WO2013069767A1 - Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module - Google Patents

Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module Download PDF

Info

Publication number
WO2013069767A1
WO2013069767A1 PCT/JP2012/079118 JP2012079118W WO2013069767A1 WO 2013069767 A1 WO2013069767 A1 WO 2013069767A1 JP 2012079118 W JP2012079118 W JP 2012079118W WO 2013069767 A1 WO2013069767 A1 WO 2013069767A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
alloy
emitting element
lead frame
Prior art date
Application number
PCT/JP2012/079118
Other languages
French (fr)
Japanese (ja)
Inventor
晋司 山本
啓太 渡辺
石尾 雅昭
Original Assignee
株式会社Neomaxマテリアル
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Neomaxマテリアル, 日立金属株式会社 filed Critical 株式会社Neomaxマテリアル
Priority to KR1020147007433A priority Critical patent/KR101860173B1/en
Priority to CN201280055359.8A priority patent/CN103931006B/en
Publication of WO2013069767A1 publication Critical patent/WO2013069767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48237Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a light emitting element substrate, a light emitting module, and a method for manufacturing a light emitting module, and more particularly to a light emitting element substrate on which a light emitting element is disposed, a light emitting module including the light emitting element substrate, and a method for manufacturing a light emitting module.
  • a light emitting element substrate on which a light emitting element is disposed is known.
  • Such a light emitting element substrate is disclosed in, for example, Japanese Patent Laid-Open No. 2003-133596.
  • a metal substrate (light emitting element substrate), an insulating layer arranged so as to form a recess on the surface of the metal substrate, a surface of the metal substrate, and in the recess
  • An LED display device includes an LED (light emitting element) disposed on the substrate, a bonding wire that connects the LED and a circuit pattern on an insulating layer, and a transparent sealing material that fills the recess.
  • the metal substrate of this LED display device is configured to release heat to the chassis or the like while securing mechanical strength as a substrate on which the LEDs are arranged by being fixed to the chassis or the like.
  • the metal substrate is made of any one of Al, Cu and Fe, a clad material containing two or three kinds of the metal material, or an alloy containing the metal material. Things are illustrated.
  • the above Japanese Patent Application Laid-Open No. 2003-133596 discloses a specific configuration in the case where the metal substrate is made of a plurality of metal materials (type, thickness, order of combination, etc. of each metal material (metal layer) constituting the metal substrate). ) Is not disclosed at all.
  • the metal substrate of the LED display device is composed of any one of Al, Cu, Fe exemplified in JP-A-2003-133596, or a clad material containing two or three of these metals.
  • sufficient heat dissipation performance may not be obtained.
  • the heat dissipation performance of the metal substrate is not sufficient, it is considered that the heat of the LED is not sufficiently transmitted to the chassis side through the metal substrate but is accumulated on the metal substrate in the vicinity of the LED. For this reason, it is difficult to transfer heat from the LED to the metal substrate, and the temperature of the LED rises. As a result, there is a problem that the luminance of the LED is lowered and the lifetime of the LED is shortened.
  • the mechanical strength of the metal substrate is lowered, the metal substrate is easily damaged during handling, and there is a problem that the manufacture of the LED display device is hindered.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to improve the heat dissipation performance of the substrate for the light-emitting element and to suppress the decrease in luminance caused by the temperature rise of the light-emitting element.
  • a light-emitting element substrate capable of ensuring sufficient mechanical strength
  • a light-emitting module including the light-emitting element substrate and a method for manufacturing the light-emitting module are provided.
  • a substrate for a light-emitting element according to a first aspect of the present invention is disposed on a surface on which a light-emitting element is disposed, and is a first layer made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy. And the second layer made of Fe or Fe alloy, and the second layer sandwiched between the first layer and disposed on the other surface, either Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy And a surface having an arithmetic average roughness (Ra) as an index indicating the surface roughness, while the kurtosis (Rku) as an index indicating the surface roughness is 10.5 or less. ) Is 0.15 ⁇ m or less.
  • one surface on which the light emitting element is disposed is made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy.
  • the first layer having excellent thermal conductivity compared to Fe or the Fe alloy is disposed on the light emitting element side, so that heat from the light emitting element is transferred to the first layer near the light emitting element. It is possible to diffuse quickly from the portion of the layer toward the portion of the first layer located away from the light emitting element.
  • the heat of the first layer can be quickly dissipated to an external heat dissipating member connected to the first layer or the outside air, so that heat is accumulated on the light emitting element substrate with improved heat dissipating performance in the vicinity of the light emitting element. Can be suppressed. As a result, it is possible to suppress the temperature of the light emitting element from rising due to the heat accumulated in the substrate for the light emitting element, thereby suppressing the luminance of the light emitting element from decreasing due to the temperature increase of the light emitting element, In addition, the life of the light emitting element can be extended.
  • the light emitting element substrate by providing the second layer made of Fe or Fe alloy, the light emitting element substrate has a larger coefficient of linear expansion than the second layer, such as Cu, Ag, Al.
  • the first layer has a smaller linear expansion coefficient than the first layer, and has a mechanical strength particularly under high temperature conditions. Since the light emitting element substrate has a multilayer structure using the second layer having a large thickness, the thermal expansion of the light emitting element substrate can be suppressed and the mechanical strength of the light emitting element substrate can be improved. .
  • the second layer is formed between the first layer and the third layer made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, and Al alloy. And the second layer having a smaller linear expansion coefficient than that of the first layer and the third layer are sandwiched between the first layer and the third layer, whereby the substrate for a light emitting element is formed in the first layer. Unlike the case of only the layer and the second layer, it is possible to suppress the light emitting element substrate from being deformed so as to warp either the first layer side or the second layer side.
  • the pointed portion of the one surface where the light emitting element is disposed is reduced. can do.
  • the one surface so that the arithmetic average roughness (Ra) is 0.15 ⁇ m or less, the difference in height (undulation) of the unevenness on the one surface on which the light emitting element is arranged can be reduced. .
  • the third layer is made of the same metal material as the first layer. Therefore, it can suppress more that it deform
  • the 0.2% proof stress of the second layer is 250 MPa or more under a temperature condition of 200 ° C. or more and 400 ° C. or less.
  • the 0.2% proof stress of the second layer is maintained at 250 MPa or more even after being subjected to a high temperature condition of 200 ° C. or more and 400 ° C. or less. It can suppress reliably that intensity
  • the first layer is made of Cu or a Cu alloy, and on the one surface, a plating layer constituting a light reflecting layer capable of reflecting light from the light emitting element. Is formed. If comprised in this way, while the 1st layer which consists of Cu or Cu alloy which does not reflect light easily will be located, the plating layer which comprises a light reflection layer is formed on the one surface where a light emitting element is arrange
  • the kurtosis on the one surface is 10.5 or less, the pointed portion on the one surface is small, the arithmetic mean roughness on the one surface is 0.15 ⁇ m or less, and the undulation on the one surface is small, A high-quality plated layer having no defects can be formed thereon.
  • the third layer is made of the same metal material as the first layer, and the first layer and the third layer have the same thickness. If comprised in this way, while it consists of the same metal material and the 1st layer and 3rd layer which have the same thickness, the 2nd layer whose linear expansion coefficient is smaller than a 1st layer and a 3rd layer is inserted
  • the structure of the light emitting element substrate can be the same on the front and back, the light emitting element substrate can be configured so that it is not necessary to distinguish between the front and the back.
  • the first layer, the second layer, and the third layer form a plate-shaped substrate body, and the plate-shaped substrate body is heated in the plate surface direction.
  • the conductivity is 150 W / (m ⁇ K) or more, and the thermal conductivity in the plate thickness direction is 100 W / (m ⁇ K) or more. If comprised in this way, while being able to fully diffuse the heat
  • the first layer, the second layer, and the third layer form a plate-like substrate body, and the plate-like substrate body has a linear expansion coefficient of 17. ⁇ 10 ⁇ 6 / K or less. If comprised in this way, since the thermal expansion of the light emitting element use substrate can fully be suppressed, the deformation
  • the first layer and the third layer are both made of Cu, and the second layer is made of Fe. If comprised in this way, the 1st layer in the position away from the light emitting element from the part of the 1st layer in the vicinity of a light emitting element by the heat
  • the second layer is made of an Fe alloy, and the Fe alloy constituting the second layer contains at least one of Ni and Cr, and Ni and It consists of Fe alloy whose sum total with Cr is 10 mass% or less. If comprised in this way, the corrosion resistance of the 2nd layer which consists of Fe alloys can be improved by containing at least any one of Ni and Cr. Moreover, it can suppress that the heat conductivity of a 2nd layer becomes small too much by making the sum total of Ni and Cr of Fe alloy which comprises a 2nd layer into 10 mass% or less.
  • the first layer, the second layer, and the third layer form a plate-like substrate body, and the plate-like substrate body is a plate from the other surface side. Is bent so as to cover the surface of a plate-like base that supports the substrate body.
  • the light emitting element substrate can be arranged so as to cover the plate-like base, and therefore the surface area of the light emitting element substrate is increased compared to the case where the light emitting element substrate is not bent. Can be secured.
  • heat from the light emitting element can be quickly diffused from the first layer portion in the vicinity of the light emitting element toward the first layer portion in a wide range away from the light emitting element, and heat is radiated to the outside air over a wide range. Can be made. As a result, it is possible to further suppress the accumulation of heat on the light emitting element substrate in the vicinity of the light emitting element.
  • a light-emitting module is a light-emitting element, and is disposed on one surface on which the light-emitting element is disposed, and is made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy.
  • a second layer is sandwiched between one layer, a second layer made of Fe or an Fe alloy, and the first layer, and is disposed on the other surface of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy.
  • a light emitting element substrate including any one of the third layers, and one surface of the light emitting element substrate has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less,
  • the arithmetic average roughness (Ra) as an index indicating the surface roughness is formed to be 0.15 ⁇ m or less.
  • the light emitting module according to the second aspect of the present invention can achieve the same effects as the light emitting element substrate according to the first aspect.
  • a method for manufacturing a light-emitting module wherein the light-emitting element is disposed on one surface and is made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy.
  • the second layer is sandwiched between the layer, the second layer made of Fe or Fe alloy, and the first layer, and disposed on the other surface, and any of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy And a third layer comprising one of them, while the surface has an arithmetic average roughness (Rku) of 10.5 or less as an index indicating the surface roughness, and an arithmetic average roughness as an index indicating the surface roughness (Rku)
  • the second layer made of Fe or Fe alloy. And a step of performing a heat treatment under a high temperature condition of 200 ° C. or more and 400 ° C. or less by a step of forming a substrate for a light emitting element including the step of performing a heat treatment under a temperature condition of 200 ° C. or more and 400 ° C. or less.
  • the 0.2% proof stress of the second layer does not decrease, the mechanical strength of the light emitting element substrate can be suppressed from decreasing. Thereby, it becomes possible to prevent the manufacture of the light-emitting module from being difficult due to the difficulty in handling the light-emitting element substrate having a reduced mechanical strength.
  • FIG. 6 is a cross-sectional view taken along line 600-600 in FIG.
  • FIG. 2 is an enlarged cross-sectional view of a lead frame in the vicinity of an LED element taken along line 600-600 in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a lead frame around a connection layer taken along line 600-600 in FIG.
  • It is a perspective view for demonstrating the manufacturing process of the LED module by 1st Embodiment of this invention.
  • It is sectional drawing for demonstrating the manufacturing process of the LED module by 1st Embodiment of this invention.
  • It is a top view for demonstrating the manufacturing process of the LED module by 1st Embodiment of this invention.
  • FIG. 6 is an enlarged cross-sectional view of a lead frame in the vicinity of an LED element according to a second embodiment of the present invention. It is the figure which showed the result of the simulation at the time of using Cu for the 1st layer and 3rd layer which were performed in order to confirm the effect of 1st Embodiment of this invention. It is the figure which showed the result of the simulation at the time of using Cu for the 1st layer and 3rd layer which were performed in order to confirm the effect of 1st Embodiment of this invention.
  • the LED module 100 is an example of the “light emitting module” in the present invention.
  • the LED module 100 has one side (X1 side) connected to the Cu wiring 102a of the printed circuit board 102 via the solder 101a.
  • the other side (X2 side) is connected to the Cu wiring 102b of the printed circuit board 102 via the solder 101b.
  • a control unit not shown
  • the LED module 100 is covered with a plate-like lead frame 1 divided into an X1 side and an X2 side, an LED element 2 fixed on one surface 1a on the X1 side of the lead frame 1, and the lead frame 1. And a plate-like base 3. Further, as shown in FIG. 2, the base 3 has an upper surface 3a (surface on the Z1 side), both side surfaces 3b in the longitudinal direction (X direction), and part of the lower surface 3c (surface on the Z2 side). The other surface 1b of the frame 1 is covered.
  • the one surface 1 a of the lead frame 1 is a surface on the side where the LED elements 2 are arranged and the side (outside) facing the printed circuit board 102, and the other surface 1 b of the lead frame 1 is the upper surface of the base 3.
  • the lead frame 1 is an example of the “light emitting element substrate” in the present invention
  • the LED element 2 is an example of the “light emitting element” in the present invention
  • the upper surface 3a, the side surface 3b, and the lower surface 3c are examples of the “surface of the base” in the present invention.
  • the lead frame 1 includes a notch portion 10a formed on the upper surface 3a side (Z1 side) of the base 3 and on the X2 side from the central portion in the X direction. It is configured to be divided into an X1 side and an X2 side by a lower surface 3c side (Z2 side) of the table 3 and a notch portion 10b (see FIG. 2) formed in the central portion in the X direction and the periphery thereof. ing.
  • the notches 10a and 10b are both formed to extend in the Y direction (see FIG. 1).
  • the lead frame 1 is configured to cover a part of the base 3. Specifically, in the lead frame 1, the boundary between the upper surface 3 a of the base 3 and both side surfaces 3 b in the X direction and the boundary between the lower surface 3 c of the base 3 and both side surfaces 3 b in the X direction are the base 3. It is bent at a substantially right angle so as to follow. As a result, the lead frame 1 is bent along the vicinity of the end portion of the upper surface 3 a of the base 3, both side surfaces 3 b in the X direction, and part of the lower surface 3 c of the base 3.
  • the lead frame 1 has a substantially uniform thickness t1 (see FIG. 3) of about 0.1 mm to about 1.5 mm.
  • the thermal conductivity in the plate surface direction (direction orthogonal to the stacking direction) of the lead frame 1 is about 150 W / (m ⁇ K) or more, and the thermal conductivity in the plate thickness direction (stacking direction) of the lead frame 1.
  • the rate is configured to be about 100 W / (m ⁇ K) or more.
  • the linear expansion coefficient of the lead frame 1 is configured to be about 17 ⁇ 10 ⁇ 6 / K or less.
  • the LED element 2 is configured to emit light mainly from the upper surface (the surface on the Z1 side) upward (Z1 direction).
  • the LED element 2 is bonded to the one surface 1a on the X1 side of the lead frame 1 via an adhesive member 4 made of an insulating resin.
  • a pair of electrodes (not shown) formed on the upper surface side of the LED element 2 are electrically connected to the X1 side and the X2 side of the lead frame 1 via Au wires 5a and 5b, respectively.
  • the base 3 is made of white alumina (Al 2 O 3 ) having an insulating property and capable of reflecting light.
  • the base 3 is also formed inside the notches 10 a and 10 b of the lead frame 1. Thereby, insulation between the X1 side and the X2 side of the lead frame 1 is ensured. Furthermore, the base 3 disposed inside the notch 10a can reflect light emitted from the LED element 2 to the notch 10a below (Z2 side) upward (Z1 side). Is possible.
  • a reflector 6 is disposed on one surface 1 a of the lead frame 1 so as to surround the LED element 2.
  • the reflector 6 is made of alumina (Al 2 O 3 ) and has an opening that increases from the lower side (Z2 side) to the upper side (Z1 side). Thereby, the reflector 6 is comprised so that the light irradiated to the side side from the LED element 2 can be reflected toward upper direction (Z1 direction).
  • a sealing resin 7 made of a transparent silicon resin is disposed so as to cover the LED element 2 and the Au wires 5a and 5b.
  • the base 3 and the reflector 6 are formed by firing under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. Further, the sealing resin 7 is formed by curing under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
  • the lead frame 1 includes a three-layer clad in which an outer Cu layer 11, an Fe layer 12, and an inner Cu layer 13 are roll-bonded to each other. It consists of a clad material having a structure. Both the outer Cu layer 11 and the inner Cu layer 13 are made of Cu having a purity of 99.9% or more, such as oxygen-free copper, tough pitch copper, and phosphorus deoxidized copper.
  • the Fe layer 12 is made of Fe alloy containing pure Fe or at least one of Ni and Cr, and the total of Ni and Cr is 10% by mass or less.
  • the outer Cu layer 11 is disposed on the one surface 1 a on the side (outer side) on which the LED element 2 is disposed, and the inner Cu layer 13 sandwiches the Fe layer 12 between the outer Cu layer 11. In this way, it is arranged on the other surface 1b on the base 3 side (inner side).
  • the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13 are examples of the “first layer”, “second layer”, and “third layer” of the present invention, respectively.
  • the thermal conductivity (about 80 W / (m ⁇ K)) of the Fe layer 12 is smaller than the thermal conductivity (about 400 W / (m ⁇ K)) of the outer Cu layer 11.
  • the heat transferred from the LED element 2 to the outer Cu layer 11 of the lead frame 1 is more easily transferred through the outer Cu layer 11 itself than from the outer Cu layer 11 to the Fe layer 12. That is, the heat of the outer Cu layer 11 near the LED element 2 is separated from the LED element 2 along the plate surface direction, rather than being transmitted in the Z2 direction in the order of the Fe layer 12 and the inner Cu layer 13 along the plate thickness direction. It is easy to be transmitted to the outer Cu layer 11 at the position.
  • the linear expansion coefficient (about 12 ⁇ 10 ⁇ 6 / K) of the Fe layer 12 is smaller than the linear expansion coefficients (about 17 ⁇ 10 ⁇ 6 / K) of the outer Cu layer 11 and the inner Cu layer 13. Further, Fe or Fe alloy constituting the Fe layer 12 has higher mechanical strength than Cu constituting the outer Cu layer 11 and the inner Cu layer 13.
  • the 0.2% yield strength of the Fe layer 12 is about 400 MPa or more, and a 0.2% yield strength of about 0.2% yield or more at about 200 ° C. It is comprised so that it may have. That is, the Fe layer 12 is configured not to be annealed under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. Thereby, even after being placed under a high temperature condition of about 200 ° C. or higher and about 400 ° C. or lower, the mechanical strength of the entire lead frame 1 is suppressed from being lowered.
  • the thickness t2 of the outer Cu layer 11 and the thickness t3 of the inner Cu layer 13 are configured to be substantially the same thickness.
  • the one surface 1a on the outer Cu layer 11 side of the lead frame 1 has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less over the entire surface, and arithmetic.
  • the average roughness (Ra) is formed to be 0.15 ⁇ m or less.
  • kurtosis is a kind of index indicating the surface roughness and indicating the sharpness of the uneven shape formed on the surface. Specifically, the kurtosis is obtained by dividing the fourth power of the height in the reference length by the fourth power of the root mean square height that means the standard deviation of the surface roughness. When the kurtosis is small, it means that the uneven shape of the surface is smooth, and when the kurtosis is large, it means that the uneven shape of the surface is sharply sharpened.
  • the arithmetic average roughness (Ra) is a kind of index indicating the surface roughness, and is obtained by calculating the average of the absolute values of the height in the reference length.
  • the arithmetic average roughness is small, it means that the difference in height of the surface irregularities is small (the undulation is small), and if the arithmetic average roughness is large, the difference in height of the irregularities on the surface Is large (the undulations are large).
  • the one surface 1a of the lead frame 1 is formed so that the concavo-convex shape is gentle due to the small kurtosis, and the undulation of the concavo-convex shape is small due to the small arithmetic average roughness.
  • a light reflection layer 14 (see FIG. 3) and a connection layer 15 (see FIG. 4) are formed on one surface 1a of the lead frame 1.
  • the light reflecting layer 14 is formed on the one surface 1 a of the portion corresponding to the upper surface 3 a of the base 3 in the one surface 1 a and in a region surrounded by the reflector 6.
  • the connection layer 15 is formed in a region where the solders 101a and 101b are disposed.
  • the connection layer 15 is formed on the one surface 1a of the portion corresponding to the lower surface 3c of the base 3 in the one surface 1a and the portions corresponding to both side surfaces 3b of the base 3 in the one surface 1a. Is formed on the lower one surface 1a.
  • the thickness t5 of the light reflecting layer 14 and the thickness t6 of the connection layer 15 are both about 0.5 ⁇ m or more and about 1.5 ⁇ m or less.
  • the light reflecting layer 14 is an example of the “plating layer” in the present invention.
  • the light reflection layer 14 is made of an Ag plating layer, and has a function of reflecting light irradiated downward (Z2 side) from the LED element 2 toward the upper side (Z1 side), and leads to the Au wires 5a and 5b. It is formed for easy connection with the frame 1.
  • the connection layer 15 has a structure in which a Ni plating layer and an Au plating layer (not shown) are sequentially laminated from the lead frame 1 side. This connection layer 15 is formed in order to improve the wettability of the lead frame 1 with respect to the solders 101a and 101b.
  • the light reflecting layer 14 and the connection layer 15 are both formed by plating.
  • the outer Cu layer 11 made of Cu is disposed on the one surface 1a on the side (outer side) on which the LED element 2 is disposed, thereby comparing with Fe or Fe alloy. Since the outer Cu layer 11 made of Cu having excellent thermal conductivity is disposed on the LED element 2 side, the heat from the LED element 2 is separated from the LED element 2 from the portion of the outer Cu layer 11 near the LED element 2. It is possible to diffuse quickly toward the portion of the outer Cu layer 11 at a certain position.
  • the heat of the outer Cu layer 11 can be quickly dissipated to an external heat dissipating member (printed circuit board 102) connected to the outer Cu layer 11 and the outside air, so that the heat dissipating performance near the LED element 2 is improved. Accumulation of heat in the frame 1 can be suppressed. As a result, it is possible to suppress the temperature of the LED element 2 from rising due to the heat accumulated in the lead frame 1, thereby suppressing the brightness of the LED element 2 from decreasing due to the temperature increase of the LED element 2. can do. Moreover, since it can suppress that the LED element 2 is exposed to abnormally high temperature for a long time, the lifetime of the LED element 2 can be achieved.
  • the Fe or Fe alloy constituting the Fe layer 12 has a mechanical strength higher than that of the Cu constituting the outer Cu layer 11 and the inner Cu layer 13, and the linear expansion coefficient of the Fe layer 12. by (about 12 ⁇ 10 -6 / K) is smaller than the linear expansion coefficient of the outer Cu layer 11 and the inner Cu layer 13 (about 17 ⁇ 10 -6 / K), compared lead frame 1 and the Fe layer 12
  • the outer Cu layer 11 and the Fe layer 12 having a smaller linear expansion coefficient than the outer Cu layer 11 and having a high mechanical strength under high temperature conditions, compared with a case where only Cu having a large linear expansion coefficient (Cu layer) is formed.
  • the lead frame 1 Since the lead frame 1 has a multi-layer structure using the above, the thermal expansion of the lead frame 1 can be suppressed and the mechanical strength of the lead frame 1 can be improved. As a result, the lead frame 1 can be prevented from being deformed due to thermal expansion or external force, so that the LED element 2 disposed on the one surface 1a of the lead frame 1 also accompanies the deformation of the lead frame 1. Application of stress can be suppressed. As a result, it is possible to suppress a decrease in luminance of the LED element 2 due to stress applied to the LED element 2 and a shortening of the life of the LED element 2.
  • the inner Cu layer 13 having the same thickness t3 as the outer Cu layer 11 and made of the same metal material (Cu) as the outer Cu layer 11 is used as the outer Cu layer 11.
  • the Fe layer 12 is sandwiched between them and disposed on the other surface 1b on the base 3 side (inner side) so that the outer Cu layer 11 and the inner side are made of the same metal material (Cu) and have substantially the same thickness.
  • the lead frame 1 is composed only of the outer Cu layer 11 and the Fe layer 12 by sandwiching the Fe layer 12 having a smaller linear expansion coefficient than the outer Cu layer 11 and the inner Cu layer 13 with the Cu layer 13, the lead It is possible to effectively suppress deformation of the frame 1 so as to warp either the outer Cu layer 11 side or the Fe layer 12 side.
  • the lead frame 1 can be configured so as not to distinguish between the front and the back.
  • the one surface 1a on the outer Cu layer 11 side of the lead frame 1 has a kurtosis (Rku) of 10.5 or less and an arithmetic average roughness (Ra) of 0.15 ⁇ m or less. It is formed as follows. Here, when the kurtosis of the one surface 1a is larger than 10.5 and a sharp portion is formed on the one surface 1a, or when the arithmetic average roughness of the one surface 1a is larger than 0.15 ⁇ m, the one surface 1a When the unevenness difference (undulation) is large (rough), the light reflection film 14 is broken when the light reflection film 14 is formed, and there is a high possibility that a plating defect will occur.
  • Rku kurtosis
  • Ra arithmetic average roughness
  • the light irradiated downward (Z2 direction) from the LED element 2 is not sufficiently reflected by the one surface 1a of the lead frame 1, and as a result, The light quantity of LED module 100 will fall.
  • the pointed portion of the one surface 1a on which the LED element 2 is disposed Since the undulation of the one surface 1a can be reduced, it is possible to form a high-quality light reflecting layer 14 and connection layer 15 having no defect on the one surface 1a. Thereby, since the light irradiated from the LED element 2 is fully reflected in the one surface 1a of the lead frame 1, it can suppress that the light quantity of the LED module 100 falls.
  • the total thickness of the outer Cu layer 11 and the inner Cu layer 13 is about 30% or more of the thickness t1 of the lead frame 1, so that the thermal conductivity is larger than that of the Fe layer 12.
  • the heat of the outer Cu layer 11 can be radiated more quickly to an external heat radiating member connected to the outer Cu layer 11 or to the outside air. It is preferable because heat can be effectively suppressed from being accumulated in the lead frame 1 in the vicinity of the LED element 2.
  • the total thickness of the outer Cu layer 11 and the inner Cu layer 13 is about 80% or less of the thickness t1 of the lead frame 1, the thickness t4 of the Fe layer 12 can be sufficiently secured.
  • the outer Cu layer 11 made of Cu that hardly reflects light is positioned, and the one surface 1a on which the LED element 2 is disposed. Since the light reflection layer 14 is formed thereon, the light from the LED element 2 can be reflected more.
  • the thermal conductivity in the plate surface direction (direction orthogonal to the stacking direction) of the lead frame 1 is set to about 150 W / (m ⁇ K) or more, and the thickness direction of the lead frame 1 ( The heat conductivity in the stacking direction) is about 100 W / (mxK) or more, so that the heat from the LED element 2 is not only the outer Cu layer 11 but also the Fe layer 12 and the inner Cu positioned in the plate thickness direction. It can be sufficiently diffused toward the layer 13 and can also be sufficiently diffused toward the Fe layer 12 and the inner Cu layer 13 in the plate surface direction. Thereby, the heat in the vicinity of the LED element 2 can be diffused by the entire lead frame 1, so that the heat can be further prevented from being accumulated in the lead frame 1 in the vicinity of the LED element 2.
  • the thermal expansion of the lead frame 1 can be sufficiently suppressed by setting the linear expansion coefficient of the lead frame 1 to about 17 ⁇ 10 ⁇ 6 / K or less.
  • the resulting deformation of the lead frame 1 can be sufficiently suppressed. Thereby, it can suppress effectively that the stress accompanying a deformation
  • the thermal expansion of the lead frame 1 can be further suppressed and the mechanical strength of the lead frame 1 is improved. be able to.
  • the Fe layer 12 when the Fe layer 12 includes at least one of Ni and Cr, and the Fe layer 12 is composed of an Fe alloy in which the total of Ni and Cr is 10% by mass or less, the corrosion resistance of the Fe layer 12 can be improved, and the thermal conductivity of the Fe layer 12 can be suppressed from becoming excessively small.
  • the lead frame 1 is bent along the vicinity of the end of the upper surface 3 a of the base 3, both side surfaces 3 b in the X direction, and a part of the lower surface 3 c of the base 3. Since the lead frame 1 can be disposed so as to cover the plate-like base 3, the surface area of the lead frame 1 can be secured larger than when the lead frame 1 is not bent. Thereby, the heat from the LED element 2 can be quickly diffused from the part of the outer Cu layer 11 in the vicinity of the LED element 2 toward the wide part of the outer Cu layer 11 away from the LED element 2 and wide. Since heat can be radiated to the outside air in a range, it is possible to further suppress heat from being accumulated in the lead frame 1 near the LED element 2.
  • FIG. 1 a manufacturing process of the LED module 100 according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 5 to 7.
  • FIG. 2 a manufacturing process of the LED module 100 according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 5 to 7.
  • FIG. 2 a manufacturing process of the LED module 100 according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 5 to 7.
  • a pair of Cu plates made of Cu having a predetermined width in the width direction (X direction) and extending in the rolling direction (Y direction) orthogonal to the X direction, and having substantially the same width as the Cu plate in the X direction.
  • an Fe plate extending in the Y direction is prepared.
  • the Cu plate is made of Cu having a purity of about 99.9% or more.
  • the Fe plate is made of Fe alloy containing pure Fe or at least one of Ni and Cr and the total of Ni and Cr being 10% by mass or less. At this time, the Fe plate is prepared so that the thickness thereof is about 20% or more and about 70% or less of the total thickness of the pair of Cu plate and Fe plate.
  • rollers 201a and 201b extending in the X direction.
  • a roller 201 a having a smooth roller surface is used as the roller 201 a that contacts the one surface 1 a (outer Cu layer 11) of the lead frame 1.
  • a roller 201a having a roller surface arithmetic average roughness (Ra) of about 0.05 ⁇ m or less is used.
  • the kurtosis (Rku) of the one surface 1a of the lead frame 1 is adjusted to 10.5 or less
  • the arithmetic average roughness (Ra) is adjusted to 0.15 ⁇ m or less.
  • a lead frame material 200 made of a clad material having a three-layer clad structure in which the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13 are joined by diffusion annealing the pair of Cu plate and Fe plate. Is formed.
  • the thickness t1 of the lead frame material 200 (lead frame 1) is about 0.1 mm to about 1.5 mm
  • the reflector 200 is disposed on the one surface 1a of the portion corresponding to the upper surface 3a of the base 3 of the one surface 1a of the lead frame material 200 (lead frame 1) and the reflector.
  • a light reflecting layer 14 made of an Ag plating layer is formed in a region surrounded by 6.
  • Connection layer 15 in which a Ni plating layer and an Au plating layer (not shown) are sequentially stacked on one lower surface 1a of the portion corresponding to both side surfaces 3b of the base 3.
  • the notch part 10a extended in a Y direction is formed in the lead frame material 200 by press work.
  • the base 3 and the reflector 6 are formed on the lead frame material 200 by insert molding. Specifically, as shown in FIG. 6, a mixture of alumina (Al 2 O 3 ) and a binder is injected into the mold 202 with the lead frame material 200 disposed in the mold 202 having a predetermined shape. To do. And a binder is removed by baking on about 200 degreeC or more and about 400 degrees C or less high temperature conditions. Thereby, the base 3 and the reflector 6 made of alumina are formed so as to have a shape corresponding to the shape of the mold 202. At this time, since the Fe layer 12 is not annealed under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less, the 0.2% yield strength of the Fe layer 12 is not less than 0.2% yield strength at about 200 ° C. It is maintained at 400 MPa or more. Thereby, it is suppressed that the mechanical strength of the whole lead frame 1 falls.
  • the LED element 2 is mounted on the surface of the light reflecting layer 14 formed on the one surface 1 a of the lead frame 1.
  • the lead frame 1 and the LED element 2 are bonded together by disposing an adhesive member 4 (see FIG. 2) made of an insulating resin between the light reflecting layer 14 and the LED element 2.
  • a pair of electrodes (not shown) formed on the upper surface side of the LED element 2 are connected to one end of the Au wire 5a and one end of the Au wire 5b by ultrasonic welding.
  • the X1 side and the X2 side of the one surface 1a of the lead frame 1 are connected to the other end of the Au wire 5a and the other end of the Au wire 5b by ultrasonic welding.
  • the lead frame 1 and the Au wires 5a and 5b can be easily connected.
  • a sealing resin 7 is disposed in a space formed by the reflector 6 and the lead frame 1 so as to cover the LED element 2 and the Au wires 5a and 5b. Then, the sealing resin 7 is cured under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. At this time, as described above, since the Fe layer 12 is not annealed under a high temperature condition of about 200 ° C. or higher and about 400 ° C. or lower, the 0.2% proof stress of the Fe layer 12 is 0.2% proof stress or higher at about 200 ° C. And at about 400 MPa or more. Thereby, it is suppressed that the mechanical strength of the whole lead frame 1 falls. Thereby, as shown in FIG. 7, the lead frame material 200 provided with a plurality of portions corresponding to the LED module 100 is formed.
  • the lead frame material 200 is cut along the cutting lines 200a and 200b. Then, as shown in FIG. 2, the lead frame 1 positioned on the X1 side of the cutting line 200a is bent along the side surface 3b and the lower surface 3c on the X1 side of the base 3 on the X1 side, and the cutting line 200a.
  • the lead frame 1 located on the X2 side of the base 3 is bent along the side surface 3b and the lower surface 3c on the X2 side of the base 3. Thereby, the notch part 10b extended in a Y direction is formed, and the some LED module 100 is formed.
  • the LED module 100 is connected to the printed circuit board 102 on which the Cu wirings 102a and 102b are formed so that the solders 101a and 101b are positioned on the connection layer 15 formed on the one surface 1a of the lead frame 1.
  • the 0.2% proof stress of the Fe layer 12 is configured to be about 400 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
  • the Fe layer 12 is heat-treated under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less, after the manufacturing process formed by the base 3 and the reflector 6 and after the manufacturing process for curing the sealing resin 7. Since the 0.2% proof stress is maintained at about 400 MPa or more, the mechanical strength of the lead frame 1 can be prevented from being lowered. Thereby, it can suppress that manufacture of the LED module 100 becomes difficult resulting from it being easy to break the lead frame 1 with which mechanical strength fell at the time of handling.
  • the outer layer 311 made of Ag or Al is arranged on one surface 301a of the lead frame 301, and the other surface 301b is made of Ag or Al.
  • a case where the inner layer 313 is arranged will be described.
  • the LED module 300 is an example of the “light emitting module” in the present invention
  • the lead frame 301 is an example of the “light emitting element substrate” in the present invention.
  • the outer layer 311 and the inner layer 313 are examples of the “first layer” and the “third layer” in the present invention, respectively.
  • the lead frame 301 includes an outer layer 311 made of Ag or Al, an Fe layer 12, and an inner layer made of the same metal as the outer layer 311.
  • 313 is made of a clad material (see FIG. 9) having a three-layer clad structure that is roll-bonded to each other.
  • the inner layer 313 is disposed on the one surface 301a on the side (outer side) on which the LED element 2 is disposed, and the inner layer 313 is disposed on the other surface 301b on the base 3 side (inner side). Yes.
  • the thickness t2 of the outer layer 311 and the thickness t3 of the inner layer 313 are configured to be substantially the same thickness.
  • the thickness t2 of the outer layer 311 and the thickness t3 of the inner layer 313 are both about 15% or more and about 40% or less of the thickness t1 of the lead frame 301, and the total of the outer layer 311 and the inner layer 313.
  • the thermal conductivity of the outer layer 311 and the inner layer 313 is about 430 W / (m ⁇ K). Further, when both the outer layer 311 and the inner layer 313 are made of Al, the thermal conductivity of the outer layer 311 and the inner layer 313 is about 240 W / (m ⁇ K). That is, the thermal conductivity of the outer layer 311 and the inner layer 313 (approximately 430 W / (m ⁇ K) (Ag) in both cases where the outer layer 311 and the inner layer 313 are both made of Ag and both are made of Al.
  • both the outer layer 311 and the inner layer 313 are made of Ag, the coefficient of linear expansion of the outer layer 311 and the inner layer 313 is about 19 ⁇ 10 ⁇ 6 / K.
  • the coefficient of linear expansion of the outer layer 311 and the inner layer 313 is about 23.5 ⁇ 10 ⁇ 6 / K.
  • the linear expansion coefficients of the outer layer 311 and the inner layer 313 are larger than the linear expansion coefficient of the Fe layer 12 (about 12 ⁇ 10 ⁇ 6 / K).
  • Fe or Fe alloy constituting the Fe layer 12 has higher mechanical strength than Ag or Al constituting the outer layer 311 and the inner layer 313.
  • the outer layer 311 made of Ag or Al of the lead frame 301 has a property of easily reflecting light. Therefore, unlike the first embodiment, one surface of the lead frame 301 is provided. A light reflecting layer is not formed on 301a. That is, the LED element 2 is directly disposed on the one surface 301 a of the lead frame 301 via the adhesive member 4. Thereby, the manufacturing process for forming the light reflecting layer can be omitted.
  • the one surface 301a of the outer layer 311 of the lead frame 301 has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less and an arithmetic average roughness (Ra) of 0 over the entire surface. .15 ⁇ m or less.
  • the other structure of 2nd Embodiment of this invention is the same as that of the said 1st Embodiment.
  • the manufacturing process of the LED module 300 of the second embodiment is the same as that described above except that a pair of Ag plates or a pair of Al plates is used instead of the pair of Cu plates and a light reflecting layer is not formed. This is the same as in the first embodiment.
  • the outer layer 311 made of Ag or Al is disposed on the one surface 301a that is the side (outer side) on which the LED element 2 is disposed, so that heat from the LED element 2 is generated. Since it can be rapidly diffused from the portion of the outer layer 311 near the LED element 2 toward the portion of the outer layer 311 far from the LED element 2, heat is accumulated in the lead frame 301 near the LED element 2. Can be suppressed. As a result, it is possible to suppress the temperature of the LED element 2 from rising due to the heat accumulated in the lead frame 301, and thus it is possible to suppress the brightness of the LED element 2 from decreasing due to the temperature increase of the LED element 2. In addition, the life of the LED element 2 can be extended.
  • the Fe or Fe alloy constituting the Fe layer 12 has a mechanical strength greater than that of Ag or Al constituting the outer layer 311 and the inner layer 313, and the linear expansion coefficient of the Fe layer 12. (About 12 ⁇ 10 ⁇ 6 / K) from the linear expansion coefficients (about 19 ⁇ 10 ⁇ 6 / K (Ag) and about 23.5 ⁇ 10 ⁇ 6 / K (Al)) of the outer layer 311 and the inner layer 313. Since the lead frame 301 can be prevented from being deformed due to thermal expansion or external force, the LED element 2 disposed on the one surface 301a of the lead frame 301 is also deformed. It can suppress that the stress accompanying is applied. As a result, it is possible to suppress a decrease in luminance of the LED element 2 due to stress applied to the LED element 2 and a shortening of the life of the LED element 2.
  • the inner layer 313 having the same thickness t3 as the outer layer 311 and made of the same metal material (Ag or Al) as the outer layer 311 is disposed between the outer layer 311 and the inner layer 313.
  • the lead frame 301 is deformed so as to warp either the outer layer 311 side or the Fe layer 12 side by placing the Fe layer 12 on the other surface 301b on the base 3 side (inner side). Can be effectively suppressed. Thereby, it can suppress that the stress accompanying a deformation
  • the entire surface of the one surface 301a of the outer layer 311 of the lead frame 301 has a kurtosis (Rku) of 10.5 or less and an arithmetic average roughness (Ra) of 0.15 ⁇ m.
  • Rku kurtosis
  • Ra arithmetic average roughness
  • Examples 1-1 to 1-9 corresponding to the lead frame 1 of the first embodiment, an outer Cu layer 11, an Fe layer 12, and an inner Cu layer 13 are laminated in the plate thickness direction.
  • the thickness t2 of the outer Cu layer 11 and the thickness t3 of the inner Cu layer 13 are the thickness t1 of the lead frame 1 (see FIG. 3). 3)), 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 45%.
  • the ratio of the thickness occupied by Cu is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, respectively. And 90% modeling. Therefore, in the lead frames 1 of Examples 1-1 to 1-9, the thickness t4 (see FIG. 3) of the Fe layer 12 is 90%, 80%, 70%, and 60% of the thickness t1 of the lead frame 1, respectively. , 50%, 40%, 30%, 20% and 10%.
  • Comparative Example 1-1 with respect to Examples 1-1 to 1-9, a lead frame made only of Fe (lead frame containing no Cu) was assumed.
  • Comparative Example 1-2 a lead frame made only of Cu (a lead frame containing no Fe) was assumed.
  • Examples 2-1 to 2-9 corresponding to the lead frame 301 of the second embodiment, an outer layer 311 made of Ag, an Fe layer 12 and an inner layer 313 made of Ag were laminated in the plate thickness direction.
  • a lead frame 301 made of a clad material having a three-layer structure joined in a state is assumed.
  • the thickness t2 of the outer layer 311 and the thickness t3 (see FIG. 9) of the inner layer 313 made of Ag are the thickness t1 of the lead frame 301 (see FIG. 9).
  • the case of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 45% of FIG. 9) was assumed.
  • the ratio of the thickness occupied by Ag in the lead frames 301 of Examples 2-1 to 2-9 is 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80%, respectively. And 90% modeling.
  • Comparative Example 2-1 with respect to Examples 2-1 to 2-9 a lead frame made only of Fe (lead frame containing no Ag) was assumed.
  • the comparative example 2-1 is the same as the comparative example 1-1.
  • Comparative Example 2-2 a lead frame made only of Ag (a lead frame containing no Fe) was assumed.
  • Examples 3-1 to 3-10 corresponding to the lead frame 301 of the second embodiment, an outer layer 311 made of Al, an Fe layer 12 and an inner layer 313 made of Al were laminated in the thickness direction.
  • a lead frame 301 made of a clad material having a three-layer structure joined in a state is assumed.
  • the thickness t2 of the outer layer 311 and the thickness t3 (see FIG. 9) of the inner layer 313 made of Al are the thickness t1 ( 5%, 10%, 15%, 20%, 22.5%, 25%, 30%, 35%, 40%, and 45%.
  • Comparative Example 3-1 compared with Examples 3-1 to 3-10, a lead frame made of only Fe (lead frame containing no Al) was assumed. Comparative Example 3-1 is the same as Comparative Examples 1-1 and 2-1. In addition, as Comparative Example 3-2, a lead frame made only of Al (lead frame containing no Fe) was assumed.
  • the thermal conductivity in the plate surface direction is 150 W / (m ⁇ K).
  • the thermal conductivity in the plate thickness direction was 100 W / (m ⁇ K) or more. From this result, it is considered that the heat in the vicinity of the LED element can be sufficiently diffused throughout the lead frame by setting the ratio of the thickness occupied by Cu to 30% or more.
  • the ratio of the thickness occupied by Cu in the lead frame is 90% or less (Examples 1-1 to 1-9 and Comparative Example 1-1), the linear expansion coefficient should be less than 17 ⁇ 10 ⁇ 6 / K. I understood.
  • the thermal expansion of the lead frame can be sufficiently suppressed by setting the ratio of the thickness occupied by Cu to 90% or less, so that the deformation of the lead frame due to the thermal expansion is sufficiently suppressed. It is considered possible to do.
  • the thermal conductivity in the plate surface direction is 150 W / (m ⁇ K).
  • the thermal conductivity in the plate thickness direction was 100 W / (m ⁇ K) or more. From this result, it is considered that the heat in the vicinity of the LED element can be sufficiently diffused throughout the lead frame by setting the ratio of the thickness occupied by Ag to 30% or more.
  • the ratio of the thickness occupied by Ag in the lead frame is 80% or less (Examples 2-1 to 2-8 and Comparative Example 2-1), the linear expansion coefficient is 17 ⁇ 10 ⁇ 6 / K or less. I understood.
  • the thermal expansion of the lead frame can be sufficiently suppressed by setting the ratio of the thickness occupied by Ag to 80% or less, so that the deformation of the lead frame due to the thermal expansion is sufficiently suppressed. It is considered possible to do.
  • the thermal conductivity in the plate surface direction is 150 W / (m ⁇ K).
  • the thermal conductivity in the plate thickness direction was 100 W / (m ⁇ K) or more. From this result, it is considered that the heat in the vicinity of the LED element can be sufficiently diffused throughout the lead frame by setting the ratio of the thickness occupied by Al to 45% or more.
  • the thermal conductivity in the plate surface direction is less than 150 W / (m ⁇ K) (126.1 W / (m ⁇ K).
  • the thermal conductivity in the thickness direction is less than 100 W / (m ⁇ K) (97.9 W / (m ⁇ K)) and the ratio of the thickness occupied by Al is 40% (Example 3- 4)
  • the thermal conductivity in the plate surface direction is less than 150 W / (m ⁇ K) (142.1 W / (m ⁇ K))
  • Al has a property close to Cu and Ag. It is considered that the heat in the vicinity of the LED element can be sufficiently diffused to the entire lead frame to some extent.
  • the linear expansion coefficient is 17 ⁇ 10 ⁇ 6 / K or less.
  • the thermal expansion of the lead frame can be sufficiently suppressed by setting the ratio of the thickness occupied by Al to 60% or less, so that the deformation of the lead frame due to the thermal expansion is sufficiently suppressed. It is considered possible to do.
  • the ratio of the thickness of Al in the lead frame is 70% or more and 80% or less (Examples 3-8 and 3-9), the linear expansion coefficient is larger than 17 ⁇ 10 ⁇ 6 / K (Examples).
  • 3-8 (17.1 ⁇ 10 ⁇ 6 / K) and Example 3-9 (18.6 ⁇ 10 ⁇ 6 / K) Al has properties close to that of Cu and Ag. It is considered that the thermal expansion of the lead frame can be suppressed.
  • the roller 201a (see FIG. 5) that contacts one surface 1a when the lead frame (lead frame material) of Comparative Example 1-3 is manufactured, the arithmetic average roughness (Ra) of the roller surface is 0. It rolled using the roller 201a which has a value of 19 micrometers or more and 0.30 micrometers or less. That is, in Comparative Example 1-3, the roller 201a having a large arithmetic average roughness on the roller surface was used while the arithmetic average roughness on the roller surface was not constant.
  • Example 1-10 rolling was performed using a roller 201a having an arithmetic average roughness of the roller surface of 0.05 ⁇ m. That is, in Example 1-10, the roller 201a having a smaller arithmetic average roughness on the roller surface than that of Comparative Example 1-3 was used.
  • Example 1-11 rolling was performed using a roller 201a having an arithmetic average roughness of the roller surface of 0.025 ⁇ m. That is, in Example 1-11, the roller 201a having a smaller arithmetic average roughness on the roller surface was used compared to Comparative Example 1-3 and Example 1-10.
  • Comparative Example 1-4 rolling was performed using a roller 201a having an arithmetic average roughness of the roller surface of 0.025 ⁇ m, and one surface 1a (see FIG. 5) of the lead frame after rolling was dry lapped. Polished.
  • the surface roughness of the one surface 1a of the lead frame was measured using a predetermined measuring device. And the arithmetic mean roughness (Ra) in a rolling direction (Y direction) and the width direction (X direction) and kurtosis (Rku) were each calculated using the obtained measurement result.
  • a plating solution is applied to one surface 1a on the side in contact with the roller 201a with respect to each of the lead frames of Example 1-10, Example 1-11, Comparative Example 1-3, and Comparative Example 1-4.
  • a plating layer corresponding to the light reflection layer 14 made of an Ag plating layer was formed.
  • the presence or absence of the defect of a plating layer was judged by observing the state of a plating layer.
  • Example 1-10 Example 1-11 and Comparative Example 1-4 using a roller 201a having a roller surface arithmetic mean roughness (Ra) of 0.05 ⁇ m or less, the arithmetic mean roughness It was found that the thickness (Ra) can be 0.15 ⁇ m or less.
  • Examples 1-10 and Example 1 except that the roller 201a having an arithmetic average roughness (Ra) of the roller surface of 0.025 ⁇ m or less is used and polishing is performed by dry lapping (Comparative Example 1-4). 11 and Comparative Example 1-3, it was found that kurtosis (Rku) could be 10.5 or less.
  • Example 1-10 and 1-11 no defects in the plating layer were observed.
  • the arithmetic average roughness (Ra) of the roller surface is 0.05 ⁇ m or less, which is sufficiently small, so that the lead frame 1 (the surface of the roller 201a is in contact)
  • the one surface 1a of the lead frame material 200 is considered to have an arithmetic average roughness of 0.15 ⁇ m or less and a kurtosis of 10.5 or less.
  • the one surface 1a can be formed so that the uneven shape is gentle and the undulations are small, and it is considered that no defect occurred in the plating layer formed on the one surface 1a.
  • Comparative Examples 1-3 and 1-4 defects in the plating layer were observed. This is because, in Comparative Example 1-3, the arithmetic average roughness (Ra) of the roller surface is 0.19 ⁇ m or more and 0.30 ⁇ m or less, so that the surface of the roller 201a is in contact with the lead frame (lead frame material). On the other hand, it is considered that the unevenness of the concavo-convex shape of the one surface 1a is increased according to the surface of the roller 201a. As a result, it is considered that a defect occurred in the plating layer formed on the one surface 1a due to the uneven shape having large undulations.
  • the arithmetic average roughness (Ra) of the roller surface is 0.19 ⁇ m or more and 0.30 ⁇ m or less, so that the surface of the roller 201a is in contact with the lead frame (lead frame material).
  • the unevenness of the concavo-convex shape of the one surface 1a is increased according to the surface of the roller
  • the arithmetic average roughness of the one surface 1a can be further reduced by rolling with the roller 201a and then polishing by dry lapping, but the uneven shape of the one surface 1a tends to be sharp. It is thought that it has become. As a result, it is considered that a defect occurred in the plating layer formed on the one surface 1a due to the sharp uneven shape.
  • the lead frame 1 As a result, as in Examples 1-10 and 1-11, by rolling using the roller 201a having an arithmetic average roughness of the roller surface of 0.05 ⁇ m or less and not polishing by dry lapping, the lead frame 1 On the other hand, it was found that the arithmetic average roughness of the surface 1a can be 0.15 ⁇ m or less and the kurtosis can be 10.5 or less. Furthermore, by forming the one surface 1a having an arithmetic average roughness of 0.15 ⁇ m or less and a kurtosis of 10.5 or less, it is possible to form a high-quality plated layer having no defects on the one surface 1a. It turned out to be.
  • the lead frame 1 is manufactured by the manufacturing method as in Examples 1-10 and 1-11, the light irradiated from the laser element 2 is sufficiently reflected on the one surface 1a of the lead frame 1. As a result, it is considered possible to suppress a decrease in the light amount of the LED module 100.
  • the lead frame 1 with the Fe layer 12 made of Fe that does not decrease the 0.2% proof stress even under high temperature conditions of 200 ° C. or higher and 400 ° C. or lower, It has also been found that it is possible to suppress a decrease in the mechanical strength of the lead frame 1.
  • the lead frame 1 (301) is formed near the end of the upper surface 3a of the base 3, the both side surfaces 3b in the X direction, and a part of the lower surface 3c of the base 3.
  • the present invention is not limited to this.
  • the lead frame 401 of the LED module 400 does not cover the lower surface 3 c of the base 3 and moves away from the base 3. It may be bent. Further, the lead frame may be disposed only on the upper surface of the base without being bent.
  • the LED module 400 is an example of the “light emitting module” in the present invention
  • the lead frame 401 is an example of the “light emitting element substrate” in the present invention.
  • the present invention is not limited to this.
  • the thick plate corresponding to the upper surface 3 a of the base 3 on which the LED element 2 is arranged in the lead frame 501 of the LED module 500 You may make the thickness of the part 501c larger than the thickness of another area
  • the lead frame 501 in the thick plate portion 501c has a three-layer structure (see FIG. 3) of the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13.
  • the lead frame 501 in the thin plate portion 501d may be made of the same material as that of the thick plate portion 501c and may have a three-layer structure of the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13. Further, the lead frame 501 in the thin plate portion 501d may be only the inner Cu layer 13 or may have a two-layer structure of the Fe layer 12 and the inner Cu layer 13.
  • the LED module 500 is an example of the “light emitting module” in the present invention
  • the lead frame 501 is an example of the “light emitting element substrate” in the present invention.
  • the outer Cu layer 11 and the inner Cu layer 13 are made of Cu having a purity of 99.9% or more.
  • the outer Cu layer 11 and the inner Cu layer 13 are made of Cu-2.
  • C19400 (CDA standard) made of 30Fe-0.10Zn-0.03P, Cu-0.1Fe-0.03P, Cu-0.2Zr, and other Cu alloys having a Cu purity of 99.9% or less You may comprise as follows. This facilitates processing such as press processing on the lead frame, and further improves the mechanical strength of the lead frame under high temperature conditions.
  • the outer layer 311 and the inner layer 313 are made of Ag or Al.
  • the outer layer 311 and the inner layer 313 are Ag alloys containing elements other than Ag and Ag, or other than Al and Al. You may comprise so that it may consist of Al alloy containing these elements. This facilitates processing such as press processing on the lead frame, and further improves the mechanical strength of the lead frame under high temperature conditions.
  • the outer Cu layer 11 (first layer) and the inner Cu layer 13 (third layer) are both made of Cu.
  • the outer layer 311 (first layer) is shown.
  • the combination of the first layer and the third layer may be Cu and Ag, Cu and Al, Ag and Cu, Ag and Al, Al and Cu, Al and Ag, respectively.
  • Cu may be a Cu alloy
  • Ag may be an Ag alloy
  • Al may be an Al alloy.
  • the 0.2% proof stress of the Fe layer 12 is about 400 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
  • the invention is not limited to this.
  • the 0.2% yield strength of the Fe layer 12 may be about 250 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
  • the 0.2% proof stress of the Fe layer 12 is preferably about 400 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
  • the one surface 1a on the outer Cu layer 11 side of the lead frame 1 has a kurtosis (Rku) of 10.5 or less over the entire surface, and an arithmetic average roughness (Ra).
  • Rku kurtosis
  • Ra arithmetic average roughness
  • the example formed so that it may become 0.15 micrometer or less was shown, this invention is not limited to this.
  • at least the region where the light reflecting layer 14 is formed on one surface 1a of the lead frame 1 is formed so that the kurtosis is 10.5 or less and the arithmetic average roughness is 0.15 ⁇ m or less. May be.
  • the light reflecting layer 14 made of the Ag plating layer is formed by contacting with the plating solution containing Ag is shown, but the present invention is not limited to this.
  • the light reflecting layer 14 may be formed by applying an Ag paste on the one surface 1 a of the lead frame 1.
  • the one surface 1a has a kurtosis of 10.5 or less and an arithmetic average roughness of 0.15 ⁇ m or less.
  • the light reflecting layer 14 may be constituted by a plated layer of a metal material other than Ag such as an Al plated layer.
  • the base 3 and the reflector 6 is an example made of alumina (Al 2 O 3), the present invention is not limited thereto.
  • the lead frame 1 (301) is used in the LED module 100 (300) having the LED element 2 has been described.
  • the present invention is not limited to this.
  • the lead frame 1 (301) may be used for a laser element module that emits laser light.
  • Lead frame (light emitting element substrate) 1a, 301a One surface 1b, 301b

Abstract

This substrate (1) for light emitting elements is provided with: a first layer (11) that is formed of Cu, Ag, Al, an Cu alloy, an Ag alloy or an Al alloy and a second layer (12) that is formed of Fe or an Fe alloy, said layers being arranged on one surface (1a), on which a light emitting element (2) is arranged; and a third layer (13) that is formed of Cu, Ag, Al, an Cu alloy, an Ag alloy or an Al alloy and arranged on the other surface (1b). The surface (1a) is formed to have a kurtosis (Rku) of 10.5 or less and an arithmetic mean roughness (Ra) of 0.15 μm or less.

Description

発光素子用基板、発光モジュールおよび発光モジュールの製造方法Light emitting element substrate, light emitting module, and method of manufacturing light emitting module
 この発明は、発光素子用基板、発光モジュールおよび発光モジュールの製造方法に関し、特に、発光素子が配置される発光素子用基板、その発光素子用基板を備える発光モジュールおよび発光モジュールの製造方法に関する。 The present invention relates to a light emitting element substrate, a light emitting module, and a method for manufacturing a light emitting module, and more particularly to a light emitting element substrate on which a light emitting element is disposed, a light emitting module including the light emitting element substrate, and a method for manufacturing a light emitting module.
 従来、発光素子が配置される発光素子用基板が知られている。このような発光素子用基板は、たとえば、特開2003-133596号公報に開示されている。 Conventionally, a light emitting element substrate on which a light emitting element is disposed is known. Such a light emitting element substrate is disclosed in, for example, Japanese Patent Laid-Open No. 2003-133596.
 上記特開2003-133596号には、金属基板(発光素子用基板)と、金属基板の表面上に凹部を形成するように配置された絶縁層と、金属基板の表面上で、かつ、凹部内に配置されたLED(発光素子)と、LEDと絶縁層上の回路パターンとを接続するボンディングワイヤと、凹部内に充填される透明封止材とを備えるLED表示装置が開示されている。このLED表示装置の金属基板は、シャーシなどに固定されることによって、LEDが配置される基板としての機械的な強度を確保しつつ、シャーシなどに熱を逃がすように構成されている。ここで、上記特開2003-133596号では、金属基板として、Al、CuおよびFeのいずれか、上記金属材料を2種類あるいは3種類含むクラッド材、または、上記金属材料を含む合金を材料とするものが例示されている。しかしながら、上記特開2003-133596号には、金属基板が複数の金属材料からなる場合の具体的な構成(金属基板を構成する各金属材料(金属層)の種類、厚さ、組合せの順序など)についてはなんら開示されていない。 In the above Japanese Patent Application Laid-Open No. 2003-133596, a metal substrate (light emitting element substrate), an insulating layer arranged so as to form a recess on the surface of the metal substrate, a surface of the metal substrate, and in the recess An LED display device is disclosed that includes an LED (light emitting element) disposed on the substrate, a bonding wire that connects the LED and a circuit pattern on an insulating layer, and a transparent sealing material that fills the recess. The metal substrate of this LED display device is configured to release heat to the chassis or the like while securing mechanical strength as a substrate on which the LEDs are arranged by being fixed to the chassis or the like. In JP-A-2003-133596, the metal substrate is made of any one of Al, Cu and Fe, a clad material containing two or three kinds of the metal material, or an alloy containing the metal material. Things are illustrated. However, the above Japanese Patent Application Laid-Open No. 2003-133596 discloses a specific configuration in the case where the metal substrate is made of a plurality of metal materials (type, thickness, order of combination, etc. of each metal material (metal layer) constituting the metal substrate). ) Is not disclosed at all.
特開2003-133596号公報JP 2003-133596 A
 ここで、LED表示装置の金属基板を、特開2003-133596号に例示されるAl、Cu、Feのいずれか、またはこれらの金属を2種類あるいは3種類含むクラッド材で構成する場合であっても、金属基板の具体的な構成によっては、放熱性能が十分に得られない場合もありうる。金属基板の放熱性能が十分でない場合には、LEDの熱が金属基板を介してシャーシ側に十分に伝えられずに、LED付近の金属基板に蓄積されると考えられる。このため、LEDから金属基板に熱を伝えることが困難になりLEDの温度が上昇する。この結果、LEDの輝度が低下するとともに、LEDの寿命が短くなるという問題点がある。また、LED表示装置を製造する際の熱処理温度によっては、金属基板の機械的強度が低下し、取り扱い時に金属基板が破損しやすくなり、LED表示装置の製造に支障をきたすという問題点もある。 Here, when the metal substrate of the LED display device is composed of any one of Al, Cu, Fe exemplified in JP-A-2003-133596, or a clad material containing two or three of these metals. However, depending on the specific configuration of the metal substrate, sufficient heat dissipation performance may not be obtained. When the heat dissipation performance of the metal substrate is not sufficient, it is considered that the heat of the LED is not sufficiently transmitted to the chassis side through the metal substrate but is accumulated on the metal substrate in the vicinity of the LED. For this reason, it is difficult to transfer heat from the LED to the metal substrate, and the temperature of the LED rises. As a result, there is a problem that the luminance of the LED is lowered and the lifetime of the LED is shortened. In addition, depending on the heat treatment temperature at the time of manufacturing the LED display device, the mechanical strength of the metal substrate is lowered, the metal substrate is easily damaged during handling, and there is a problem that the manufacture of the LED display device is hindered.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、発光素子用基板の放熱性能を向上させて発光素子の温度上昇に起因する輝度の低下を抑制し、加えて十分な機械的強度を確保することが可能な発光素子用基板、その発光素子用基板を備える発光モジュールおよび発光モジュールの製造方法を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to improve the heat dissipation performance of the substrate for the light-emitting element and to suppress the decrease in luminance caused by the temperature rise of the light-emitting element. In addition, a light-emitting element substrate capable of ensuring sufficient mechanical strength, a light-emitting module including the light-emitting element substrate, and a method for manufacturing the light-emitting module are provided.
 この発明の第1の局面による発光素子用基板は、発光素子が配置される一方表面に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層と、FeまたはFe合金からなる第2層と、第1層との間に第2層を挟み込むとともに、他方表面に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層とを備え、一方表面は、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、表面粗さを示す指標としての算術平均粗さ(Ra)が0.15μm以下になるように形成されている。 A substrate for a light-emitting element according to a first aspect of the present invention is disposed on a surface on which a light-emitting element is disposed, and is a first layer made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy. And the second layer made of Fe or Fe alloy, and the second layer sandwiched between the first layer and disposed on the other surface, either Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy And a surface having an arithmetic average roughness (Ra) as an index indicating the surface roughness, while the kurtosis (Rku) as an index indicating the surface roughness is 10.5 or less. ) Is 0.15 μm or less.
 この発明の第1の局面による発光素子用基板では、上記のように、発光素子が配置される一方表面に、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層を配置することによって、FeまたはFe合金と比較して熱伝導性に優れた第1層が発光素子側に配置されているので、発光素子からの熱を、発光素子付近の第1層の部分から発光素子から離れた位置の第1層の部分に向けて迅速に拡散させることができる。これにより、第1層に接続された外部の放熱部材や外気に第1層の熱を迅速に放熱させることができるので、発光素子付近の放熱性能が向上した発光素子用基板に熱が蓄積されることを抑制することができる。この結果、発光素子用基板に蓄積された熱により発光素子の温度が上昇することを抑制することができるので、発光素子の温度上昇に起因して発光素子の輝度が低下することを抑制し、かつ、発光素子の長寿命化を図ることができる。 In the light emitting element substrate according to the first aspect of the present invention, as described above, one surface on which the light emitting element is disposed is made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy. By disposing the first layer, the first layer having excellent thermal conductivity compared to Fe or the Fe alloy is disposed on the light emitting element side, so that heat from the light emitting element is transferred to the first layer near the light emitting element. It is possible to diffuse quickly from the portion of the layer toward the portion of the first layer located away from the light emitting element. As a result, the heat of the first layer can be quickly dissipated to an external heat dissipating member connected to the first layer or the outside air, so that heat is accumulated on the light emitting element substrate with improved heat dissipating performance in the vicinity of the light emitting element. Can be suppressed. As a result, it is possible to suppress the temperature of the light emitting element from rising due to the heat accumulated in the substrate for the light emitting element, thereby suppressing the luminance of the light emitting element from decreasing due to the temperature increase of the light emitting element, In addition, the life of the light emitting element can be extended.
 また、上記第1の局面による発光素子用基板では、FeまたはFe合金からなる第2層を備えることによって、発光素子用基板が第2層と比較して線膨張係数の大きいCu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つ(1層)のみからなる場合と比べて、第1層と、第1層よりも線膨張係数が小さく特に高温条件下で機械的な強度が大きい第2層とを用いて発光素子用基板を多層構造としているので、発光素子用基板の熱膨張を抑制することができるとともに、発光素子用基板の機械的な強度を向上させることができる。これにより、熱膨張や外力に起因して発光素子用基板が変形することを抑制することができるので、発光素子用基板の一方表面上に配置された発光素子にも発光素子用基板の変形に伴う応力が加わることを抑制することができる。この結果、発光素子に応力が加わることに起因する発光素子の輝度の低下、および、発光素子の短寿命化を抑制することができる。 Moreover, in the light emitting element substrate according to the first aspect, by providing the second layer made of Fe or Fe alloy, the light emitting element substrate has a larger coefficient of linear expansion than the second layer, such as Cu, Ag, Al. Compared to the case of only one (single layer) of Cu alloy, Ag alloy or Al alloy, the first layer has a smaller linear expansion coefficient than the first layer, and has a mechanical strength particularly under high temperature conditions. Since the light emitting element substrate has a multilayer structure using the second layer having a large thickness, the thermal expansion of the light emitting element substrate can be suppressed and the mechanical strength of the light emitting element substrate can be improved. . As a result, it is possible to prevent the light emitting element substrate from being deformed due to thermal expansion or external force, so that the light emitting element disposed on one surface of the light emitting element substrate is also deformed. It is possible to suppress the accompanying stress. As a result, it is possible to suppress a decrease in luminance of the light emitting element due to stress applied to the light emitting element and a shortening of the lifetime of the light emitting element.
 また、上記第1の局面による発光素子用基板では、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層を、第1層との間に第2層を挟み込むとともに他方表面に配置することによって、第1層と第3層とによって、第1層および第3層よりも線膨張係数が小さい第2層を挟み込むことにより、発光素子用基板が第1層および第2層のみからなる場合と異なり、発光素子用基板が第1層側または第2層側のいずれか一方に反るように変形することを抑制することができる。これにより、発光素子用基板の一方表面上に配置された発光素子にも発光素子用基板の変形に伴う応力が加わることを抑制することができる。この結果、発光素子に応力が加わることに起因する発光素子の輝度の低下、および、発光素子の短寿命化を抑制することができる。 In the light emitting device substrate according to the first aspect, the second layer is formed between the first layer and the third layer made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, and Al alloy. And the second layer having a smaller linear expansion coefficient than that of the first layer and the third layer are sandwiched between the first layer and the third layer, whereby the substrate for a light emitting element is formed in the first layer. Unlike the case of only the layer and the second layer, it is possible to suppress the light emitting element substrate from being deformed so as to warp either the first layer side or the second layer side. Thereby, it can suppress that the stress accompanying the deformation | transformation of the board | substrate for light emitting elements is added also to the light emitting element arrange | positioned on the one surface of the board | substrate for light emitting elements. As a result, it is possible to suppress a decrease in luminance of the light emitting element due to stress applied to the light emitting element and a shortening of the lifetime of the light emitting element.
 また、上記第1の局面による発光素子用基板では、一方表面をクルトシス(Rku)が10.5以下になるように形成することによって、発光素子が配置される一方表面の尖っている部分を少なくすることができる。さらに、一方表面を算術平均粗さ(Ra)が0.15μm以下になるように形成することによって、発光素子が配置される一方表面の凹凸の高さの差(起伏)を小さくすることができる。これらによって、一方表面上に欠陥のない良質なメッキ層を形成することができるとともに、発光素子用基板が発光素子の光を反射する反射板の機能を兼ねる場合に、一方表面において十分に発光素子の光を反射することができる。 Further, in the light emitting element substrate according to the first aspect described above, by forming the one surface so that the kurtosis (Rku) is 10.5 or less, the pointed portion of the one surface where the light emitting element is disposed is reduced. can do. Further, by forming the one surface so that the arithmetic average roughness (Ra) is 0.15 μm or less, the difference in height (undulation) of the unevenness on the one surface on which the light emitting element is arranged can be reduced. . By these, it is possible to form a high-quality plated layer having no defects on one surface, and when the substrate for the light emitting element also serves as a reflector for reflecting the light of the light emitting element, the light emitting element is sufficiently formed on the one surface. Can reflect the light.
 上記第1の局面による発光素子用基板において、好ましくは、第3層は、第1層と同一の金属材料で構成している。これにより、発光素子用基板が第1層側または第2層側のいずれか一方に反るように変形することをより抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the third layer is made of the same metal material as the first layer. Thereby, it can suppress more that it deform | transforms so that the board | substrate for light emitting elements may warp either the 1st layer side or the 2nd layer side.
 上記第1の局面による発光素子用基板において、好ましくは、200℃以上400℃以下の温度条件下において、第2層の0.2%耐力は、250MPa以上であるように構成されている。このように構成すれば、200℃以上400℃以下の高温条件下におかれた後においても第2層の0.2%耐力が250MPa以上に保持されるので、発光素子用基板の機械的な強度が低下することを確実に抑制することができる。これにより、機械的な強度が低下した発光素子用基板が取り扱い時に破損しやすくなることに起因して発光モジュールの製造が困難になることを効果的に抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the 0.2% proof stress of the second layer is 250 MPa or more under a temperature condition of 200 ° C. or more and 400 ° C. or less. With this configuration, the 0.2% proof stress of the second layer is maintained at 250 MPa or more even after being subjected to a high temperature condition of 200 ° C. or more and 400 ° C. or less. It can suppress reliably that intensity | strength falls. Accordingly, it is possible to effectively suppress the difficulty in manufacturing the light emitting module due to the light emitting element substrate having reduced mechanical strength that is easily damaged during handling.
 上記第1の局面による発光素子用基板において、好ましくは、第1層は、CuまたはCu合金からなり、一方表面上には、発光素子からの光を反射可能な光反射層を構成するメッキ層が形成されている。このように構成すれば、光を反射しにくいCuまたはCu合金からなる第1層が位置するとともに、発光素子が配置される一方表面上に、光反射層を構成するメッキ層が形成されているので、発光素子からの光をよりよく反射させることができる。また、一方表面のクルトシスが10.5以下であり、一方表面の尖っている部分が少ないとともに、一方表面の算術平均粗さが0.15μm以下であり、一方表面の起伏が小さいので、一方表面上に欠陥のない良質なメッキ層を形成することができる。 In the light emitting element substrate according to the first aspect, preferably, the first layer is made of Cu or a Cu alloy, and on the one surface, a plating layer constituting a light reflecting layer capable of reflecting light from the light emitting element. Is formed. If comprised in this way, while the 1st layer which consists of Cu or Cu alloy which does not reflect light easily will be located, the plating layer which comprises a light reflection layer is formed on the one surface where a light emitting element is arrange | positioned. Therefore, the light from the light emitting element can be reflected better. Further, the kurtosis on the one surface is 10.5 or less, the pointed portion on the one surface is small, the arithmetic mean roughness on the one surface is 0.15 μm or less, and the undulation on the one surface is small, A high-quality plated layer having no defects can be formed thereon.
 上記第1の局面による発光素子用基板において、好ましくは、第3層は、第1層と同一の金属材料からなり、第1層と第3層とは、同一の厚みを有する。このように構成すれば、同一の金属材料からなるとともに、同一の厚みを有する第1層と第3層とによって、第1層および第3層よりも線膨張係数が小さい第2層を挟み込むことにより、発光素子用基板が第1層側または第2層側のいずれか一方に反るように変形することを効果的に抑制することができる。また、発光素子用基板の構造を表裏で同一にすることができるので、発光素子用基板を表裏の区別が不要なように構成することができる。 In the light emitting element substrate according to the first aspect, preferably, the third layer is made of the same metal material as the first layer, and the first layer and the third layer have the same thickness. If comprised in this way, while it consists of the same metal material and the 1st layer and 3rd layer which have the same thickness, the 2nd layer whose linear expansion coefficient is smaller than a 1st layer and a 3rd layer is inserted | pinched Accordingly, it is possible to effectively suppress the light emitting element substrate from being deformed so as to warp either the first layer side or the second layer side. In addition, since the structure of the light emitting element substrate can be the same on the front and back, the light emitting element substrate can be configured so that it is not necessary to distinguish between the front and the back.
 上記第1の局面による発光素子用基板において、好ましくは、第1層、第2層および第3層によって板状の基板本体が構成されており、板状の基板本体は、板面方向の熱伝導率が150W/(m×K)以上になるとともに、板厚方向の熱伝導率が100W/(m×K)以上になるように構成されている。このように構成すれば、発光素子からの熱を、第1層だけでなく板厚方向に位置する第2層および第3層に向けても十分に拡散させることができるとともに、板面方向の第2層および第3層に向けても十分に拡散させることができる。これにより、発光素子付近の熱を、発光素子用基板の全体により拡散させることができるので、発光素子付近の発光素子用基板に熱が蓄積されることをより抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the first layer, the second layer, and the third layer form a plate-shaped substrate body, and the plate-shaped substrate body is heated in the plate surface direction. The conductivity is 150 W / (m × K) or more, and the thermal conductivity in the plate thickness direction is 100 W / (m × K) or more. If comprised in this way, while being able to fully diffuse the heat | fever from a light emitting element not only to a 1st layer but to the 2nd layer and 3rd layer located in a plate | board thickness direction, It can be sufficiently diffused toward the second layer and the third layer. As a result, the heat in the vicinity of the light emitting element can be diffused throughout the light emitting element substrate, so that it is possible to further suppress the accumulation of heat in the light emitting element substrate in the vicinity of the light emitting element.
 上記第1の局面による発光素子用基板において、好ましくは、第1層、第2層および第3層によって板状の基板本体が構成されており、板状の基板本体は、線膨張係数が17×10-6/K以下になるように構成されている。このように構成すれば、発光素子用基板の熱膨張を十分に抑制することができるので、熱膨張に起因する発光素子用基板の変形を十分に抑制することができる。これにより、発光素子用基板の一方表面上に配置された発光素子に発光素子用基板の変形に伴う応力が加わることを効果的に抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the first layer, the second layer, and the third layer form a plate-like substrate body, and the plate-like substrate body has a linear expansion coefficient of 17. × 10 −6 / K or less. If comprised in this way, since the thermal expansion of the light emitting element use substrate can fully be suppressed, the deformation | transformation of the light emitting element use substrate resulting from a thermal expansion can fully be suppressed. Thereby, it can suppress effectively that the stress accompanying the deformation | transformation of the board | substrate for light emitting elements is added to the light emitting element arrange | positioned on the one surface of the board | substrate for light emitting elements.
 上記第1の局面による発光素子用基板において、好ましくは、第1層および第3層は、共にCuからなり、第2層は、Feからなる。このように構成すれば、第1層が熱伝導性に優れたCuからなることによって、発光素子からの熱を、発光素子付近の第1層の部分から発光素子から離れた位置の第1層の部分に向けてより迅速に拡散させることができるので、第1層に接続された外部の放熱部材や外気に第1層の熱を迅速に放熱させることができる。また、Feからなる第2層を用いることによって、発光素子用基板の熱膨張をより抑制することができるとともに、発光素子用基板の機械的な強度を向上させることができる。また、第3層が第1層と同じCuからなることによって、発光素子用基板が第1層側または第2層側のいずれか一方に反るように変形することをより抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the first layer and the third layer are both made of Cu, and the second layer is made of Fe. If comprised in this way, the 1st layer in the position away from the light emitting element from the part of the 1st layer in the vicinity of a light emitting element by the heat | fever from a light emitting element by the 1st layer consisting of Cu excellent in heat conductivity. Therefore, the heat of the first layer can be quickly dissipated to the external heat dissipating member connected to the first layer and the outside air. Further, by using the second layer made of Fe, the thermal expansion of the light emitting element substrate can be further suppressed, and the mechanical strength of the light emitting element substrate can be improved. In addition, since the third layer is made of the same Cu as the first layer, it is possible to further suppress the light emitting element substrate from being deformed so as to warp either the first layer side or the second layer side. .
 上記第1の局面による発光素子用基板において、好ましくは、第2層は、Fe合金からなり、第2層を構成するFe合金は、NiおよびCrの少なくともいずれか一方を含有するとともに、NiとCrとの合計が10質量%以下であるFe合金からなる。このように構成すれば、NiおよびCrの少なくともいずれか一方を含有することによって、Fe合金からなる第2層の耐食性を向上させることができる。また、第2層を構成するFe合金のNiとCrとの合計を10質量%以下にすることによって、第2層の熱伝導率が過度に小さくなることを抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the second layer is made of an Fe alloy, and the Fe alloy constituting the second layer contains at least one of Ni and Cr, and Ni and It consists of Fe alloy whose sum total with Cr is 10 mass% or less. If comprised in this way, the corrosion resistance of the 2nd layer which consists of Fe alloys can be improved by containing at least any one of Ni and Cr. Moreover, it can suppress that the heat conductivity of a 2nd layer becomes small too much by making the sum total of Ni and Cr of Fe alloy which comprises a 2nd layer into 10 mass% or less.
 上記第1の局面による発光素子用基板において、好ましくは、第1層、第2層および第3層によって板状の基板本体が構成されており、板状の基板本体は、他方表面側から板状の基板本体を支持する板状の基台の表面を覆うように折り曲げられている。このように構成すれば、板状の基台を覆うように発光素子用基板を配置することができるので、発光素子用基板が折り曲げられていない場合と比べて、発光素子用基板の表面積を大きく確保することができる。これにより、発光素子からの熱を、発光素子付近の第1層の部分から発光素子から離れた広範囲の第1層の部分に向けて迅速に拡散させることができるとともに、広い範囲で外気に放熱させることができる。この結果、発光素子付近の発光素子用基板に熱が蓄積されることをより抑制することができる。 In the light emitting element substrate according to the first aspect, preferably, the first layer, the second layer, and the third layer form a plate-like substrate body, and the plate-like substrate body is a plate from the other surface side. Is bent so as to cover the surface of a plate-like base that supports the substrate body. With this configuration, the light emitting element substrate can be arranged so as to cover the plate-like base, and therefore the surface area of the light emitting element substrate is increased compared to the case where the light emitting element substrate is not bent. Can be secured. As a result, heat from the light emitting element can be quickly diffused from the first layer portion in the vicinity of the light emitting element toward the first layer portion in a wide range away from the light emitting element, and heat is radiated to the outside air over a wide range. Can be made. As a result, it is possible to further suppress the accumulation of heat on the light emitting element substrate in the vicinity of the light emitting element.
 この発明の第2の局面による発光モジュールは、発光素子と、発光素子が配置される一方表面に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層と、FeまたはFe合金からなる第2層と、第1層との間に第2層を挟み込むとともに、他方表面に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層とを含む発光素子用基板とを備え、発光素子用基板の一方表面は、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、表面粗さを示す指標としての算術平均粗さ(Ra)が0.15μm以下になるように形成されている。 A light-emitting module according to a second aspect of the present invention is a light-emitting element, and is disposed on one surface on which the light-emitting element is disposed, and is made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy. A second layer is sandwiched between one layer, a second layer made of Fe or an Fe alloy, and the first layer, and is disposed on the other surface of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy. A light emitting element substrate including any one of the third layers, and one surface of the light emitting element substrate has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less, The arithmetic average roughness (Ra) as an index indicating the surface roughness is formed to be 0.15 μm or less.
 この発明の第2の局面による発光モジュールでは、上記第1の局面による発光素子用基板と同様の効果を得ることができる。 The light emitting module according to the second aspect of the present invention can achieve the same effects as the light emitting element substrate according to the first aspect.
 この発明の第3の局面による発光モジュールの製造方法は、発光素子が配置される一方表面に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層と、FeまたはFe合金からなる第2層と、第1層との間に第2層を挟み込むとともに、他方表面に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層とを含み、一方表面が、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、表面粗さを示す指標としての算術平均粗さ(Ra)が0.15μm以下になるように形成された発光素子用基板を形成する工程と、200℃以上400℃以下の温度条件下で熱処理を行う工程と、発光素子用基板の一方表面上に発光素子を配置する工程とを備える。 According to a third aspect of the present invention, there is provided a method for manufacturing a light-emitting module, wherein the light-emitting element is disposed on one surface and is made of any one of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy. The second layer is sandwiched between the layer, the second layer made of Fe or Fe alloy, and the first layer, and disposed on the other surface, and any of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy And a third layer comprising one of them, while the surface has an arithmetic average roughness (Rku) of 10.5 or less as an index indicating the surface roughness, and an arithmetic average roughness as an index indicating the surface roughness (Rku) A step of forming a substrate for a light emitting element formed so that Ra) is 0.15 μm or less, a step of performing a heat treatment under a temperature condition of 200 ° C. or more and 400 ° C. or less, and on one surface of the substrate for a light emitting element Light emitting element is arranged And a step of.
 この発明の第3の局面による発光モジュールの製造方法では、上記第1の局面による発光素子用基板および第2の局面による発光モジュールと同様の効果に加えて、FeまたはFe合金からなる第2層を含む発光素子用基板を形成する工程と、200℃以上400℃以下の温度条件下で熱処理を行う工程とを備えることによって、200℃以上400℃以下の高温条件下で熱処理を行う工程の後においても第2層の0.2%耐力は低下しないので、発光素子用基板の機械的な強度が低下することを抑制することができる。これにより、機械的な強度が低下した発光素子用基板の取り扱いが困難になることに起因して発光モジュールの製造が困難になることを抑制することができる。 In the method for manufacturing a light emitting module according to the third aspect of the present invention, in addition to the same effects as the light emitting element substrate according to the first aspect and the light emitting module according to the second aspect, the second layer made of Fe or Fe alloy. And a step of performing a heat treatment under a high temperature condition of 200 ° C. or more and 400 ° C. or less by a step of forming a substrate for a light emitting element including the step of performing a heat treatment under a temperature condition of 200 ° C. or more and 400 ° C. or less. However, since the 0.2% proof stress of the second layer does not decrease, the mechanical strength of the light emitting element substrate can be suppressed from decreasing. Thereby, it becomes possible to prevent the manufacture of the light-emitting module from being difficult due to the difficulty in handling the light-emitting element substrate having a reduced mechanical strength.
 本発明によれば、上記のように、発光素子の輝度が低下することを抑制し、かつ、発光素子の長寿命化を図ることができる。 According to the present invention, as described above, it is possible to suppress a decrease in luminance of the light emitting element and to extend the life of the light emitting element.
本発明の第1実施形態によるLEDモジュールの構成を示した平面図である。It is the top view which showed the structure of the LED module by 1st Embodiment of this invention. 図1の600-600線に沿った断面図である。FIG. 6 is a cross-sectional view taken along line 600-600 in FIG. 図1の600-600線に沿ったLED素子付近のリードフレームの拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a lead frame in the vicinity of an LED element taken along line 600-600 in FIG. 図1の600-600線に沿った接続層周辺のリードフレームの拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a lead frame around a connection layer taken along line 600-600 in FIG. 本発明の第1実施形態によるLEDモジュールの製造プロセスを説明するための斜視図である。It is a perspective view for demonstrating the manufacturing process of the LED module by 1st Embodiment of this invention. 本発明の第1実施形態によるLEDモジュールの製造プロセスを説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the LED module by 1st Embodiment of this invention. 本発明の第1実施形態によるLEDモジュールの製造プロセスを説明するための平面図である。It is a top view for demonstrating the manufacturing process of the LED module by 1st Embodiment of this invention. 本発明の第2実施形態によるLEDモジュールの構成を示した断面図である。It is sectional drawing which showed the structure of the LED module by 2nd Embodiment of this invention. 本発明の第2実施形態によるLED素子付近のリードフレームの拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a lead frame in the vicinity of an LED element according to a second embodiment of the present invention. 本発明の第1実施形態の効果を確認するために行った第1層および第3層にCuを用いた場合のシミュレーションの結果を示した図である。It is the figure which showed the result of the simulation at the time of using Cu for the 1st layer and 3rd layer which were performed in order to confirm the effect of 1st Embodiment of this invention. 本発明の第1実施形態の効果を確認するために行った第1層および第3層にCuを用いた場合のシミュレーションの結果を示した図である。It is the figure which showed the result of the simulation at the time of using Cu for the 1st layer and 3rd layer which were performed in order to confirm the effect of 1st Embodiment of this invention. 本発明の第2実施形態の効果を確認するために行った第1層および第3層にAgを用いた場合のシミュレーションの結果を示した図である。It is the figure which showed the result of the simulation at the time of using Ag for the 1st layer and 3rd layer which were performed in order to confirm the effect of 2nd Embodiment of this invention. 本発明の第2実施形態の効果を確認するために行った第1層および第3層にAgを用いた場合のシミュレーションの結果を示した図である。It is the figure which showed the result of the simulation at the time of using Ag for the 1st layer and 3rd layer which were performed in order to confirm the effect of 2nd Embodiment of this invention. 本発明の第2実施形態の効果を確認するために行った第1層および第3層にAlを用いた場合のシミュレーションの結果を示した図である。It is the figure which showed the result of the simulation at the time of using Al for the 1st layer and 3rd layer which were performed in order to confirm the effect of 2nd Embodiment of this invention. 本発明の第2実施形態の効果を確認するために行った第1層および第3層にAlを用いた場合のシミュレーションの結果を示した図である。It is the figure which showed the result of the simulation at the time of using Al for the 1st layer and 3rd layer which were performed in order to confirm the effect of 2nd Embodiment of this invention. 本発明の第1実施形態の効果を確認するために行った表面粗さの確認実験の結果を示した図である。It is the figure which showed the result of the confirmation experiment of the surface roughness performed in order to confirm the effect of 1st Embodiment of this invention. 本発明の第1実施形態の効果を確認するために行った0.2%耐力の確認実験の結果を示した図である。It is the figure which showed the result of the confirmation experiment of 0.2% yield strength performed in order to confirm the effect of 1st Embodiment of this invention. 本発明の第1実施形態の効果を確認するために行った0.2%耐力の確認実験の結果を示した図である。It is the figure which showed the result of the confirmation experiment of 0.2% yield strength performed in order to confirm the effect of 1st Embodiment of this invention. 本発明の第1実施形態の第1変形例によるLEDモジュールの構成を示した断面図である。It is sectional drawing which showed the structure of the LED module by the 1st modification of 1st Embodiment of this invention. 本発明の第1実施形態の第2変形例によるLEDモジュールの構成を示した断面図である。It is sectional drawing which showed the structure of the LED module by the 2nd modification of 1st Embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 まず、図1~図4を参照して、本発明の第1実施形態によるLEDモジュール100の構造について説明する。なお、LEDモジュール100は、本発明の「発光モジュール」の一例である。
(First embodiment)
First, the structure of the LED module 100 according to the first embodiment of the present invention will be described with reference to FIGS. The LED module 100 is an example of the “light emitting module” in the present invention.
 本発明の第1実施形態によるLEDモジュール100は、図1および図2に示すように、一方側(X1側)が、半田101aを介してプリント基板102のCu配線102aに接続されているとともに、他方側(X2側)が、半田101bを介してプリント基板102のCu配線102bに接続されている。これにより、プリント基板102に別途接続された制御部(図示せず)により、LEDモジュール100の発光が制御されるように構成されている。 As shown in FIGS. 1 and 2, the LED module 100 according to the first embodiment of the present invention has one side (X1 side) connected to the Cu wiring 102a of the printed circuit board 102 via the solder 101a. The other side (X2 side) is connected to the Cu wiring 102b of the printed circuit board 102 via the solder 101b. Thereby, the light emission of the LED module 100 is controlled by a control unit (not shown) separately connected to the printed circuit board 102.
 また、LEDモジュール100は、X1側とX2側とに分かれた板状のリードフレーム1と、リードフレーム1のX1側の一方表面1a上に固定されたLED素子2と、リードフレーム1に覆われた板状の基台3とを含んでいる。また、図2に示すように、基台3は、上面3a(Z1側の面)と、長手方向(X方向)の両側面3bと、下面3c(Z2側の面)の一部とがリードフレーム1の他方表面1bに覆われている。なお、リードフレーム1の一方表面1aは、LED素子2が配置される側およびプリント基板102と対向する側(外側)の表面であるとともに、リードフレーム1の他方表面1bは、基台3の上面3a、両側面3bおよび下面3cと接する側(内側)の表面である。なお、リードフレーム1は、本発明の「発光素子用基板」の一例であり、LED素子2は、本発明の「発光素子」の一例である。また、上面3a、側面3bおよび下面3cは、本発明の「基台の表面」の一例である。 The LED module 100 is covered with a plate-like lead frame 1 divided into an X1 side and an X2 side, an LED element 2 fixed on one surface 1a on the X1 side of the lead frame 1, and the lead frame 1. And a plate-like base 3. Further, as shown in FIG. 2, the base 3 has an upper surface 3a (surface on the Z1 side), both side surfaces 3b in the longitudinal direction (X direction), and part of the lower surface 3c (surface on the Z2 side). The other surface 1b of the frame 1 is covered. The one surface 1 a of the lead frame 1 is a surface on the side where the LED elements 2 are arranged and the side (outside) facing the printed circuit board 102, and the other surface 1 b of the lead frame 1 is the upper surface of the base 3. 3a, both side surfaces 3b and the lower surface 3c. The lead frame 1 is an example of the “light emitting element substrate” in the present invention, and the LED element 2 is an example of the “light emitting element” in the present invention. The upper surface 3a, the side surface 3b, and the lower surface 3c are examples of the “surface of the base” in the present invention.
 リードフレーム1は、図1および図2に示すように、基台3の上面3a側(Z1側)で、かつ、X方向の中央部よりもX2側に形成された切り欠き部10aと、基台3の下面3c側(Z2側)で、かつ、X方向の中央部およびその周辺に形成された切り欠き部10b(図2参照)とによって、X1側とX2側とに分かれるように構成されている。また、切り欠き部10aおよび10bは、共にY方向(図1参照)に延びるように形成されている。 As shown in FIGS. 1 and 2, the lead frame 1 includes a notch portion 10a formed on the upper surface 3a side (Z1 side) of the base 3 and on the X2 side from the central portion in the X direction. It is configured to be divided into an X1 side and an X2 side by a lower surface 3c side (Z2 side) of the table 3 and a notch portion 10b (see FIG. 2) formed in the central portion in the X direction and the periphery thereof. ing. The notches 10a and 10b are both formed to extend in the Y direction (see FIG. 1).
 また、図2に示すように、リードフレーム1は、基台3の一部を覆うように構成されている。具体的には、リードフレーム1において、基台3の上面3aとX方向の両側面3bとの境界と、基台3の下面3cとX方向の両側面3bとの境界とが、基台3に沿うように略直角に折り曲げられている。これにより、リードフレーム1は、基台3の上面3aの端部近傍と、X方向の両側面3bと、基台3の下面3cの一部とに沿うように折り曲げられている。 Further, as shown in FIG. 2, the lead frame 1 is configured to cover a part of the base 3. Specifically, in the lead frame 1, the boundary between the upper surface 3 a of the base 3 and both side surfaces 3 b in the X direction and the boundary between the lower surface 3 c of the base 3 and both side surfaces 3 b in the X direction are the base 3. It is bent at a substantially right angle so as to follow. As a result, the lead frame 1 is bent along the vicinity of the end portion of the upper surface 3 a of the base 3, both side surfaces 3 b in the X direction, and part of the lower surface 3 c of the base 3.
 また、リードフレーム1は、約0.1mm以上約1.5mm以下の略一様の厚みt1(図3参照)を有している。また、リードフレーム1の板面方向(積層方向に直交する方向)の熱伝導率は、約150W/(m×K)以上であるとともに、リードフレーム1の板厚方向(積層方向)の熱伝導率は、約100W/(m×K)以上であるように構成されている。さらに、リードフレーム1の線膨張係数は、約17×10-6/K以下であるように構成されている。 The lead frame 1 has a substantially uniform thickness t1 (see FIG. 3) of about 0.1 mm to about 1.5 mm. In addition, the thermal conductivity in the plate surface direction (direction orthogonal to the stacking direction) of the lead frame 1 is about 150 W / (m × K) or more, and the thermal conductivity in the plate thickness direction (stacking direction) of the lead frame 1. The rate is configured to be about 100 W / (m × K) or more. Further, the linear expansion coefficient of the lead frame 1 is configured to be about 17 × 10 −6 / K or less.
 LED素子2は、図2に示すように、上面(Z1側の面)から、主に上方(Z1方向)に向かって光を照射するように構成されている。また、LED素子2は、リードフレーム1のX1側の一方表面1a上に、絶縁性樹脂からなる接着部材4を介して接着されている。また、LED素子2の上面側に形成された図示しない一対の電極は、Auワイヤ5aおよび5bを介して、リードフレーム1のX1側およびX2側にそれぞれ電気的に接続されている。 As shown in FIG. 2, the LED element 2 is configured to emit light mainly from the upper surface (the surface on the Z1 side) upward (Z1 direction). The LED element 2 is bonded to the one surface 1a on the X1 side of the lead frame 1 via an adhesive member 4 made of an insulating resin. Further, a pair of electrodes (not shown) formed on the upper surface side of the LED element 2 are electrically connected to the X1 side and the X2 side of the lead frame 1 via Au wires 5a and 5b, respectively.
 基台3は、絶縁性を有するとともに、光を反射可能な白色のアルミナ(Al)からなる。また、基台3は、リードフレーム1の切り欠き部10aおよび10bの内部にも形成されている。これにより、リードフレーム1のX1側とX2側との絶縁が確保されている。さらに、切り欠き部10aの内部に配置された基台3によって、LED素子2から下方(Z2側)の切り欠き部10aに照射された光を、上方(Z1側)に向かって反射することが可能である。 The base 3 is made of white alumina (Al 2 O 3 ) having an insulating property and capable of reflecting light. The base 3 is also formed inside the notches 10 a and 10 b of the lead frame 1. Thereby, insulation between the X1 side and the X2 side of the lead frame 1 is ensured. Furthermore, the base 3 disposed inside the notch 10a can reflect light emitted from the LED element 2 to the notch 10a below (Z2 side) upward (Z1 side). Is possible.
 また、図1および図2に示すように、リードフレーム1の一方表面1a上には、LED素子2を囲うようにリフレクタ6が配置されている。このリフレクタ6は、アルミナ(Al)からなるとともに、下方(Z2側)から上方(Z1側)に向かって開口が大きくなるように構成されている。これにより、リフレクタ6は、LED素子2から側方側に照射された光を、上方(Z1方向)に向かって反射することが可能なように構成されている。また、リフレクタ6とリードフレーム1とによって形成される空間には、LED素子2とAuワイヤ5aおよび5bとを覆うように、透明なシリコン樹脂からなる封止樹脂7が配置されている。 As shown in FIGS. 1 and 2, a reflector 6 is disposed on one surface 1 a of the lead frame 1 so as to surround the LED element 2. The reflector 6 is made of alumina (Al 2 O 3 ) and has an opening that increases from the lower side (Z2 side) to the upper side (Z1 side). Thereby, the reflector 6 is comprised so that the light irradiated to the side side from the LED element 2 can be reflected toward upper direction (Z1 direction). In a space formed by the reflector 6 and the lead frame 1, a sealing resin 7 made of a transparent silicon resin is disposed so as to cover the LED element 2 and the Au wires 5a and 5b.
 なお、基台3およびリフレクタ6は、約200℃以上約400℃以下の高温条件下で焼成されることにより形成されている。また、封止樹脂7は、約200℃以上約400℃以下の高温条件下で硬化させることにより形成されている。 The base 3 and the reflector 6 are formed by firing under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. Further, the sealing resin 7 is formed by curing under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
 ここで、第1実施形態では、リードフレーム1は、図3および図4に示すように、外側Cu層11と、Fe層12と、内側Cu層13とが互いに圧延接合された3層のクラッド構造を有するクラッド材からなる。なお、外側Cu層11および内側Cu層13は、共に、無酸素銅、タフピッチ銅およびリン脱酸銅などの純度99.9%以上のCuからなる。また、Fe層12は、純Fe、または、NiおよびCrの少なくともいずれか一方を含有するとともに、NiとCrとの合計が10質量%以下であるFe合金からなる。また、外側Cu層11は、LED素子2が配置される側(外側)である一方表面1aに配置されているとともに、内側Cu層13は、外側Cu層11との間にFe層12を挟み込むように基台3側(内側)の他方表面1bに配置されている。なお、外側Cu層11、Fe層12および内側Cu層13は、それぞれ、本発明の「第1層」、「第2層」および「第3層」の一例である。 Here, in the first embodiment, as shown in FIGS. 3 and 4, the lead frame 1 includes a three-layer clad in which an outer Cu layer 11, an Fe layer 12, and an inner Cu layer 13 are roll-bonded to each other. It consists of a clad material having a structure. Both the outer Cu layer 11 and the inner Cu layer 13 are made of Cu having a purity of 99.9% or more, such as oxygen-free copper, tough pitch copper, and phosphorus deoxidized copper. The Fe layer 12 is made of Fe alloy containing pure Fe or at least one of Ni and Cr, and the total of Ni and Cr is 10% by mass or less. The outer Cu layer 11 is disposed on the one surface 1 a on the side (outer side) on which the LED element 2 is disposed, and the inner Cu layer 13 sandwiches the Fe layer 12 between the outer Cu layer 11. In this way, it is arranged on the other surface 1b on the base 3 side (inner side). The outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13 are examples of the “first layer”, “second layer”, and “third layer” of the present invention, respectively.
 また、Fe層12の熱伝導率(約80W/(m×K))は、外側Cu層11の熱伝導率(約400W/(m×K))よりも小さい。これにより、LED素子2からリードフレーム1の外側Cu層11に伝えられた熱は、外側Cu層11からFe層12に伝わるよりも、外側Cu層11自体を伝わりやすい。つまり、LED素子2付近の外側Cu層11の熱は、板厚方向に沿ってFe層12および内側Cu層13の順にZ2方向に伝わるよりも、板面方向に沿ってLED素子2から離れた位置の外側Cu層11に伝わりやすい。 Further, the thermal conductivity (about 80 W / (m × K)) of the Fe layer 12 is smaller than the thermal conductivity (about 400 W / (m × K)) of the outer Cu layer 11. Thereby, the heat transferred from the LED element 2 to the outer Cu layer 11 of the lead frame 1 is more easily transferred through the outer Cu layer 11 itself than from the outer Cu layer 11 to the Fe layer 12. That is, the heat of the outer Cu layer 11 near the LED element 2 is separated from the LED element 2 along the plate surface direction, rather than being transmitted in the Z2 direction in the order of the Fe layer 12 and the inner Cu layer 13 along the plate thickness direction. It is easy to be transmitted to the outer Cu layer 11 at the position.
 また、Fe層12の線膨張係数(約12×10-6/K)は、外側Cu層11および内側Cu層13の線膨張係数(約17×10-6/K)よりも小さい。また、Fe層12を構成するFeまたはFe合金は、外側Cu層11および内側Cu層13を構成するCuよりも、機械的な強度が大きい。 Further, the linear expansion coefficient (about 12 × 10 −6 / K) of the Fe layer 12 is smaller than the linear expansion coefficients (about 17 × 10 −6 / K) of the outer Cu layer 11 and the inner Cu layer 13. Further, Fe or Fe alloy constituting the Fe layer 12 has higher mechanical strength than Cu constituting the outer Cu layer 11 and the inner Cu layer 13.
 また、約200℃以上約400℃以下の高温条件下において、Fe層12の0.2%耐力は、約400MPa以上であるとともに、約200℃における0.2%耐力以上の0.2%耐力を有するように構成されている。つまり、約200℃以上約400℃以下の高温条件下ではFe層12は焼鈍されないように構成されている。これにより、約200℃以上約400℃以下の高温条件下におかれた後でも、リードフレーム1全体の機械的な強度が低下することが抑制されるように構成されている。 Further, under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less, the 0.2% yield strength of the Fe layer 12 is about 400 MPa or more, and a 0.2% yield strength of about 0.2% yield or more at about 200 ° C. It is comprised so that it may have. That is, the Fe layer 12 is configured not to be annealed under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. Thereby, even after being placed under a high temperature condition of about 200 ° C. or higher and about 400 ° C. or lower, the mechanical strength of the entire lead frame 1 is suppressed from being lowered.
 また、第1実施形態では、外側Cu層11の厚みt2と内側Cu層13の厚みt3とが略同一の厚みになるように構成されている。さらに、Fe層12の厚みt4は、リードフレーム1の厚みt1(=t2+t3+t4)の約20%以上約70%以下になるように構成されている。この結果、外側Cu層11の厚みt2と内側Cu層13の厚みt3とは、共に、リードフレーム1の厚みt1の約15%以上約40%以下になるとともに、外側Cu層11と内側Cu層13との合計の厚み(=t2+t3)は、リードフレーム1の厚みt1の厚みの約30%以上約80%以下になるように構成されている。 In the first embodiment, the thickness t2 of the outer Cu layer 11 and the thickness t3 of the inner Cu layer 13 are configured to be substantially the same thickness. Further, the thickness t4 of the Fe layer 12 is configured to be about 20% or more and about 70% or less of the thickness t1 (= t2 + t3 + t4) of the lead frame 1. As a result, the thickness t2 of the outer Cu layer 11 and the thickness t3 of the inner Cu layer 13 are both about 15% to about 40% of the thickness t1 of the lead frame 1, and the outer Cu layer 11 and the inner Cu layer. 13 (= t2 + t3) is configured to be about 30% to about 80% of the thickness t1 of the lead frame 1.
 また、第1実施形態では、リードフレーム1の外側Cu層11側の一方表面1aは、全面に渡って、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、算術平均粗さ(Ra)が0.15μm以下になるように形成されている。 In the first embodiment, the one surface 1a on the outer Cu layer 11 side of the lead frame 1 has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less over the entire surface, and arithmetic. The average roughness (Ra) is formed to be 0.15 μm or less.
 ここで、クルトシス(Rku)とは、表面粗さを示す指標の一種であって、表面に形成された凹凸形状の尖り度合いを示す指標のことである。具体的には、クルトシスは、基準長さにおける高さの4乗を、表面粗さの標準偏差を意味する二乗平均根高さの4乗で除算することによって求められる。クルトシスが小さい場合には、表面の凹凸形状がなだらかになっている状態であることを意味し、クルトシスが大きい場合には、表面の凹凸形状が鋭角状に尖った状態であることを意味する。また、算術平均粗さ(Ra)とは、表面粗さを示す指標の一種であって、基準長さにおける高さの絶対値の平均を算出することによって求められる。算術平均粗さが小さい場合には、表面の凹凸形状の高さの差が小さい(起伏が小さい)ことを意味し、算術平均粗さが大きい場合には、表面の凹凸形状の高さの差が大きい(起伏が大きい)ことを意味する。 Here, kurtosis (Rku) is a kind of index indicating the surface roughness and indicating the sharpness of the uneven shape formed on the surface. Specifically, the kurtosis is obtained by dividing the fourth power of the height in the reference length by the fourth power of the root mean square height that means the standard deviation of the surface roughness. When the kurtosis is small, it means that the uneven shape of the surface is smooth, and when the kurtosis is large, it means that the uneven shape of the surface is sharply sharpened. The arithmetic average roughness (Ra) is a kind of index indicating the surface roughness, and is obtained by calculating the average of the absolute values of the height in the reference length. If the arithmetic average roughness is small, it means that the difference in height of the surface irregularities is small (the undulation is small), and if the arithmetic average roughness is large, the difference in height of the irregularities on the surface Is large (the undulations are large).
 つまり、リードフレーム1の一方表面1aは、クルトシスが小さいことにより凹凸形状がなだらかであり、かつ、算術平均粗さが小さいことにより凹凸形状の起伏が小さくなるように形成されている。 That is, the one surface 1a of the lead frame 1 is formed so that the concavo-convex shape is gentle due to the small kurtosis, and the undulation of the concavo-convex shape is small due to the small arithmetic average roughness.
 また、リードフレーム1の一方表面1a上には、光反射層14(図3参照)および接続層15(図4参照)が形成されている。光反射層14は、一方表面1aのうちの基台3の上面3aに対応する部分の一方表面1a上で、かつ、リフレクタ6に囲まれる領域に形成されている。また、接続層15は、半田101aおよび101bが配置される領域に形成されている。具体的には、接続層15は、一方表面1aのうちの基台3の下面3cに対応する部分の一方表面1a上と、一方表面1aのうちの基台3の両側面3bに対応する部分の下側の一方表面1a上とに形成されている。また、光反射層14の厚みt5および接続層15の厚みt6は、共に、約0.5μm以上約1.5μm以下である。なお、光反射層14は、本発明の「メッキ層」の一例である。 Further, a light reflection layer 14 (see FIG. 3) and a connection layer 15 (see FIG. 4) are formed on one surface 1a of the lead frame 1. The light reflecting layer 14 is formed on the one surface 1 a of the portion corresponding to the upper surface 3 a of the base 3 in the one surface 1 a and in a region surrounded by the reflector 6. The connection layer 15 is formed in a region where the solders 101a and 101b are disposed. Specifically, the connection layer 15 is formed on the one surface 1a of the portion corresponding to the lower surface 3c of the base 3 in the one surface 1a and the portions corresponding to both side surfaces 3b of the base 3 in the one surface 1a. Is formed on the lower one surface 1a. The thickness t5 of the light reflecting layer 14 and the thickness t6 of the connection layer 15 are both about 0.5 μm or more and about 1.5 μm or less. The light reflecting layer 14 is an example of the “plating layer” in the present invention.
 光反射層14は、Agメッキ層からなり、LED素子2から下方(Z2側)に照射された光を、上方(Z1側)に向かって反射する機能を有するとともに、Auワイヤ5aおよび5bとリードフレーム1とを容易に接続するために形成されている。また、接続層15は、リードフレーム1側からNiメッキ層およびAuメッキ層(図示せず)が順に積層された構造を有している。この接続層15は、半田101aおよび101bに対するリードフレーム1の濡れ性を向上させるために形成されている。また、光反射層14および接続層15は、共に、メッキ処理によって形成されている。 The light reflection layer 14 is made of an Ag plating layer, and has a function of reflecting light irradiated downward (Z2 side) from the LED element 2 toward the upper side (Z1 side), and leads to the Au wires 5a and 5b. It is formed for easy connection with the frame 1. The connection layer 15 has a structure in which a Ni plating layer and an Au plating layer (not shown) are sequentially laminated from the lead frame 1 side. This connection layer 15 is formed in order to improve the wettability of the lead frame 1 with respect to the solders 101a and 101b. The light reflecting layer 14 and the connection layer 15 are both formed by plating.
 第1実施形態では、上記のように、Cuからなる外側Cu層11を、LED素子2が配置される側(外側)である一方表面1aに配置することによって、FeまたはFe合金と比較して熱伝導性に優れたCuからなる外側Cu層11がLED素子2側に配置されているので、LED素子2からの熱を、LED素子2付近の外側Cu層11の部分からLED素子2から離れた位置の外側Cu層11の部分に向けて迅速に拡散させることができる。これにより、外側Cu層11に接続された外部の放熱部材(プリント基板102)や外気に外側Cu層11の熱を迅速に放熱させることができるので、LED素子2付近の放熱性能が向上したリードフレーム1に熱が蓄積されることを抑制することができる。この結果、リードフレーム1に蓄積された熱によりLED素子2の温度が上昇することを抑制することができるので、LED素子2の温度上昇に起因してLED素子2の輝度が低下することを抑制することができる。また、LED素子2が異常な高温に長時間さらされることを抑制することができるので、LED素子2の長寿命化を図ることができる。 In the first embodiment, as described above, the outer Cu layer 11 made of Cu is disposed on the one surface 1a on the side (outer side) on which the LED element 2 is disposed, thereby comparing with Fe or Fe alloy. Since the outer Cu layer 11 made of Cu having excellent thermal conductivity is disposed on the LED element 2 side, the heat from the LED element 2 is separated from the LED element 2 from the portion of the outer Cu layer 11 near the LED element 2. It is possible to diffuse quickly toward the portion of the outer Cu layer 11 at a certain position. As a result, the heat of the outer Cu layer 11 can be quickly dissipated to an external heat dissipating member (printed circuit board 102) connected to the outer Cu layer 11 and the outside air, so that the heat dissipating performance near the LED element 2 is improved. Accumulation of heat in the frame 1 can be suppressed. As a result, it is possible to suppress the temperature of the LED element 2 from rising due to the heat accumulated in the lead frame 1, thereby suppressing the brightness of the LED element 2 from decreasing due to the temperature increase of the LED element 2. can do. Moreover, since it can suppress that the LED element 2 is exposed to abnormally high temperature for a long time, the lifetime of the LED element 2 can be achieved.
 また、第1実施形態では、Fe層12を構成するFeまたはFe合金が、外側Cu層11および内側Cu層13を構成するCuよりも機械的な強度が大きいとともに、Fe層12の線膨張係数(約12×10-6/K)が外側Cu層11および内側Cu層13の線膨張係数(約17×10-6/K)よりも小さいことによって、リードフレーム1がFe層12と比較して線膨張係数の大きいCuのみ(Cu層)からなる場合と比べて、外側Cu層11と、外側Cu層11よりも線膨張係数が小さく特に高温条件下で機械的な強度が大きいFe層12とを用いてリードフレーム1を多層構造としているので、リードフレーム1の熱膨張を抑制することができるとともに、リードフレーム1の機械的な強度を向上させることができる。これにより、熱膨張や外力に起因してリードフレーム1が変形することを抑制することができるので、リードフレーム1の一方表面1a上に配置されたLED素子2にもリードフレーム1の変形に伴う応力が加わることを抑制することができる。この結果、LED素子2に応力が加わることに起因するLED素子2の輝度の低下、および、LED素子2の短寿命化を抑制することができる。 In the first embodiment, the Fe or Fe alloy constituting the Fe layer 12 has a mechanical strength higher than that of the Cu constituting the outer Cu layer 11 and the inner Cu layer 13, and the linear expansion coefficient of the Fe layer 12. by (about 12 × 10 -6 / K) is smaller than the linear expansion coefficient of the outer Cu layer 11 and the inner Cu layer 13 (about 17 × 10 -6 / K), compared lead frame 1 and the Fe layer 12 The outer Cu layer 11 and the Fe layer 12 having a smaller linear expansion coefficient than the outer Cu layer 11 and having a high mechanical strength under high temperature conditions, compared with a case where only Cu having a large linear expansion coefficient (Cu layer) is formed. Since the lead frame 1 has a multi-layer structure using the above, the thermal expansion of the lead frame 1 can be suppressed and the mechanical strength of the lead frame 1 can be improved. As a result, the lead frame 1 can be prevented from being deformed due to thermal expansion or external force, so that the LED element 2 disposed on the one surface 1a of the lead frame 1 also accompanies the deformation of the lead frame 1. Application of stress can be suppressed. As a result, it is possible to suppress a decrease in luminance of the LED element 2 due to stress applied to the LED element 2 and a shortening of the life of the LED element 2.
 また、第1実施形態では、外側Cu層11の厚みt2と略同一の厚みt3を有し、外側Cu層11と同一の金属材料(Cu)からなる内側Cu層13を、外側Cu層11との間にFe層12を挟み込むとともに、基台3側(内側)の他方表面1bに配置することによって、同一の金属材料(Cu)からなるとともに、略同一の厚みを有する外側Cu層11と内側Cu層13とによって、外側Cu層11および内側Cu層13よりも線膨張係数が小さいFe層12を挟み込むことにより、リードフレーム1が外側Cu層11およびFe層12のみからなる場合と異なり、リードフレーム1が外側Cu層11側またはFe層12側のいずれか一方に反るように変形することを効果的に抑制することができる。これにより、リードフレーム1の一方表面1a上に配置されたLED素子2にもリードフレーム1の変形に伴う応力が加わることを抑制することができる。この結果、LED素子2に応力が加わることに起因するLED素子2の輝度の低下、および、LED素子2の短寿命化を抑制することができる。また、リードフレーム1の構造を表裏で略同一にすることができるので、リードフレーム1の表裏の区別が不要なように構成することができる。 In the first embodiment, the inner Cu layer 13 having the same thickness t3 as the outer Cu layer 11 and made of the same metal material (Cu) as the outer Cu layer 11 is used as the outer Cu layer 11. The Fe layer 12 is sandwiched between them and disposed on the other surface 1b on the base 3 side (inner side) so that the outer Cu layer 11 and the inner side are made of the same metal material (Cu) and have substantially the same thickness. Unlike the case where the lead frame 1 is composed only of the outer Cu layer 11 and the Fe layer 12 by sandwiching the Fe layer 12 having a smaller linear expansion coefficient than the outer Cu layer 11 and the inner Cu layer 13 with the Cu layer 13, the lead It is possible to effectively suppress deformation of the frame 1 so as to warp either the outer Cu layer 11 side or the Fe layer 12 side. Thereby, it can suppress that the stress accompanying a deformation | transformation of the lead frame 1 is added also to the LED element 2 arrange | positioned on the one surface 1a of the lead frame 1. FIG. As a result, it is possible to suppress a decrease in luminance of the LED element 2 due to stress applied to the LED element 2 and a shortening of the life of the LED element 2. In addition, since the structure of the lead frame 1 can be made substantially the same on the front and back, the lead frame 1 can be configured so as not to distinguish between the front and the back.
 また、第1実施形態では、リードフレーム1の外側Cu層11側の一方表面1aを、クルトシス(Rku)が10.5以下になるとともに、算術平均粗さ(Ra)が0.15μm以下になるように形成している。ここで、一方表面1aのクルトシスが10.5よりも大きく、一方表面1aに尖った部分が形成されている場合や、一方表面1aの算術平均粗さが0.15μmよりも大きく、一方表面1aにおける凹凸の高さの差(起伏)が大きい(粗い)場合には、光反射膜14を形成する際に光反射膜14が破れてしまいメッキ欠陥が生じる可能性が高くなる。このようなメッキ欠陥が形成されている場合には、LED素子2から下方(Z2方向)に向かって照射された光が、リードフレーム1の一方表面1aで十分に反射されずに、その結果、LEDモジュール100の光量が低下してしまう。一方、一方表面1aを、クルトシスが10.5以下になるとともに、算術平均粗さが0.15μm以下になるように形成することによって、LED素子2が配置される一方表面1aの尖っている部分を少なくすることができるとともに、一方表面1aの起伏を小さくすることができるので、一方表面1a上に欠陥のない良質な光反射層14および接続層15を形成することができる。これにより、LED素子2から照射された光がリードフレーム1の一方表面1aにおいて十分に反射されるので、LEDモジュール100の光量が低下することを抑制することができる。 In the first embodiment, the one surface 1a on the outer Cu layer 11 side of the lead frame 1 has a kurtosis (Rku) of 10.5 or less and an arithmetic average roughness (Ra) of 0.15 μm or less. It is formed as follows. Here, when the kurtosis of the one surface 1a is larger than 10.5 and a sharp portion is formed on the one surface 1a, or when the arithmetic average roughness of the one surface 1a is larger than 0.15 μm, the one surface 1a When the unevenness difference (undulation) is large (rough), the light reflection film 14 is broken when the light reflection film 14 is formed, and there is a high possibility that a plating defect will occur. When such a plating defect is formed, the light irradiated downward (Z2 direction) from the LED element 2 is not sufficiently reflected by the one surface 1a of the lead frame 1, and as a result, The light quantity of LED module 100 will fall. On the other hand, by forming the one surface 1a so that the kurtosis is 10.5 or less and the arithmetic average roughness is 0.15 μm or less, the pointed portion of the one surface 1a on which the LED element 2 is disposed Since the undulation of the one surface 1a can be reduced, it is possible to form a high-quality light reflecting layer 14 and connection layer 15 having no defect on the one surface 1a. Thereby, since the light irradiated from the LED element 2 is fully reflected in the one surface 1a of the lead frame 1, it can suppress that the light quantity of the LED module 100 falls.
 また、第1実施形態では、外側Cu層11と内側Cu層13との合計の厚みが、リードフレーム1の厚みt1の約30%以上であることによって、Fe層12よりも熱伝導率の大きい外側Cu層11の厚みt2を特に十分に確保することにより、外側Cu層11に接続された外部の放熱部材や外気に外側Cu層11の熱をより迅速に放熱させることができ、その結果、LED素子2付近のリードフレーム1に熱が蓄積されることを効果的に抑制することができるので好ましい。また、外側Cu層11と内側Cu層13との合計の厚みが、リードフレーム1の厚みt1の約80%以下であることにより、Fe層12の厚みt4についても十分に確保することができるので、相対的に線膨張係数が大きくて熱により変形しやすい外側Cu層11および内側Cu層13と、相対的に線膨張係数が小さくて熱により変形しにくいFe層12との間に発生する応力に起因して外側Cu層11とFe層12とが剥がれたり、内側Cu層13とFe層12とが剥がれたりすることを抑制することができる。 In the first embodiment, the total thickness of the outer Cu layer 11 and the inner Cu layer 13 is about 30% or more of the thickness t1 of the lead frame 1, so that the thermal conductivity is larger than that of the Fe layer 12. By securing a particularly sufficient thickness t2 of the outer Cu layer 11, the heat of the outer Cu layer 11 can be radiated more quickly to an external heat radiating member connected to the outer Cu layer 11 or to the outside air. It is preferable because heat can be effectively suppressed from being accumulated in the lead frame 1 in the vicinity of the LED element 2. Moreover, since the total thickness of the outer Cu layer 11 and the inner Cu layer 13 is about 80% or less of the thickness t1 of the lead frame 1, the thickness t4 of the Fe layer 12 can be sufficiently secured. Stress generated between the outer Cu layer 11 and the inner Cu layer 13 that have a relatively large linear expansion coefficient and are easily deformed by heat, and the Fe layer 12 that has a relatively small linear expansion coefficient and are not easily deformed by heat. It is possible to prevent the outer Cu layer 11 and the Fe layer 12 from being peeled off and the inner Cu layer 13 and the Fe layer 12 from being peeled off.
 また、第1実施形態では、一方表面1a上に光反射層14を形成することによって、光を反射しにくいCuからなる外側Cu層11が位置するとともに、LED素子2が配置される一方表面1a上に光反射層14が形成されているので、LED素子2からの光をより反射させることができる。 In the first embodiment, by forming the light reflecting layer 14 on the one surface 1a, the outer Cu layer 11 made of Cu that hardly reflects light is positioned, and the one surface 1a on which the LED element 2 is disposed. Since the light reflection layer 14 is formed thereon, the light from the LED element 2 can be reflected more.
 また、第1実施形態では、リードフレーム1の板面方向(積層方向に直交する方向)の熱伝導率を、約150W/(m×K)以上にするとともに、リードフレーム1の板厚方向(積層方向)の熱伝導率を、約100W/(m×K)以上にすることによって、LED素子2からの熱を、外側Cu層11だけでなく板厚方向に位置するFe層12および内側Cu層13に向けても十分に拡散させることができるとともに、板面方向のFe層12および内側Cu層13に向けても十分に拡散させることができる。これにより、LED素子2付近の熱を、リードフレーム1の全体により拡散させることができるので、LED素子2付近のリードフレーム1に熱が蓄積されることをより抑制することができる。 In the first embodiment, the thermal conductivity in the plate surface direction (direction orthogonal to the stacking direction) of the lead frame 1 is set to about 150 W / (m × K) or more, and the thickness direction of the lead frame 1 ( The heat conductivity in the stacking direction) is about 100 W / (mxK) or more, so that the heat from the LED element 2 is not only the outer Cu layer 11 but also the Fe layer 12 and the inner Cu positioned in the plate thickness direction. It can be sufficiently diffused toward the layer 13 and can also be sufficiently diffused toward the Fe layer 12 and the inner Cu layer 13 in the plate surface direction. Thereby, the heat in the vicinity of the LED element 2 can be diffused by the entire lead frame 1, so that the heat can be further prevented from being accumulated in the lead frame 1 in the vicinity of the LED element 2.
 また、第1実施形態では、リードフレーム1の線膨張係数を、約17×10-6/K以下にすることによって、リードフレーム1の熱膨張を十分に抑制することができるので、熱膨張に起因するリードフレーム1の変形を十分に抑制することができる。これにより、リードフレーム1の一方表面1a上に配置されたLED素子2にリードフレーム1の変形に伴う応力が加わることを効果的に抑制することができる。 In the first embodiment, the thermal expansion of the lead frame 1 can be sufficiently suppressed by setting the linear expansion coefficient of the lead frame 1 to about 17 × 10 −6 / K or less. The resulting deformation of the lead frame 1 can be sufficiently suppressed. Thereby, it can suppress effectively that the stress accompanying a deformation | transformation of the lead frame 1 is added to the LED element 2 arrange | positioned on the one surface 1a of the lead frame 1. FIG.
 また、第1実施形態では、Fe層12が純Feからなるように構成した場合には、リードフレーム1の熱膨張をより抑制することができるとともに、リードフレーム1の機械的な強度を向上させることができる。 In the first embodiment, when the Fe layer 12 is made of pure Fe, the thermal expansion of the lead frame 1 can be further suppressed and the mechanical strength of the lead frame 1 is improved. be able to.
 また、第1実施形態では、Fe層12が、NiおよびCrの少なくともいずれか一方を含有するとともに、NiとCrとの合計が10質量%以下であるFe合金からなるように構成した場合には、Fe層12の耐食性を向上させることができるとともに、Fe層12の熱伝導性が過度に小さくなることを抑制することができる。 In the first embodiment, when the Fe layer 12 includes at least one of Ni and Cr, and the Fe layer 12 is composed of an Fe alloy in which the total of Ni and Cr is 10% by mass or less, The corrosion resistance of the Fe layer 12 can be improved, and the thermal conductivity of the Fe layer 12 can be suppressed from becoming excessively small.
 また、第1実施形態では、リードフレーム1を、基台3の上面3aの端部近傍と、X方向の両側面3bと、基台3の下面3cの一部とに沿うように折り曲げることによって、板状の基台3を覆うようにリードフレーム1を配置することができるので、リードフレーム1が折り曲げられていない場合と比べて、リードフレーム1の表面積を大きく確保することができる。これにより、LED素子2からの熱を、LED素子2付近の外側Cu層11の部分からLED素子2から離れた広範囲の外側Cu層11の部分に向けて迅速に拡散させることができるとともに、広い範囲で外気に放熱させることができるので、LED素子2付近のリードフレーム1に熱が蓄積されることをより抑制することができる。 In the first embodiment, the lead frame 1 is bent along the vicinity of the end of the upper surface 3 a of the base 3, both side surfaces 3 b in the X direction, and a part of the lower surface 3 c of the base 3. Since the lead frame 1 can be disposed so as to cover the plate-like base 3, the surface area of the lead frame 1 can be secured larger than when the lead frame 1 is not bent. Thereby, the heat from the LED element 2 can be quickly diffused from the part of the outer Cu layer 11 in the vicinity of the LED element 2 toward the wide part of the outer Cu layer 11 away from the LED element 2 and wide. Since heat can be radiated to the outside air in a range, it is possible to further suppress heat from being accumulated in the lead frame 1 near the LED element 2.
 次に、図2、図3および図5~図7を参照して、本発明の第1実施形態によるLEDモジュール100の製造プロセスについて説明する。 Next, a manufacturing process of the LED module 100 according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 5 to 7. FIG.
 まず、幅方向(X方向)に所定の幅を有し、X方向と直交する圧延方向(Y方向)に延びるCuからなる一対のCu板と、X方向にCu板と略同一の幅を有し、Y方向に延びるFe板とを準備する。なお、Cu板は、純度約99.9%以上のCuからなる。また、Fe板は、純Fe、または、NiおよびCrの少なくともいずれか一方を含有するとともに、NiとCrとの合計が10質量%以下であるFe合金からなる。この際、Fe板の厚みが、一対のCu板とFe板とを合計した厚みの約20%以上約70%以下になるように準備する。 First, a pair of Cu plates made of Cu having a predetermined width in the width direction (X direction) and extending in the rolling direction (Y direction) orthogonal to the X direction, and having substantially the same width as the Cu plate in the X direction. Then, an Fe plate extending in the Y direction is prepared. The Cu plate is made of Cu having a purity of about 99.9% or more. Further, the Fe plate is made of Fe alloy containing pure Fe or at least one of Ni and Cr and the total of Ni and Cr being 10% by mass or less. At this time, the Fe plate is prepared so that the thickness thereof is about 20% or more and about 70% or less of the total thickness of the pair of Cu plate and Fe plate.
 そして、図5に示すように、Fe板を挟み込むように一対のCu板を配置した状態で、一対のCu板とFe板とを、X方向に延びるローラ201aおよび201bを用いてY方向に圧延(圧延接合)する。この際、リードフレーム1の一方表面1a(外側Cu層11)に接触するローラ201aとして、平滑なローラ表面を有するローラ201aを用いる。具体的には、ローラ表面の算術平均粗さ(Ra)が約0.05μm以下であるローラ201aを用いる。これにより、リードフレーム1の一方表面1aのクルトシス(Rku)が10.5以下に調整されるとともに、算術平均粗さ(Ra)が0.15μm以下に調整される。 Then, as shown in FIG. 5, with the pair of Cu plates arranged so as to sandwich the Fe plate, the pair of Cu plates and the Fe plate are rolled in the Y direction using rollers 201a and 201b extending in the X direction. (Rolling joining). At this time, a roller 201 a having a smooth roller surface is used as the roller 201 a that contacts the one surface 1 a (outer Cu layer 11) of the lead frame 1. Specifically, a roller 201a having a roller surface arithmetic average roughness (Ra) of about 0.05 μm or less is used. Thereby, the kurtosis (Rku) of the one surface 1a of the lead frame 1 is adjusted to 10.5 or less, and the arithmetic average roughness (Ra) is adjusted to 0.15 μm or less.
 その後、一対のCu板とFe板とを拡散焼鈍することによって、外側Cu層11、Fe層12および内側Cu層13が接合された3層のクラッド構造を有するクラッド材からなるリードフレーム用材料200が形成される。この際、図3に示すように、リードフレーム用材料200(リードフレーム1)の厚みt1は、約0.1mm以上約1.5mm以下になり、Fe層12の厚みt4は、リードフレーム用材料200の厚みt1(=t2+t3+t4)の約20%以上約70%以下になる。 Thereafter, a lead frame material 200 made of a clad material having a three-layer clad structure in which the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13 are joined by diffusion annealing the pair of Cu plate and Fe plate. Is formed. At this time, as shown in FIG. 3, the thickness t1 of the lead frame material 200 (lead frame 1) is about 0.1 mm to about 1.5 mm, and the thickness t4 of the Fe layer 12 is the lead frame material. It becomes about 20% or more and about 70% or less of the thickness t1 (= t2 + t3 + t4) of 200.
 その後、Agを含むメッキ液に接触させることによって、リードフレーム用材料200(リードフレーム1)の一方表面1aのうちの基台3の上面3aに対応する部分の一方表面1a上で、かつ、リフレクタ6に囲まれる領域に、Agメッキ層からなる光反射層14(図2参照)を形成する。また、Niを含むメッキ液に接触させた後に、Auを含むメッキ液に接触させることによって、一方表面1aのうちの基台3の下面3cに対応する部分の一方表面1a上と、一方表面1aのうちの基台3の両側面3bに対応する部分の下側の一方表面1a上とに、Niメッキ層およびAuメッキ層(図示せず)が順に積層された接続層15(図2参照)を形成する。 After that, by contacting with a plating solution containing Ag, the reflector 200 is disposed on the one surface 1a of the portion corresponding to the upper surface 3a of the base 3 of the one surface 1a of the lead frame material 200 (lead frame 1) and the reflector. A light reflecting layer 14 (see FIG. 2) made of an Ag plating layer is formed in a region surrounded by 6. Further, after contacting with a plating solution containing Ni and then contacting with a plating solution containing Au, a portion of the one surface 1a corresponding to the lower surface 3c of the base 3 on one surface 1a and one surface 1a. Connection layer 15 (see FIG. 2) in which a Ni plating layer and an Au plating layer (not shown) are sequentially stacked on one lower surface 1a of the portion corresponding to both side surfaces 3b of the base 3. Form.
 そして、図6に示すように、プレス加工によって、リードフレーム用材料200にY方向に延びる切り欠き部10aを形成する。 And as shown in FIG. 6, the notch part 10a extended in a Y direction is formed in the lead frame material 200 by press work.
 その後、インサート成形により、リードフレーム用材料200に基台3およびリフレクタ6を形成する。具体的には、図6に示すように、所定の形状を有する金型202にリードフレーム用材料200を配置した状態で、金型202にアルミナ(Al)とバインダーとの混合物を注入する。そして、約200℃以上約400℃以下の高温条件下で焼成することによって、バインダーを取り除く。これにより、金型202の形状に対応した形状を有するように、アルミナからなる基台3およびリフレクタ6が形成される。この際、約200℃以上約400℃以下の高温条件下ではFe層12は焼鈍されないので、Fe層12の0.2%耐力は、約200℃における0.2%耐力以上であるとともに、約400MPa以上に保持される。これにより、リードフレーム1全体の機械的な強度が低下するのが抑制される。 Thereafter, the base 3 and the reflector 6 are formed on the lead frame material 200 by insert molding. Specifically, as shown in FIG. 6, a mixture of alumina (Al 2 O 3 ) and a binder is injected into the mold 202 with the lead frame material 200 disposed in the mold 202 having a predetermined shape. To do. And a binder is removed by baking on about 200 degreeC or more and about 400 degrees C or less high temperature conditions. Thereby, the base 3 and the reflector 6 made of alumina are formed so as to have a shape corresponding to the shape of the mold 202. At this time, since the Fe layer 12 is not annealed under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less, the 0.2% yield strength of the Fe layer 12 is not less than 0.2% yield strength at about 200 ° C. It is maintained at 400 MPa or more. Thereby, it is suppressed that the mechanical strength of the whole lead frame 1 falls.
 その後、図7に示すように、リードフレーム1の一方表面1aに形成された光反射層14の表面上にLED素子2を実装する。この際、光反射層14とLED素子2との間に絶縁性樹脂からなる接着部材4(図2参照)を配置することによって、リードフレーム1とLED素子2とを接着する。 Thereafter, as shown in FIG. 7, the LED element 2 is mounted on the surface of the light reflecting layer 14 formed on the one surface 1 a of the lead frame 1. At this time, the lead frame 1 and the LED element 2 are bonded together by disposing an adhesive member 4 (see FIG. 2) made of an insulating resin between the light reflecting layer 14 and the LED element 2.
 そして、超音波溶接によって、LED素子2の上面側に形成された図示しない一対の電極とAuワイヤ5aの一方端およびAuワイヤ5bの一方端とをそれぞれ接続する。また、超音波溶接によって、リードフレーム1の一方表面1aのX1側およびX2側とAuワイヤ5aの他方端およびAuワイヤ5bの他方端とをそれぞれ接続する。この際、リードフレーム1の一方表面1a上に形成されたAgメッキ層からなる光反射層14(図2参照)によって、Cuからなる外側Cu層11にAuワイヤ5aおよび5bを溶接する場合と比べて、容易に、リードフレーム1とAuワイヤ5aおよび5bとを接続することが可能である。 Then, a pair of electrodes (not shown) formed on the upper surface side of the LED element 2 are connected to one end of the Au wire 5a and one end of the Au wire 5b by ultrasonic welding. Further, the X1 side and the X2 side of the one surface 1a of the lead frame 1 are connected to the other end of the Au wire 5a and the other end of the Au wire 5b by ultrasonic welding. At this time, compared to the case where the Au wires 5a and 5b are welded to the outer Cu layer 11 made of Cu by the light reflection layer 14 (see FIG. 2) made of an Ag plating layer formed on the one surface 1a of the lead frame 1. Thus, the lead frame 1 and the Au wires 5a and 5b can be easily connected.
 そして、LED素子2とAuワイヤ5aおよび5bとを覆うように、リフレクタ6とリードフレーム1とによって形成される空間に封止樹脂7を配置する。そして、約200℃以上約400℃以下の高温条件下で封止樹脂7を硬化させる。この際、上記したように、約200℃以上約400℃以下の高温条件下ではFe層12は焼鈍されないので、Fe層12の0.2%耐力は、約200℃における0.2%耐力以上であるとともに、約400MPa以上に保持される。これにより、リードフレーム1全体の機械的な強度が低下するのが抑制される。これにより、図7に示すように、LEDモジュール100に対応する部分が複数設けられた、リードフレーム用材料200が形成される。 Then, a sealing resin 7 is disposed in a space formed by the reflector 6 and the lead frame 1 so as to cover the LED element 2 and the Au wires 5a and 5b. Then, the sealing resin 7 is cured under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. At this time, as described above, since the Fe layer 12 is not annealed under a high temperature condition of about 200 ° C. or higher and about 400 ° C. or lower, the 0.2% proof stress of the Fe layer 12 is 0.2% proof stress or higher at about 200 ° C. And at about 400 MPa or more. Thereby, it is suppressed that the mechanical strength of the whole lead frame 1 falls. Thereby, as shown in FIG. 7, the lead frame material 200 provided with a plurality of portions corresponding to the LED module 100 is formed.
 その後、切断線200aおよび200bに沿って、リードフレーム用材料200を切断する。そして、図2に示すように、切断線200aのX1側に位置するリードフレーム1を、X1側の基台3のX1側の側面3bおよび下面3cに沿うように曲げ加工するとともに、切断線200aのX2側に位置するリードフレーム1を、基台3のX2側の側面3bおよび下面3cに沿うように曲げ加工する。これにより、Y方向に延びる切り欠き部10bが形成されて、複数のLEDモジュール100が形成される。 Thereafter, the lead frame material 200 is cut along the cutting lines 200a and 200b. Then, as shown in FIG. 2, the lead frame 1 positioned on the X1 side of the cutting line 200a is bent along the side surface 3b and the lower surface 3c on the X1 side of the base 3 on the X1 side, and the cutting line 200a. The lead frame 1 located on the X2 side of the base 3 is bent along the side surface 3b and the lower surface 3c on the X2 side of the base 3. Thereby, the notch part 10b extended in a Y direction is formed, and the some LED module 100 is formed.
 最後に、リードフレーム1の一方表面1a上に形成された接続層15に半田101aおよび101bが位置するように、Cu配線102aおよび102bが形成されたプリント基板102にLEDモジュール100を接続する。 Finally, the LED module 100 is connected to the printed circuit board 102 on which the Cu wirings 102a and 102b are formed so that the solders 101a and 101b are positioned on the connection layer 15 formed on the one surface 1a of the lead frame 1.
 第1実施形態の製造方法では、上記のように、約200℃以上約400℃以下の高温条件下において、Fe層12の0.2%耐力を、約400MPa以上であるように構成することによって、約200℃以上約400℃以下の高温条件下で熱処理される、基台3およびリフレクタ6が形成する製造プロセスの後、および、封止樹脂7を硬化させる製造プロセスの後においてもFe層12の0.2%耐力が約400MPa以上に保持されるので、リードフレーム1の機械的な強度が低下することを抑制することができる。これにより、機械的な強度が低下したリードフレーム1が取り扱い時に破損しやすくなることに起因してLEDモジュール100の製造が困難になることを抑制することができる。 In the manufacturing method of the first embodiment, as described above, the 0.2% proof stress of the Fe layer 12 is configured to be about 400 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. The Fe layer 12 is heat-treated under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less, after the manufacturing process formed by the base 3 and the reflector 6 and after the manufacturing process for curing the sealing resin 7. Since the 0.2% proof stress is maintained at about 400 MPa or more, the mechanical strength of the lead frame 1 can be prevented from being lowered. Thereby, it can suppress that manufacture of the LED module 100 becomes difficult resulting from it being easy to break the lead frame 1 with which mechanical strength fell at the time of handling.
 (第2実施形態)
 次に、図8および図9を参照して、本発明の第2実施形態について説明する。この第2実施形態では、上記第1実施形態とは異なり、LEDモジュール300において、リードフレーム301の一方表面301aにAgまたはAlからなる外側層311を配置するとともに、他方表面301bにAgまたはAlからなる内側層313を配置した場合について説明する。なお、LEDモジュール300は、本発明の「発光モジュール」の一例であり、リードフレーム301は、本発明の「発光素子用基板」の一例である。また、外側層311および内側層313は、それぞれ、本発明の「第1層」および「第3層」の一例である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, unlike the first embodiment, in the LED module 300, the outer layer 311 made of Ag or Al is arranged on one surface 301a of the lead frame 301, and the other surface 301b is made of Ag or Al. A case where the inner layer 313 is arranged will be described. The LED module 300 is an example of the “light emitting module” in the present invention, and the lead frame 301 is an example of the “light emitting element substrate” in the present invention. The outer layer 311 and the inner layer 313 are examples of the “first layer” and the “third layer” in the present invention, respectively.
 本発明の第2実施形態では、図8および図9に示すように、リードフレーム301は、AgまたはAlからなる外側層311と、Fe層12と、外側層311と同一の金属からなる内側層313とが互いに圧延接合された3層のクラッド構造を有するクラッド材(図9参照)からなる。また、内側層313は、LED素子2が配置される側(外側)である一方表面301aに配置されているとともに、内側層313は、基台3側(内側)の他方表面301bに配置されている。 In the second embodiment of the present invention, as shown in FIGS. 8 and 9, the lead frame 301 includes an outer layer 311 made of Ag or Al, an Fe layer 12, and an inner layer made of the same metal as the outer layer 311. 313 is made of a clad material (see FIG. 9) having a three-layer clad structure that is roll-bonded to each other. The inner layer 313 is disposed on the one surface 301a on the side (outer side) on which the LED element 2 is disposed, and the inner layer 313 is disposed on the other surface 301b on the base 3 side (inner side). Yes.
 また、図9に示すように、外側層311の厚みt2と内側層313の厚みt3とが略同一の厚みになるように構成されている。また、外側層311の厚みt2と内側層313の厚みt3とは、共に、リードフレーム301の厚みt1の約15%以上約40%以下になるとともに、外側層311と内側層313との合計の厚み(=t2+t3)は、リードフレーム301の厚みt1の厚みの約30%以上約80%以下になるように構成されている。 Further, as shown in FIG. 9, the thickness t2 of the outer layer 311 and the thickness t3 of the inner layer 313 are configured to be substantially the same thickness. The thickness t2 of the outer layer 311 and the thickness t3 of the inner layer 313 are both about 15% or more and about 40% or less of the thickness t1 of the lead frame 301, and the total of the outer layer 311 and the inner layer 313. The thickness (= t2 + t3) is configured to be about 30% to about 80% of the thickness t1 of the lead frame 301.
 なお、外側層311および内側層313が共にAgからなる場合、外側層311および内側層313の熱伝導率は、約430W/(m×K)である。また、外側層311および内側層313が共にAlからなる場合、外側層311および内側層313の熱伝導率は、約240W/(m×K)である。つまり、外側層311および内側層313が共にAgからなる場合、および、共にAlからなる場合のいずれにおいても、外側層311および内側層313の熱伝導率(約430W/(m×K)(Ag)および約240W/(m×K)(Al))は、Fe層12の熱伝導率(約80W/(m×K))よりも大きいので、LED素子2付近の外側層311の熱は、板厚方向に沿ってFe層12および内側層313の順にZ2方向に伝わるよりも、板面方向に沿ってLED素子2から離れた位置の外側層311に伝わりやすい。 When both the outer layer 311 and the inner layer 313 are made of Ag, the thermal conductivity of the outer layer 311 and the inner layer 313 is about 430 W / (m × K). Further, when both the outer layer 311 and the inner layer 313 are made of Al, the thermal conductivity of the outer layer 311 and the inner layer 313 is about 240 W / (m × K). That is, the thermal conductivity of the outer layer 311 and the inner layer 313 (approximately 430 W / (m × K) (Ag) in both cases where the outer layer 311 and the inner layer 313 are both made of Ag and both are made of Al. ) And about 240 W / (m × K) (Al)) is larger than the thermal conductivity of the Fe layer 12 (about 80 W / (m × K)), the heat of the outer layer 311 near the LED element 2 is Rather than being transmitted in the Z2 direction in the order of the Fe layer 12 and the inner layer 313 along the plate thickness direction, it is more easily transmitted to the outer layer 311 at a position away from the LED element 2 along the plate surface direction.
 また、外側層311および内側層313が共にAgからなる場合、外側層311および内側層313の線膨張係数は、約19×10-6/Kである。また、外側層311および内側層313が共にAlからなる場合、外側層311および内側層313の線膨張係数は、約23.5×10-6/Kである。つまり、外側層311および内側層313が共にAgからなる場合、および、共にAlからなる場合のいずれにおいても、外側層311および内側層313の線膨張係数(約19×10-6/K(Ag)および約23.5×10-6/K(Al))は、Fe層12の線膨張係数(約12×10-6/K)よりも大きい。また、Fe層12を構成するFeまたはFe合金は、外側層311および内側層313を構成するAgまたはAlよりも、機械的な強度が大きい。 When both the outer layer 311 and the inner layer 313 are made of Ag, the coefficient of linear expansion of the outer layer 311 and the inner layer 313 is about 19 × 10 −6 / K. When both the outer layer 311 and the inner layer 313 are made of Al, the coefficient of linear expansion of the outer layer 311 and the inner layer 313 is about 23.5 × 10 −6 / K. That is, in both cases where the outer layer 311 and the inner layer 313 are both made of Ag and both are made of Al, the linear expansion coefficients of the outer layer 311 and the inner layer 313 (about 19 × 10 −6 / K (Ag ) And about 23.5 × 10 −6 / K (Al)) are larger than the linear expansion coefficient of the Fe layer 12 (about 12 × 10 −6 / K). Further, Fe or Fe alloy constituting the Fe layer 12 has higher mechanical strength than Ag or Al constituting the outer layer 311 and the inner layer 313.
 また、図8に示すように、リードフレーム301のAgまたはAlからなる外側層311は、光を反射しやすい性質を有しているので、上記第1実施形態と異なり、リードフレーム301の一方表面301a上には光反射層は形成されていない。つまり、リードフレーム301の一方表面301a上には、接着部材4を介してLED素子2が直接配置されている。これにより、光反射層を形成する製造プロセスを省略することが可能になる。また、リードフレーム301の外側層311の一方表面301aは、全面に渡って、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、算術平均粗さ(Ra)が0.15μm以下になるように形成されている。なお、本発明の第2実施形態のその他の構造は、上記第1実施形態と同様である。 Further, as shown in FIG. 8, the outer layer 311 made of Ag or Al of the lead frame 301 has a property of easily reflecting light. Therefore, unlike the first embodiment, one surface of the lead frame 301 is provided. A light reflecting layer is not formed on 301a. That is, the LED element 2 is directly disposed on the one surface 301 a of the lead frame 301 via the adhesive member 4. Thereby, the manufacturing process for forming the light reflecting layer can be omitted. The one surface 301a of the outer layer 311 of the lead frame 301 has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less and an arithmetic average roughness (Ra) of 0 over the entire surface. .15 μm or less. In addition, the other structure of 2nd Embodiment of this invention is the same as that of the said 1st Embodiment.
 また、第2実施形態のLEDモジュール300の製造プロセスは、一対のCu板の代わりに一対のAg板または一対のAl板を用いる点と、光反射層を形成しない点とを除いて、上記第1実施形態と同様である。 In addition, the manufacturing process of the LED module 300 of the second embodiment is the same as that described above except that a pair of Ag plates or a pair of Al plates is used instead of the pair of Cu plates and a light reflecting layer is not formed. This is the same as in the first embodiment.
 第2実施形態では、上記のように、AgまたはAlからなる外側層311を、LED素子2が配置される側(外側)である一方表面301aに配置することによって、LED素子2からの熱を、LED素子2付近の外側層311の部分からLED素子2から離れた位置の外側層311の部分に向けて迅速に拡散させることができるので、LED素子2付近のリードフレーム301に熱が蓄積されることを抑制することができる。この結果、リードフレーム301に蓄積された熱によりLED素子2の温度が上昇することを抑制することができるので、LED素子2の温度上昇に起因してLED素子2の輝度が低下することを抑制し、かつ、LED素子2の長寿命化を図ることができる。 In the second embodiment, as described above, the outer layer 311 made of Ag or Al is disposed on the one surface 301a that is the side (outer side) on which the LED element 2 is disposed, so that heat from the LED element 2 is generated. Since it can be rapidly diffused from the portion of the outer layer 311 near the LED element 2 toward the portion of the outer layer 311 far from the LED element 2, heat is accumulated in the lead frame 301 near the LED element 2. Can be suppressed. As a result, it is possible to suppress the temperature of the LED element 2 from rising due to the heat accumulated in the lead frame 301, and thus it is possible to suppress the brightness of the LED element 2 from decreasing due to the temperature increase of the LED element 2. In addition, the life of the LED element 2 can be extended.
 また、第2実施形態では、Fe層12を構成するFeまたはFe合金が、外側層311および内側層313を構成するAgまたはAlよりも機械的な強度が大きいとともに、Fe層12の線膨張係数(約12×10-6/K)が外側層311および内側層313の線膨張係数(約19×10-6/K(Ag)および約23.5×10-6/K(Al))よりも小さいことによって、熱膨張や外力に起因してリードフレーム301が変形することを抑制することができるので、リードフレーム301の一方表面301a上に配置されたLED素子2にもリードフレーム301の変形に伴う応力が加わることを抑制することができる。この結果、LED素子2に応力が加わることに起因するLED素子2の輝度の低下、および、LED素子2の短寿命化を抑制することができる。 In the second embodiment, the Fe or Fe alloy constituting the Fe layer 12 has a mechanical strength greater than that of Ag or Al constituting the outer layer 311 and the inner layer 313, and the linear expansion coefficient of the Fe layer 12. (About 12 × 10 −6 / K) from the linear expansion coefficients (about 19 × 10 −6 / K (Ag) and about 23.5 × 10 −6 / K (Al)) of the outer layer 311 and the inner layer 313. Since the lead frame 301 can be prevented from being deformed due to thermal expansion or external force, the LED element 2 disposed on the one surface 301a of the lead frame 301 is also deformed. It can suppress that the stress accompanying is applied. As a result, it is possible to suppress a decrease in luminance of the LED element 2 due to stress applied to the LED element 2 and a shortening of the life of the LED element 2.
 また、第2実施形態では、外側層311の厚みt2と略同一の厚みt3を有し、外側層311と同一の金属材料(AgまたはAl)からなる内側層313を、外側層311との間にFe層12を挟み込むとともに、基台3側(内側)の他方表面301bに配置することによって、リードフレーム301が外側層311側またはFe層12側のいずれか一方に反るように変形することを効果的に抑制することができる。これにより、リードフレーム301の一方表面301a上に配置されたLED素子2にもリードフレーム301の変形に伴う応力が加わることを抑制することができる。この結果、LED素子2に応力が加わることに起因するLED素子2の輝度の低下、および、LED素子2の短寿命化を抑制することができる。 In the second embodiment, the inner layer 313 having the same thickness t3 as the outer layer 311 and made of the same metal material (Ag or Al) as the outer layer 311 is disposed between the outer layer 311 and the inner layer 313. The lead frame 301 is deformed so as to warp either the outer layer 311 side or the Fe layer 12 side by placing the Fe layer 12 on the other surface 301b on the base 3 side (inner side). Can be effectively suppressed. Thereby, it can suppress that the stress accompanying a deformation | transformation of the lead frame 301 is added also to the LED element 2 arrange | positioned on the one surface 301a of the lead frame 301. FIG. As a result, it is possible to suppress a decrease in luminance of the LED element 2 due to stress applied to the LED element 2 and a shortening of the life of the LED element 2.
 また、第2実施形態では、リードフレーム301の外側層311の一方表面301aを、全面に渡って、クルトシス(Rku)が10.5以下になるとともに、算術平均粗さ(Ra)が0.15μm以下になるように形成することによって、LED素子2が配置される一方表面301aの尖っている部分を少なくすることができるとともに、一方表面301aの凹凸の高さの差(起伏)を小さくすることができるので、一方表面301aにおいて十分にLED素子2の光を反射することができる。なお、本発明の第2実施形態のその他の効果は、上記第1実施形態と同様である。 In the second embodiment, the entire surface of the one surface 301a of the outer layer 311 of the lead frame 301 has a kurtosis (Rku) of 10.5 or less and an arithmetic average roughness (Ra) of 0.15 μm. By forming the LED element 2 as follows, the pointed portion of the one surface 301a where the LED element 2 is arranged can be reduced, and the height difference (undulation) of the one surface 301a can be reduced. Therefore, the light of the LED element 2 can be sufficiently reflected on the one surface 301a. The remaining effects of the second embodiment of the present invention are similar to those of the aforementioned first embodiment.
 [実施例]
 次に、図3、図5および図9~図18を参照して、本発明の効果を確認するために行った板面方向の熱伝導率、板厚方向の熱伝導率および線膨張係数のシミュレーションと、表面粗さの確認実験と、0.2%耐力の確認実験について説明する。
[Example]
Next, referring to FIG. 3, FIG. 5 and FIG. 9 to FIG. 18, the thermal conductivity in the plate surface direction, the thermal conductivity in the plate thickness direction, and the coefficient of linear expansion performed to confirm the effect of the present invention. Simulation, confirmation experiment of surface roughness, and confirmation experiment of 0.2% proof stress will be described.
 (シミュレーション)
 以下に説明するシミュレーションでは、上記第1実施形態のリードフレーム1に対応する実施例1-1~1-9として、外側Cu層11、Fe層12および内側Cu層13が板厚方向に積層された状態で接合された、3層構造のクラッド材からなるリードフレーム1を想定した。ここで、実施例1-1~1-9のリードフレーム1として、それぞれ、外側Cu層11の厚みt2および内側Cu層13の厚みt3(図3参照)が、リードフレーム1の厚みt1(図3参照)の5%、10%、15%、20%、25%、30%、35%、40%および45%である場合を想定した。つまり、実施例1-1~1-9のリードフレーム1として、Cuが占める厚みの比率が、それぞれ、10%、20%、30%、40%、50%、60%、70%、80%および90%であるようなモデル化を行った。したがって、実施例1-1~1-9のリードフレーム1では、Fe層12の厚みt4(図3参照)は、それぞれ、リードフレーム1の厚みt1の90%、80%、70%、60%、50%、40%、30%、20%および10%になる。
(simulation)
In the simulation described below, as Examples 1-1 to 1-9 corresponding to the lead frame 1 of the first embodiment, an outer Cu layer 11, an Fe layer 12, and an inner Cu layer 13 are laminated in the plate thickness direction. A lead frame 1 made of a clad material having a three-layer structure joined in a state of being in the above state was assumed. Here, in the lead frames 1 of Examples 1-1 to 1-9, the thickness t2 of the outer Cu layer 11 and the thickness t3 of the inner Cu layer 13 (see FIG. 3) are the thickness t1 of the lead frame 1 (see FIG. 3). 3)), 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 45%. That is, in the lead frames 1 of Examples 1-1 to 1-9, the ratio of the thickness occupied by Cu is 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, respectively. And 90% modeling. Therefore, in the lead frames 1 of Examples 1-1 to 1-9, the thickness t4 (see FIG. 3) of the Fe layer 12 is 90%, 80%, 70%, and 60% of the thickness t1 of the lead frame 1, respectively. , 50%, 40%, 30%, 20% and 10%.
 また、実施例1-1~1-9に対する比較例1-1として、Feのみからなるリードフレーム(Cuを全く含まないリードフレーム)を想定した。また、比較例1-2として、Cuのみからなるリードフレーム(Feを全く含まないリードフレーム)を想定した。 Further, as Comparative Example 1-1 with respect to Examples 1-1 to 1-9, a lead frame made only of Fe (lead frame containing no Cu) was assumed. In addition, as Comparative Example 1-2, a lead frame made only of Cu (a lead frame containing no Fe) was assumed.
 また、上記第2実施形態のリードフレーム301に対応する実施例2-1~2-9として、Agからなる外側層311、Fe層12およびAgからなる内側層313が板厚方向に積層された状態で接合された、3層構造のクラッド材からなるリードフレーム301を想定した。ここで、実施例2-1~2-9のリードフレーム301として、それぞれ、Agからなる外側層311の厚みt2および内側層313の厚みt3(図9参照)が、リードフレーム301の厚みt1(図9参照)の5%、10%、15%、20%、25%、30%、35%、40%および45%である場合を想定した。つまり、実施例2-1~2-9のリードフレーム301として、Agが占める厚みの比率が、それぞれ、10%、20%、30%、40%、50%、60%、70%、80%および90%であるようなモデル化を行った。また、実施例2-1~2-9に対する比較例2-1として、Feのみからなるリードフレーム(Agを全く含まないリードフレーム)を想定した。なお、比較例2-1は、上記比較例1-1と同一である。また、比較例2-2として、Agのみからなるリードフレーム(Feを全く含まないリードフレーム)を想定した。 Further, as Examples 2-1 to 2-9 corresponding to the lead frame 301 of the second embodiment, an outer layer 311 made of Ag, an Fe layer 12 and an inner layer 313 made of Ag were laminated in the plate thickness direction. A lead frame 301 made of a clad material having a three-layer structure joined in a state is assumed. Here, as the lead frames 301 of Examples 2-1 to 2-9, the thickness t2 of the outer layer 311 and the thickness t3 (see FIG. 9) of the inner layer 313 made of Ag are the thickness t1 of the lead frame 301 (see FIG. 9). The case of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 45% of FIG. 9) was assumed. That is, the ratio of the thickness occupied by Ag in the lead frames 301 of Examples 2-1 to 2-9 is 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80%, respectively. And 90% modeling. Further, as Comparative Example 2-1 with respect to Examples 2-1 to 2-9, a lead frame made only of Fe (lead frame containing no Ag) was assumed. The comparative example 2-1 is the same as the comparative example 1-1. In addition, as Comparative Example 2-2, a lead frame made only of Ag (a lead frame containing no Fe) was assumed.
 また、上記第2実施形態のリードフレーム301に対応する実施例3-1~3-10として、Alからなる外側層311、Fe層12およびAlからなる内側層313が板厚方向に積層された状態で接合された、3層構造のクラッド材からなるリードフレーム301を想定した。ここで、実施例3-1~3-10のリードフレーム301として、それぞれ、Alからなる外側層311の厚みt2および内側層313の厚みt3(図9参照)が、リードフレーム301の厚みt1(図9参照)の5%、10%、15%、20%、22.5%、25%、30%、35%、40%および45%である場合を想定した。つまり、実施例3-1~3-10のリードフレーム301として、Alが占める厚みの比率が、それぞれ、10%、20%、30%、40%、45%、50%、60%、70%、80%および90%であるようなモデル化を行った。また、実施例3-1~3-10に対する比較例3-1として、Feのみからなるリードフレーム(Alを全く含まないリードフレーム)を想定した。なお、比較例3-1は、上記比較例1-1および2-1と同一である。また、比較例3-2として、Alのみからなるリードフレーム(Feを全く含まないリードフレーム)を想定した。 Further, as Examples 3-1 to 3-10 corresponding to the lead frame 301 of the second embodiment, an outer layer 311 made of Al, an Fe layer 12 and an inner layer 313 made of Al were laminated in the thickness direction. A lead frame 301 made of a clad material having a three-layer structure joined in a state is assumed. Here, as the lead frames 301 of Examples 3-1 to 3-10, the thickness t2 of the outer layer 311 and the thickness t3 (see FIG. 9) of the inner layer 313 made of Al are the thickness t1 ( 5%, 10%, 15%, 20%, 22.5%, 25%, 30%, 35%, 40%, and 45%. That is, in the lead frames 301 of Examples 3-1 to 3-10, the ratio of the thickness occupied by Al is 10%, 20%, 30%, 40%, 45%, 50%, 60%, and 70%, respectively. , 80% and 90% were modeled. Further, as Comparative Example 3-1, compared with Examples 3-1 to 3-10, a lead frame made of only Fe (lead frame containing no Al) was assumed. Comparative Example 3-1 is the same as Comparative Examples 1-1 and 2-1. In addition, as Comparative Example 3-2, a lead frame made only of Al (lead frame containing no Fe) was assumed.
 また、比較例1-1、2-1および3-1のFeのみからなるリードフレームでは、Feの熱伝導率として78.2W/(m×K)を用いるとともに、線膨張係数として12.1×10-6/Kを用いた。また、比較例1-2のCuのみからなるリードフレームでは、Cuの熱伝導率として394.0W/(m×K)を用いるとともに、線膨張係数として17.0×10-6/Kを用いた。また、比較例2-2のAgのみからなるリードフレームでは、Agの熱伝導率として425.0W/(m×K)を用いるとともに、線膨張係数として19.1×10-6/Kを用いた。また、比較例3-2のAlのみからなるリードフレームでは、Alの熱伝導率として238.0W/(m×K)を用いるとともに、線膨張係数として23.5×10-6/Kを用いた。 Further, in the lead frames made of only Fe of Comparative Examples 1-1, 2-1 and 3-1, 78.2 W / (m × K) is used as the thermal conductivity of Fe and the linear expansion coefficient is 12.1. × 10 −6 / K was used. Further, in the lead frame made only of Cu of Comparative Example 1-2, 394.0 W / (m × K) is used as the thermal conductivity of Cu, and 17.0 × 10 −6 / K is used as the linear expansion coefficient. It was. In addition, the lead frame made of only Ag of Comparative Example 2-2 uses 425.0 W / (m × K) as the thermal conductivity of Ag and uses 19.1 × 10 −6 / K as the linear expansion coefficient. It was. Further, in the lead frame made of only Al of Comparative Example 3-2, 238.0 W / (m × K) is used as the thermal conductivity of Al, and 23.5 × 10 −6 / K is used as the linear expansion coefficient. It was.
 そして、上記比較例の数値と、所定の算出式とを用いて、実施例1-1~1-9、実施例2-1~2-9および実施例3-1~3-10のそれぞれにおいて、板面方向の熱伝導率、板厚方向の熱伝導率および線膨張係数を算出した。 In each of Examples 1-1 to 1-9, Examples 2-1 to 2-9, and Examples 3-1 to 3-10, using the numerical values of the comparative example and a predetermined calculation formula The thermal conductivity in the plate surface direction, the thermal conductivity in the plate thickness direction, and the linear expansion coefficient were calculated.
 図10および図11に示すシミュレーション結果から、リードフレームにおけるCuの占める厚みの比率を大きくすることによって、板面方向の熱伝導率、板厚方向の熱伝導率および線膨張係数のいずれも大きくなることが分かった。この結果から、リードフレームにおけるCuの占める厚みの比率を大きくすることによって、LED素子付近の熱を、リードフレームの全体により拡散させることが可能になることが判明した。 From the simulation results shown in FIGS. 10 and 11, by increasing the ratio of the thickness occupied by Cu in the lead frame, all of the thermal conductivity in the plate surface direction, the thermal conductivity in the plate thickness direction, and the linear expansion coefficient are increased. I understood that. From this result, it was found that by increasing the ratio of the thickness occupied by Cu in the lead frame, the heat in the vicinity of the LED element can be diffused throughout the lead frame.
 また、リードフレームにおけるCuの占める厚みの比率が30%以上の場合(実施例1-3~1-9および比較例1-2)、板面方向の熱伝導率が150W/(m×K)以上になり、板厚方向の熱伝導率が100W/(m×K)以上になることが分かった。この結果から、Cuの占める厚みの比率を30%以上にすることによって、LED素子付近の熱を、リードフレームの全体に十分に拡散させることが可能であると考えられる。さらに、リードフレームにおけるCuの占める厚みの比率が90%以下の場合(実施例1-1~1-9および比較例1-1)、線膨張係数が17×10-6/K未満になることが分かった。この結果から、Cuの占める厚みの比率を90%以下にすることによって、リードフレームの熱膨張を十分に抑制することができると考えられるので、熱膨張に起因するリードフレームの変形を十分に抑制することが可能であると考えられる。 When the ratio of the thickness of Cu in the lead frame is 30% or more (Examples 1-3 to 1-9 and Comparative Example 1-2), the thermal conductivity in the plate surface direction is 150 W / (m × K). Thus, it was found that the thermal conductivity in the plate thickness direction was 100 W / (m × K) or more. From this result, it is considered that the heat in the vicinity of the LED element can be sufficiently diffused throughout the lead frame by setting the ratio of the thickness occupied by Cu to 30% or more. Further, when the ratio of the thickness occupied by Cu in the lead frame is 90% or less (Examples 1-1 to 1-9 and Comparative Example 1-1), the linear expansion coefficient should be less than 17 × 10 −6 / K. I understood. From this result, it is considered that the thermal expansion of the lead frame can be sufficiently suppressed by setting the ratio of the thickness occupied by Cu to 90% or less, so that the deformation of the lead frame due to the thermal expansion is sufficiently suppressed. It is considered possible to do.
 また、図12および図13に示すシミュレーション結果から、リードフレームにおけるAgの占める厚みの比率を大きくすることによって、板面方向の熱伝導率、板厚方向の熱伝導率および線膨張係数のいずれも大きくなることが分かった。この結果から、リードフレームにおけるAgの占める厚みの比率を大きくすることによって、LED素子付近の熱を、リードフレームの全体により拡散させることが可能になることが判明した。 Further, from the simulation results shown in FIG. 12 and FIG. 13, by increasing the ratio of the thickness occupied by Ag in the lead frame, the thermal conductivity in the plate surface direction, the thermal conductivity in the plate thickness direction, and the linear expansion coefficient are all. It turns out that it grows. From this result, it was found that by increasing the ratio of the thickness occupied by Ag in the lead frame, the heat in the vicinity of the LED element can be diffused throughout the lead frame.
 また、リードフレームにおけるAgの占める厚みの比率が30%以上の場合(実施例2-3~2-9および比較例2-2)、板面方向の熱伝導率が150W/(m×K)以上になり、板厚方向の熱伝導率が100W/(m×K)以上になることが分かった。この結果から、Agの占める厚みの比率を30%以上にすることによって、LED素子付近の熱を、リードフレームの全体に十分に拡散させることが可能であると考えられる。さらに、リードフレームにおけるAgの占める厚みの比率が80%以下の場合(実施例2-1~2-8および比較例2-1)、線膨張係数が17×10-6/K以下になることが分かった。この結果から、Agの占める厚みの比率を80%以下にすることによって、リードフレームの熱膨張を十分に抑制することができると考えられるので、熱膨張に起因するリードフレームの変形を十分に抑制することが可能であると考えられる。 Further, when the ratio of the thickness occupied by Ag in the lead frame is 30% or more (Examples 2-3 to 2-9 and Comparative Example 2-2), the thermal conductivity in the plate surface direction is 150 W / (m × K). Thus, it was found that the thermal conductivity in the plate thickness direction was 100 W / (m × K) or more. From this result, it is considered that the heat in the vicinity of the LED element can be sufficiently diffused throughout the lead frame by setting the ratio of the thickness occupied by Ag to 30% or more. Furthermore, when the ratio of the thickness occupied by Ag in the lead frame is 80% or less (Examples 2-1 to 2-8 and Comparative Example 2-1), the linear expansion coefficient is 17 × 10 −6 / K or less. I understood. From this result, it is considered that the thermal expansion of the lead frame can be sufficiently suppressed by setting the ratio of the thickness occupied by Ag to 80% or less, so that the deformation of the lead frame due to the thermal expansion is sufficiently suppressed. It is considered possible to do.
 また、図14および図15に示すシミュレーション結果から、リードフレームにおけるAlの占める厚みの比率を大きくすることによって、板面方向の熱伝導率、板厚方向の熱伝導率および線膨張係数のいずれも大きくなることが分かった。この結果から、リードフレームにおけるAlの占める厚みの比率を大きくすることによって、発光素子付近の熱を、リードフレームの全体により拡散させることが可能になることが判明した。 Further, from the simulation results shown in FIG. 14 and FIG. 15, by increasing the ratio of the thickness occupied by Al in the lead frame, all of the thermal conductivity in the plate surface direction, the thermal conductivity in the plate thickness direction, and the linear expansion coefficient are obtained. It turns out that it grows. From this result, it was found that by increasing the ratio of the thickness of Al in the lead frame, the heat near the light emitting element can be diffused throughout the lead frame.
 また、リードフレームにおけるAlの占める厚みの比率が45%以上の場合(実施例3-5~3-10および比較例3-2)、板面方向の熱伝導率が150W/(m×K)以上になり、板厚方向の熱伝導率が100W/(m×K)以上になることが分かった。この結果から、Alの占める厚みの比率を45%以上にすることによって、LED素子付近の熱を、リードフレームの全体に十分に拡散させることが可能であると考えられる。なお、リードフレームにおけるAlの占める厚みの比率が30%の場合(実施例3-3)、板面方向の熱伝導率が150W/(m×K)未満(126.1W/(m×K))になり、板厚方向の熱伝導率が100W/(m×K)未満(97.9W/(m×K))になり、Alの占める厚みの比率が40%の場合(実施例3-4)、板面方向の熱伝導率が150W/(m×K)未満(142.1W/(m×K))になったものの、AlはCuやAgに近い性質を有しているので、ある程度、LED素子付近の熱を、リードフレームの全体に十分に拡散させることが可能であると考えられる。 When the ratio of the thickness of Al in the lead frame is 45% or more (Examples 3-5 to 3-10 and Comparative Example 3-2), the thermal conductivity in the plate surface direction is 150 W / (m × K). Thus, it was found that the thermal conductivity in the plate thickness direction was 100 W / (m × K) or more. From this result, it is considered that the heat in the vicinity of the LED element can be sufficiently diffused throughout the lead frame by setting the ratio of the thickness occupied by Al to 45% or more. When the thickness ratio of Al in the lead frame is 30% (Example 3-3), the thermal conductivity in the plate surface direction is less than 150 W / (m × K) (126.1 W / (m × K). When the thermal conductivity in the thickness direction is less than 100 W / (m × K) (97.9 W / (m × K)) and the ratio of the thickness occupied by Al is 40% (Example 3- 4) Although the thermal conductivity in the plate surface direction is less than 150 W / (m × K) (142.1 W / (m × K)), Al has a property close to Cu and Ag. It is considered that the heat in the vicinity of the LED element can be sufficiently diffused to the entire lead frame to some extent.
 さらに、リードフレームにおけるAlの占める厚みの比率が60%以下の場合(実施例3-1~3-7および比較例3-1)、線膨張係数が17×10-6/K以下になることが分かった。この結果から、Alの占める厚みの比率を60%以下にすることによって、リードフレームの熱膨張を十分に抑制することができると考えられるので、熱膨張に起因するリードフレームの変形を十分に抑制することが可能であると考えられる。なお、リードフレームにおけるAlの占める厚みの比率が70%以上80%以下の場合(実施例3-8および3-9)、線膨張係数が17×10-6/Kより大きくなった(実施例3-8(17.1×10-6/K)および実施例3-9(18.6×10-6/K))ものの、AlはCuやAgに近い性質を有しているので、ある程度、リードフレームの熱膨張を抑制することが可能であると考えられる。 Furthermore, when the ratio of the thickness of Al in the lead frame is 60% or less (Examples 3-1 to 3-7 and Comparative Example 3-1), the linear expansion coefficient is 17 × 10 −6 / K or less. I understood. From this result, it is considered that the thermal expansion of the lead frame can be sufficiently suppressed by setting the ratio of the thickness occupied by Al to 60% or less, so that the deformation of the lead frame due to the thermal expansion is sufficiently suppressed. It is considered possible to do. When the ratio of the thickness of Al in the lead frame is 70% or more and 80% or less (Examples 3-8 and 3-9), the linear expansion coefficient is larger than 17 × 10 −6 / K (Examples). Although 3-8 (17.1 × 10 −6 / K) and Example 3-9 (18.6 × 10 −6 / K)), Al has properties close to that of Cu and Ag. It is considered that the thermal expansion of the lead frame can be suppressed.
 (表面粗さの確認実験)
 以下に説明する表面粗さの確認実験では、上記第1実施形態に対応する実施例1-10および1-11のリードフレーム1を作製するとともに、実施例1-10および1-11に対する比較例として、比較例1-3および1-4のリードフレームを作製した。具体的には、実施例1-10、1-11、比較例1-3および1-4のリードフレームとして、外側Cu層11の厚みt2、Fe層12の厚みt4および内側Cu層13の厚みt3(図3参照)が、それぞれ、リードフレームの厚みt1(図3参照)の20%、60%および20%である板状のリードフレームを作製した。
(Surface roughness confirmation experiment)
In the surface roughness confirmation experiment described below, lead frames 1 of Examples 1-10 and 1-11 corresponding to the first embodiment are manufactured, and a comparative example with respect to Examples 1-10 and 1-11 As a result, lead frames of Comparative Examples 1-3 and 1-4 were produced. Specifically, as the lead frames of Examples 1-10 and 1-11 and Comparative Examples 1-3 and 1-4, the thickness t2 of the outer Cu layer 11, the thickness t4 of the Fe layer 12, and the thickness of the inner Cu layer 13 are used. Plate-shaped lead frames having t3 (see FIG. 3) of 20%, 60% and 20% of the lead frame thickness t1 (see FIG. 3) were produced.
 ここで、比較例1-3のリードフレーム(リードフレーム用材料)を作製する際の一方表面1aに接触するローラ201a(図5参照)として、ローラ表面の算術平均粗さ(Ra)が0.19μm以上0.30μm以下の値を有するローラ201aを用いて圧延した。つまり、比較例1-3では、ローラ表面の算術平均粗さの値が一定ではないとともに、ローラ表面の算術平均粗さが大きいローラ201aを用いた。 Here, as the roller 201a (see FIG. 5) that contacts one surface 1a when the lead frame (lead frame material) of Comparative Example 1-3 is manufactured, the arithmetic average roughness (Ra) of the roller surface is 0. It rolled using the roller 201a which has a value of 19 micrometers or more and 0.30 micrometers or less. That is, in Comparative Example 1-3, the roller 201a having a large arithmetic average roughness on the roller surface was used while the arithmetic average roughness on the roller surface was not constant.
 また、実施例1-10においては、ローラ表面の算術平均粗さが0.05μmであるローラ201aを用いて圧延した。つまり、実施例1-10では、比較例1-3よりもローラ表面の算術平均粗さが小さいローラ201aを用いた。また、実施例1-11においては、ローラ表面の算術平均粗さが0.025μmであるローラ201aを用いて圧延した。つまり、実施例1-11では、比較例1-3および実施例1-10よりも、ローラ表面の算術平均粗さがさらに小さいローラ201aを用いた。 Further, in Example 1-10, rolling was performed using a roller 201a having an arithmetic average roughness of the roller surface of 0.05 μm. That is, in Example 1-10, the roller 201a having a smaller arithmetic average roughness on the roller surface than that of Comparative Example 1-3 was used. In Example 1-11, rolling was performed using a roller 201a having an arithmetic average roughness of the roller surface of 0.025 μm. That is, in Example 1-11, the roller 201a having a smaller arithmetic average roughness on the roller surface was used compared to Comparative Example 1-3 and Example 1-10.
 また、比較例1-4においては、ローラ表面の算術平均粗さが0.025μmであるローラ201aを用いて圧延するとともに、圧延後のリードフレームの一方表面1a(図5参照)を乾式ラッピングによって研磨した。 In Comparative Example 1-4, rolling was performed using a roller 201a having an arithmetic average roughness of the roller surface of 0.025 μm, and one surface 1a (see FIG. 5) of the lead frame after rolling was dry lapped. Polished.
 その後、所定の計測機器を用いて、リードフレームの一方表面1aの表面粗さを計測した。そして、得られた計測結果を用いて、圧延方向(Y方向)および幅方向(X方向)における算術平均粗さ(Ra)と、クルトシス(Rku)とをそれぞれ算出した。 Thereafter, the surface roughness of the one surface 1a of the lead frame was measured using a predetermined measuring device. And the arithmetic mean roughness (Ra) in a rolling direction (Y direction) and the width direction (X direction) and kurtosis (Rku) were each calculated using the obtained measurement result.
 また、実施例1-10、実施例1-11、比較例1-3および比較例1-4の各々のリードフレームに対して、ローラ201aが接触した側の一方表面1a上に、メッキ液に接触させることによって、Agメッキ層からなる光反射層14(図3参照)に対応するメッキ層を形成した。そして、メッキ層の状態を観察することによって、メッキ層の欠陥の有無を判断した。 Further, a plating solution is applied to one surface 1a on the side in contact with the roller 201a with respect to each of the lead frames of Example 1-10, Example 1-11, Comparative Example 1-3, and Comparative Example 1-4. By contacting, a plating layer corresponding to the light reflection layer 14 (see FIG. 3) made of an Ag plating layer was formed. And the presence or absence of the defect of a plating layer was judged by observing the state of a plating layer.
 図16に示すように、ローラ表面の算術平均粗さ(Ra)が0.05μm以下のローラ201aを用いた実施例1-10、実施例1-11および比較例1-4において、算術平均粗さ(Ra)を0.15μm以下にすることができることが判明した。また、ローラ表面の算術平均粗さ(Ra)が0.025μm以下のローラ201aを用いるとともに、乾式ラッピングによって研磨した場合(比較例1-4)を除いた実施例1-10、実施例1-11および比較例1-3において、クルトシス(Rku)を10.5以下にすることができることが判明した。 As shown in FIG. 16, in Example 1-10, Example 1-11 and Comparative Example 1-4 using a roller 201a having a roller surface arithmetic mean roughness (Ra) of 0.05 μm or less, the arithmetic mean roughness It was found that the thickness (Ra) can be 0.15 μm or less. In addition, Examples 1-10 and Example 1 except that the roller 201a having an arithmetic average roughness (Ra) of the roller surface of 0.025 μm or less is used and polishing is performed by dry lapping (Comparative Example 1-4). 11 and Comparative Example 1-3, it was found that kurtosis (Rku) could be 10.5 or less.
 また、実施例1-10および1-11の場合、メッキ層の欠陥は観察されなかった。これは、実施例1-10および1-11の場合には、ローラ表面の算術平均粗さ(Ra)が0.05μm以下であり十分に小さいので、ローラ201aの表面が接触するリードフレーム1(リードフレーム用材料200)の一方表面1aもローラ201aの表面に対応して、算術平均粗さが0.15μm以下になるとともに、クルトシスが10.5以下になったと考えられる。この結果、一方表面1aを、凹凸形状がなだらかで、かつ、起伏が小さくなるように形成することができたので、一方表面1a上に形成されたメッキ層に欠陥が発生しなかったと考えられる。 In Examples 1-10 and 1-11, no defects in the plating layer were observed. This is because in Examples 1-10 and 1-11, the arithmetic average roughness (Ra) of the roller surface is 0.05 μm or less, which is sufficiently small, so that the lead frame 1 (the surface of the roller 201a is in contact) Corresponding to the surface of the roller 201a, the one surface 1a of the lead frame material 200) is considered to have an arithmetic average roughness of 0.15 μm or less and a kurtosis of 10.5 or less. As a result, the one surface 1a can be formed so that the uneven shape is gentle and the undulations are small, and it is considered that no defect occurred in the plating layer formed on the one surface 1a.
 一方、比較例1-3および1-4の場合、メッキ層の欠陥が観察された。これは、比較例1-3では、ローラ表面の算術平均粗さ(Ra)が0.19μm以上0.30μm以下であり大きいため、ローラ201aの表面が接触するリードフレーム(リードフレーム用材料)の一方表面1aもローラ201aの表面に応じて、一方表面1aの凹凸形状の起伏が大きくなったと考えられる。この結果、起伏が大きい凹凸形状に起因して、一方表面1a上に形成されたメッキ層に欠陥が発生したと考えられる。また、比較例1-4では、ローラ201aで圧延した後に乾式ラッピングによって研磨することによって、一方表面1aの算術平均粗さをさらに小さくすることができたものの、一方表面1aの凹凸形状が尖りやすくなってしまったと考えられる。この結果、尖った凹凸形状に起因して、一方表面1a上に形成されたメッキ層に欠陥が発生したと考えられる。 On the other hand, in Comparative Examples 1-3 and 1-4, defects in the plating layer were observed. This is because, in Comparative Example 1-3, the arithmetic average roughness (Ra) of the roller surface is 0.19 μm or more and 0.30 μm or less, so that the surface of the roller 201a is in contact with the lead frame (lead frame material). On the other hand, it is considered that the unevenness of the concavo-convex shape of the one surface 1a is increased according to the surface of the roller 201a. As a result, it is considered that a defect occurred in the plating layer formed on the one surface 1a due to the uneven shape having large undulations. In Comparative Example 1-4, the arithmetic average roughness of the one surface 1a can be further reduced by rolling with the roller 201a and then polishing by dry lapping, but the uneven shape of the one surface 1a tends to be sharp. It is thought that it has become. As a result, it is considered that a defect occurred in the plating layer formed on the one surface 1a due to the sharp uneven shape.
 この結果、実施例1-10および1-11のように、ローラ表面の算術平均粗さが0.05μm以下のローラ201aを用いて圧延するとともに、乾式ラッピングによって研磨しないことによって、リードフレーム1の一方表面1aの算術平均粗さを0.15μm以下にするとともに、クルトシスを10.5以下にすることができることが判明した。さらに、算術平均粗さが0.15μm以下であるとともに、クルトシスが10.5以下である一方表面1aを形成することによって、一方表面1a上に欠陥のない良質なメッキ層を形成することが可能であることが判明した。これにより、実施例1-10および1-11のような製造方法によりリードフレーム1を作製した場合には、リードフレーム1の一方表面1aにおいてレーザ素子2から照射された光を十分に反射することができ、その結果、LEDモジュール100の光量が低下することを抑制することが可能であると考えられる。 As a result, as in Examples 1-10 and 1-11, by rolling using the roller 201a having an arithmetic average roughness of the roller surface of 0.05 μm or less and not polishing by dry lapping, the lead frame 1 On the other hand, it was found that the arithmetic average roughness of the surface 1a can be 0.15 μm or less and the kurtosis can be 10.5 or less. Furthermore, by forming the one surface 1a having an arithmetic average roughness of 0.15 μm or less and a kurtosis of 10.5 or less, it is possible to form a high-quality plated layer having no defects on the one surface 1a. It turned out to be. Thereby, when the lead frame 1 is manufactured by the manufacturing method as in Examples 1-10 and 1-11, the light irradiated from the laser element 2 is sufficiently reflected on the one surface 1a of the lead frame 1. As a result, it is considered possible to suppress a decrease in the light amount of the LED module 100.
 (0.2%耐力の確認実験)
 以下に説明する0.2%耐力の確認実験では、25℃(室温)、200℃、300℃、400℃および600℃の温度条件下で、Cuからなる試験体およびFeからなる試験体に対して、それぞれ、引張試験を行った。その際、試験体(CuとFe)が通常状態から0.2%伸びた際の試験体に加えられている応力を測定することによって、0.2%耐力(降伏強度)を測定した。
(Confirmation test of 0.2% proof stress)
In the confirmation experiment of 0.2% proof stress described below, the specimen made of Cu and the specimen made of Fe were tested at 25 ° C. (room temperature), 200 ° C., 300 ° C., 400 ° C. and 600 ° C. Each was subjected to a tensile test. At that time, 0.2% proof stress (yield strength) was measured by measuring the stress applied to the test body when the test body (Cu and Fe) was extended 0.2% from the normal state.
 図17および図18に示した実験結果から、Cuの0.2%耐力は、200℃よりも高い高温条件下で低下することが判明した。これは、200℃よりも高い高温条件下ではCuが焼鈍されるため、機械的な強度が低下したからであると考えられる。一方、Feの0.2%耐力は、200℃以上400℃以下の高温条件下においても、400MPa以上で保持されることが判明した。これは、200℃以上400℃以下の高温条件下では、Feは焼鈍されずに、機械的な強度が低下しなかったからであると考えられる。 From the experimental results shown in FIGS. 17 and 18, it was found that the 0.2% proof stress of Cu decreases under high temperature conditions higher than 200 ° C. This is probably because Cu is annealed under a high temperature condition higher than 200 ° C., so that the mechanical strength is lowered. On the other hand, it has been found that the 0.2% proof stress of Fe is maintained at 400 MPa or higher even under high temperature conditions of 200 ° C. or higher and 400 ° C. or lower. This is presumably because Fe was not annealed under high temperature conditions of 200 ° C. or higher and 400 ° C. or lower, and the mechanical strength did not decrease.
 この結果、リードフレーム1に、200℃以上400℃以下の高温条件下においても0.2%耐力が低下しないFeからなるFe層12を設けることによって、200℃以上400℃以下の高温条件下においてもリードフレーム1の機械的強度の低下を抑制することが可能であることが判明した。 As a result, by providing the lead frame 1 with the Fe layer 12 made of Fe that does not decrease the 0.2% proof stress even under high temperature conditions of 200 ° C. or higher and 400 ° C. or lower, It has also been found that it is possible to suppress a decrease in the mechanical strength of the lead frame 1.
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 In addition, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1および第2実施形態では、リードフレーム1(301)を、基台3の上面3aの端部近傍と、X方向の両側面3bと、基台3の下面3cの一部とに沿うように折り曲げた例を示したが、本発明はこれに限られない。たとえば、図19に示す本発明の第1実施形態の第1変形例のように、LEDモジュール400のリードフレーム401を基台3の下面3cを覆わずに、基台3から離れる方向に向かって曲げ加工されてもよい。また、リードフレームを折り曲げずに、基台の上面にのみ配置してもよい。なお、LEDモジュール400は、本発明の「発光モジュール」の一例であり、リードフレーム401は、本発明の「発光素子用基板」の一例である。 For example, in the first and second embodiments, the lead frame 1 (301) is formed near the end of the upper surface 3a of the base 3, the both side surfaces 3b in the X direction, and a part of the lower surface 3c of the base 3. However, the present invention is not limited to this. For example, as in the first modification of the first embodiment of the present invention shown in FIG. 19, the lead frame 401 of the LED module 400 does not cover the lower surface 3 c of the base 3 and moves away from the base 3. It may be bent. Further, the lead frame may be disposed only on the upper surface of the base without being bent. The LED module 400 is an example of the “light emitting module” in the present invention, and the lead frame 401 is an example of the “light emitting element substrate” in the present invention.
 また、上記第1および第2実施形態では、リードフレーム1(301)を、略一様の厚みt1を有するように形成した例を示したが、本発明はこれに限られない。たとえば、図20に示す本発明の第1実施形態の第2変形例のように、LEDモジュール500のリードフレーム501のうち、LED素子2が配置される基台3の上面3aに対応する厚板部501cの厚みを他の領域(薄板部501d)の厚みよりも大きくしてもよい。このように厚板部501cを設けることによって、LED素子2付近の熱を、リードフレーム501の全体に効果的に拡散させることが可能である。なお、厚板部501cにおけるリードフレーム501は、外側Cu層11、Fe層12および内側Cu層13の3層構造(図3参照)から構成されている。一方、薄板部501dにおけるリードフレーム501は、厚板部501cと同じ材質を用いるとともに、外側Cu層11、Fe層12および内側Cu層13の3層構造であってもよい。また、薄板部501dにおけるリードフレーム501は、内側Cu層13のみであってもよいし、Fe層12および内側Cu層13の2層構造であってもよい。なお、LEDモジュール500は、本発明の「発光モジュール」の一例であり、リードフレーム501は、本発明の「発光素子用基板」の一例である。 In the first and second embodiments, the example in which the lead frame 1 (301) is formed so as to have a substantially uniform thickness t1 is shown, but the present invention is not limited to this. For example, as in the second modification of the first embodiment of the present invention shown in FIG. 20, the thick plate corresponding to the upper surface 3 a of the base 3 on which the LED element 2 is arranged in the lead frame 501 of the LED module 500. You may make the thickness of the part 501c larger than the thickness of another area | region (thin board part 501d). By providing the thick plate portion 501c as described above, it is possible to effectively diffuse the heat in the vicinity of the LED element 2 throughout the lead frame 501. Note that the lead frame 501 in the thick plate portion 501c has a three-layer structure (see FIG. 3) of the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13. On the other hand, the lead frame 501 in the thin plate portion 501d may be made of the same material as that of the thick plate portion 501c and may have a three-layer structure of the outer Cu layer 11, the Fe layer 12, and the inner Cu layer 13. Further, the lead frame 501 in the thin plate portion 501d may be only the inner Cu layer 13 or may have a two-layer structure of the Fe layer 12 and the inner Cu layer 13. The LED module 500 is an example of the “light emitting module” in the present invention, and the lead frame 501 is an example of the “light emitting element substrate” in the present invention.
 また、上記第1実施形態では、外側Cu層11および内側Cu層13が純度99.9%以上のCuからなる例を示したが、外側Cu層11および内側Cu層13を、Cu-2.30Fe-0.10Zn―0.03PからなるC19400(CDA規格)や、Cu-0.1Fe-0.03P、Cu-0.2Zrなどの、Cuの純度が99.9%以下のCu合金からなるように構成してもよい。これにより、リードフレームに対するプレス加工などの加工が容易になるとともに、リードフレームの高温条件下における機械的強度をより向上させることが可能である。 In the first embodiment, the outer Cu layer 11 and the inner Cu layer 13 are made of Cu having a purity of 99.9% or more. However, the outer Cu layer 11 and the inner Cu layer 13 are made of Cu-2. C19400 (CDA standard) made of 30Fe-0.10Zn-0.03P, Cu-0.1Fe-0.03P, Cu-0.2Zr, and other Cu alloys having a Cu purity of 99.9% or less You may comprise as follows. This facilitates processing such as press processing on the lead frame, and further improves the mechanical strength of the lead frame under high temperature conditions.
 また、上記第2実施形態では、外層311および内層313がAgまたはAlからなる例を示したが、外層311および内層313がAgとAg以外の元素とを含むAg合金、または、AlとAl以外の元素とを含むAl合金からなるように構成してもよい。これにより、リードフレームに対するプレス加工などの加工が容易になるとともに、リードフレームの高温条件下における機械的強度をより向上させることが可能である。 In the second embodiment, the outer layer 311 and the inner layer 313 are made of Ag or Al. However, the outer layer 311 and the inner layer 313 are Ag alloys containing elements other than Ag and Ag, or other than Al and Al. You may comprise so that it may consist of Al alloy containing these elements. This facilitates processing such as press processing on the lead frame, and further improves the mechanical strength of the lead frame under high temperature conditions.
 また、上記第1実施形態では、外側Cu層11(第1層)および内側Cu層13(第3層)が共にCuからなる例を示し、上記第2実施形態では、外側層311(第1層)および内側層313(第3層)が共にAgまたはAlからなる例を示したが、本発明はこれに限られない。本発明では、第1層および第3層の組み合わせとして、それぞれ、CuおよびAg、CuおよびAl、AgおよびCu、AgおよびAl、AlおよびCu、AlおよびAgであってもよい。また、上記の組み合わせにおいて、CuはCu合金でもよいし、AgはAg合金でもよいし、AlはAl合金でもよい。 In the first embodiment, the outer Cu layer 11 (first layer) and the inner Cu layer 13 (third layer) are both made of Cu. In the second embodiment, the outer layer 311 (first layer) is shown. Although the example in which both the layer) and the inner layer 313 (third layer) are made of Ag or Al is shown, the present invention is not limited to this. In the present invention, the combination of the first layer and the third layer may be Cu and Ag, Cu and Al, Ag and Cu, Ag and Al, Al and Cu, Al and Ag, respectively. In the above combination, Cu may be a Cu alloy, Ag may be an Ag alloy, and Al may be an Al alloy.
 また、上記第1実施形態では、約200℃以上約400℃以下の高温条件下において、Fe層12の0.2%耐力を、約400MPa以上であるように構成した例を示したが、本発明はこれに限られない。本発明では、約200℃以上約400℃以下の高温条件下において、Fe層12の0.2%耐力は、約250MPa以上であればよい。なお、約200℃以上約400℃以下の高温条件下において、Fe層12の0.2%耐力は、約400MPa以上であるのが好ましい。 In the first embodiment, an example in which the 0.2% proof stress of the Fe layer 12 is about 400 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less is shown. The invention is not limited to this. In the present invention, the 0.2% yield strength of the Fe layer 12 may be about 250 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less. Note that the 0.2% proof stress of the Fe layer 12 is preferably about 400 MPa or more under a high temperature condition of about 200 ° C. or more and about 400 ° C. or less.
 また、上記第1実施形態では、リードフレーム1の外側Cu層11側の一方表面1aが、全面に渡って、クルトシス(Rku)が10.5以下になるとともに、算術平均粗さ(Ra)が0.15μm以下になるように形成した例を示したが、本発明はこれに限られない。本発明では、リードフレーム1の一方表面1aのうち、少なくとも光反射層14が形成されている領域のみクルトシスが10.5以下になるとともに、算術平均粗さが0.15μm以下になるように形成してもよい。 Further, in the first embodiment, the one surface 1a on the outer Cu layer 11 side of the lead frame 1 has a kurtosis (Rku) of 10.5 or less over the entire surface, and an arithmetic average roughness (Ra). Although the example formed so that it may become 0.15 micrometer or less was shown, this invention is not limited to this. In the present invention, at least the region where the light reflecting layer 14 is formed on one surface 1a of the lead frame 1 is formed so that the kurtosis is 10.5 or less and the arithmetic average roughness is 0.15 μm or less. May be.
 また、上記第1実施形態では、Agメッキ層からなる光反射層14を、Agを含むメッキ液に接触させることによって形成した例を示したが、本発明はこれに限られない。本発明では、リードフレーム1の一方表面1a上にAgペーストを塗布することによって、光反射層14を形成してもよい。このように一方表面1a上にAgペーストを塗布するような場合であっても、一方表面1aは、クルトシスが10.5以下で、かつ、算術平均粗さが0.15μm以下であることによって、一方表面1aにおいて尖っている部分が少なく、かつ、起伏が小さいので、一方表面1a上に欠陥のない良質な光反射層14を形成することが可能である。また、光反射層14を、Alメッキ層などのAg以外の金属材料のメッキ層からなるように構成してもよい。 In the first embodiment, the example in which the light reflecting layer 14 made of the Ag plating layer is formed by contacting with the plating solution containing Ag is shown, but the present invention is not limited to this. In the present invention, the light reflecting layer 14 may be formed by applying an Ag paste on the one surface 1 a of the lead frame 1. Thus, even when Ag paste is applied on the one surface 1a, the one surface 1a has a kurtosis of 10.5 or less and an arithmetic average roughness of 0.15 μm or less. On the other hand, there are few sharp points on the surface 1a and the undulations are small, so that it is possible to form a high-quality light reflecting layer 14 having no defects on the surface 1a. Further, the light reflecting layer 14 may be constituted by a plated layer of a metal material other than Ag such as an Al plated layer.
 また、上記第1および第2実施形態では、基台3およびリフレクタ6がアルミナ(Al)からなる例を示したが、本発明はこれに限られない。たとえば、基台3およびリフレクタ6が窒化アルミ(AlN)からなるように構成してもよい。 In the first and second embodiments, the base 3 and the reflector 6 is an example made of alumina (Al 2 O 3), the present invention is not limited thereto. For example, you may comprise so that the base 3 and the reflector 6 may consist of aluminum nitride (AlN).
 また、上記第1および第2実施形態では、LED素子2を有するLEDモジュール100(300)にリードフレーム1(301)を用いた例について示したが、本発明はこれに限られない。たとえば、レーザ光を出射するレーザ素子モジュールにリードフレーム1(301)を用いてもよい。 In the first and second embodiments, the example in which the lead frame 1 (301) is used in the LED module 100 (300) having the LED element 2 has been described. However, the present invention is not limited to this. For example, the lead frame 1 (301) may be used for a laser element module that emits laser light.
 1、301、401、501 リードフレーム(発光素子用基板)
 1a、301a 一方表面
 1b、301b 他方表面
 2 LED素子(発光素子)
 3 基台
 3a 上面(基台の表面)
 3b 側面(基台の表面)
 3c 下面(基台の表面)
 11 外側Cu層(第1層)
 12 Fe層(第2層)
 13 内側Cu層(第3層)
 14 光反射層(メッキ層)
 100、300、400、500 LEDモジュール(発光モジュール)
 311 外側層(第1層)
 313 内側層(第3層)
1, 301, 401, 501 Lead frame (light emitting element substrate)
1a, 301a One surface 1b, 301b The other surface 2 LED element (light emitting element)
3 base 3a top surface (surface of base)
3b Side (base surface)
3c Bottom surface (base surface)
11 Outer Cu layer (first layer)
12 Fe layer (second layer)
13 Inner Cu layer (third layer)
14 Light reflection layer (plating layer)
100, 300, 400, 500 LED module (light emitting module)
311 Outer layer (first layer)
313 Inner layer (third layer)

Claims (12)

  1.  発光素子(2)が配置される一方表面(1a)に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層(11)と、
     FeまたはFe合金からなる第2層(12)と、
     前記第1層との間に前記第2層を挟み込むとともに、他方表面(1b)に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層(13)とを備え、
     前記一方表面は、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、表面粗さを示す指標としての算術平均粗さ(Ra)が0.15μm以下になるように形成されている、発光素子用基板(1)。
    A first layer (11) disposed on one surface (1a) on which the light emitting element (2) is disposed and made of any one of Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy;
    A second layer (12) made of Fe or Fe alloy;
    The second layer is sandwiched between the first layer and the third layer which is disposed on the other surface (1b) and made of any one of Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy ( 13)
    The one surface has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less and an arithmetic average roughness (Ra) as an index of the surface roughness of 0.15 μm or less. The formed light emitting element substrate (1).
  2.  前記第3層は、前記第1層と同一の金属材料で構成している、請求項1に記載の発光素子用基板。 The light emitting element substrate according to claim 1, wherein the third layer is made of the same metal material as the first layer.
  3.  200℃以上400℃以下の温度条件下において、前記第2層の0.2%耐力は、250MPa以上であるように構成されている、請求項1に記載の発光素子用基板。 The light emitting element substrate according to claim 1, wherein the second layer has a 0.2% yield strength of 250 MPa or more under a temperature condition of 200 ° C or more and 400 ° C or less.
  4.  前記第1層は、CuまたはCu合金からなり、
     前記一方表面上には、前記発光素子からの光を反射可能な光反射層を構成するメッキ層(14)が形成されている、請求項1に記載の発光素子用基板。
    The first layer is made of Cu or Cu alloy,
    The light emitting element substrate according to claim 1, wherein a plating layer (14) constituting a light reflecting layer capable of reflecting light from the light emitting element is formed on the one surface.
  5.  前記第3層は、前記第1層と同一の金属材料からなり、
     前記第1層と前記第3層とは、同一の厚みを有する、請求項1に記載の発光素子用基板。
    The third layer is made of the same metal material as the first layer,
    The light emitting element substrate according to claim 1, wherein the first layer and the third layer have the same thickness.
  6.  前記第1層、前記第2層および前記第3層によって板状の基板本体が構成されており、
     前記板状の基板本体は、板面方向の熱伝導率が150W/(m×K)以上になるとともに、板厚方向の熱伝導率が100W/(m×K)以上になるように構成されている、請求項1に記載の発光素子用基板。
    A plate-shaped substrate body is constituted by the first layer, the second layer, and the third layer,
    The plate-shaped substrate body has a thermal conductivity in the plate surface direction of 150 W / (m × K) or higher and a thermal conductivity in the plate thickness direction of 100 W / (m × K) or higher. The substrate for a light-emitting element according to claim 1.
  7.  前記第1層、前記第2層および前記第3層によって板状の基板本体が構成されており、
     前記板状の基板本体は、線膨張係数が17×10-6/K以下になるように構成されている、請求項1に記載の発光素子用基板。
    A plate-shaped substrate body is constituted by the first layer, the second layer, and the third layer,
    2. The light emitting element substrate according to claim 1, wherein the plate-like substrate body is configured to have a linear expansion coefficient of 17 × 10 −6 / K or less.
  8.  前記第1層および前記第3層は、共にCuからなり、
     前記第2層は、Feからなる、請求項1に記載の発光素子用基板。
    The first layer and the third layer are both made of Cu,
    The light emitting element substrate according to claim 1, wherein the second layer is made of Fe.
  9.  前記第2層は、Fe合金からなり、
     前記第2層を構成するFe合金は、NiおよびCrの少なくともいずれか一方を含有するとともに、NiとCrとの合計が10質量%以下であるFe合金からなる、請求項1に記載の発光素子用基板。
    The second layer is made of an Fe alloy,
    2. The light emitting device according to claim 1, wherein the Fe alloy constituting the second layer is made of an Fe alloy containing at least one of Ni and Cr and a total of Ni and Cr of 10% by mass or less. Substrate.
  10.  前記第1層、前記第2層および前記第3層によって板状の基板本体が構成されており、
     前記板状の基板本体は、前記他方表面側から前記板状の基板本体を支持する板状の基台の表面を覆うように折り曲げられている、請求項1に記載の発光素子用基板。
    A plate-shaped substrate body is constituted by the first layer, the second layer, and the third layer,
    The light emitting element substrate according to claim 1, wherein the plate-like substrate body is bent so as to cover a surface of a plate-like base supporting the plate-like substrate body from the other surface side.
  11.  発光素子(2)と、
     前記発光素子が配置される一方表面(1a)に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層(11)と、FeまたはFe合金からなる第2層(12)と、前記第1層との間に前記第2層を挟み込むとともに、他方表面(1b)に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層(13)とを含む発光素子用基板(1)とを備え、
     前記発光素子用基板の前記一方表面は、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、表面粗さを示す指標としての算術平均粗さ(Ra)が0.15μm以下になるように形成されている、発光モジュール(100)。
    A light emitting element (2);
    A first layer (11) disposed on one surface (1a) on which the light emitting element is disposed, and made of any one of Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy; and Fe or Fe alloy The second layer is sandwiched between the second layer (12) and the first layer, and disposed on the other surface (1b), and any of Cu, Ag, Al, Cu alloy, Ag alloy, or Al alloy A light emitting element substrate (1) including a third layer (13) composed of one of the above,
    The one surface of the substrate for a light emitting element has a kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less and an arithmetic average roughness (Ra) as an index indicating the surface roughness of 0. A light emitting module (100) formed to be 15 μm or less.
  12.  発光素子(2)が配置される一方表面(1a)に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第1層(11)と、FeまたはFe合金からなる第2層(12)と、前記第1層との間に前記第2層を挟み込むとともに、他方表面(1b)に配置され、Cu、Ag、Al、Cu合金、Ag合金またはAl合金のいずれか1つからなる第3層(13)とを含み、前記一方表面が、表面粗さを示す指標としてのクルトシス(Rku)が10.5以下になるとともに、表面粗さを示す指標としての算術平均粗さ(Ra)が0.15μm以下になるように形成された発光素子用基板(1)を形成する工程と、
     200℃以上400℃以下の温度条件下で熱処理を行う工程と、
     前記発光素子用基板の前記一方表面上に前記発光素子を配置する工程とを備える、発光モジュール(100)の製造方法。
    A first layer (11) arranged on one surface (1a) on which the light emitting element (2) is arranged and made of any one of Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy, and Fe or Fe Cu, Ag, Al, Cu alloy, Ag alloy or Al alloy is disposed on the other surface (1b) while sandwiching the second layer between the second layer (12) made of an alloy and the first layer. A third layer (13) made of any one of the above, and the one surface has an kurtosis (Rku) as an index indicating the surface roughness of 10.5 or less and an index indicating the surface roughness A step of forming a light emitting element substrate (1) formed so that the arithmetic average roughness (Ra) is 0.15 μm or less;
    Performing a heat treatment under a temperature condition of 200 ° C. or higher and 400 ° C. or lower;
    A step of disposing the light emitting element on the one surface of the light emitting element substrate.
PCT/JP2012/079118 2011-11-11 2012-11-09 Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module WO2013069767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147007433A KR101860173B1 (en) 2011-11-11 2012-11-09 Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module
CN201280055359.8A CN103931006B (en) 2011-11-11 2012-11-09 The manufacture method of light-emitting component substrate, luminescence component and luminescence component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247645 2011-11-11
JP2011-247645 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013069767A1 true WO2013069767A1 (en) 2013-05-16

Family

ID=48290135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079118 WO2013069767A1 (en) 2011-11-11 2012-11-09 Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module

Country Status (5)

Country Link
JP (1) JPWO2013069767A1 (en)
KR (1) KR101860173B1 (en)
CN (1) CN103931006B (en)
TW (1) TW201327909A (en)
WO (1) WO2013069767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111621A (en) * 2013-12-06 2015-06-18 株式会社Neomaxマテリアル Semiconductor element formation substrate, and method of manufacturing the same
WO2018198982A1 (en) * 2017-04-27 2018-11-01 京セラ株式会社 Circuit board and light-emitting device provided with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024228A (en) * 1999-07-06 2001-01-26 Nichia Chem Ind Ltd Light emitting device
JP2002280616A (en) * 2001-03-16 2002-09-27 Nichia Chem Ind Ltd Package mold and light emitting device using the same
JP2008127606A (en) * 2006-11-17 2008-06-05 Kobe Steel Ltd High-strength copper alloy sheet having oxide film superior in adhesiveness
JP2011187586A (en) * 2010-03-05 2011-09-22 Seiko Instruments Inc Light emitting device and method of manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0290663A (en) * 1988-09-28 1990-03-30 Hitachi Cable Ltd Lead frame
JPH06224346A (en) * 1993-01-23 1994-08-12 Toppan Printing Co Ltd Etching method
JPH1041423A (en) * 1996-07-22 1998-02-13 Sony Corp Manufacture of semiconductor package
JP4058933B2 (en) 2001-10-26 2008-03-12 松下電工株式会社 Manufacturing method of high thermal conductive solid substrate
CN100505222C (en) * 2004-11-19 2009-06-24 晶元光电股份有限公司 Light-emitting diode radiating substrate and production thereof
KR101088910B1 (en) * 2008-05-29 2011-12-07 삼성엘이디 주식회사 LED package and method of manufacturing the same
TW201108377A (en) * 2009-06-24 2011-03-01 Furukawa Electric Co Ltd Lead frame for optical semiconductor device, process for manufacturing lead frame for optical semiconductor device, and optical semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001024228A (en) * 1999-07-06 2001-01-26 Nichia Chem Ind Ltd Light emitting device
JP2002280616A (en) * 2001-03-16 2002-09-27 Nichia Chem Ind Ltd Package mold and light emitting device using the same
JP2008127606A (en) * 2006-11-17 2008-06-05 Kobe Steel Ltd High-strength copper alloy sheet having oxide film superior in adhesiveness
JP2011187586A (en) * 2010-03-05 2011-09-22 Seiko Instruments Inc Light emitting device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111621A (en) * 2013-12-06 2015-06-18 株式会社Neomaxマテリアル Semiconductor element formation substrate, and method of manufacturing the same
WO2018198982A1 (en) * 2017-04-27 2018-11-01 京セラ株式会社 Circuit board and light-emitting device provided with same
JPWO2018198982A1 (en) * 2017-04-27 2019-06-27 京セラ株式会社 Circuit board and light emitting device provided with the same
EP3618129A4 (en) * 2017-04-27 2021-01-13 KYOCERA Corporation Circuit board and light-emitting device provided with same

Also Published As

Publication number Publication date
KR20140099438A (en) 2014-08-12
TW201327909A (en) 2013-07-01
CN103931006B (en) 2017-03-01
KR101860173B1 (en) 2018-06-27
JPWO2013069767A1 (en) 2015-04-02
CN103931006A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5312506B2 (en) Electronic component storage package and electronic device
JP5977973B2 (en) LED substrate, method of manufacturing the same, and semiconductor device
JP2010238941A (en) Light emitting device
US20160190417A1 (en) Semiconductor device and manufacturing method for the same
JP4846506B2 (en) Light emitting device and manufacturing method thereof
KR20130079632A (en) Laminate comprising an integrated electronic component
WO2013069767A1 (en) Substrate for light emitting elements, light emitting module, and method for manufacturing light emitting module
JP5881501B2 (en) Light emitting element substrate and light emitting module
JP4786407B2 (en) Power module
JP2016072516A (en) Wiring board and manufacturing method of the same, and mounting board and manufacturing method of the same
JP5522786B2 (en) Manufacturing method of heat dissipation board for semiconductor mounting
JP2014232781A (en) Lead frame for led and led package using the same
JP2006324398A (en) Wiring board
JP6908859B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6123215B2 (en) Light emitting device
JP6250749B2 (en) LED substrate, method of manufacturing the same, and semiconductor device
US7939921B2 (en) Leadframe
JP2012134435A (en) Light-emitting device for back light
JP6332330B2 (en) WIRING SUBSTRATE MANUFACTURING METHOD, LIGHT-EMITTING DEVICE MANUFACTURING METHOD USING SAME, WIRING SUBSTRATE, AND LIGHT-EMITTING DEVICE USING SAME
KR101869126B1 (en) Substrate for light emitting elements, material for substrates, and light emitting module
JP6579419B2 (en) Wiring board and mounting board
JP2012156409A (en) Light-emitting device for backlight
JP4500940B2 (en) Heat sink manufacturing method
JP2017174806A (en) Flexible substrate for led edge light
TWI650883B (en) Light emitting diode device and package bracket thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543041

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007433

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847578

Country of ref document: EP

Kind code of ref document: A1