001004091A (ja) * 1999-06-21 2001-01-09 Benkan Corp 真空断熱材
DE202011050486U1 (de) * 2011-06-19 2011-10-13 Viktor Schatz Dämmstoffelement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3309699A1 (de) * 1983-03-18 1984-09-27 Feldmühle AG, 4000 Düsseldorf Waermeisolierende auskleidung
WO2011131190A2 (de) * 2010-04-21 2011-10-27 Viktor Schatz Zuglast-abstandhalteranordnung
DE202011050487U1 (de) * 2011-06-19 2011-10-13 Viktor Schatz Dämmstoffelement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2837779A (en) * 1953-09-15 1958-06-10 Harold W Jacobs Insulation product
US3156975A (en) * 1959-02-16 1964-11-17 Evacuated Insulation Res Ltd Method of making heat insulating panels
GB2161906A (en) * 1984-06-05 1986-01-22 Morganite Ceramic Fibres Ltd Thermal insulators
JP2001004091A (ja) * 1999-06-21 2001-01-09 Benkan Corp 真空断熱材
DE202011050486U1 (de) * 2011-06-19 2011-10-13 Viktor Schatz Dämmstoffelement

Also Published As

Publication number Publication date
DE102011119219B4 (de) 2019-01-24
DE102011119219A1 (de) 2013-05-16

Similar Documents

Publication Publication Date Title
DE60101050T2 (de) Evakuierter mantel zur wärmedämmung und verfahren zu dessen herstellung
EP0017095B1 (de) Verfahren zur Herstellung von Elementen zur innenliegenden Wärmeisolation von Hochdruckbehältern oder Röhren, und ein nach diesem Verfahren hergestelltes Rohr
EP2333179A1 (de) Vakuumisolationspaneel
EP3004479B1 (de) Folienumhüllte vakuumdämmplatte
WO2015135656A1 (de) Vakuumisolationspaneel und behälter mit vakuumisolationspaneelen
EP2119842B1 (de) Dämmelement und Verfahren zum Herstellen des Dämmelements
DE102018133001A1 (de) Thermodämmschicht mit temperaturfolgender schicht
DE2106588B2 (de) Wärmeisolierung für einen Behälter zur Lagerung tief kalter Flüssigkeiten
DE102011119219B4 (de) Verfahren zur Herstellung eines wärmedämmenden Isolationselements für Hochtemperaturanwendungen
DE102011050472A1 (de) Abstandhalteranordnung mit Stützelementen
DE3219506A1 (de) Thermische isolierung
DE102007013584A1 (de) Verfahren zur Herstellung eines Vakuumpaneels, derartiges Vakuumpaneel sowie ein dieses verwendender Mauerstein
WO2000000705A1 (de) Evakuierter hohlkörper zur wärmedämmung
EP1836433B1 (de) Wärmestrahlungsschutzschirm für vakuum - und schutzgasöfen
DE10251789A1 (de) Vakuum-Fügen für in-vacuo hergestellte Vakuumbehältnisse und Strukturen
WO2004001149A2 (de) Vakuum-isolations-paneel, verfahren zur wärmedämmung von objekten sowie hilfsmittel dafür
EP1557504A2 (de) Verfahren zum Herstellen eines Vakuumpaneels, sowie Vakuumpaneel, insbesondere für Wärmedämmzwecke
EP2119841B1 (de) Dämmelement und Verfahren zum Herstellen des Dämmelements
DE102004050549B4 (de) Folienumhüllte Vakuumdämmplatte und Verfahren zur Herstellung derselben
EP1557249A2 (de) Verfahren zum Herstellen eines wärmedämmenden mehrschaligen Mauersteins sowie solcher Mauerstein
DE102007056837A1 (de) Vorrichtung und Herstellungsverfahren für ein Vakuum-Isolier-Element besthend aus einem mehrere Kammern definierendes Dämmmaterial
EP0715117A2 (de) Wärmeisolierender Beutel
WO2005080738A1 (de) Hochwärmedämmende isolierverglasung
DE2606159A1 (de) Thermisches isolationsmaterial und vorrichtung zu seiner herstellung
EP3120985A1 (de) Verfahren zur herstellung eines dämmelements sowie ein entsprechendes dämmelement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12783243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12783243

Country of ref document: EP

Kind code of ref document: A1