WO2013069636A1 - 荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法 - Google Patents

荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法 Download PDF

Info

Publication number
WO2013069636A1
WO2013069636A1 PCT/JP2012/078727 JP2012078727W WO2013069636A1 WO 2013069636 A1 WO2013069636 A1 WO 2013069636A1 JP 2012078727 W JP2012078727 W JP 2012078727W WO 2013069636 A1 WO2013069636 A1 WO 2013069636A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
charged particle
particle beam
image
sample
Prior art date
Application number
PCT/JP2012/078727
Other languages
English (en)
French (fr)
Inventor
真純 白井
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US14/356,166 priority Critical patent/US9679744B2/en
Publication of WO2013069636A1 publication Critical patent/WO2013069636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2806Secondary charged particle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a charged particle beam apparatus that measures minute dimensions such as a circuit pattern of a semiconductor device, and a method for measuring and correcting a landing angle of a charged particle beam.
  • a semiconductor length measuring device irradiates a focused electron beam (electron beam) onto a sample to be observed and measured, scans the sample surface two-dimensionally, and detects secondary electrons generated from the sample.
  • a focused electron beam electron beam
  • the pattern dimensions are calculated based on the magnification of the SEM image using the detection signal waveform of the corresponding part.
  • a charged particle beam apparatus that acquires an SEM image, that is, a charged particle beam image such as a semiconductor length measuring device
  • SEM image that is, a charged particle beam image
  • the charged particle beam image of the sample obtained thereby changes according to the incident angle of the charged particle beam with respect to the sample at that time, that is, the landing angle of the charged particle beam.
  • the landing angle of the charged particle beam indicates an angle formed between the normal line of the sample and the beam optical axis of the charged particle beam.
  • the dimension measurement using the semiconductor length measuring device since the measurement is performed based on the SEM image as described above, the dimension measurement of the same pattern of the same sample is caused by the difference in the incident angle of the electron beam with respect to the sample.
  • the SEM image itself changes, and the measured value of the pattern dimension also changes. Therefore, in the semiconductor length measuring device, normally, in the state where the electron beam is not intentionally deflected, the electron beam is designed to be perpendicularly incident on the sample surface on which the pattern is formed in acquiring the SEM image. Yes.
  • the optical axis of the charged particle optical system that deflects and converges the charged particle beam and the beam optical axis of the charged particle beam deflected by the charged particle optical system are formed.
  • the tilt angle of the charged particle beam defined by the angle there was no way to measure a very small tilt angle of 0.1 ° or less. Therefore, even if the electron beam is not deliberately deflected, the electron beam is irradiated perpendicularly to the sample surface along the optical axis direction of the electron optical system that deflects and converges the electron beam. Whether or not it has actually been confirmed.
  • the charged particle beam has a slight inclination with respect to the optical axis of the electron optical system, that is, the charged particle optical system. Since the amount of inclination differs between apparatuses, a length measuring instrument difference is generated due to this minute inclination.
  • a polyhedral structure having a known shape for example, a pyramid pattern having a known shape
  • Patent Document 1 a polyhedral structure having a known shape, for example, a pyramid pattern having a known shape.
  • the SEM image of the pyramid pattern as a calibration pattern is obtained using the obtained specimen as a calibration sample, and the SEM image is obtained based on the geometric deformation of the pyramid pattern on the SEM image.
  • FIG. 9 is an explanatory diagram of a pyramid pattern as an example of a calibration pattern.
  • FIG. 9A shows a schematic diagram of the three-dimensional shape of the pyramid pattern
  • FIG. 9B shows an SEM image of the pyramid pattern portion of the sample on which the pyramid pattern shown in FIG. 9A is formed. .
  • a pyramid pattern 90 includes a (111) plane exposed by crystal anisotropic etching of a silicon (Si) wafer and three planes having crystal plane directions equivalent to the (111) plane. Are formed in a quadrangular pyramid-shaped recess pattern. Therefore, the angle formed by the faces of the pyramid pattern 90 is known.
  • P 0 to P 4 represent the vertices of the pyramid
  • the vertex P 0 corresponds to the bottom top of the pyramid pattern 90
  • the vertices P 1 to P 4 correspond to the corners of the opening of the pyramid pattern 90.
  • Each plane P 0 P 1 P 2 , P 0 P 2 P 4 , P 0 P 4 P 3 , P 0 P 3 P 1 of the pyramid pattern 90 is inclined with respect to the (100) plane of silicon as a wafer plane.
  • Each angle is tan ⁇ 1 ( ⁇ 2) ⁇ 54.74 °.
  • the pyramid pattern 90 as the calibration pattern may be a quadrangular pyramid-shaped convex pattern instead of a quadrangular pyramid-shaped concave pattern, and the polyhedral structure pattern shape itself may be a quadrangular pyramid shape (pyramid).
  • the shape is not limited to a shape, and may be a truncated pyramid shape, for example.
  • a top-down SEM image of the pyramid pattern 90 shown in FIG. 9A (in the example shown, an SEM image in which the wafer surface on which the pyramid pattern 90 is formed is observed from vertically above).
  • the four valley lines of the pyramid pattern 90 are straight lines P 0 P 1 , P 0 P 2 , P 0 connecting the vertex P 0 and the remaining vertices P 1 to P 4.
  • the openings of the pyramid pattern 90 are P 3 , P 0 P 4
  • the openings of the pyramid pattern 90 are P 0 P 1 P 2 , P 0 P 2 P 4 , P 0 P 4 P 3 , P 0 P 3 P 1 . It appears at the line of intersection with the wafer surface, that is, line segments P 1 P 2 , P 2 P 4 , P 4 P 3 , and P 3 P 1 .
  • Patent Document 1 based on the geometric deformation of the pyramid pattern on the SEM image obtained by observing the sample on which the pyramid pattern of known shape is formed from a preset desired observation direction.
  • the incident angle of the electron beam with respect to the sample is estimated, and for example, the deflection of the electron beam is adjusted so that the estimated incident angle becomes a set value corresponding to the set desired observation direction.
  • a method for adjusting the tilt angle of the electron beam to the observation direction of the sample is described.
  • Patent Document 2 using the method described in Patent Document 1, an SEM image of a polyhedral pattern portion of a sample on which a polyhedral pattern with a known shape is formed is obtained, and the geometry of the polyhedral pattern on the SEM image is acquired.
  • an SEM image of the polyhedral pattern portion is obtained using the same sample used for this estimation in another apparatus, and on the SEM image
  • the angle of inclination of each electron beam is associated with each other so that the incident angle of the electron beam on the sample matches between the devices.
  • Scan distortion refers to a phenomenon in which an SEM image acquired from a sample is distorted due to disturbances received by a scan signal for scanning an electron beam, changes in response speed of the scan signal itself, and the like.
  • FIG. 10 is an explanatory diagram of an example of a scan signal that causes scan distortion.
  • FIG. 10A shows an example of an original scan signal that does not cause scan distortion
  • FIGS. 10B and 10C cause scan distortion due to disturbance, change in response speed of the signal itself, and the like.
  • An example of a scan signal is shown.
  • the scan signal shown in FIG. 10B is compared with the original scan signal having the relationship between the magnitude V of the scan signal value and the time t as shown in FIG.
  • FIG. 6 shows an example of a scan signal in which a signal change occurs in which the scanning speed of the electron beam is slow on the first half side including the scan and the scanning speed of the electron beam is fast on the second half side of the scan including the scan end point.
  • the scan signal shown in FIG. 10C is higher than the original scan signal in the first half of the scan including the scan start point, and the electron beam scan speed is higher in the second half of the scan including the scan end point. It shows an example of a scan signal in which a signal change that causes a slow scan speed occurs.
  • the known pyramid pattern 90 shown in FIG. 9 used as a calibration sample in Patent Document 1 is formed perpendicular to the crystal orientation plane ((100) plane) of a silicon wafer.
  • the crystal orientation plane ((100) plane) itself of this silicon wafer is not necessarily parallel to the wafer plane. This is because when the wafer is cut out from the silicon ingot, the wafer plane and the crystal orientation plane ((100) plane) are slightly shifted.
  • the amount of deviation is 0.2 ° or less, but the magnitude is too large for a semiconductor length measuring device that measures the tilt angle of an electron beam with an accuracy of 0.05 ° or less.
  • the incident angle of the electron beam of the apparatus with respect to the sample that is, the landing angle of the electron beam
  • the inclination angle of the electron beam and the wafer surface itself on which the pyramid pattern 90 is formed are actually measured.
  • the combined result with the tilt angle is the measurement result. That is, the measurement result of the tilt angle of the electron beam varies depending on the calibration sample to be used.
  • the present invention relates to a charged particle beam apparatus that measures a minute dimension such as a circuit pattern of a semiconductor device, and a length measurement value difference caused by variations in scan distortion and landing angle of a charged particle beam.
  • the charged particle beam device can measure the absolute tilt angle of the charged particle beam with high accuracy and improve the workability in calibration between devices, and the measurement of the landing angle of the charged particle beam
  • An object is to provide a correction method.
  • the present invention captures a charged particle beam image of a polyhedral structure having a known shape formed on the sample surface, and based on the geometric deformation of the polyhedral structure on the acquired charged particle beam image, Estimate the landing angle of the charged particle beam with respect to the sample when this charged particle beam image was acquired, and based on the estimated charged particle beam landing angle, the inclination of the charged particle beam corresponding to each charged particle beam landing angle
  • a charged particle beam apparatus for estimating an angle, or a method for measuring and correcting a landing angle of a charged particle beam (1)
  • a charged particle beam image of a polyhedron structure with a known shape formed on the sample surface is captured, a charged particle beam image of the polyhedron structure obtained by changing the scanning directions to opposite directions is acquired.
  • the present invention it is possible to suppress the influence of scan distortion and cancel the inclination of the sample surface itself on which the polyhedral structure having a known shape as the calibration pattern is formed.
  • the landing angle can be measured with high accuracy by the absolute inclination angle of the charged particle beam, and the length measuring instrument difference due to the variation in the scan distortion and the landing angle of the charged particle beam can be reduced.
  • FIG. 1 is a schematic configuration diagram of a scanning electron microscope having a length measuring function as an embodiment of the charged particle beam apparatus of the present invention.
  • the scanning electron microscope 1 includes an electron gun 10, an electron optical system 20, a sample chamber 30, and a secondary electron detector 40 in an apparatus housing 2, and these components are controlled by a processing device 50. Yes.
  • the electron gun 10 as a charged particle beam gun generates electrons, which are a kind of charged particles, and emits an electron beam 3 as a charged particle beam.
  • the electron optical system 20 includes a focusing lens 21, an objective lens 22, and a deflector 23 as a charged particle optical system.
  • the electron beam 3 emitted from the electron gun 10 is focused by the focusing lens 21 and the objective lens 22 of the electron optical system 20, deflected by the deflector 23, and irradiated onto the sample surface disposed in the sample chamber 30.
  • the sample chamber 30 a sample to be observed and measured that is irradiated with the electron beam 3 is accommodated.
  • the sample 5 as the calibration sample shown in FIG. 9 is also included.
  • the sample chamber 30 is provided with a stage 31 on which a sample to be observed and measured including the sample 5 is mounted, and the stage 31 is provided with a stage mechanism 32.
  • the stage mechanism 32 can move and displace the position of the stage 31 in the sample chamber 30 and move the irradiation position of the electron beam 3 and the observation field of view on the sample surface.
  • the stage mechanism 32 is a stage rotation mechanism that rotates the direction of the stage 31 within the sample chamber 30 and includes the sample including the reverse direction. Can be rotated to change.
  • the stage 31 shows a state where the sample 5 as the calibration sample shown in FIG. 9 is mounted.
  • the secondary electrons 7 of the charged particles emitted from the sample by the irradiation with the electron beam 3 are detected by the luminance signal by the secondary electron detector 40 as a charged particle detector.
  • the detection signal is supplied from the secondary electron detector 40 to the processing device 50, and based on this detection signal, the processing device 50 generates an SEM image of the irradiation region of the electron beam 3 on the sample surface.
  • the processing device 50 is configured by, for example, a computer device and is connected to each part of the device, and is also connected to an input / output device 60 as a user interface.
  • the input / output device 60 includes a display 61 as a display device and an operation device 62 such as a mouse and a keyboard.
  • the processing device 50 controls each part in order to cause the scanning electron microscope 1 to perform each process including the above-described acquisition of the SEM image.
  • the processing device 50 controls the focusing lens 21 and the objective lens 22 of the electron optical system 20 in order to adjust the measurement magnification and focus adjustment.
  • the electron beam 3 is controlled by controlling the deflector 23 so that the incident angle of the electron beam 3 with respect to the observation / measurement sample including the sample 5, that is, the landing angle, becomes a set value corresponding to a preset observation direction. 3 deflection, so-called beam tilt is performed.
  • the processing device 50 controls the stage mechanism 32 in order to move the irradiation position of the electron beam 3 on the sample and the observation field of view, so that the stage 31 is two-dimensionally or three-dimensionally inside the sample chamber 30. Move to. Further, the processing apparatus 50 moves the irradiation position of the electron beam 3 and the observation field of view accurately with respect to the observation point on the sample without moving the stage by the stage mechanism 32. An image shift is also performed in which the irradiation position (scanning position) is changed by the deflector 23.
  • the processing device 50 generates an SEM image of the irradiation region of the electron beam 3 on the sample based on the detection signal supplied from the secondary electron detector 40 corresponding to the irradiation scan of the electron beam 3 on the sample. Then, the generated SEM image data, the observation condition data such as the above-described measurement magnification used for the generation, the detection signal data, etc. are stored / accumulated in the storage unit 51 in association with the observed sample, or input / output Display output on the display 61 of the device 60.
  • the processing device 50 receives the detection signal data of the corresponding part of the SEM image.
  • the pattern size of the measurement location is calculated and measured based on the magnification data of the SEM image, and the measurement size data, the specified data of the measurement location, etc. are associated with the SEM image and the observed sample in the storage unit 51. Save / accumulate and display / output on the display 61 of the input / output device 60.
  • the processing device 50 performs the landing angle measurement unit for the electron beam 3 in order to perform the measurement correction process for the landing angle of the electron beam 3 described in Patent Document 1. , Functions as a landing angle correction unit.
  • the processing device 50 is instructed to execute the measurement correction processing of the landing angle of the electron beam 3 using the sample 5 on which the pyramid pattern 90 having a known shape as shown in FIG. 9 is formed.
  • the electron beam 3 is beam tilted in a set desired observation direction, and the pyramid pattern 90 portion of the sample 5 is observed by image shift, thereby acquiring the SEM image.
  • the landing angle of the electron beam 3 with respect to the sample 5 at that time is estimated.
  • the execution instruction of the measurement correction process of the landing angle of the electron beam 3 is performed based on the operation of the operation device 62 of the input / output device 60 or satisfaction of preset execution conditions.
  • the desired observation direction is set by setting the landing angle of the electron beam 3.
  • the processing device 50 stores the landing angle of the electron beam 3 and the electrons stored in the storage unit 51 in advance.
  • the beam tilt of the electron beam 3 is performed by the deflector 23 so that the tilt angle of the electron beam 3 corresponds to the landing angle of the electron beam 3 of the set value based on the data table related to the tilt angle of the line 3.
  • An SEM image of the pyramid pattern 90 portion is acquired by image shift.
  • the processing device 50 measures the landing angle of the electron beam 3 by, for example, imaging the pyramid pattern 90 in a state where the electron beam 3 is not tilted (the electron beam 3 is incident on the sample 5 perpendicularly).
  • the landing angle of the electron beam 3 of the SEM image acquired corresponding to the setting value based on the geometric deformation of the pyramid pattern 90 on the SEM image acquired corresponding to the setting value. Is estimated.
  • the landing angle correcting unit of the electron beam 3 is used as, for example, the inclination of the electron beam 3 corresponding to the set value.
  • the landing angle of the electron beam 3 and the inclination of the electron beam 3 stored in the relational data table of the storage unit 51 so that the angle becomes the inclination angle of the electron beam 3 corresponding to the estimated landing angle of the electron beam 3.
  • the correspondence relationship with the angle is corrected so that the actual landing angle of the electron beam 3 becomes the set landing angle of the electron beam 3.
  • the processing device 50 displays an OSD (On-Screen Display) on a display 61 of the input / output device 60 as a GUI (Graphical User Interface) screen for selecting or instructing setting or execution of these various processes. It is also like.
  • OSD On-Screen Display
  • GUI Graphic User Interface
  • the processing device 50 uses the sample 5 as the calibration sample as described above as the landing angle measurement unit and the landing angle correction unit of the electron beam 3, as described above.
  • the sample 5 on which the pyramid pattern 90 shown in FIG. 9 is similarly used as a calibration sample, and the scan for suppressing the landing angle measurement error due to the scan distortion is suppressed.
  • a distortion measurement error suppression process and a pattern inclination measurement error suppression process for suppressing a landing angle measurement error due to the inclination of the sample surface on which the pyramid pattern 90 is formed are performed.
  • the processing device 50 performs a scan distortion measurement error suppression process, the landing angle measured by the landing angle measuring unit of the electron beam 3 described above, and the landing angle and electron beam of the electron beam 3 corrected by the landing angle correction unit. 3 is based on the landing angle of the electron beam 3 in which the measurement error due to the influence of the scan distortion is suppressed, the pattern inclination measurement error suppression process is performed, and the sample 5 as a calibration sample is obtained. The measurement error due to the influence of the inclination generated between the sample surface and the pyramid pattern 90 is suppressed, and it is based only on the absolute inclination angle of the electron beam 3.
  • the absolute inclination angle of the electron beam 3 is defined as the electron beam emission direction in a state where the electron beam is not intentionally deflected, that is, the optical axis direction of the electron optical system 20 as the z axis.
  • the processing device 50 functions as a landing angle measurement unit and a landing angle correction unit, performs the measurement correction process for the landing angle of the electron beam 3 described in Patent Document 1, and performs calibration.
  • a measurement error suppression process based on scan distortion of the landing angle and a measurement error suppression process based on the pattern inclination of the calibration pattern are performed in advance.
  • the measurement error due to scanning distortion and the measurement error due to pattern tilt are solved, and the landing angle of the charged particle beam with respect to the sample surface of the calibration sample is controlled with high accuracy by the absolute tilt angle of the charged particle beam. can do.
  • Scan distortion is a phenomenon in which the observed portion of the sample is distorted in the acquired SEM image due to disturbance received by the scan signal for scanning the electron beam 3, change in response speed of the scan signal itself, and the like.
  • FIG. 2 is an explanatory view schematically showing the influence of scan distortion, taking as an example the case where the sample 5 on which the pyramid pattern 90 shown in FIG. 9 is formed is used as a calibration sample.
  • the sample surface on which the pyramid pattern 90 is formed will be described as being coincident with the crystal orientation plane ((100) plane) of the silicon wafer.
  • the arrow in the figure represents the raster scan direction of the electron beam 3.
  • FIG. 2A is a top-down SEM image 900 in which the pyramid pattern 90 portion of the sample 5 shown in FIG. 9 is observed by image shift when no scan distortion occurs.
  • the opening of the pyramid pattern 90 represented by the intersection lines P 1 P 2 , P 2 P 4 , P 4 P 3 , and P 3 P 1 between the pyramid pattern 90 and the wafer surface appears in a square shape, and the apex P 0
  • the four valley lines of the pyramid pattern 90 represented by the straight lines P 0 P 1 , P 0 P 2 , P 0 P 3 , and P 0 P 4 connecting the other vertices P 1 to P 4 appear in a square shape on the sample surface. Appears as a diagonal of the opening. Therefore, the bottom top portion P 0 of the pyramid pattern 90 appears at the center (center) O of the opening that appears in a square shape.
  • FIG. 2B shows a case where the scan direction of the electron beam 3 by image shift is changed by raster rotation in the pyramid pattern 90 portion of the sample 5 shown in FIG.
  • the top-down SEM images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270) are observed while changing the rotation angle RR.
  • the SEM image 901 (RR00) is a top-down SEM image with a rotation angle RR of 0 °
  • the SEM image 901 (RR180) is a top-down SEM image with a rotation angle RR of 180 °
  • the SEM image 901 (RR90) is a rotation angle RR.
  • SEM image 901 (RR270) represents a top-down SEM image with a rotation angle RR of 270 °.
  • the bottom apex P 0 (RR00) is in the x-axis direction of the coordinate system on the image (in the x-axis direction on the absolute coordinate system based on the optical axis direction of the electron optical system 20).
  • the SEM image 900 appears to be offset to the left side in the horizontal direction on the image from the position of the bottom top P 0 .
  • the bottom top portion P 0 (RR00). , compared the position of the Sokoitadaki portion P 0 of the SEM image 900, in the vertical direction on the image, significant offset in the vertical is not seen.
  • the bottom top portion P 0 (RR180) relates to the x-axis direction of the coordinate system on the image, and in the lateral direction on the image rather than the position of the bottom top portion P 0 of the SEM image 900. Contrary to the case of the SEM image 901 (RR00), it appears offset to the right.
  • the bottom top portion P 0 (RR180) is the same as the SEM image 901 (RR00) with respect to the position of the bottom top portion P 0 of the SEM image 900. In addition, no significant vertical offset is observed in the vertical direction on the image.
  • the bottom top portion P 0 (RR90) is related to the y-axis direction of the coordinate system on the image, and in the vertical direction on the image rather than the position of the bottom top portion P 0 of the SEM image 900. , Appearing offset upwards.
  • the bottom top portion P 0 (RR90) is conspicuous on the left and right sides in the lateral direction on the image with respect to the position of the bottom top portion P 0 of the SEM image 900. No significant offset is found.
  • the bottom top portion P 0 relates to the y-axis direction of the coordinate system on the image, and in the vertical direction on the image rather than the position of the bottom top portion P 0 of the SEM image 900. Contrary to the case of the SEM image 901 (RR90), it appears offset at the lower side.
  • the bottom top portion P 0 (RR270) is the same as the SEM image 901 (RR90) with respect to the position of the bottom top portion P 0 of the SEM image 900.
  • the shape of the opening of the pyramid pattern 90 of the sample 5 is more influenced by distortion on the scan start side than on the scan end side at any rotation angle RR. Therefore, if the image shift scanning directions are opposite to each other on the left and right on the screen, such as SEM image 901 (RR00) and SEM image 901 (RR180), a portion with a large influence of distortion is a screen portion. The left and right are reversed. Also, if the image shift scanning direction changes in the opposite direction vertically on the screen as in the SEM image 901 (RR90) and the SEM image 901 (RR270), a portion having a large influence of distortion and a portion having a small influence are displayed on the screen. It is upside down.
  • the scan direction of the electron beam 3 by image shift is set to 0 °, 180 °, 90 °
  • the rotation angle RR is set to 0 °, 180 °, 90 °.
  • the shape of the pyramid pattern 90 in each SEM image 900 (RR00), 900 (RR180), 900 (RR90), 900 (RR270) does not change.
  • the positions of the vertices P 0 to P 4 on the image do not change.
  • the processing device 50 performs a landing angle measurement error suppression process due to scan distortion as described below.
  • the processing device 50 first performs a calibration pattern image acquisition unit at a position on the sample surface of the pyramid pattern 90 as a calibration sample, for example, FIG.
  • the observation position is aligned with the position on the sample surface corresponding to the vertex P 0 of the original pyramid pattern 90 as shown, and the rotation angle RR is changed to at least two opposite directions by raster rotation, and the pyramid for each rotation angle RR.
  • Each SEM image 901 of the pattern 90 is acquired by image shift.
  • the rotation angle RR is changed to 0 °, 180 °, 90 °, and 270 °, and SEM images 901 (RR00), 901 (RR180), and 901 (RR90) shown in FIG.
  • the landing angle measurement error suppression processing is performed corresponding to the two opposite directions of the scanning direction of the electron beam 3 by the deflector 23, so that the x-axis direction and the y-axis direction on the image.
  • SEM images 901 in two opposite directions are acquired. For example, if there is no change in the influence of scan distortion in each scan direction, the landing angle can be obtained only in the two opposite directions in either the x-axis direction or the y-axis direction. It is possible to perform the measurement error suppression process.
  • the processing device 50 serves as a landing angle measurement unit for the electron beam 3 as SEM images 901 (RR00), 901 (RR180), and 901 (RR90). ), 901 (RR270)
  • SEM images 901 (RR00), 901 (RR180), 901 (RR90), 901 (RR270) are obtained based on the geometrical deformation of each pyramid pattern 90.
  • the angle of incidence of the electron beam 3 on the sample 5 at the time of acquisition, that is, the landing angle of the electron beam 3 is estimated.
  • the processing apparatus 50 sets the observation direction of the sample 5 when obtaining the same shape as each of the SEM images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270) for the pyramid pattern 90.
  • the landing angle of the electron beam 3 with respect to the sample surface and the tilt angle of the electron beam 3 can be obtained.
  • FIG. 3 is a characteristic diagram showing the relationship between the image shift amount and the tilt angle of the electron beam.
  • FIG. 3A shows the landing angle of the electron beam 3 estimated on the basis of the SEM images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270), respectively. It is a characteristic view showing the relationship between the image shift amount in the x-axis direction on the corresponding absolute coordinate system and the tilt amount of the electron beam 3 in the x-axis direction corresponding to the estimated landing angle of the electron beam.
  • FIG. 3 (b) shows a vertical direction on the screen at each landing angle of the electron beam 3 estimated based on the SEM images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270). It is a characteristic view showing the relationship between the image shift amount in the y-axis direction on the corresponding absolute coordinate system and the tilt amount of the electron beam 3 in the y-axis direction corresponding to the estimated tilt angle of the electron beam.
  • the characteristics indicated by i (RR00), ii (RR180), iii (RR90), and iv (RR270) are respectively SEM images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270).
  • the relationship between the inclination angle and the x-axis direction component or the y-axis direction component is shown.
  • the scan signal is a landing angle obtained by averaging the landing angles of the electron beam 3 estimated based on the images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270), and in the x-axis direction.
  • a scan signal having characteristics obtained by averaging characteristics i (RR00), ii (RR180), iii (RR90), and iv (RR270) with respect to the y-axis direction, and corresponds to acquiring an SEM image of the pyramid pattern 90 by image shift.
  • the electron beam 3 corresponding to the averaged landing angle of the electron beam 3 is set to the inclination angle of the electron beam 3 corresponding to the landing angle of the electron beam 3 with respect to the sample 5 which is set when the observation position is initially adjusted.
  • the SEM image 901 (RR00) shown in FIG. 2B has the effect of scan distortion suppressed, and is shown in FIG. It can be close to the original SEM image 900 when no scan distortion occurs.
  • the processing apparatus 50 acquires SEM images 901 (RR00), 901 (RR180), 901 (RR90), and 901 (RR270) for each rotation angle RR0 °, 180 °, 90 °, and 270 °, respectively.
  • the landing angle of the electron beam 3 is estimated
  • the landing angle of each of the electron beams 3 is first averaged as a scan distortion measurement error suppressing unit.
  • the processing device 50 sets the electron beam corresponding to the landing angle of the electron beam 3 with respect to the sample 5 set when the observation position is initially set to the inclination angle of the electron beam corresponding to the averaged estimated landing angle.
  • the inclination angle of the line 3 is corrected and accumulated.
  • the processing device 50 converts the scan signal into i (RR00), ii (RR180), iii (RR90) as described above so that the influence of the scan distortion is suppressed. ), Iv (RR270) is corrected and accumulated so as to generate an inclination angle of the electron beam 3 corresponding to each image shift amount of the characteristic obtained by averaging the characteristics indicated by iv (RR270).
  • the processing device 50 has a measurement point on which a pyramid pattern 90 to be observed at another position on the sample surface of the sample 5 is formed.
  • the same landing angle measurement error suppression processing is performed as a calibration pattern image acquisition unit, an electron beam 3 landing angle measurement unit, and a scan distortion measurement error suppression unit.
  • the processing device 50 has finished the measurement error suppression processing of the landing angle for all the pyramid patterns 90 of the measurement points on the sample surface of the sample 5, the inclination of the electron beam 3 that has been corrected and accumulated for each measurement point.
  • the angle and the scan signal are further averaged to improve the inclination angle of the electron beam 3 and the accuracy of the scan signal, in which the influence of the scan distortion is suppressed.
  • beam tilt correction or the like is performed for each device, and the length difference between the devices can be reduced.
  • a predetermined single scanning direction for example, a rotation angle RR is set without changing the scanning direction of the electron beam 3 by image shift into two opposite directions.
  • the processing device 50 uses only the SEM image 901 (RR00) of the calibration pattern acquired at 0 °, the processing device 50 performs the measurement correction process for the landing angle of the electron beam 3 as a measurement correction unit for the landing angle of the electron beam 3. Therefore, the correspondence between the landing angle estimated by the landing angle measurement unit and the landing angle of the electron beam 3 corrected by the landing angle correction unit and the inclination angle of the electron beam 3 is a value that takes into account the offset due to scan distortion. It was an error.
  • the deviation between the wafer plane and the crystal orientation plane in the calibration sample differs for each sample 5 as the calibration sample.
  • FIG. 4 is a pattern cross-sectional view when observing the calibration sample formed on the wafer surface where the calibration pattern does not match the crystal orientation plane of the silicon wafer.
  • FIG. 4A shows a state in which the calibration sample is mounted on the stage 31 with the wafer load angle, which is a predetermined direction set in advance, set to 0 °, and placed in the sample chamber 30, while FIG. ) Shows a state in which the calibration sample is mounted on the stage 31 with the wafer load angle opposite to the wafer load angle of 0 ° being set to 180 ° and placed in the sample chamber 30.
  • the sample surface of the sample 5 that is, the wafer surface 5 s of the silicon wafer on which the pyramid pattern 90 is formed, is inclined at an inclination angle ⁇ with respect to the crystal orientation plane ((100) plane), that is, the pyramid pattern 90.
  • the electron beam 3 is incident on the sample surface 5s of the sample 5 at a landing angle ⁇ .
  • the normal line of the sample 5 that is, the normal line of the sample surface 5s on which the pyramid pattern 90 is formed is parallel to the optical axis direction of the electron optical system 20, and the sample surface 5s of the electron beam 3
  • the magnitude of the landing angle ⁇ with respect to is assumed to correspond to the magnitude of the tilt angle of the electron beam 3.
  • the inclination of the sample surface 5s of the sample that is, the sample surface (wafer surface) 5s of the silicon wafer and the crystal orientation surface ((100) surface).
  • the angle ⁇ is the same in-plane if it is within the wafer even if the wafer load angle changes. Therefore, when the sample 5 is rotated 180 ° in opposite directions at wafer load angles of 0 ° and 180 ° and placed in the sample chamber 30, the crystal orientation plane ((100) plane at each wafer load angle of 0 ° and 180 ° ) With respect to the sample surface (wafer surface) 5s is symmetric about the normal line of the sample surface 5s.
  • the electrons with respect to the sample surface 5s which are measured by the processing apparatus 50 functioning as the landing angle measuring unit of the electron beam 3 described above in the wafer load states of the wafer 5 at the wafer load angles 0 ° and 180 °, respectively.
  • the landing angle T 00 is estimated by the processing device 50 serving as the landing angle measurement unit with respect to the sample 5 placed in the sample chamber 30 at the wafer load angle of 0 °, that is, the observation direction set in advance.
  • the SEM image is acquired by beam tilting the tilt angle of the electron beam 3 to ⁇ and observing the pyramid pattern 90 portion of the sample 5 by image shift. Then, based on the geometric deformation of the pyramid pattern 90 on the SEM image with the obtained inclination angle of the electron beam 3 as ⁇ , the landing angle T 00 of the electron beam 3 with respect to the sample 5 at that time is estimated. The The same applies to the estimated landing angle T 180.
  • the landing angle ⁇ of the electron beam 3 with respect to the sample surface 5s that is, the landing angle ⁇ of the electron beam 3 is obtained.
  • the processing device 50 in order to obtain only the absolute inclination angle ⁇ of the electron beam 3 corresponding to the preset observation direction corresponding to the landing angle ⁇ of the electron beam 3, the processing device 50 performs the following process. Measurement error suppression processing is performed by pattern inclination of the landing angle as described below.
  • the processing apparatus 50 first has a wafer load angle 0 of the sample 5 on which the pyramid pattern 90 is formed as a calibration pattern image acquisition unit, which are opposite to each other. SEM images of each state arranged at ° and 180 ° are acquired. In obtaining these SEM images, the loading direction of the sample 5 may be reversed and mounted on the stage 31 again, or the stage 31 on which the sample 5 is mounted is reversed by the stage mechanism 32. Is also possible.
  • the processing apparatus 50 is arrange
  • the processing device 50 averages the landing angles T 00 and T 180 of the electron beam 3 as a pattern inclination measurement error suppressing unit, thereby obtaining the sample surface 5 s and the crystal orientation surface ((100) surface).
  • the landing angle of the electron beam 3 with respect to the sample surface 5s is measured with high accuracy by the absolute inclination angle of the electron beam 3.
  • FIG. 5 is a flowchart of the measurement error suppression processing of the landing angle caused by the scan distortion performed by the scanning electron microscope.
  • the processing device 50 When instructed to start the measurement error suppression process of the landing angle due to scan distortion, the processing device 50 loads the sample 5 having the pyramid pattern 90 formed on the sample surface into the sample chamber 30 and mounts it on the stage 31 ( S501). Then, the processing device 50 controls the stage mechanism 32 based on the known sample data related to the sample 5 so that the target pyramid pattern 90 of the sample 5 mounted on the stage 31 is in the center of the image. Move (S502). Alignment here, for example, the Sokoitadaki portion P 0 of the center (center) of the object of the pyramid pattern 90 on the specimen surface, so as to position on the optical axis of the electron optical system 20, to move the stage 31 Is done.
  • the processing device 50 adjusts the focus with the focusing lens 21 and the objective lens 22 and deflects the rotation angle RR of the raster rotation to 0 °.
  • the target pyramid pattern 90 is scanned with the electron beam 3 by the image shift by the device 23 (S503).
  • the processing device 50 relates to the scanning of the electron beam 3, and based on the detection signal supplied from the secondary electron detector 40, the SEM of the pyramid pattern 90 having a rotation angle RR of 0 ° (RR00).
  • An image 901 (RR00) is generated and acquired (S504).
  • the processing apparatus 50 uses the geometrical deformation of the pyramid pattern 90 on the SEM image 901 (RR00) with the rotation angle RR of 0 ° (RR00).
  • the landing angle of the electron beam 3 with respect to the sample surface is estimated and stored together with the characteristic i (RR00) of the relationship between the image shift amount and the tilt angle of the electron beam at the estimated landing angle of the electron beam 3 (S505).
  • the processing device 50 changes the scanning direction to the opposite directions, and in a preset opposite direction, in this case, the rotation angle RR is 0 ° (RR00), 180 ° (RR180), 90 °. It is confirmed whether or not the estimation of the landing angle of the electron beam 3 at (RR90), 270 ° (RR270) is completed (S506).
  • the processing device 50 sets the raster rotation to the remaining rotation angle RR (S507), and performs steps S503 to S506 for each of the remaining rotation angles RR. Repeat the process.
  • the processing device 50 determines the inclination angle estimated in each direction, And the characteristics i (RR00), ii (RR180), iii (RR90), iv (RR270) of the relationship between the image shift amount and the tilt angle of the electron beam 3 at each estimated electron beam 3 landing angle, The inclination angle of the electron beam 3 in which the influence of the scan distortion is suppressed, and the relationship characteristics between the image shift amount and the inclination angle of the electron beam at the inclination angle of the electron beam 3 in which the influence of the scan distortion is suppressed are obtained (S508). ).
  • the processing device 50 averages the landing angle of the electron beam 3 estimated when the rotation angle RR of the raster rotation is 0 °, 180 °, 90 °, and 270 °, respectively. Similarly, the processing device 50 determines the image shift amount corresponding to each landing angle of the electron beam 3 estimated when the rotation angle RR of the raster rotation is 0 °, 180 °, 90 °, and 270 °, and the inclination angle of the electron beam.
  • the characteristics i (RR00), ii (RR180), iii (RR90), and iv (RR270) of the relationship are also averaged.
  • the processing device 50 uses the electron beam corresponding to the landing angle of the electron beam 3 with respect to the sample 5 set when the observation position is initially set to the inclination angle of the electron beam corresponding to the averaged estimated landing angle. 3 is corrected so as to have an inclination angle of 3, and the inclination angle of the electron beam 3 corresponding to each image shift amount of the characteristics obtained by averaging the scan signals is corrected and accumulated.
  • step S502 as in a pyramid pattern 90 becomes an image center, the landing angle 0 to the Sokoitadaki portion P 0 of the center (center) of the pyramid pattern 90 is positioned on the optical axis of the electron optical system 20 Since the electron beam 3 is not deliberately deflected by the deflector 23, the shift when the electron beam 3 is deflected by the deflector 23 only with the scan signal for image shift.
  • the intermediate landing angle 0 ° as the inclination angle of the electron beam 3 corresponding to the center of the image corresponds to the averaged estimated landing angle.
  • the scan signal corresponds to each image shift amount of the characteristic obtained by averaging the characteristics indicated by RR00, RR180, RR90, and RR270 shown in FIG. 3 with the average estimated landing angle as the center position of the image shift.
  • the processing apparatus 50 is formed with a pyramid pattern 90 to be observed at another position on the sample surface of the sample 5 in order to suppress the influence of scan distortion with higher accuracy. Whether or not there is a measurement point is determined based on the known sample data related to the sample 5 (S509).
  • the processing device 50 repeats the processes of steps S502 to S509 for the other measurement points.
  • the processing of steps S502 to S509 is completed for all the pyramid patterns 90 of the measurement points on the sample surface of the sample 5, the accumulated inclination angle of the electron beam 3 for each measurement point and the scan signal are further averaged.
  • the tilt angle of the electron beam 3 and the accuracy of the scan signal, in which the influence of the scan distortion is suppressed, are improved (S510).
  • FIG. 6 is a flowchart of measurement error suppression processing by pattern inclination of the landing angle performed by a scanning electron microscope.
  • the processing apparatus 50 When the processing apparatus 50 is instructed to start the measurement error suppression processing by the pattern inclination of the landing angle, the processing apparatus 50 loads the sample 5 in which the pyramid pattern 90 is formed on the sample surface into the sample chamber 30 with a wafer load angle of 0 °. Then, it is mounted on the stage 31 (S601). Then, the processing device 50 controls the stage mechanism 32 based on the known sample data related to the sample 5 so that the target pyramid pattern 90 of the sample 5 mounted on the stage 31 is in the center of the image. Move (S602). Alignment here, for example, the Sokoitadaki portion P 0 of the center (center) of the object of the pyramid pattern 90 on the specimen surface, so as to position on the optical axis of the electron optical system 20, to move the stage 31 Is done.
  • the processing device 50 adjusts the focus with the focusing lens 21 and the objective lens 22, and then fixes the rotation angle RR of the raster rotation to a predetermined angle.
  • the target pyramid pattern 90 is scanned with the electron beam 3 by the image shift by the deflector 23.
  • the processing device 50 relates to the scanning of the electron beam 3, based on the detection signal supplied from the secondary electron detector 40, the SEM of the pyramid pattern 90 in a state where the wafer load angle is 0 °.
  • An image is generated and acquired (S603).
  • the processing device 50 serves as a landing angle measurement unit for the electron beam 3 and is obtained by arranging each SEM image in a state where the wafer load angle is 0 °. Based on the geometric deformation of the pyramid pattern 90 above, the landing angle T 00 of the electron beam 3 in the arrangement state with the wafer load angle of 0 ° is measured and accumulated (S604).
  • the processing apparatus 50 once unloads the sample 5 from the sample chamber 30 (S605), reverses the loading direction of the sample 5 and sets the wafer load angle to 180 °, and then samples 5 Is loaded again into the sample chamber 30 and mounted on the stage 31 (S606).
  • the processing device 50 controls the stage mechanism 32 based on the known sample data related to the sample 5 so that the pyramid pattern 90 having the same purpose as the landing angle T 00 of the electron beam 3 previously measured becomes the center of the image. Next, the stage 31 is moved (S607).
  • the processing apparatus 50 generates and acquires an SEM image of the pyramid pattern 90 in a state where the wafer load angle is 180 ° (S608), and the landing angle of the electron beam 3 in the arrangement state where the wafer load angle is 180 °. T180 is measured and accumulated (S609).
  • the processing apparatus 50 determines the estimated landing angle T 00 of the electron beam 3 when the wafer is loaded at 0 °, and the estimated landing angle T 180 of the electron beam 3 when the wafer is loaded at 180 °. Are obtained, and the inclination angle ⁇ of the electron beam 3 obtained by canceling the inclination angle ⁇ of the pyramid pattern 90 with respect to the sample surface of the sample 5 is obtained (S610). Then, the processing apparatus 50 uses the accumulated inclination angle ⁇ of the electron beam 3 to suppress the influence of the inclination angle ⁇ between the sample surface 5s and the crystal orientation plane ((100) plane). The landing angle of the electron beam 3 with respect to 5 s can be measured with high accuracy by the absolute inclination angle of the electron beam 3.
  • the processing apparatus 50 once has the inclination amount ⁇ of the pyramid pattern 90 with respect to the sample surface. Is measured and recorded, the inclination angle of the pyramid pattern 90 can be canceled and the absolute angle can be measured.
  • the inclination angle of the electron beam 3 may change depending on the daily use state of the scanning electron microscope 1. In particular, it greatly changes due to maintenance such as tip replacement of the electron gun 10 and movable aperture hole replacement.
  • FIG. 7 shows an embodiment of maintenance correction processing performed in the scanning electron microscope 1.
  • the processing device 50 determines the landing angle due to the scan distortion shown in FIG. Measurement error suppression processing is executed (S702). Then, the processing device 50 averages the landing angle of the electron beam 3 with respect to the pyramid pattern 90 of the sample 5 estimated when the rotation angle RR of the raster rotation is 0 °, 180 °, 90 °, and 270 °, respectively. It is determined whether or not a value obtained by averaging the measurement points on the sample surface of the sample 5 where the pyramid pattern 90 is formed exceeds a predetermined threshold (S703).
  • the processing device 50 corrects the tilt angle of the electron beam 3 and the scan signal while suppressing the influence of the scan distortion, and displays it on the display 61 of the input / output device 60.
  • the error is displayed on the GUI screen (S704), and the average value of the landing angle measurement error suppression process due to scan distortion in step S702 and the measurement error suppression process completion confirmation process in step S703 is a predetermined threshold value. It repeats until it becomes below.
  • the measurement error suppression process for the landing angle due to the pattern inclination shown in FIG. 6 is performed.
  • the measurement error can be reduced by performing the measurement error suppression process of the pattern inclination by the landing angle and using the sample 5 in which the deviation between the sample surface (wafer surface) and the crystal orientation surface is calibrated in advance. .
  • FIG. 8 shows a flowchart of another embodiment of the maintenance correction process performed in the scanning electron microscope 1.
  • the present embodiment by monitoring the tilt angle of the electron beam 3 in the scanning electron microscope 1 at a certain interval, it is possible to manage the tilt of the electron beam caused by device fluctuations and disturbances in real time. Further, the landing angle measurement error suppression process by the pattern inclination shown in FIG. 6 is performed, and the sample 5 calibrated in advance between the sample surface (wafer surface) and the crystal orientation surface is placed on the stage 31 as a stub sample. Thus, it is possible to measure automatically in a short time.
  • the processing apparatus 50 measures a preset maintenance cycle time based on a timer provided as a time measuring means during normal operation (normal use) as the scanning electron microscope 1 ( S802), it is confirmed whether or not the measured value of the maintenance cycle time has passed a preset maintenance time (S801).
  • the processing device 50 continues the processing during normal operation (normal use), while when the maintenance time has elapsed, the processing device 50 is in normal operation (normal use).
  • the stage 31 is automatically moved (S803).
  • the processing device 50 executes the landing angle measurement error suppression process due to the scan distortion shown in FIG. 5 on the pyramid pattern 90 (S804). Then, the processing device 50 averages the landing angle of the electron beam 3 with respect to the pyramid pattern 90 of the sample 5 estimated with the rotation angle RR of the raster rotation being 0 °, 180 °, 90 °, and 270 °, respectively. Alternatively, it is determined whether or not a value obtained by averaging the measurement points on the sample surface of the sample 5 where the pyramid pattern 90 is formed exceeds a predetermined threshold (S805).
  • the processing device 50 corrects the tilt angle of the electron beam 3 and the scan signal while suppressing the influence of the scan distortion, and displays it on the display 61 of the input / output device 60.
  • An error is displayed on the GUI screen displayed (S806), and the average value of the landing angle measurement error suppression process due to scan distortion in step S804 and the measurement error suppression process completion confirmation process in step S805 is a predetermined threshold value.
  • the processing device 50 resets the measurement value of the previous maintenance cycle time, and mounts the irradiation position and observation field of the electron beam 3 on the stage 31.
  • the sample is returned to the observed or measured sample, and the normal operation as the scanning electron microscope 1 is continued.
  • the measurement error suppression process for the landing angle due to the pattern inclination shown in FIG. 6 is performed.
  • the measurement error can be reduced by performing the measurement error suppression process of the pattern inclination by the landing angle and using the sample 5 in which the deviation between the sample surface (wafer surface) and the crystal orientation surface is calibrated in advance. .
  • the embodiments of the charged particle beam apparatus and the charged particle beam landing angle measurement and correction method according to the present invention are as described above in detail, but the specific configuration of each part and the specific procedure are described. Various modifications other than those described in the description can be applied to the target contents.
  • the measurement error suppression process for the landing angle due to the pattern inclination shown in FIG. 6 is performed for the sample 5 used in advance for the measurement error suppression process for the landing angle due to the scan distortion.
  • it may be performed together with the measurement error suppression processing of the landing angle due to scan distortion.
  • the landing angle measurement error suppression process due to scan distortion and the landing angle measurement error suppression process due to pattern inclination may be performed only one way, and the accuracy of the measurement correction process for the landing angle of the electron beam 3 will be improved. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

走査電子顕微鏡(SEM)において、試料面上に形成されたピラミッドパターンを4方向からスキャンしてSEM画像を取得し、各SEM画像から電子線のランディング角度を算出し平均化することにより、スキャン歪みの影響を抑制した電子線の傾斜角度を求める。

Description

荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法
 本発明は、半導体装置の回路パターン等の微少な寸法を計測する荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法に関する。
 近年の半導体装置の回路パターンの微小化に伴い、そのパターン寸法を計測する半導体測長装置に求められる計測精度も高まってきている。とりわけ、計測装置間での測長値器差の精度は、年々その要求が厳しくなってきている。
 半導体測長装置では、集束させた電子線(電子ビーム)を観察・計測対象の試料に照射して試料面上で2次元的に走査し、その際に試料から発生する2次電子を検出して得られたSEM(Scanning Electron Microscope:走査電子顕微鏡)画像上でパターン寸法の計測箇所を指定することにより、そのパターン寸法を該当部分の検出信号波形を用いてSEM画像の倍率を基に算出して測定する構成になっている。
 ところで、半導体測長装置のようなSEM画像すなわち荷電粒子線像を取得する荷電粒子線装置にあっては、画像取得の際、試料に対して荷電粒子線としての電子線が斜めに入射すると、それにより得られる試料の荷電粒子線像は、その際の試料に対する荷電粒子線の入射角度、すなわち荷電粒子線のランディング角度に応じて変化する。この場合、荷電粒子線のランディング角度は、試料の法線と荷電粒子線のビーム光軸とのなす角度を示す。
 したがって、半導体測長装置を用いた寸法計測では、上述したようにSEM画像を基に計測するため、同じ試料の、同じパターンの寸法計測であっても、試料に対する電子線の入射角度の違いによってそのSEM画像自体が変化してしまい、パターン寸法の測定値も変化してしまう。そこで、半導体測長装置では、通常、電子線を故意に偏向していない状態では、SEM画像の取得に当たって、パターンが形成された試料面に対して電子線が垂直に入射するように設計されている。
 しかしながら、半導体測長装置を含む荷電粒子線装置においては、荷電粒子線を偏向,収束する荷電粒子光学系の光軸とこの荷電粒子光学系により偏向された荷電粒子線のビーム光軸とのなす角度で規定される荷電粒子線の傾斜角度について、0.1°以下の微小な傾斜角度を測定する術がなかった。このため、前述した電子線を故意に偏向していない状態であっても、電子線を偏向,収束する電子光学系の光軸方向に沿って、電子線が試料面に対して垂直に照射されているか否かについては、実際には確認できていない。これにより、各装置では、電子線すなわち荷電粒子線を偏向していない状態でも、荷電粒子線には電子光学系すなわち荷電粒子光学系の光軸に対して微小な傾斜が発生しており、さらにこの傾斜量は装置間で異なることから、この微小な傾斜による測長値器差が発生している。
 その一方で、従来、電子線すなわち荷電粒子線の傾斜角度を計測補正する手法としては、特許文献1に記載されているように、形状既知の多面体構造物、例えば形状既知のピラミッドパターンが形成された試料をキャリブレーションサンプルとして用い、そのキャリブレーションパターンとしてのピラミッドパターンのSEM画像を取得し、このSEM画像上でのピラミッドパターンの幾何学的な変形を基に、このSEM画像を取得した際における試料に対する荷電粒子線の入射角度、すなわち荷電粒子線のランディング角度を推定し、この推定したランディング角度を基に、試料に対するランディング角度それぞれに対応した荷電粒子線の傾斜角度を補正する手法がある。
 図9は、キャリブレーションパターンの一実施例としてのピラミッドパターンの説明図である。図9(a)は、ピラミッドパターンの3次元形状の模式図を、図9(b)は、図9(a)に示したピラミッドパターンが形成された試料のピラミッドパターン部分のSEM画像をそれぞれ示す。
 図9(a)において、ピラミッドパターン90は、シリコン(Si)ウェーハを結晶異方性エッチングして露出させた(111)面と、この(111)面と等価な結晶面方向を有する3つの面とを備えた四角錐形状の凹部パターンで形成されている。そのため、ピラミッドパターン90の各面同士がなす角は既知となる。図中、P~Pは、ピラミッドの各頂点を表わし、頂点Pはピラミッドパターン90の底頂部に該当し、頂点P~Pはピラミッドパターン90の開口部における各角部に該当する。ピラミッドパターン90の各面P,P,P,Pは、ウェーハ面としてのシリコンの(100)面に対しての傾斜角がそれぞれtan-1(√2)≒54.74°になっている。
 なお、キャリブレーションパターンとしてのピラミッドパターン90は、四角錐形状の凹部パターンではなく四角錐形状の凸部パターンであってもよく、さらには多面体構造物のパターン形状自体も図示の四角錐形状(ピラミッド形状)に限られるものではなく、例えば角錐台形状、等であってもよい。
 図9(b)に示すように、図9(a)に示したピラミッドパターン90のトップダウンSEM画像(図示の例では、ピラミッドパターン90が形成されたウェーハ面を垂直上方から観測したSEM画像)900では、検出信号の値変化に基づき、ピラミッドパターン90の4つの谷線は、頂点Pとその余の頂点P~Pとを結ぶ直線P,P,P,Pで、ピラミッドパターン90の開口部はピラミッドパターン90の各面P,P,P,Pとウェーハ面との交線、すなわち線分P,P,P,Pで現れる。
 そこで、特許文献1には、この形状既知のピラミッドパターンが形成された試料を予め設定した所望の観察方向から観察することによって取得したSEM画像上でのピラミッドパターンの幾何学的な変形を基に、その際における試料に対しての電子線の入射角度を推定し、この推定した入射角度が設定した所望の観察方向に該当する設定値になるように、例えば電子線の偏向を調整する等して、電子線の傾斜角度を試料の観察方向に合わせる方法が記載されている。
 また、特許文献2には、特許文献1に記載の手法を用いて、形状既知の多面体パターンが形成された試料の多面体パターン部分のSEM画像を取得し、そのSEM画像上での多面体パターンの幾何学的な変形を基に、試料に対する電子線の入射角度を推定するとともに、別装置でも、この推定に用いた同じ試料を用いてその多面体パターン部分のSEM画像を取得し、そのSEM画像上での多面体パターンの幾何学的な変形を基に、試料に対する電子線の入射角度を推定することにより、装置間で試料に対する電子線の入射角度を一致させるようにそれぞれの電子線の傾斜角度を対応付けることにより、装置間での電子線の傾斜角度の違いによる測長値器差を補正する方法が記載されている。
特開2005-183369 特開2007-187538
 しかしながら、上述した特許文献1,2に記載されている方法による電子線の傾斜角度の計測、及び装置間の電子線の傾斜角度の違いによる測長値器差の補正では、次に述べる2つの問題がそれぞれの実用を依然と困難にしている。
 まず、第1の問題として、SEM画像の取得のための試料面上での電子線の2次元的な走査にあって、前述した装置間の電子線の傾斜角度の違いによる測長値器差の問題とは別に、電子線の傾斜角度を2次元平面内で連続変化させることにより取得した2次電子の検出信号自体の中にスキャン歪が内包されてしまっているという問題がある。なお、ここでのスキャン歪は、電子線を走査するためのスキャン信号が受ける外乱やスキャン信号自体の応答速度の変化等から、試料の取得したSEM画像が歪んでしまう現象を指す。
 図10は、スキャン歪を生じさせるスキャン信号の例の説明図である。
 図10(a)は、スキャン歪を生じさせない本来のスキャン信号の例を示し、図10(b),(c)は、外乱や信号自体の応答速度の変化等からスキャン歪を生じさせてしまうスキャン信号の例を示す。
 例えば、図10(b)に示したスキャン信号は、図10(a)に示したようなスキャン信号の値の大きさVと時間tとの関係からなる本来のスキャン信号に対して、スキャン始点を含むスキャン前半側では電子線のスキャン速度が遅くなり、スキャン終点を含むスキャン後半側では電子線のスキャン速度が速くなる信号変化が起きるスキャン信号の一例を示したものである。また、図10(c)に示したスキャン信号は、本来のスキャン信号に対して、スキャン始点を含むスキャン前半側では電子線のスキャン速度が速くなり、スキャン終点を含むスキャン後半側では電子線のスキャン速度が遅くなる信号変化が起きているスキャン信号の一例を示したものである。
 極端な例として、図10(b),(c)に示したようなスキャン信号により試料のSEM画像を取得した場合、その取得したSEM画像にはスキャン歪が生じ、本来の形状が正方形状のパターンがこのスキャン歪により台形に見えたりする。このスキャン歪については、装置内である程度の補正を行ってはいるものの、その全てをキャンセルすることはできない。そのため、装置で取得したピラミッドパターンのSEM画像には、装置自体による多少のスキャン歪が含まれているので、このスキャン歪を含んでいるSEM画像上でのピラミッドパターンの幾何学的な変形を基に、このSEM画像を取得した際における試料に対する電子線の入射角度すなわちランディング角度を推定し、この推定した電子線のランディング角度に対応させて電子線の傾斜角度を推定して求めても、その計測結果には誤差が発生していることになる。
 次に、第2の問題として、このスキャン歪の影響の大きさは装置毎で異なるため、装置間のキャリブレーション(較正)が難しいという問題がある。例えば、特許文献1でキャリブレーションサンプルとして使用している、図9に示した形状既知のピラミッドパターン90は、シリコンウェーハの結晶方位面((100)面)に対して垂直に形成されるが、このシリコンウェーハの結晶方位面((100)面)自体は、ウェーハ面に対して必ずしも並行ではない。これは、シリコンのインゴットからウェーハを切り出す際に、ウェーハ面と結晶方位面((100)面)とが多少ずれてしまうためである。通常、このずれ量は0.2°以下となっているが、その大きさは0.05°以下の精度で電子線の傾斜角度を計測する半導体測長装置にとっては大き過ぎる値である。
 したがって、ピラミッドパターン90を用いて装置の電子線の試料に対する入射角度すなわち電子線のランディング角度を測定すると、実際には、電子線の傾斜角度と、このピラミッドパターン90が形成されたウェーハ面自体の傾斜角度とを合わせたものが、測定結果となる。すなわち、使用するキャリブレーションサンプルの違いによって、電子線の傾斜角度の計測結果が異なることになる。
 この結果、特許文献1に記載の方法では、上述したスキャン歪の影響やキャリブレーションサンプルのウェーハ面の結晶方位面とのずれの影響により、電子線の傾斜角度のみを計測することはできず、試料に対する相対角度のみの計測となる。
 これでは、特許文献2のように、装置間のキャリブレーションを行っても、装置毎のスキャン歪の影響が異なるので、ある傾斜角度で合わせこむことしかできない。さらに、キャリブレーションサンプルのウェーハ面の結晶方位面とのずれは試料毎に異なるので、各装置とも同じキャリブレーションサンプルを用いて計測しなくてはならず、1つのキャリブレーションサンプルを装置間でキャリブレータとして持ち回りしなければならない。
 本発明は、上述した問題点を鑑み、半導体装置の回路パターン等の微少な寸法を計測する荷電粒子線装置に係り、スキャン歪や荷電粒子線のランディング角度のばらつきに起因する測長値器差を低減し、荷電粒子線の絶対的な傾斜角度を高精度に測定することできるとともに、装置間のキャリブレーションにおける作業性の向上をはかった荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法を提供することを目的とする。
 本発明は、試料面上に形成された、形状が既知の多面体構造物の荷電粒子線画像を撮像し、その取得した荷電粒子線画像上の多面体構造物の幾何学的な変形を基に、この荷電粒子線画像を取得した際における試料に対する荷電粒子線のランディング角度を推定し、この推定した荷電粒子線のランディング角度を基に、荷電粒子線のランディング角度それぞれに対応した荷電粒子線の傾斜角度を推定する荷電粒子線装置、又は荷電粒子線のランディング角度の計測補正方法であって、
 (1) 試料面上に形成された、形状が既知の多面体構造物の荷電粒子線画像を撮像する際に、スキャン方向を相互に反対向きに変えた多面体構造物の荷電粒子線画像を取得し、これらスキャン方向が相互に反対向きの多面体構造物の荷電粒子線画像それぞれの画像の結果をこれら画像間で平均化することにより、スキャン歪の影響や荷電粒子線のランディング角度のばらつきに起因する測長値器差を低減し、この平均化した画像結果を基に荷電粒子線の傾斜角度を高精度に測定すること、
 (2) 試料面上に形成された、形状が既知の多面体構造物の荷電粒子線画像を撮像する際に、試料の搭載向きを相互に反対向きに変えてロードし、ロード方向を相互に反対向きに変えた多面体構造物の荷電粒子線画像を取得し、これらロード方向が相互に反対向きの多面体構造物の荷電粒子線画像それぞれの画像の結果をこれら画像間で平均化することにより、スキャン歪の影響や荷電粒子線のランディング角度のばらつきに起因する測長値器差を低減し、この平均化した画像結果を基に荷電粒子線の傾斜角度を高精度に測定すること、
を特徴する。
 本明細書は本願の優先権の基礎である日本国特許出願2011-244144号の明細書および/または図面に記載される内容を包含する。
 本発明によれば、スキャン歪の影響を抑制し、キャリブレーションパターンとしての形状が既知の多面体構造物が形成された試料面自体の傾斜をキャンセルすることができるので、試料面に対する荷電粒子線のランディング角度を荷電粒子線の絶対的な傾斜角度によって高精度に計測することが可能となり、スキャン歪や荷電粒子線のランディング角度のばらつきに起因する測長値器差を低減させることができる。
本発明の荷電粒子線装置の一実施の形態としての、測長機能を備えた走査電子顕微鏡の概略構成図である。 スキャン歪の影響を模式的に示した説明図である。 イメージシフト量と電子線の傾斜角度との関係の特性図である。 キャリブレーションサンプルの観察時のパターン断面図である。 スキャン歪による測定誤差抑制処理のフローチャートである。 ランディング角度のパターン傾斜による測定誤差抑制処理のフローチャートである。 メンテナンス補正処理の一実施例のフローチャートである。 メンテナンス補正処理の別の実施例のフローチャートである。 キャリブレーションパターンの一実施例としてのピラミッドパターンの説明図である。 スキャン歪を生じさせるスキャン信号の例の説明図である。
 以下、本発明に係る荷電粒子線装置及びビームランディング角度の計測補正方法の一実施の形態について、測長機能を備えた走査電子顕微鏡(測長SEM:critical dimension SEM)を例に、図面とともに説明する。
 図1は、本発明の荷電粒子線装置の一実施の形態としての、測長機能を備えた走査電子顕微鏡の概略構成図である。
 走査電子顕微鏡1は、装置筺体2に、電子銃10と、電子光学系20と、試料室30と、二次電子検出器40とを備え、これら各部を処理装置50により制御する構成になっている。
 電子銃10は、荷電粒子線銃として、荷電粒子の一種である電子を発生し、荷電粒子線としての電子線3を放出する。電子光学系20は、荷電粒子光学系として、集束レンズ21,対物レンズ22,偏向器23を含む。電子銃10から放出される電子線3は、電子光学系20の集束レンズ21,対物レンズ22によって集束され、偏向器23によって偏向されて、試料室30内に配置された試料面上に照射される。
 試料室30には、電子線3が照射される観察・計測対象の試料が収容される。この観察・計測対象の試料の中には、図9に示したキャリブレーションサンプルとしての試料5も含まれる。試料室30には、試料5を含む観察・計測対象の試料が搭載されるステージ31が設けられ、ステージ31には、ステージ機構32が付設されている。ステージ機構32は、ステージ移動機構として、ステージ31の位置を試料室30内で移動変位させ、試料面上における電子線3の照射位置や観察視野を移動させることができる。また、本実施の形態では、ステージ機構32は、ステージ回動機構として、ステージ31の向きを試料室30内で回動し、ステージ31に搭載されている試料の向きを逆向きも含め、試料を回転して変えることができる。なお、図1においては、ステージ31には図9に示したキャリブレーションサンプルとしての試料5が搭載されている状態が示されている。
 電子線3の照射によって試料から放出される荷電粒子の二次電子7は、荷電粒子検出器としての二次電子検出器40によって輝度信号で検出される。検出信号は、二次電子検出器40から処理装置50に供給され、この検出信号を基に、処理装置50によって試料面上における電子線3の照射領域のSEM画像が生成される。
 処理装置50は、例えばコンピュータ装置等によって構成され、装置各部と接続されている一方、ユーザーインターフェースとしての入出力装置60とも接続されている。入出力装置60は、表示機器としてのディスプレイ61と、マウス,キーボード等といった操作機器62とを含む。
 処理装置50は、上述したSEM画像の取得をはじめとする各処理を走査電子顕微鏡1に行わせるため、その各部を制御する。
 例えば、処理装置50は、測定倍率の調整やフォーカス調整を行うため、電子光学系20の集束レンズ21や対物レンズ22を制御する。また、試料5を含めた観察・計測対象の試料に対する電子線3の入射角度、すなわちランディング角度が予め設定された観察方向に該当する設定値となるように、偏向器23を制御して電子線3の偏向いわゆるビームチルトを行う。
 その一方で、処理装置50は、試料上での電子線3の照射位置や観察視野を移動させるため、ステージ機構32を制御して、ステージ31を試料室30内で2次元的又は3次元的に移動させる。また、処理装置50は、このステージ機構32によるステージ移動を行わずに、電子線3の照射位置や観察視野を試料上での観測点に対して正確に移動させるため、電子線3の試料上での照射位置(走査位置)を偏向器23によって変えるイメージシフトも行う。
 処理装置50は、このような試料に対する電子線3の照射走査に対応して二次電子検出器40から供給される検出信号を基に、試料上における電子線3の照射領域のSEM画像を生成し、この生成したSEM画像データやその生成に用いた前述した測定倍率等の観察条件データ,検出信号データ等を、その観察した試料と対応付けて記憶部51に保存・蓄積したり、入出力装置60のディスプレイ61に表示出力したりする。
 加えて、処理装置50は、入出力装置60の操作機器62及びディスプレイ61を用いて、SEM画像上でパターン寸法の計測箇所が指定されると、このSEM画像の該当部分の検出信号データ等を用いてSEM画像の倍率データを基に計測箇所のパターン寸法を算出して測定し、この測定寸法データや計測箇所の指定データ等をこのSEM画像や観察した試料に対応付けてその記憶部51に保存・蓄積したり、入出力装置60のディスプレイ61に表示出力したりする。
 さらに、本実施の形態に係る走査電子顕微鏡1では、処理装置50は、特許文献1に記載されている電子線3のランディング角度の計測補正処理を行うために、電子線3のランディング角度計測部,ランディング角度補正部として機能する。
 すなわち、処理装置50は、図9に示したような形状既知のピラミッドパターン90が形成された試料5を用い、電子線3のランディング角度の計測補正処理の実行が指示されたときは、まず、電子線3のランディング角度計測部として、設定された所望の観察方向に電子線3をビームチルトして試料5のピラミッドパターン90部分をイメージシフトで観察することにより、そのSEM画像を取得する。そして、このSEM画像上でのピラミッドパターン90の幾何学的な変形を基に、その際における試料5に対する電子線3のランディング角度を推定する。なお、この電子線3のランディング角度の計測補正処理の実行指示は、入出力装置60の操作機器62の操作、又は予め設定された実行条件の充足に基づき行われる。また、所望の観察方向の設定は、電子線3のランディング角度の設定により行われる。
 具体的に、所望の観察方向に該当する電子線3のランディング角度が設定値として設定されると、処理装置50は、例えば、予め記憶部51に記憶されている電子線3のランディング角度と電子線3の傾斜角度との関係データテーブルを基に、設定値の電子線3のランディング角度に対応する電子線3の傾斜角度になるように電子線3のビームチルトを偏向器23により行って、ピラミッドパターン90部分のSEM画像をイメージシフトで取得する。
 そして、処理装置50は、電子線3のランディング角度の計測を、例えば、電子線3をビームチルトしていない状態(電子線3が試料5に垂直に入射される状態)でピラミッドパターン90をイメージシフトすることにより得られるSEM画像上のピラミッドパターン90に係る画像データと、偏向器23によって設定値に対応して電子線3をビームチルトして取得したSEM画像上のピラミッドパターン90に係る画像データとを用いて、この設定値に対応して取得したSEM画像上でのピラミッドパターン90の幾何学的な変形を基に、この設定値に対応して取得したSEM画像の電子線3のランディング角度を推定する。
 処理装置50は、この設定値に対応して取得したSEM画像の電子線3のランディング角度を推定すると、電子線3のランディング角度補正部として、例えば、この設定値に対応した電子線3の傾斜角度がこの推定された電子線3のランディング角度に対応する電子線3の傾斜角度になるように、記憶部51の関係データテーブルに記憶されている電子線3のランディング角度と電子線3の傾斜角度との対応関係を補正し、実際の電子線3のランディング角度が設定した電子線3のランディング角度になるように合わせる。
 加えて、処理装置50は、これら各種処理の設定や実行等を選択し又は指示するためのGUI(Graphical User Interface)画面を、入出力装置60のディスプレイ61にOSD(On-Screen Display)表示するようにもなっている。
 さらに、本実施の形態に係る走査電子顕微鏡1では、処理装置50が、電子線3のランディング角度計測部,ランディング角度補正部として、上述したようにキャリブレーションサンプルとしての試料5を用いて、上述した電子線3のランディング角度の計測補正処理を行うに際して、同じく図9に示したピラミッドパターン90が形成された試料5をキャリブレーションサンプルとして用いて、スキャン歪によるランディング角度の測定誤差を抑制するスキャン歪測定誤差抑制処理、及びピラミッドパターン90が形成された試料面の傾斜によるランディング角度の測定誤差を抑制するパターン傾斜測定誤差抑制処理を行う。
 処理装置50は、スキャン歪測定誤差抑制処理を行い、上述した電子線3のランディング角度の計測部により計測されるランディング角度、及びランディング角度補正部により補正される電子線3のランディング角度と電子線3の傾斜角度との対応関係を、スキャン歪の影響による測定誤差を抑制した電子線3のランディング角度に基づいたものにするとともに、パターン傾斜測定誤差抑制処理を行い、キャリブレーションサンプルとしての試料5の試料面とそのピラミッドパターン90との間に生じた傾斜の影響による測定誤差を抑制して、電子線3の絶対的な傾斜角度のみに基づくものにする。
 ここでは、電子線3の絶対的な傾斜角度とは、電子線を故意に偏向していない状態での電子線放出方向、すなわち電子光学系20の光軸方向をz軸とし、このz軸に直交し、かつ互いに直交したx軸及びy軸を有する絶対座標系上での、電子光学系20の光軸すなわちz軸に対する電子線3の光軸の傾斜角度を指す。
 次に、本実施の形態による走査電子顕微鏡1において、処理装置50が行うランディング角度のスキャン歪による測定誤差抑制処理、及びランディング角度のパターン傾斜による測定誤差抑制処理について説明する。
 本実施の形態による走査電子顕微鏡1では、処理装置50がランディング角度計測部,ランディング角度補正部として機能し、特許文献1に記載されている電子線3のランディング角度の計測補正処理を行い、キャリブレーションパターンとしてのピラミッドパターン90に係るSEM画像を取得する際に、予めランディング角度のスキャン歪による測定誤差抑制処理、及びキャリブレーションパターンのパターン傾斜による測定誤差抑制処理を行うことにより、SEM画像に発生するスキャン歪による測定誤差の問題、及びパターン傾斜による測定誤差の問題を解決して、キャリブレーションサンプルの試料面に対する荷電粒子線のランディング角度を荷電粒子線の絶対的な傾斜角度によって高精度に制御することができる。
  <スキャン歪によるランディング角度の測定誤差抑制処理>
 まず、スキャン歪によるランディング角度の測定誤差抑制処理について説明する。
 スキャン歪は、電子線3を走査するためのスキャン信号が受ける外乱や,スキャン信号自体の応答速度の変化等から、試料の観察部分がその取得したSEM画像においては歪んでしまう現象である。
 図2は、キャリブレーションサンプルとして図9に示したピラミッドパターン90が形成されている試料5を用いた場合を例に、スキャン歪の影響を模式的に示した説明図である。なお、ここでは、説明簡便のため、ピラミッドパターン90が形成された試料面は、シリコンウェーハの結晶方位面((100)面)に合致しているものとして説明する。図中の矢印は、電子線3のラスタースキャン方向を表わす。
 図2(a)は、スキャン歪が生じていない場合の、図9に示した試料5のピラミッドパターン90部分をイメージシフトで観察したトップダウンSEM画像900である。
 この場合、ピラミッドパターン90とウェーハ面との交線P,P,P,Pで表れるピラミッドパターン90の開口部は正方形状に現れ、頂点Pとその他の頂点P~Pとを結ぶ直線P,P,P,Pで表れるピラミッドパターン90の4つの谷線は、試料面に正方形状に表れた開口部の対角線として現れる。したがって、ピラミッドパターン90の底頂部Pは、正方形状に現れた開口部の中央(中心)Oに現れる。
 これに対して、図2(b)は、スキャン歪が生じている場合の、図9に示した試料5のピラミッドパターン90部分を、イメージシフトによる電子線3のスキャン方向をラスターローテーションにより変更して、それぞれローテーション角度RRを変えて観察したトップダウンSEM画像901(RR00),901(RR180),901(RR90),901(RR270)である。
 SEM画像901(RR00)はローテーション角度RRが0°のトップダウンSEM画像を、SEM画像901(RR180)はローテーション角度RRが180°のトップダウンSEM画像を、SEM画像901(RR90)はローテーション角度RRが90°のトップダウンSEM画像を、SEM画像901(RR270)はローテーション角度RRが270°のトップダウンSEM画像をそれぞれ示す。
 そこで、図2(a)に示したスキャン歪が生じていない場合のSEM画像900のピラミッドパターン90の底頂部Pを基に、図2(b)に示したスキャン歪が生じている場合のSEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれのピラミッドパターン90の底頂部Pを比較してみると、次のようになる。
 SEM画像901(RR00)の場合、その底頂部P(RR00)は、画像上の座標系のx軸方向(電子光学系20の光軸方向を基準とした絶対座標系上のx軸方向に対応する)に係り、SEM画像900の底頂部Pの位置よりも、画像上の横方向に、左側にオフセットして現れている。一方、画像上の座標系のy軸方向(電子光学系20の光軸方向を基準とした絶対座標系上のy軸方向に対応する)に係っては、その底頂部P(RR00)は、SEM画像900の底頂部Pの位置に対し、画像上の縦方向に、上下に顕著なオフセットは見受けられない。
 SEM画像901(RR180)の場合、その底頂部P(RR180)は、画像上の座標系のx軸方向に係り、SEM画像900の底頂部Pの位置よりも、画像上の横方向に、SEM画像901(RR00)の場合とは反対に、右側にオフセットして現れている。一方、画像上の座標系のy軸方向に係っては、その底頂部P(RR180)は、SEM画像900の底頂部Pの位置に対し、SEM画像901(RR00)の場合と同様に、画像上の縦方向に、上下の顕著なオフセットは見受けられない。
 SEM画像901(RR90)の場合、その底頂部P(RR90)は、画像上の座標系のy軸方向に係り、SEM画像900の底頂部Pの位置よりも、画像上の縦方向に、上側にオフセットして現れている。一方、画像上の座標系のx軸方向に係っては、その底頂部P(RR90)は、SEM画像900の底頂部Pの位置に対し、画像上の横方向に、左右の顕著なオフセットは見受けられない。
 SEM画像901(RR270)の場合、その底頂部P(RR270)は、画像上の座標系のy軸方向に係り、SEM画像900の底頂部Pの位置よりも、画像上の縦方向に、SEM画像901(RR90)の場合とは反対に、下側にオフセットして現れている。一方、画像上の座標系のx軸方向に係っては、その底頂部P(RR270)は、SEM画像900の底頂部Pの位置に対し、SEM画像901(RR90)の場合と同様に、画像上の横方向に、左右の顕著なオフセットは見受けられない。
 このように、図示の例では、いずれのローテーション角度RRの場合も、試料5のピラミッドパターン90の開口部の形状は、スキャン開始側がスキャン終了側よりも歪の影響が大きくなっている。そのため、例えばSEM画像901(RR00),SEM画像901(RR180)のように、イメージシフトのスキャン方向が画面上の左右に互いに反対向きになれば、歪の影響が大きい部分と小さい部分とは画面上の左右で逆になっている。また、SEM画像901(RR90)とSEM画像901(RR270)のように、イメージシフトのスキャン方向が画面上の上下で互いに反対向きに変われば、歪の影響が大きい部分と小さい部分とは画面上の上下で逆になる。
 なお、図2(a)に示したスキャン歪が生じていない場合のSEM画像900については、イメージシフトによる電子線3のスキャン方向を、そのローテーション角度RRを、0°,180°,90°,270°と同様に変更してラスターローテーションしてみても、それぞれのSEM画像900(RR00),900(RR180),900(RR90),900(RR270)におけるピラミッドパターン90の形状は変化せず、各頂点P~Pの画像上の位置も変化しない。
 このように、スキャン歪の影響は、SEM画像を取得する際の電子線3のスキャン方向に依存するため、各スキャン方向からイメージシフトで撮像したSEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれの画像の結果を平均化することで、スキャン歪の影響を抑制することが可能となる。
 そこで、本実施の形態では、スキャン歪の影響を抑制したイメージシフトを行って、図2(a)に示したスキャン歪が生じていない場合の本来のSEM画像900のようなSEM画像を得るために、処理装置50は、次に述べるような、スキャン歪によるランディング角度の測定誤差抑制処理を行うようになっている。
 処理装置50は、このスキャン歪によるランディング角度の測定誤差抑制処理では、まず、キャリブレーションパターン画像取得部として、キャリブレーションサンプルとしてのピラミッドパターン90の試料面上の位置、例えば図2(a)に示したような本来のピラミッドパターン90の頂点Pに該当する試料面上の位置に観察位置を合わせ、ラスターローテーションによりローテーション角度RRを少なくとも対極する2方向に変化させて、ローテーション角度RR毎のピラミッドパターン90のSEM画像901をそれぞれイメージシフトで取得する。本実施の形態では、ローテーション角度RRを0°,180°,90°,270°と変化させて、図2(b)に示したSEM画像901(RR00),901(RR180),901(RR90),901(RR270)のように、画像上のx軸方向,y軸方向それぞれの対極する2方向のSEM画像901を取得する。なお、本実施の形態では、ランディング角度の測定誤差抑制処理を、偏向器23による電子線3のスキャン方向それぞれの対極する2方向に対応して行うために画像上のx軸方向,y軸方向それぞれの対極する2方向のSEM画像901を取得するが、例えばスキャン方向それぞれのスキャン歪の影響に変わりがないならば、x軸方向,y軸方向いずれかの対極する2方向だけでも、ランディング角度の測定誤差抑制処理の実行は可能である。
 そして、処理装置50は、前述した電子線3のランディング角度の計測補正処理の場合と同様に、電子線3のランディング角度計測部として、SEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれのピラミッドパターン90について、それぞれのピラミッドパターン90の幾何学的な変形を基に、SEM画像901(RR00),901(RR180),901(RR90),901(RR270)をそれぞれ取得した際における、試料5に対する電子線3の入射角度、すなわち電子線3のランディング角度を推定する。
 これにより、処理装置50は、ピラミッドパターン90についてSEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれと同じ形状を得るときに観察方向として設定する、試料5の試料面に対する電子線3のランディング角度、並びに電子線3の傾斜角度を得ることができる。
 図3は、イメージシフト量と電子線の傾斜角度との関係の特性図である。
 図3(a)は、SEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれを基に推定した電子線3のランディング角度それぞれに係り、画面上の左右方向に対応する絶対座標系上のx軸方向のイメージシフト量と、推定した電子線のランディング角度に対応したx軸方向の電子線3の傾斜量との関係を示した特性図である。
 図3(b)は、同じくSEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれを基に推定した電子線3のランディング角度それぞれにおいて、画面上の上下方向に対応する絶対座標系上のy軸方向のイメージシフト量と、推定した電子線の傾斜角度に対応したy軸方向の電子線3の傾斜量との関係を示した特性図である。
 図中、i(RR00),ii(RR180),iii(RR90),iv(RR270)で示した特性それぞれは、SEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれを基に推定した各電子線3のランディング角度での、x軸方向若しくはy軸方向のイメージシフト量と、対応するx軸方向若しくはy軸方向の電子線3の傾斜量、すなわち電子線3の傾斜角度のx軸方向成分若しくはy軸方向成分との関係を示している。
 ここで、画像の結果として、各スキャン方向からイメージシフトで撮像したSEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれの画像の結果を平均化することは、スキャン信号に関しては、画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれを基に推定した電子線3のランディング角度それぞれを平均化したランディング角度で、かつx軸方向及びy軸方向に関して特性i(RR00),ii(RR180),iii(RR90),iv(RR270)を平均化した特性のスキャン信号で、ピラミッドパターン90のSEM画像をイメージシフトで取得することに該当する。
 そこで、当初に観察位置を合わせた際に設定された、試料5に対する電子線3のランディング角度に対応する電子線3の傾斜角度を、この平均化した電子線3のランディング角度に対応する電子線3の傾斜角度に合わせるようにし、スキャン信号をx軸方向及びy軸方向に関して特性i(RR00),ii(RR180),iii(RR90),iv(RR270)を平均化した特性に対応したイメージシフト量に対する電子線3の傾斜角度を生成するスキャン信号にすることにより、図2(b)に示したSEM画像901(RR00)は、スキャン歪の影響が抑制され、図2(a)に示したスキャン歪が生じていない場合の本来のSEM画像900に近づけることができる。
 そのため、処理装置50は、各ローテーション角度がRR0°,180°,90°,270°毎のSEM画像901(RR00),901(RR180),901(RR90),901(RR270)それぞれを取得した際における、試料5に対する電子線3の入射角度、すなわち電子線3のランディング角度を推定したならば、スキャン歪測定誤差抑制部として、まず、これらそれぞれの電子線3のランディング角度を平均化する。そして、処理装置50は、この平均化した推定ランディング角度に対応する電子線の傾斜角度に、当初に観察位置を合わせた際に設定された、試料5に対する電子線3のランディング角度に対応する電子線3の傾斜角度を補正して蓄積する。
 次に、処理装置50は、イメージシフトを行うためのスキャン信号がスキャン歪の影響が抑制されたものになるように、スキャン信号を、上述したi(RR00),ii(RR180),iii(RR90),iv(RR270)で示した特性を平均化した特性のイメージシフト量毎に対応した電子線3の傾斜角度を発生させるように補正して蓄積する。
 そして、処理装置50は、測定精度を向上させるため、試料5の試料面上の別の位置にも観察するピラミッドパターン90が形成されている測定点がある場合は、このピラミッドパターン90についても、キャリブレーションパターン画像取得部、電子線3のランディング角度計測部、スキャン歪測定誤差抑制部として同様なランディング角度の測定誤差抑制処理を行う。
 その後、処理装置50は、試料5の試料面上の測定点全てのピラミッドパターン90についてのランディング角度の測定誤差抑制処理を終えたならば、測定点毎の補正して蓄積した電子線3の傾斜角度、及びスキャン信号をさらに平均化して、スキャン歪の影響を抑制した電子線3の傾斜角度、及びスキャン信号の精度を向上させる。
 そして、これらの測定結果を利用して装置毎にビーム傾斜補正等を行い、装置間測長値差を低減させることが可能となる。
 これに対し、従来の測長機能を備えた走査電子顕微鏡では、イメージシフトによる電子線3のスキャン方向を対極する2方向に変化させることなく、所定の単一のスキャン方向、例えばローテーション角度RRを0°で取得したキャリブレーションパターンのSEM画像901(RR00)のみを用いて、処理装置50が、電子線3のランディング角度の計測補正部として、電子線3のランディング角度の計測補正処理を行っていたため、そのランディング角度計測部が推定するランディング角度や、ランディング角度補正部が補正する電子線3のランディング角度と電子線3の傾斜角度との対応は、スキャン歪によるオフセットを加味した値となり、測定誤差となっていた。
  <パターン傾斜によるランディング角度の測定誤差抑制処理>
 次に、ランディング角度のパターン傾斜による測定誤差抑制処理について説明する。
 キャリブレーションサンプルにおけるウェーハ面と結晶方位面とのずれは、キャリブレーションサンプルとしての試料5毎に異なる。
 図4は、キャリブレーションパターンがシリコンウェーハの結晶方位面に合致していないウェーハ面に形成されたキャリブレーションサンプルの観察時のパターン断面図である。
 図4(a)は、キャリブレーションサンプルを予め設定された所定の向きであるウェーハロード角度を0°にしてステージ31に搭載し、試料室30内に配置した状態を示す一方、図4(b)は、キャリブレーションサンプルをこのウェーハロード角度0°とは逆向きの対極するウェーハロード角度を180°にしてステージ31に搭載し、試料室30内に配置した状態を示す。
 図4においては、試料5の試料面、すなわちピラミッドパターン90が形成されたシリコンウェーハのウェーハ面5sが、その結晶方位面((100)面)すなわちピラミッドパターン90に対して傾斜角αで傾いており、電子線3が試料5の試料面5sに対してランディング角度θで入射している場合を示している。
 なお、ここでは、簡便のため、試料5の法線、すなわちピラミッドパターン90が形成された試料面5sの法線は電子光学系20の光軸方向と平行であり、電子線3の試料面5sに対するランディング角度θの大きさは、電子線3の傾斜角度の大きさに対応しているものとして説明する。
 この場合、図4(a),図4(b)に示すように、試料5の試料面5sすなわちシリコンウェーハの試料面(ウェーハ面)5sとその結晶方位面((100)面)との傾斜角αは、ウェーハロード角度が変わっても、ウェーハ内であるならば面内同一である。したがって、試料5をウェーハロード角度0°と180°とで互いに逆向きに180°回転させて試料室30内に配置すると、各ウェーハロード角度0°, 180°における結晶方位面((100)面)の試料面(ウェーハ面)5sに対する傾斜は、試料面5sの法線を軸に対称になっている。
 ここで、試料5に係るウェーハロード角度0°,180°それぞれのウェーハロード状態で、処理装置50が前述した電子線3のランディング角度計測部として機能することにより計測される、試料面5sに対する電子線3のランディング角度を、それぞれランディング角度T00,180とする。
 例えば、このランディング角度T00の推定は、ランディング角度計測部としての処理装置50が、ウェーハロード角度0°で試料室30内に配置された試料5に対して、予め設定された観察方向、すなわち図示の例では電子線3の傾斜角度をθにビームチルトして、試料5のピラミッドパターン90部分をイメージシフトで観察することにより、そのSEM画像を取得する。そして、この取得した電子線3の傾斜角度をθとするSEM画像上でのピラミッドパターン90の幾何学的な変形を基に、その際における試料5に対する電子線3のランディング角度T00が推定される。ランディング角度T180の推定についても同様である。
 したがって、ウェーハロード角度が0°,180°それぞれの試料5の配置状態における、ピラミッドパターン90の幾何学的な変形を基にした電子線3のランディング角度計測部によるランディング角度計測処理において、結晶方位面((100)面)との傾斜角αは、逆転して計測されることになる。
 すなわち、ウェーハロード角度0°,180°それぞれの試料5の配置状態における電子線3のランディング角度T00,180は、
   T0=電子線3のランディング角度θ+ピラミッドパターン90の傾斜角度α
   T180=電子線3のランディング角度θ-ピラミッドパターン90の傾斜角度α
     α:試料面5sに対する結晶方位面((100)面)の傾斜角度、
     θ:予め設定された観察方向に対応する電子線3の傾斜角度、
で表わされる。
 したがって、この場合、試料面5sの法線は電子光学系20の光軸方向と平行であることであるから、試料面5sに対する電子線3のランディング角度θ、すなわちこの電子線3のランディング角度θに対応する予め設定された観察方向に対応する電子線3の絶対的な傾斜角度θのみを求めるには、ウェーハロード角度0°で計測された電子線3のランディング角度T00と、ウェーハロード角度180°で計測された電子線3のランディング角度T180とを平均化すればよく、
    電子線の絶対的な傾斜角度θ=(T0 + T180)÷2
となる。
 そこで、本実施の形態では、電子線3のランディング角度θに対応する予め設定された観察方向に対応する電子線3の絶対的な傾斜角度θのみを求めるために、処理装置50は、次に述べるようなランディング角度のパターン傾斜による測定誤差抑制処理を行うようになっている。
 処理装置50は、このスキャン歪によるランディング角度の測定誤差抑制処理では、まず、キャリブレーションパターン画像取得部として、ピラミッドパターン90が形成された試料5の、ピラミッドパターン90がそれぞれ対極するウェーハロード角度0°,180°で配置された状態それぞれのSEM画像を取得する。なお、これらSEM画像の取得にあたっては、試料5のロード方向をそれぞれ逆向きにしてステージ31に搭載し直してもよいし、ステージ機構32によって試料5が搭載されたステージ31ごと逆向きにすることも可能である。
 そして、処理装置50は、前述した電子線3のランディング角度の計測補正処理の場合と同様に、電子線3のランディング角度計測部として、それぞれ対極するウェーハロード角度0°,180°で配置された状態で取得されたそれぞれSEM画像上でのピラミッドパターン90の幾何学的な変形を基に、ウェーハロード角度0°,180°それぞれの対極の配置状態における電子線3のランディング角度T00,T180を計測する。
 その上で、処理装置50は、パターン傾斜測定誤差抑制部として、これら電子線3のランディング角度T00,180を平均化することにより、試料面5sと結晶方位面((100)面)との傾斜角αによる影響を抑制して、試料面5sに対する電子線3のランディング角度を電子線3の絶対的な傾斜角度によって高精度に計測する。
  <測定誤差抑制処理の実施例>
 以下に、図1に示した本実施の形態に係る走査電子顕微鏡1での、上述したスキャン歪によるランディング角度の測定誤差抑制処理、並びにパターン傾斜によるランディング角度の測定誤差抑制処理の実施例について、フローチャートに基づき説明する。
 図5は、走査電子顕微鏡で行われるスキャン歪によるランディング角度の測定誤差抑制処理のフローチャートである。
 処理装置50は、スキャン歪によるランディング角度の測定誤差抑制処理の開始が指示されると、試料面にピラミッドパターン90が形成された試料5を試料室30内にロードし、ステージ31に搭載する(S501)。そして、処理装置50は、試料5に係る既知の試料データを基にステージ機構32を制御して ステージ31に搭載された試料5の目的のピラミッドパターン90が画像中央になるように、ステージ31を移動する(S502)。ここでの位置合わせは、例えば、試料面上における目的のピラミッドパターン90の中心(中央)の底頂部Pを、電子光学系20の光軸上に位置させるように、ステージ31を移動することにより行われる。
 処理装置50は、目的のピラミッドパターン90が上述した所定位置に配置されたならば、フォーカスを集束レンズ21及び対物レンズ22で調整した上で、ラスターローテーションのローテーション角度RRを0°にして、偏向器23によるイメージシフトにより、目的のピラミッドパターン90を電子線3でスキャンする(S503)。
 そして、処理装置50は、この電子線3のスキャンに関連して、二次電子検出器40から供給される検出信号を基に、ローテーション角度RRが0°(RR00)の、ピラミッドパターン90のSEM画像901(RR00)を生成し、取得する(S504)。
 処理装置50は、SEM画像901(RR00)を取得したならば、このローテーション角度RRが0°(RR00)のSEM画像901(RR00)上におけるピラミッドパターン90の幾何学的変形を基に、試料5の試料面に対する電子線3のランディング角度を推定し、この推定した電子線3のランディング角度におけるイメージシフト量と電子線の傾斜角度との関係の特性i(RR00)とともに蓄積する(S505)。
 その後、処理装置50は、スキャン方向を相互に反対向きに変えた、予め設定されている対極する方向での、この場合はローテーション角度RRが0°(RR00),180°(RR180),90°(RR90),270°(RR270)での電子線3のランディング角度の推定が全てが完了したか否かを確認する(S506)。
 処理装置50は、この確認により、全てが完了していない場合は、ローテーション角度RRを残りのローテーション角度RRにラスターローテーションを設定し(S507)、残りのローテーション角度RRそれぞれについて、ステップS503~S506の処理を繰り返し行う。
 これに対し、処理装置50は、予め設定されている対極する方向での正逆2方向によるラスターローテーションによる電子線3のランディング角度の推定が完了した場合には、各方向で推定した傾斜角度、及び各推定した電子線3のランディング角度におけるイメージシフト量と電子線の傾斜角度との関係の特性i(RR00),ii(RR180),iii(RR90),iv(RR270)をそれぞれ平均化して、スキャン歪みの影響を抑制させた電子線3の傾斜角度、及びこのスキャン歪みの影響を抑制させた電子線3の傾斜角度でのイメージシフト量と電子線の傾斜角度との関係特性を求める(S508)。
 より具体的には、処理装置50は、ラスターローテーションのローテーション角度RRが0°,180°,90°,270°それぞれで推定した電子線3のランディング角度を平均化する。同様に、処理装置50は、ラスターローテーションのローテーション角度RRが0°,180°,90°,270°それぞれで推定した電子線3のランディング角度それぞれに対応するイメージシフト量と電子線の傾斜角度との関係の特性i(RR00),ii(RR180),iii(RR90),iv(RR270)も平均化する。
 そして、処理装置50は、この平均化した推定ランディング角度に対応する電子線の傾斜角度に、当初に観察位置を合わせた際に設定された試料5に対する電子線3のランディング角度に対応する電子線3の傾斜角度がなるように補正し、スキャン信号を平均化した特性のイメージシフト量毎に対応した電子線3の傾斜角度を発生させるように補正して蓄積する。
 したがって、この場合、ステップS502では、ピラミッドパターン90が画像中央になるように、ピラミッドパターン90の中心(中央)の底頂部Pを電子光学系20の光軸上に位置させるようにランディング角度0°に配置されているので、偏向器23によって電子線3を故意に偏向していない状態で、イメージシフトのためのスキャン信号だけで偏向器23により電子線3の偏向を行った場合の、シフト中間の、画像中央に対応する電子線3の傾斜角度としてのランディング角度0°は、この平均化した推定ランディング角度に該当することになる。
 そして、スキャン信号は、この平均化した推定ランディング角度をイメージシフトの中央位置とし、図3に示したRR00,RR180,RR90,RR270で示した特性それぞれを平均化した特性のイメージシフト量毎に対応した電子線3の傾斜角度を反映するスキャン信号に補正すれば、スキャン歪みの影響を抑制することができる。
 その上で、本実施例においては、処理装置50は、さらに高精度にスキャン歪みの影響を抑制するために、試料5の試料面上の別の位置にも観察するピラミッドパターン90が形成されている測定点があるか否かを、試料5に係る既知の試料データを基に判別する(S509)。
 そして、処理装置50は、他に測定点がある場合は、他の測定点についても、ステップS502~S509の処理を繰り返し行う。これに対し、試料5の試料面上の測定点全てのピラミッドパターン90についてステップS502~S509の処理を終えたならば、測定点毎の蓄積した電子線3の傾斜角度、及びスキャン信号をさらに平均化して、スキャン歪の影響を抑制した電子線3の傾斜角度、及びスキャン信号の精度を向上させる(S510)。
 図6は、走査電子顕微鏡で行われるランディング角度のパターン傾斜による測定誤差抑制処理のフローチャートである。
 処理装置50は、ランディング角度のパターン傾斜による測定誤差抑制処理の開始が指示されると、試料面にピラミッドパターン90が形成された試料5を試料室30内にウェーハロード角度を0°にしてロードし、ステージ31に搭載する(S601)。そして、処理装置50は、試料5に係る既知の試料データを基にステージ機構32を制御して ステージ31に搭載された試料5の目的のピラミッドパターン90が画像中央になるように、ステージ31を移動する(S602)。ここでの位置合わせは、例えば、試料面上における目的のピラミッドパターン90の中心(中央)の底頂部Pを、電子光学系20の光軸上に位置させるように、ステージ31を移動することにより行われる。
 処理装置50は、目的のピラミッドパターン90が上述した所定位置に配置されたならば、フォーカスを集束レンズ21及び対物レンズ22で調整した上で、ラスターローテーションのローテーション角度RRを所定角度に固定して、偏向器23によるイメージシフトにより、目的のピラミッドパターン90を電子線3でスキャンする。そして、処理装置50は、この電子線3のスキャンに関連して、二次電子検出器40から供給される検出信号を基に、ウェーハロード角度0°で配置された状態のピラミッドパターン90のSEM画像を生成し、取得する(S603)。
 処理装置50は、前述した電子線3のランディング角度の計測補正処理の場合と同様に、電子線3のランディング角度計測部として、ウェーハロード角度0°で配置された状態で取得されたそれぞれSEM画像上でのピラミッドパターン90の幾何学的な変形を基に、ウェーハロード角度0°の配置状態における電子線3のランディング角度T00を計測して蓄積する(S604)。
 その後、本実施例では、処理装置50は、試料5を一旦試料室30内からアンロードし(S605)、試料5のロード方向を逆向きにしてウェーハロード角度を180°にしてから、試料5を再び試料室30内にロードし、ステージ31に搭載する(S606)。
 処理装置50は、試料5に係る既知の試料データを基にステージ機構32を制御して 先に電子線3のランディング角度T00を計測したのと同じ目的のピラミッドパターン90が画像中央になるように、ステージ31を移動する(S607)。
 そして、処理装置50は、ウェーハロード角度180°で配置された状態のピラミッドパターン90のSEM画像を生成し、取得するとともに(S608)、ウェーハロード角度180°の配置状態における電子線3のランディング角度T180を計測して蓄積する(S609)。
 その後、処理装置50は、ウェーハを0°でロードした場合の推定された電子線3のランディング角度T00と、ウェーハを180°でロードした場合の推定された電子線3のランディング角度T180とを平均化して、試料5の試料面に対するピラミッドパターン90の傾斜角度αをキャンセルした電子線3の傾斜角度θを求める(S610)。そして、処理装置50は、この蓄積された電子線3の傾斜角度θを用いることにより、試料面5sと結晶方位面((100)面)との傾斜角αによる影響を抑制して、試料面5sに対する電子線3のランディング角度を電子線3の絶対的な傾斜角度によって高精度に計測することができる。
 これにより、ピラミッドパターン90の傾斜量は、同一に切り出したウェーハ内であれば、全てのパターンが同一の傾斜量となるため、処理装置50は、一度、試料面に対するピラミッドパターン90の傾斜量αを測定し、記録しておくことにより、ピラミッドパターン90の傾斜角度をキャンセルすることができ、絶対角度の測定が可能となる。
 次に、これら測定誤差抑制処理を備えた走査電子顕微鏡1のメンテナンス処理について説明する。
 電子線3の傾斜角度は、日々の走査電子顕微鏡1の使用状況により変化する可能性がある。特に電子銃10のチップ交換や可動絞り穴交換等のメンテナンスにより大きく変化する。
 図5に示したスキャン歪によるランディング角度の測定誤差抑制処理を行うことによりスキャン歪の影響を抑制することが可能である。また、図6に示したパターン傾斜によるランディング角度の測定誤差抑制処理を行うことにより、キャリブレーションパターンとしての形状が既知の多面体構造物が形成された試料面自体の傾斜をキャンセルすることができるので、試料面に対する荷電粒子線のランディング角度を荷電粒子線の絶対的な傾斜角度によって高精度に計測することが可能である。さらに、これら手法を一緒に行うことで、スキャン歪による測定誤差を抑制し、ピラミッドパターンの傾斜をキャンセルさせて、電子線の絶対角度を測定可能となる。
 図7は、走査電子顕微鏡1で行われるメンテナンス補正処理の一実施例を示す。
 走査電子顕微鏡1において、電子銃10のチップ交換や可動絞り穴交換等の装置メンテナンスが行われると(S701)、そのメンテナンス作業後、処理装置50は、図5に示したスキャン歪によるランディング角度の測定誤差抑制処理を実行する(S702)。そして、処理装置50は、ラスターローテーションのローテーション角度RRが0°,180°,90°,270°それぞれで推定した試料5のピラミッドパターン90に対する電子線3のランディング角度の平均化した値、又はさらにこれを試料5の試料面上のピラミッドパターン90が形成された測定点について平均化した値が、所定の閾値を超えているか否かについて判別する(S703)。
 この結果、処理装置50は、所定の閾値を超えている場合には、スキャン歪の影響を抑制した電子線3の傾斜角度及びスキャン信号の補正を行うとともに、入出力装置60のディスプレイ61に表示されたGUI画面上にエラー表示を行い(S704)、ステップS702のスキャン歪によるランディング角度の測定誤差抑制処理、及びステップS703の測定誤差抑制処理の完了確認処理を、平均化した値が所定の閾値以下になるまで繰り返すようになっている。
 なお、このスキャン歪によるランディング角度の測定誤差抑制処理に予め使用する試料5については、図6に示したパターン傾斜によるランディング角度の測定誤差抑制処理を行っておく。この結果、このランディング角度によるパターン傾斜の測定誤差抑制処理を行い、予め試料面(ウェーハ面)と結晶方位面とのずれを校正した試料5を使用することで、計測時間の短縮が可能である。
 これにより、絶対座標系による絶対的な電子ビームの傾斜角度を算出することができ、これらの測定結果を利用して装置毎にビーム傾斜補正等を行い、装置間測長値差を低減させることが可能となる。その際、ピラミッドパターン90が形成された同じ試料5を持ち回りしなくとも、装置毎に、装置それぞれの較正に用いるピラミッドパターン90が形成された試料5の試料面(ウェーハ面)と結晶方位面とのずれに関するモニターを実施することによって、全ての装置が常に同一の傾斜角度を維持することが可能となり、ビーム傾斜による測長値機差を低減することが可能となる。この結果、ゴールデンウェーハ等の同一サンプルで各装置を測定する必要はなくなり、どのサンプルでも高精度に絶対傾斜角度が測定できる。
 次に、走査電子顕微鏡1で行われるメンテナンス補正処理の、別の実施例について図8に基づき説明する。
 図8は、走査電子顕微鏡1で行われるメンテナンス補正処理の別の実施例のフローチャートを示す。
 本実施例では、走査電子顕微鏡1における電子線3の傾斜角度をある一定間隔でモニターすることによって、装置変動や外乱によって発生する電子線の傾斜をリアルタイムで管理することが可能になっている。また、図6に示したパターン傾斜によるランディング角度の測定誤差抑制処理が行われ、予め試料面(ウェーハ面)と結晶方位面とのずれを校正した試料5をスタブサンプルとしてステージ31上に配置することで、短時間で自動に測定することが可能になっている。
 図8において、処理装置50は、走査電子顕微鏡1としての通常運用中(通常使用中)に、計時手段として備えられているタイマを基に予め設定されたメンテナンス周期時間を計測しているとともに(S802)、このメンテナンス周期時間の計測値が予め設定されているメンテナンス時間を経過したか否かを確認している(S801)。
 処理装置50は、メンテナンス周期時間が未だ経過していない場合は、通常運用中(通常使用中)の処理を続行する一方、メンテナンス時間を経過している場合には、通常運用中(通常使用中)の処理を中断して、電子線3の照射位置や観察視野を、ステージ31に搭載された観察又は測定対象の試料上からステージ31上に配置されたスタブサンプルのピラミッドパターン90に位置合わせするように、ステージ31を自動で移動する(S803)。
 そして、処理装置50は、このピラミッドパターン90に対して、図5に示したスキャン歪によるランディング角度の測定誤差抑制処理を実行する(S804)。その上で、処理装置50は、ラスターローテーションのローテーション角度RRが0°,180°,90°,270°それぞれで推定した試料5のピラミッドパターン90に対する電子線3のランディング角度の平均化した値、又はさらにこれを試料5の試料面上のピラミッドパターン90が形成された測定点について平均化した値が、所定の閾値を超えているか否かについて判別する(S805)。
 この結果、処理装置50は、所定の閾値を超えている場合には、スキャン歪の影響を抑制した電子線3の傾斜角度及びスキャン信号の補正を行うとともに、入出力装置60のディスプレイ61に表示されたGUI画面上にエラー表示を行い(S806)、ステップS804のスキャン歪によるランディング角度の測定誤差抑制処理、及びステップS805の測定誤差抑制処理の完了確認処理を、平均化した値が所定の閾値以下になるまで繰り返す。
 そして、処理装置50は、平均化した値が所定の閾値以下になったならば、先のメンテナンス周期時間の計測値をリセットした上、電子線3の照射位置や観察視野を、ステージ31に搭載された観察又は測定対象の試料上に戻し、走査電子顕微鏡1としての通常運用の続きを行う。
 なお、このスキャン歪によるランディング角度の測定誤差抑制処理に予め使用する試料5については、図6に示したパターン傾斜によるランディング角度の測定誤差抑制処理を行っておく。この結果、このランディング角度によるパターン傾斜の測定誤差抑制処理を行い、予め試料面(ウェーハ面)と結晶方位面とのずれを校正した試料5を使用することで、計測時間の短縮が可能である。
 これにより、電子線3の傾斜角度を所定の周期時間間隔でモニターすることにより、装置変動や外乱によって発生する電子線の傾斜をリアルタイムで管理することが可能となる。また、ステージ上にスタブサンプルとして設置することによって、観察又は測定対象の試料を交換する必要もなく、計測時間の短縮化が可能となる。
 なお、本発明に係る荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法の一実施の形態は、以上詳述したとおりであるが、その各部の構成の具体的態様、手順の具体的内容については、説明中で述べた以外でも種々の変形例の適用が可能である。例えば、メンテナンス補正処理の説明では、スキャン歪によるランディング角度の測定誤差抑制処理に予め使用する試料5については、図6に示したパターン傾斜によるランディング角度の測定誤差抑制処理を行っておく構成としたが、スキャン歪によるランディング角度の測定誤差抑制処理と一緒に行うようにしてもよい。また、スキャン歪によるランディング角度の測定誤差抑制処理、パターン傾斜によるランディング角度の測定誤差抑制処理は、それぞれ一方のみを行うだけでも、従前に電子線3のランディング角度の計測補正処理の精度を向上させることが可能である。
 1 走査電子顕微鏡、 2 装置筺体、 3 電子線、 5 試料、 10 電子銃、
 20 電子光学系、 21 集束レンズ、 22 対物レンズ、 23 偏向器、
 30 試料室、 31 ステージ、 32 ステージ機構、 40 二次電子検出器、
 50 処理装置、
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (5)

  1.  試料面上に形成された、形状が既知の多面体構造物の荷電粒子線画像を、荷電粒子線のスキャン方向、又は当該多面体構造物が形成された試料の搭載向きを相互に反対向きに変えて取得する画像取得部と、
     該画像取得部により取得された多面体構造物の荷電粒子線画像それぞれについて、画像上における多面体構造物の幾何学的な変形を基に、当該荷電粒子線画像それぞれを取得した際における試料に対する荷電粒子線のランディング角度を計測するランディング角度計測部と、
     該ランディング角度計測部によって計測された多面体構造物の荷電粒子線画像それぞれのランディング角度を平均化し、当該平均化されたランディング角度を基に、前記画像取得部による荷電粒子線画像の傾斜角度を補正する測定誤差抑制部と
    を備えていることを特徴とする荷電粒子線装置。
  2.  前記画像取得部は、ラスタ-ローテーションによりローテーション角度を0°,180°,90°,270°と変化させて、各ローテーション角度に対応した多面体構造物の荷電粒子線画像をイメージシフトで取得する
    ことを特徴とする請求項1記載の荷電粒子線装置。
  3.  前記画像取得部は、試料のウェーハロード角度を0°,180°と変化させて、各ウェーハロード角度に対応した多面体構造物の荷電粒子線画像をイメージシフトで取得する
    ことを特徴とする請求項1記載の荷電粒子線装置。
  4.  前記測定誤差抑制部は、該ランディング角度計測部によって計測された多面体構造物の荷電粒子線画像それぞれのランディング角度を平均化するとともに、前記ランディング角度計測部によって計測された多面体構造物の荷電粒子線画像それぞれのランディング角度に対応した、前記イメージシフトの際におけるイメージシフト量と荷電粒子線の傾斜角度との関係特性を平均化することにより、当該平均化したランディング角度及び関係特性を基に、前記画像取得部による荷電粒子線画像の傾斜角度を補正する
    ことを特徴とする請求項2記載の荷電粒子線装置。
  5.  試料面上に形成された、形状が既知の多面体構造物の荷電粒子線画像を、荷電粒子線のスキャン方向、又は当該多面体構造物が形成された試料の搭載向きを相互に反対向きに変えてそれぞれ取得する画像取得工程、
     該画像取得工程の実行により取得された多面体構造物の荷電粒子線画像それぞれについて、画像上における多面体構造物の幾何学的な変形を基に、当該荷電粒子線画像それぞれを取得した際における試料に対する荷電粒子線のランディング角度を計測するランディング角度計測工程、
     該ランディング角度計測工程の実行によって計測された多面体構造物の荷電粒子線画像それぞれのランディング角度を平均化し、当該平均化されたランディング角度を基に、前記画像取得工程の実行による荷電粒子線画像の傾斜角度を補正する測定誤差抑制工程、
    を有することを特徴とするランディング角度の計測補正方法。
PCT/JP2012/078727 2011-11-08 2012-11-06 荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法 WO2013069636A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/356,166 US9679744B2 (en) 2011-11-08 2012-11-06 Charged particle beam apparatus and method of correcting landing angle of charged particle beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-244144 2011-11-08
JP2011244144A JP5813468B2 (ja) 2011-11-08 2011-11-08 荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法

Publications (1)

Publication Number Publication Date
WO2013069636A1 true WO2013069636A1 (ja) 2013-05-16

Family

ID=48290010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078727 WO2013069636A1 (ja) 2011-11-08 2012-11-06 荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法

Country Status (3)

Country Link
US (1) US9679744B2 (ja)
JP (1) JP5813468B2 (ja)
WO (1) WO2013069636A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784576B2 (en) * 2015-12-28 2017-10-10 Automotive Research & Test Center Calibration method for merging object coordinates and calibration board device using the same
KR102640848B1 (ko) * 2016-03-03 2024-02-28 삼성전자주식회사 시료 검사 방법, 시료 검사 시스템, 및 이들을 이용한 반도체 소자의 검사 방법
JP6826455B2 (ja) 2017-02-14 2021-02-03 株式会社日立製作所 画像形成装置
WO2019038917A1 (ja) * 2017-08-25 2019-02-28 株式会社日立ハイテクノロジーズ 較正用試料、それを用いた電子ビーム調整方法及び電子ビーム装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183369A (ja) * 2003-11-25 2005-07-07 Hitachi High-Technologies Corp 試料の観察方法及びその装置
JP2006066302A (ja) * 2004-08-30 2006-03-09 Hitachi High-Technologies Corp 荷電粒子線調整方法及び荷電粒子線装置
JP2007187538A (ja) * 2006-01-13 2007-07-26 Hitachi High-Technologies Corp 荷電粒子線装置及びそれを用いた画像取得方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7817844B2 (en) * 1999-08-26 2010-10-19 Nanogeometry Research Inc. Pattern inspection apparatus and method
US7164128B2 (en) * 2003-11-25 2007-01-16 Hitachi High-Technologies Corporation Method and apparatus for observing a specimen
US7435977B2 (en) * 2005-12-12 2008-10-14 Axcelis Technologies, Inc. Ion beam angle measurement systems and methods for ion implantation systems
CN102686972B (zh) * 2009-09-18 2015-04-08 卡尔蔡司Smt有限责任公司 测量光学表面形状的方法以及干涉测量装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183369A (ja) * 2003-11-25 2005-07-07 Hitachi High-Technologies Corp 試料の観察方法及びその装置
JP2006066302A (ja) * 2004-08-30 2006-03-09 Hitachi High-Technologies Corp 荷電粒子線調整方法及び荷電粒子線装置
JP2007187538A (ja) * 2006-01-13 2007-07-26 Hitachi High-Technologies Corp 荷電粒子線装置及びそれを用いた画像取得方法

Also Published As

Publication number Publication date
JP2013101797A (ja) 2013-05-23
US9679744B2 (en) 2017-06-13
US20150053855A1 (en) 2015-02-26
JP5813468B2 (ja) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5331828B2 (ja) 荷電粒子線装置
US20060284088A1 (en) Focus correction method for inspection of circuit patterns
JP5296413B2 (ja) 複合荷電粒子ビーム装置を用いた断面画像取得方法および複合荷電粒子ビーム装置
JP6834016B2 (ja) パターン計測装置およびパターン計測方法
CN110021513B (zh) 用于tem薄片制备的样品取向的方法
JP2007187538A (ja) 荷電粒子線装置及びそれを用いた画像取得方法
JP5813468B2 (ja) 荷電粒子線装置、及び荷電粒子線のランディング角度の計測補正方法
TW201543179A (zh) 微影設備及方法、和製造物品的方法
WO2010061516A1 (ja) 画像形成方法、及び画像形成装置
US10276341B2 (en) Control method and control program for focused ion beam device
JP2010182896A (ja) 吸収電流像を利用した半導体検査方法及び装置
JP2008084823A (ja) 荷電粒子線調整方法及び荷電粒子線装置
JP7048778B2 (ja) 荷電粒子線装置およびパターン計測方法
JP2007207763A (ja) 荷電粒子線顕微鏡、画像形成方法、及び画像分解能評価用計算機
JP4274146B2 (ja) 像評価方法及び顕微鏡
US11079584B2 (en) Method for use in optical imaging, a system for using in optical imaging and an optical system
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP7445786B2 (ja) パターン計測装置、パターン計測方法、パターン計測プログラム
JP6764953B2 (ja) 荷電粒子線装置
KR102628711B1 (ko) 하전 입자선 장치
JP4730319B2 (ja) 像評価方法及び顕微鏡
JP2022055463A (ja) 荷電粒子線装置及びそれを用いる試料観察方法
JPH09147778A (ja) 荷電粒子線装置
JP2013105603A (ja) 荷電粒子線装置
JP2007128808A (ja) 電子顕微鏡の傾斜ステージ補正方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14356166

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846837

Country of ref document: EP

Kind code of ref document: A1