WO2013068303A2 - Einkreis-kältegerät - Google Patents

Einkreis-kältegerät Download PDF

Info

Publication number
WO2013068303A2
WO2013068303A2 PCT/EP2012/071702 EP2012071702W WO2013068303A2 WO 2013068303 A2 WO2013068303 A2 WO 2013068303A2 EP 2012071702 W EP2012071702 W EP 2012071702W WO 2013068303 A2 WO2013068303 A2 WO 2013068303A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
compressor
evaporator
appliance according
refrigerating appliance
Prior art date
Application number
PCT/EP2012/071702
Other languages
English (en)
French (fr)
Other versions
WO2013068303A3 (de
Inventor
Hans Ihle
Wolfgang Nuiding
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to RU2014121075/13A priority Critical patent/RU2579803C2/ru
Priority to CN201280054962.4A priority patent/CN103958990B/zh
Priority to EP12786898.2A priority patent/EP2776768B1/de
Publication of WO2013068303A2 publication Critical patent/WO2013068303A2/de
Publication of WO2013068303A3 publication Critical patent/WO2013068303A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a refrigerator, in particular a domestic refrigerator, with at least two temperature zones, which are cooled by evaporators connected in series.
  • the refrigerant can circulate either only by both evaporators connected in series at the same time or by neither of them. There is therefore a risk that, if the compressor is only controlled by one of the two temperature zones on the basis of the refrigeration requirement, an undesirably high or low temperature is established in the other. In practice, this problem does not only work if the refrigeration demand of the two cooling zones is exactly proportional and the efficiency of the evaporator is adjusted to the proportion ratio.
  • the high-performance mode does not solve the fundamental disadvantage of single-circuit refrigerators that the evaporators do not work independently: if one of the temperature zones is a normal refrigeration compartment, then the temperature may not fall below 0 ° C in high performance mode, otherwise damage to the refrigerated goods are expected.
  • This limitation significantly limits the cooling capacity that can be provided for cooling the other temperature zone, and thus leads there to long cooling times and the risk of excessive heating of existing refrigerated goods. From DE 197 18 609 A1 a refrigeration device according to the preamble of claim 1 is known.
  • the object of the present invention is to provide a single-circuit refrigeration device that is capable of being developed without resorting to empirical characteristic curves requiring extensive development, to maintain desired temperatures in two different temperature zones even at changing ambient temperatures, or which is able to quickly cool freshly loaded refrigerated goods in an unregulated temperature zone, without this leading to inappropriate temperature deviations in another temperature zone.
  • a refrigeration appliance is understood in particular to be a household refrigeration appliance, that is to say a refrigeration appliance used for household purposes or possibly even in the gastronomy sector, and in particular for storing food and / or beverages in household quantities at specific temperatures, such as, for example, a refrigerator, a freezer , a fridge freezer or a wine storage cabinet.
  • the object is achieved by arranged at a refrigeration device, in particular a household refrigerator, with at least two different, cooled by in series with a compressor evaporator temperature zones, a first temperature sensor and a control circuit for controlling the operation of the compressor, the first temperature sensor on one of the evaporator is and the control circuit has an operating mode in which it is set up to switch off the compressor when the temperature sensor is exposed to a temperature decrease when the compressor is switched on.
  • a refrigeration device in particular a household refrigerator, with at least two different, cooled by in series with a compressor evaporator temperature zones, a first temperature sensor and a control circuit for controlling the operation of the compressor, the first temperature sensor on one of the evaporator is and the control circuit has an operating mode in which it is set up to switch off the compressor when the temperature sensor is exposed to a temperature decrease when the compressor is switched on.
  • the first temperature sensor may be disposed on the downstream evaporator itself, preferably in an upstream region thereof, to detect it with a slight delay when liquid refrigerant has entered the downstream evaporator.
  • the amount of liquid refrigerant in the downstream evaporator will remain low, whereas the upstream evaporator will be substantially filled with liquid refrigerant, so that the upstream evaporator effectively cools its temperature zone, but the downstream evaporates less, or only to a lesser extent ,
  • the first temperature sensor in a lower region of the downstream evaporator so that it can also be used for monitoring the remains of ice during a defrosting process.
  • the temperature zone cooled by the upstream evaporator is colder than that cooled by the downstream evaporator.
  • the temperature decrease which leads to the switching off of the compressor is then preferably the second, which is detectable after switching on the compressor, since only this indicates the arrival of liquid refrigerant in the vicinity of the temperature sensor.
  • a first temperature decrease which is detectable with very little delay after switching on the compressor, indicates only the inflow of gaseous refrigerant from the upstream, colder evaporator in the downstream evaporator.
  • the temperature sensor In case of unfavorable placement of the temperature sensor, it may happen that the detected temperature between the onset shortly after the compressor cooling and the attributable to the arrival of liquid refrigerant assumes no temporary minimum, based on which a distinction between first and second cooling would be possible in a simple manner , However, it is also possible in this case to monitor the rate of decrease of the temperature and to switch off the compressor as soon as a renewed increase in the rate of decrease is observed after a temporary reduction. Alternatively it can be provided that the temperature decrease only leads to switching off the compressor when the temperature detected by the first temperature sensor has fallen below a limit temperature which is lower than a desired temperature of the cooled from the downstream evaporator temperature zone.
  • the limit temperature can be set differently depending on the design of the refrigerator, but should be chosen so deep that it can only be reached by a liquid refrigerant after a rest phase of the compressor.
  • the first temperature sensor may also be arranged in a downstream region of the upstream evaporator to respond when it is largely filled with liquid refrigerant, the downstream but not yet.
  • the control of the refrigerator is simplified because only the influx of liquid refrigerant cause a decrease in temperature at the first temperature sensor and therefore a distinction between first and second temperature decrease or the comparison with a target temperature is unnecessary.
  • the compressor there are preferably two conditions, each of which is sufficient to cause the compressor to be turned on, first, when the temperature in the temperature zone cooled by the downstream evaporator exceeds a threshold, and second, when last time the compressor is switched off exceeds a limit.
  • the former condition corresponds in a conventional manner to the occurrence of refrigeration demand in the cooled by the downstream evaporator temperature zone;
  • the compressor must operate long enough for a sufficient amount of liquid refrigerant to reach the downstream evaporator.
  • the running time of the compressor is advantageously limited so that liquid refrigerant does not reach the downstream evaporator or at most in small quantities.
  • the operating mode described above may be switchable by a user to effect a powerful cooling of the temperature zone of the upstream evaporator, if there is or should be stored fresh refrigerated goods.
  • Such an operating mode is expediently switched off again automatically by the control circuit after a predetermined time.
  • control circuit may be configured to detect the relative duty cycle of the compressor and automatically turn on the operating mode described above, if the fact that the duty cycle is below a predetermined limit, suggests a low ambient temperature.
  • Refrigerant which gets into motion when the compressor is switched on and passes from the upstream to the downstream evaporator, by means of the first temperature sensor mounted there may allow a conclusion to be drawn about the temperature prevailing at the upstream evaporator. If this temperature is too high For example, because a large amount of hot chilled goods has been loaded into the temperature zone cooled by the upstream evaporator, then the refrigerant acting on the first temperature sensor at the beginning of the compressor operation is also relatively warm.
  • FIG. 1 shows a schematic representation of a refrigeration device according to the invention
  • FIG. a variant of the refrigeration device in a view analogous to Figure 1; typical temporal developments of the detected by the evaporator temperature sensor of the refrigerator of Figure 1 or 2 temperature.
  • 5 is a flow chart of a second method of operation;
  • FIG. 1 shows schematically a single-circuit household refrigerator with a heat insulating housing 1, the interior of which is divided into two temperature zones, here a freezer compartment 2 and a normal refrigeration compartment 3.
  • the subdivision is here a wall 4, which, like the compartments 2, 3 surrounding walls of the housing 1 is filled with insulating material;
  • the two temperature zones could also be formed in a contiguous interior of the housing 1 or be separated only by an air exchange between them obstructing wall.
  • evaporator 5 or 6 Both temperature zones, freezer compartment 2 and normal refrigeration compartment 3, one evaporator 5 or 6 is assigned.
  • the evaporators 5, 6 are designed as coldwall evaporators, but there are also other evaporator types into consideration.
  • the evaporators 5, 6 may be formed on separate boards or on a single, the wall 4 bridging over both compartments 2, 3 extending circuit board.
  • the evaporators 5, 6 are part of a refrigerant circuit, which further comprises, in a manner known per se, a compressor 7, a, e.g. attached to a rear wall of the housing 1 condenser 8, a dryer 9 and a capillary 10 includes.
  • Refrigerant which has been compressed and heated in the compressor 7, gives off its heat at the condenser 8 and condenses.
  • the liquid refrigerant relaxes when passing through the capillary 10 and reaches from there first the evaporator 5 of the freezer compartment 2, where it can evaporate under low pressure.
  • the evaporator 6 connects downstream to the evaporator 5, and its output is connected to a suction port of the compressor 7.
  • a control circuit 1 1 is used to turn on and off the compressor based on temperature readings that are supplied by an evaporator temperature sensor 12 and an air temperature sensor 13.
  • the evaporator temperature sensor 12 is mounted in close thermal contact with one of the evaporators 5, 6.
  • Fig. 1 shows the evaporator temperature sensor 12 as a solid outline on the evaporator 6 of the Alternatively, the evaporator temperature sensor 12 could also be disposed on the evaporator 5 of the freezer compartment 2 adjacent to a refrigerant outlet 15 thereof, or at any one located between the outlet 15 and the inlet 14 Section of the refrigerant line.
  • the attachment to the evaporator 6 is preferred because the evaporator temperature sensor 12 here also serve to detect icing or the control circuit 1 1 can make a decision as to whether defrosting of the evaporator 6 is necessary.
  • the measured value of the air temperature sensor 13 should reproduce the air temperature in the normal cooling compartment 3 as exactly as possible.
  • the air temperature sensor 13 is arranged in a wall of the housing 1 between the insulating material filling and a normal cooling compartment 3 limiting inner container removed from the evaporator 6.
  • FIG. 2 shows a variant of the refrigeration device, which differs from the embodiment of FIG. 1 only by the course of the refrigerant line on the evaporator 6. From the refrigerant inlet 14, it first proceeds directly downwards into a lower corner of the evaporator 6, in which the evaporator temperature sensor 12 is also mounted, in order then to spread in meanders over the surface of the evaporator 6. Although the temperature sensor 12 is in a straight line far from the refrigerant inlet 14, but at the same time still arranged at an upstream portion of the evaporator 6 to detect a cooling by low-delay liquid refrigerant penetrating into the evaporator 6.
  • the temperature sensor 12 is well suited to provide reliable information about the remains of the remains during a defrosting operation, since it accumulates on the lower edge of the evaporator 6 during defrosting.
  • a setpoint temperature of the normal cooling compartment is adjustable by the user and is typically around 4 ° C, and at that value or slightly higher than the temperature Tv detected by the evaporator temperature sensor 12 at the end of a resting phase of the compressor 7.
  • the temperature of the freezer compartment 2 and its Evaporator 5 should at the same time significantly lower, for example, at normal operation of the device. B. at -18 ° C, are.
  • the temperature sensor 12 located on the evaporator 6 therefore begins to register a first cooling shortly after switching on the compressor at the time t0, as shown in FIG. 3 as a solid curve A.
  • a subsequent slight increase in temperature is due to the fact that in the condenser 8 only by pressure build-up and simultaneous heat release refrigerant must be liquefied again before the capillary liquid refrigerant can be supplied to then evaporate it in the evaporators.
  • This newly liquefied refrigerant gradually spreads in the evaporator 5 after passing through the capillary. After a certain time, it also reaches the evaporator 6 and also causes there a greater cooling than previously extracted from the evaporator 5 gaseous refrigerant.
  • Deviations from the normal temperature curve of the curve A arise, on the one hand, if, under the conditions explained in detail below, the control circuit 11 takes the onset of the second temperature drop as an opportunity to switch off the compressor 7 again.
  • the control circuit 11 takes the onset of the second temperature drop as an opportunity to switch off the compressor 7 again.
  • the temperature profile as shown by the curve B by way of example: after switching off the compressor 7, the temperature decrease continues for a short time, since the already reached in the evaporator 6 liquid refrigerant initially cools the temperature sensor 12 even further. After a short time, however, this refrigerant is evaporated, so that the temperature Tv begins to rise again.
  • a weakening of the temperature drop immediately following the switch-on of the compressor 7, represented by the curve C, can result if the temperature of the freezer compartment 2 is significantly above its nominal range, either because a user loads a larger amount of warm goods into the freezer compartment 2 loaded or because the compressor 7 has been off for a long time.
  • the refrigeration device is equipped with a user-operable switch 16 for activating a rapid cooling function.
  • FIG. 4 A working method of the control circuit 11 according to this first embodiment is shown in FIG. 4 as a flowchart.
  • step S1 Upon actuation of the quick-cool switch 16 by the user, the control circuit 1 1 first starts an internal timer in step S1, the duration of which, typically between 24 and 72 hours, determines the time that the device will remain in rapid-cooling mode after the switch 16 is actuated.
  • step S2 is a switching on of the compressor 7. This switching can be done without consideration of the temperature detected by the temperature sensor 13 air temperature Tnk the normal cooling compartment 3.
  • step S3 the control circuit 1 1 waits for the beginning of the second temperature drop associated with the penetration of fresh liquid refrigerant into the evaporator 6.
  • the second decrease in temperature Tv begins after the compressor 7 has been switched on, because the rate of temperature decrease increases again after passing through a temporary minimum, or because the temperature Tv falls below a limit temperature which is between the set temperatures of the freezer compartment 2 and the normal refrigeration compartment 3 is fixed and here, for example May be -5 ° C
  • the compressor 7 is turned off again in step S4.
  • a waiting time S5 the length of which is dimensioned such that the liquid refrigerant contained in the evaporator 6 at the time of switching off can completely evaporate therein. If, in the course of this waiting time, an increase of Tnk is detected above a user-set start-up threshold temperature Tein, the compressor operation is resumed until the required cooling of the normal refrigerator compartment 3 is reached, and the waiting time S5 starts again.
  • step S6 the temperature Tnk of the normal refrigeration compartment 3 is compared with a minimum temperature which is below the target range for this compartment and which must by no means be exceeded. This minimum temperature will typically be just over 0 ° C. If the minimum temperature is reached or undershot, the process remains in step S6 until Tnk has again risen above the minimum temperature.
  • step S7 the process returns to S2; otherwise the quick cooling mode ends.
  • the evaporator 5 in the rapid cooling mode practically constantly contains liquid refrigerant and can cool the contents of the freezer compartment 2 with high performance, while the cooling of the normal cooling compartment 3 is at most slightly reinforced.
  • FIG. 5 is a flowchart of a working method of the control circuit 11 according to a second embodiment of the invention. This method can be carried out on its own or at the same time as that of FIG. 4. As the method of Fig. 5 is repeated cyclically, the description may begin with any of its steps, here e.g. immediately after switching off the compressor 7.
  • the first method step is then a step S1 1, in which it is checked whether a switch representative of the ambient temperature is set.
  • This switch may be a physical switch on a user interface of the device, such as the switch 16, where a user may adjust whether the device is to be e.g. is placed in a heated or unheated room. However, it may also be a logic switch such as a memory cell 17, as explained in more detail later in connection with FIG.
  • a known thermostat control of the compressor operation sets in: is waited until the temperature Tnk of the normal refrigeration compartment 3 is a switch-on threshold in step S12 Exceeds Tein to then turn on the compressor 7 in step S13. Subsequently, the falling below a switch-off threshold Toff is waited for (S14), the compressor 7 is turned off again in step S15, and the process returns to the starting point.
  • step S1 1 the process branches to step S16 in which a timer is started.
  • the expiration time of the timer is slightly longer than the duration of a quiescent phase of the compressor 7, which is normally expected when the refrigerator is set up in a warm environment, ie the time between switching the compressor off and on again.
  • step S17 a comparison with the switch-on threshold Tein follows, as in step S12 If it is exceeded, the process branches to step S13 of the thermostat control. If the switch-on threshold Tein has not yet been reached, it is instead checked in step S18 whether the timer has expired. If not, the process returns to step S17, otherwise the compressor is turned on in S19.
  • the control circuit 11 now waits in step S20 for the second drop in the evaporator temperature Tv or any other suitable condition indicating the arrival of the fresh liquid refrigerant at the evaporator 6. As soon as this happens, the compressor is switched off again in step S21 and the process returns to the starting point.
  • the freezer compartment 2 is selectively cooled, regardless of whether the normal refrigeration compartment 3 has refrigeration demand or not, and substantially without mitzu scan the latter. Additional energy for the targeted cooling of the freezer compartment 2 is only expended when a long OFF time interval of the compressor 7 actually suggests a low ambient temperature.
  • Fig. 6 shows a further development of the method of Fig. 5, in which the setting of the switch 17 is made fully automatically and as needed by the control circuit 1 1 itself. Steps corresponding to those of Fig. 5 are denoted by the same reference numerals and will not be explained again.
  • an additional step S13 'of monitoring the evolution of the evaporator temperature Tv is inserted after switching on the compressor S13. If, in the time interval from the switching on of the compressor 7 until the arrival of the fresh liquid refrigerant at the temperature sensor 12, this shows a normal course in accordance with the curve A from FIG.
  • step S14 the method proceeds to step S14 normally and as described with reference to FIG .
  • the switch 17 is turned on in step S13 "before reaching step S14 .
  • the check whether the temperature decrease is normal for example, by the control circuit 1 1 integrates the difference between the actual measured course of the temperature Tv and the expected, the curve A corresponding course and determines a non-normal temperature decrease, if this of the Curves C and A of Fig. 3 included area D corresponding integral exceeds a predetermined limit.
  • a step S19 'of monitoring the decrease of the temperature Tv also follows the step S19 of turning on the compressor. The judgment can be made according to the same criteria as in step S13 '. If a normal temperature decrease is detected in this case, the switch is switched off again in step S19 ", otherwise the method proceeds directly to step S20.
  • the control circuit 1 1 automatically adapts the operating phase of the compressor 7 without the intervention of a user , In a cold or warm environment and holds regardless of the ambient temperature, both the normal refrigeration compartment 3 and the freezer compartment 2 in a suitable temperature range, without requiring a measurement of the temperature in the freezer compartment 2 itself would be required.

Abstract

Ein Kältegerät, insbesondere ein Haushaltskältegerät, hat wenigstens zwei unterschiedliche, durch in Reihe mit einem Verdichter (7) verbundene Verdampfer (5, 6) gekühlte Temperaturzonen (2, 3), einen ersten Temperaturfühler (12) und eine Steuerschaltung (11) zum Steuern des Betriebs des Verdichters (7). Der erste Temperaturfühler (12) ist an einem der Verdampfer (5, 6) angeordnet ist. Die Steuerschaltung (11) weist einen Betriebsmodus auf, in dem sie eingerichtet ist, den Verdichter (7) auszuschalten, wenn der erste Temperaturfühler (12) bei eingeschaltetem Verdichter (7) einer Temperaturabnahme ausgesetzt ist.

Description

Einkreis-Kältegerät
Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät, mit wenigstens zwei Temperaturzonen, die durch in Reihe verbundene Verdampfer gekühlt sind.
Bei einem solchen sogenannten Einkreis-Kältegerät kann das Kältemittel entweder nur durch beide in Reihe verbundenen Verdampfer gleichzeitig oder durch keinen von beiden zirkulieren. Es besteht daher die Gefahr, dass, wenn der Verdichter anhand des Kältebedarfs nur von einer der beiden Temperaturzonen gesteuert wird, sich in der anderen eine unerwünscht hohe oder niedrige Temperatur einstellt. In der Praxis wirkt sich dieses Problem nur dann nicht aus, wenn der Kältebedarf der beiden Kältezonen exakt proportional ist und die Leistungsfähigkeit der Verdampfer auf das Proportionsverhältnis abgestimmt ist.
Signifikante Abweichungen von der Proportionalität können jedoch z.B. durch die Temperatur der Umgebung, in der das Kältegerät aufgestellt ist, verursacht werden: ist die Umgebungstemperatur niedriger als die, für die die Leistung der Verdampfer optimiert ist, dann nimmt der Kältebedarf der wärmeren Temperaturzone stärker ab als der der kälteren. Wenn die Steuerung des Verdichters anhand des Kältebedarfs der wärmeren Temperaturzone erfolgt, dann ist eine unzureichende Kühlung der kälteren die Folge. Ein herkömmliches Mittel, um diesem Problem abzuhelfen, ist unter der Bezeichnung „Winterschaltung" bekannt. Die wärmere Temperaturzone weist eine Wärmequelle wie etwa eine Widerstandsheizung oder eine elektrische Leuchte auf, die betrieben wird, um den Kältebedarfs der wärmeren Temperaturzone künstlich soweit zu erhöhen, dass die Kühlleistung auch für die kältere Temperaturzone ausreicht. Es liegt auf der Hand, dass eine solche Winterschaltung den Wirkungsgrad des Kältegeräts empfindlich beeinflusst.
Eine weitere Ursache für Abweichungen von der Proportionalität ist die Einlagerung von warmem Kühlgut. Geschieht dies in der geregelten Temperaturzone, dann ist die Folge eine Verlängerung der Verdichterlaufzeit und damit eine eventuell unnötig starke Kühlung auch der ungeregelten Temperaturzone, was normalerweise, insbesondere wenn die ungeregelte die kältere Temperaturzone ist, nicht weiter stört. Wird jedoch warmes Kühlgut in die ungeregelte Temperaturzone geladen, dann kann dessen Abkühlung sehr lange Zeit in Anspruch nehmen, und bereits in der dieser Temperaturzone enthaltenes Kühlgut kann so stark erwärmt werden, dass dadurch seine Haltbarkeit beeinträchtigt wird. Um diesem Problem Rechnung zu tragen, verfügen die meisten Kältegeräte über einen Hochleistungsmodus, der vom Benutzer eingeschaltet werden kann und sollte, wenn er eine größere Menge warmen Kühlguts einlädt. Auch der Hochleistungsmodus behebt jedoch nicht den grundsätzlichen Nachteil der Einkreis-Kältegeräte, dass die Verdampfer nicht unabhängig voneinander funktionieren: wenn eine der Temperaturzonen ein Normalkühlfach ist, dann darf auch im Hochleistungsmodus die Temperatur dort 0°C nicht unterschreiten, da anderenfalls Schäden am Kühlgut zu erwarten sind. Diese Einschränkung begrenzt erheblich die Kühlleistung, die zum Kühlen der jeweils anderen Temperaturzone bereitgestellt werden kann, und führt somit dort zu langen Abkühlzeiten und der Gefahr einer übermäßigen Erwärmung bereits vorhandenen Kühlguts. Aus DE 197 18 609 A1 ist ein Kältegerät nach dem Oberbegriff des Anspruchs 1 bekannt. In diesem Dokument wird vorgeschlagen, das Problem der unzureichenden Kühlung der kälteren Temperaturzone bei niedriger Umgebungstemperatur durch ein Steuerverfahren zu lösen, bei dem die relative Einschaltdauer des Verdichters anhand eines Vergleichs der Lufttemperatur in der geregelten Temperaturzone mit einer Solltemperatur festgelegt wird und anhand einer empirisch festgelegten Tabelle zu jeder relativen Einschaltdauer die absolute Einschaltdauer des Verdichters festgelegt ist. Zwar ist diese Technik grundsätzlich geeignet, um eine Winterschaltung überflüssig zu machen, doch erfordern die Testreihen, anhand derer der Zusammenhang zwischen relativer und absoluter Einschaltdauer festgelegt wird, einen erheblichen, für jedes Gerätemodell von Neuem zu erbringenden Entwicklungsaufwand. Die Regelung ist sehr träge, da, wenn in einer Ruhephase des Verdichters eine Änderung der relativen Einschaltdauer vorgenommen wird, diese sich erst gegen Ende der darauffolgenden Betriebsphase des Verdichters auf die Temperatur im Kältegerät auswirken kann. Eine Lösung des Problems der langen Abkühlzeiten von in die ungeregelte Temperaturzone geladenem frischem Kühlgut ist mit dieser herkömmlichen Technik nicht erreichbar.
Aufgabe der vorliegenden Erfindung ist, ein Einkreis-Kältegerät zu schaffen, dass ohne Rückgriff auf aufwendig zu entwickelnde empirische Kennkurven in der Lage ist, gewünschte Temperaturen in zwei unterschiedlichen Temperaturzonen auch bei wechselnden Umgebungstemperaturen aufrechtzuerhalten, bzw. das in der Lage ist, frisch eingeladenes Kühlgut auch in einer ungeregelten Temperaturzone zügig zu kühlen, ohne dass dies in einer anderen Temperaturzone zu unzweckmäßigen Temperaturabweichungen führt.
Unter einem Kältegerät wird insbesondere ein Haushaltskältegerät verstanden, also ein Kältegerät das zur Haushaltsführung in Haushalten oder eventuell auch im Gastronomiebereich eingesetzt wird, und insbesondere dazu dient Lebensmittel und/oder Getränke in haushaltsüblichen Mengen bei bestimmten Temperaturen zu lagern, wie beispielsweise ein Kühlschrank, ein Gefrierschrank, eine Kühlgefrierkombination oder ein Weinlagerschrank.
Die Aufgabe wird gelöst, indem bei einem Kältegerät, insbesondere einem Haushaltskältegerät, mit wenigstens zwei unterschiedlichen, durch in Reihe mit einem Verdichter verbundene Verdampfer gekühlten Temperaturzonen, einem ersten Temperaturfühler und einer Steuerschaltung zum Steuern des Betriebs der Verdichters der erste Temperaturfühler an einem der Verdampfer angeordnet ist und die Steuerschaltung einen Betriebsmodus aufweist, in dem sie eingerichtet ist, den Verdichter auszuschalten, wenn der Temperaturfühler bei eingeschaltetem Verdichter einer Temperaturabnahme ausgesetzt ist.
Der erste Temperaturfühler kann am stromabwärtigen Verdampfer selbst, vorzugweise in einer stromaufwärtigen Region desselben, angeordnet sein, um, wenn flüssiges Kältemittel in den stromabwärtigen Verdampfer eingedrungen ist, dies mit geringer Verzögerung zu erkennen. Indem dann der Verdichter ausgeschaltet wird, bleibt die Menge an flüssigem Kältemittel im stromabwärtigen Verdampfer gering, wohingegen der stromaufwärtige Verdampfer im Wesentlichen mit flüssigem Kältemittel gefüllt sein wird, sodass zwar der stromaufwärtige Verdampfer seine Temperaturzone wirksam kühlt, der stromabwärtige jedoch nicht oder nur in geringerem Umfang.
Zweckmäßig ist auch eine Anbringung des ersten Temperaturfühlers in einem unteren Bereich des stromabwärtigen Verdampfers, um ihn auch für die Überwachung des Resteises bei einem Abtauvorgang nutzen zu können. Vorzugsweise ist vom stromaufwärtigen Verdampfer gekühlte Temperaturzone kälter als die vom stromabwärtigen Verdampfer gekühlte.
Die Temperaturabnahme, die zum Ausschalten des Verdichters führt, ist dann vorzugsweise die zweite, die nach Einschalten des Verdichters erfassbar ist, da erst diese auf das Eintreffen von flüssigem Kältemittel in der Nähe des Temperaturfühlers hinweist. Eine erste Temperaturabnahme, die mit sehr geringer Verzögerung nach Einschalten des Verdichters erfassbar ist, zeigt lediglich den Zufluss von gasförmigem Kältemittel aus dem stromaufwärtigen, kälteren Verdampfer in den stromabwärtigen Verdampfer an.
Bei ungünstiger Platzierung des Temperaturfühlers kann es vorkommen, dass die erfasste Temperatur zwischen der kurz nach Einschalten des Verdichters einsetzenden Abkühlung und der auf das Eintreffen von flüssigem Kältemittel zurückzuführenden kein zeitweiliges Minimum annimmt, anhand dessen eine Unterscheidung zwischen erster und zweiter Abkühlung auf einfache Weise möglich wäre. Möglich ist aber auch in diesem Fall, die Abnahmegeschwindigkeit der Temperatur zu überwachen und den Verdichter auszuschalten, sobald nach einer zeitweiligen Verringerung eine erneute Steigerung der Abnahmegeschwindigkeit beobachtet wird. Alternativ kann vorgesehen werden, dass die Temperaturabnahme erst dann zum Ausschalten des Verdichters führt, wenn die von dem ersten Temperaturfühler erfasste Temperatur eine Grenztemperatur unterschritten hat, die niedriger ist als eine Solltemperatur der vom stromabwärtigen Verdampfer gekühlten Temperaturzone. Die Grenztemperatur kann je nach Bauart des Kältegeräts unterschiedlich festgelegt sein, sollte aber jedenfalls so tief gewählt sein, dass sie nach einer Ruhephase des Verdichters nur durch flüssiges Kältemittel erreichbar ist.
Der erste Temperaturfühler kann auch in einer stromabwärtigen Region des stromaufwärtigen Verdampfers angeordnet sein, um anzusprechen, wenn dieser weitgehend mit flüssigem Kältemittel aufgefüllt ist, der stromabwärtige jedoch noch nicht. In diesem Fall ist die Steuerung des Kältegeräts vereinfacht, da nur der Zustrom von flüssigem Kältemittel eine Temperaturabnahme am ersten Temperaturfühler bewirken kann und folglich eine Unterscheidung zwischen erster und zweiter Temperaturabnahme oder der Vergleich mit einer Solltemperatur unnötig ist.
In dem oben erwähnten Betriebsmodus gibt es vorzugsweise zwei Bedingungen, die jeweils für sich allein ausreichend sind, um zum Einschalten des Verdichters zu führen, zum einen, wenn die Temperatur in der vom stromabwartigen Verdampfer gekühlten Temperaturzone einen Grenzwert übersteigt, zum anderen, wenn die seit dem letzten Ausschalten des Verdichters verstrichene Zeit einen Grenzwert übersteigt. Die erstere Bedingung entspricht in an sich üblicher Weise dem Auftreten von Kältebedarf in der vom stromabwärtigen Verdampfer gekühlten Temperaturzone; um diesen Kältebedarf zu befriedigen, muss der Verdichter lange genug arbeiten, damit eine ausreichende Menge an flüssigem Kältemittel den stromabwärtigen Verdampfer erreicht. Wenn hingegen das Einschalten durch Überschreitung des Grenzwerts der Zeit verursacht war, besteht kein Kältebedarf am stromabwärtigen Verdampfer, und die Laufzeit des Verdichters wird zweckmäßigerweise so beschränkt, dass flüssiges Kältemittel den stromabwärtigen Verdampfer nicht oder allenfalls in geringer Menge erreicht.
Der oben beschriebene Betriebsmodus kann durch einen Benutzer einschaltbar sein, um eine leistungsstarke Kühlung der Temperaturzone des stromaufwärtigen Verdampfers zu bewirken, falls dort frisches Kühlgut eingelagert worden ist oder werden soll.
Ein solcher Betriebsmodus wird zweckmäßigerweise von der Steuerschaltung nach einer vorgegebenen Zeit automatisch wieder ausgeschaltet.
Alternativ oder ergänzend kann die Steuerschaltung eingerichtet sein, die relative Einschaltdauer des Verdichters zu erfassen und selbsttätig den oben beschriebenen Betriebsmodus einzuschalten, wenn die Tatsache, dass die relative Einschaltdauer unter einem vorgegebenen Grenzwert liegt, auf eine niedrige Umgebungstemperatur schließen lässt. Kältemittel, das beim Einschalten des Verdichters in Bewegung gerät und vom stromaufwärtigen zum stromabwärtigen Verdampfer gelangt, erlaubt mittels des dort angebrachten ersten Temperaturfühlers unter Umständen einen Rückschluss auf die am stromaufwärtigen Verdampfer herrschende Temperatur. Wenn diese Temperatur zu hoch ist, weil beispielsweise eine große Menge warmem Kühlguts in die vom stromaufwärtigen Verdampfer gekühlte Temperaturzone eingeladen worden ist, dann ist auch das Kältemittel, das zu Beginn des Verdichterbetriebs auf den ersten Temperaturfühler einwirkt, relativ warm. Daher kann, wenn der vom ersten Temperaturfühler beim Einschalten des Verdichters erfasste Temperaturabfall schwächer ist als normal, daraus auf eine hohe Temperatur des stromaufwärtigen Verdampfers und auf entsprechend erhöhten Kältebedarf dieses Verdampfers geschlossen werden. Um diesen erhöhten Kältebedarf zu befriedigen, kann der oben beschriebene Betriebsmodus eingesetzt werden. Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Aus dieser Beschreibung und den Figuren gehen auch Merkmale der Ausführungsbeispiele hervor, die nicht in den Ansprüchen erwähnt sind. Solche Merkmale können auch in anderen als den hier spezifisch offenbarten Kombinationen auftreten. Die Tatsache, dass mehrere solche Merkmale in einem gleichen Satz oder in einer anderen Art von Textzusammenhang miteinander erwähnt sind, rechtfertigt daher nicht den Schluss, dass sie nur in der spezifisch offenbarten Kombination auftreten können; stattdessen ist grundsätzlich davon auszugehen, dass von mehreren solchen Merkmalen auch einzelne weggelassen oder abgewandelt werden können, sofern dies die Funktionsfähigkeit der Erfindung nicht in Frage stellt. Es zeigen: eine schematische Darstellung eines erfindungsgemäßen Kältegeräts; eine Variante des Kältegeräts in einer zu Fig. 1 analogen Ansicht; typische zeitliche Entwicklungen der vom Verdampfer- Temperaturfühler des Kältegeräts aus Fig. 1 oder 2 erfassten Temperatur; ein Flussdiagramm eines ersten Arbeitsverfahrens der Steuerschaltung des Kältegeräts aus Fig. 1 oder 2; Fig. 5 ein Flussdiagramm eines zweiten Arbeitsverfahrens; und
Fig. 6 ein Flussdiagramm eines dritten Arbeitsverfahrens der
Steuerschaltung. Fig. 1 zeigt schematisch ein Einkreis-Haushaltskältegerät mit einem wärmeisolierenden Gehäuse 1 , dessen Innenraum in zwei Temperaturzonen, hier ein Gefrierfach 2 und ein Normalkühlfach 3, unterteilt ist. Die Unterteilung ist hier eine Wand 4, die wie die die Fächer 2, 3 umgebenden Wände des Gehäuses 1 mit Isoliermaterial ausgefüllt ist; die zwei Temperaturzonen könnten aber auch in einem zusammenhängenden Innenraum des Gehäuses 1 gebildet oder lediglich durch eine den Luftaustausch zwischen ihnen behindernde Wandung getrennt sein.
Beiden Temperaturzonen, Gefrierfach 2 und Normalkühlfach 3, ist jeweils ein Verdampfer 5 bzw. 6 zugeordnet. Vorzugsweise sind die Verdampfer 5, 6 als Coldwall-Verdampfer ausgebildet, es kommen aber auch andere Verdampfertypen in Betracht. Die Verdampfer 5, 6 können auf getrennten Platinen oder auch auf einer einzigen, die Wand 4 überbrückend sich über beide Fächer 2, 3 erstreckenden Platine gebildet sein.
Die Verdampfer 5, 6 sind Teil eines Kältemittelkreislaufs, der ferner in an sich bekannter Weise einen Verdichter 7, einen, z.B. an einer Rückwand des Gehäuses 1 angebrachten Verflüssiger 8, einen Trockner 9 und eine Kapillare 10 umfasst. Kältemittel, das im Verdichter 7 verdichtet und erwärmt worden ist, gibt seine Wärme am Verflüssiger 8 ab und kondensiert dabei. Das flüssige Kältemittel entspannt sich beim Durchgang durch die Kapillare 10 und erreicht von dort zunächst den Verdampfer 5 des Gefrierfachs 2, wo es unter niedrigem Druck verdampfen kann. Der Verdampfer 6 schließt stromabwärts an den Verdampfer 5 an, und sein Ausgang ist mit einem Sauganschluss des Verdichters 7 verbunden.
Eine Steuerschaltung 1 1 dient zum Ein- und Ausschalten des Verdichters anhand von Temperaturmesswerten, die von einem Verdampfer-Temperaturfühler 12 und einem Luft- Temperaturfühler 13 geliefert werden. Der Verdampfer-Temperaturfühler 12 ist in engem thermischem Kontakt mit einem der Verdampfer 5, 6 montiert. Fig. 1 zeigt den Verdampfer-Temperaturfühler 12 als durchgezogenen Umriss auf dem Verdampfer 6 des Normalkühlfachs 3 benachbart zu einem Kaltemitteleinlass 14 des Verdampfers 6. Alternativ hierzu könnte der Verdampfer-Temperaturfühler 12 auch auf dem Verdampfer 5 des Gefrierfachs 2 benachbart zu einem Kältemittelauslass 15 desselben angeordnet sein, oder auch an einem beliebigen zwischen dem Auslass 15 und dem Einlass 14 liegenden Abschnitt der Kältemittelleitung. Die Anbringung am Verdampfer 6 ist bevorzugt, da der Verdampfer-Temperaturfühler 12 hier auch zum Erfassen einer Vereisung dienen bzw. der Steuerschaltung 1 1 eine Entscheidung ermöglichen kann, ob ein Abtauen des Verdampfers 6 nötig ist.
Der Messwert des Luft-Temperaturfühlers 13 soll möglichst genau die Lufttemperatur im Normalkühlfach 3 wiedergeben. Zu diesem Zweck ist der Luft-Temperaturfühler 13 in einer Wand des Gehäuses 1 zwischen deren Isolationsmaterialfüllung und einem das Normalkühlfach 3 begrenzenden Innenbehälter entfernt vom Verdampfer 6 angeordnet.
Fig. 2 zeigt eine Variante des Kältegeräts, die sich von der Ausgestaltung der Fig. 1 lediglich durch den Verlauf der Kältemittelleitung auf dem Verdampfer 6 unterscheidet. Vom Kältemitteleinlass 14 verläuft sie zunächst auf direktem Weg abwärts bis in eine untere Ecke des Verdampfers 6, in der auch der Verdampfer-Temperaturfühler 12 angebracht ist, um sich anschließend in Mäandern über die Fläche des Verdampfers 6 auszubreiten. So ist der Temperaturfühler 12 zwar auf gerader Linie weit vom Kältemitteleinlass 14 entfernt, gleichzeitig aber dennoch an einem stromaufwärtigen Bereich des Verdampfers 6 angeordnet, um eine Abkühlung durch in den Verdampfer 6 eindringendes flüssiges Kältemittel mit geringer Verzögerung zu erfassen. Gleichzeitig ist der Temperaturfühler 12 dank der Anbringung im unteren Bereich des Verdampfers 6 gut geeignet, um während eines Abtauvorgangs zuverlässige Information über den Resteisbestand zu liefern, da sich dieser beim Abtauen am unteren Rand des Verdampfers 6 sammelt.
Eine Solltemperatur des Normalkühlfachs ist vom Benutzer einstellbar und beträgt typischerweise um die 4°C, und auf diesem Wert oder geringfügig darüber liegt auch die vom Verdampfer-Temperaturfühler 12 erfasste Temperatur Tv am Ende einer Ruhephase des Verdichters 7. Die Temperatur des Gefrierfachs 2 und seines Verdampfers 5 sollte bei normaler Funktion des Geräts zur gleichen Zeit deutlich tiefer, z. B. bei -18°C, liegen. Wenn die Steuerschaltung 1 1 den Verdichter 7 einschaltet, nimmt der Druck in den Verdampfern 5, 6 ab, das im kalten Verdampfer 5 gesammelte Kältemittel beginnt zu verdampfen und kühlt sich dabei ab. Der entstehende Dampf wird vom Verdichter 7 über den Verdampfer 6 abgesaugt und kühlt diesen. Der auf dem Verdampfer 6 gelegene Temperaturfühler 12 beginnt daher kurze Zeit nach Einschalten des Verdichters zum Zeitpunkt tO eine erste Abkühlung zu registrieren, wie in Fig. 3 als durchgezogene Kurve A dargestellt. Ein darauf folgender schwacher Temperaturanstieg ist darauf zurückzuführen, dass im Verflüssiger 8 erst durch Druckaufbau und gleichzeitige Wärmeabgabe Kältemittel von Neuem verflüssigt werden muss, bevor der Kapillare flüssiges Kältemittel zugeführt werden kann, um dieses dann in den Verdampfern zu verdampfen. Dieses neu verflüssigte Kältemittel breitet sich nach Passieren der Kapillare allmählich im Verdampfer 5 aus. Nach einer gewissen Zeit erreicht es auch den Verdampfer 6. und bewirkt auch dort eine stärkere Abkühlung als zuvor das aus dem Verdampfer 5 abgesaugte gasförmige Kältemittel. Dies führt ab dem Zeitpunkt t1 , typischerweise mehrere Minuten nach dem Start des Verdichters 7, zu einer weiteren Absenkung der Temperatur Tv. Nach weiteren etwa fünf Minuten verlangsamt sich der Temperaturabfall, und die Temperatur Tv konvergiert im Laufe des weiteren Verdichterbetriebs gegen einen stationären Wert von ca. -25°C.
Abweichungen von dem normalen Temperaturverlauf der Kurve A ergeben sich zum einen, wenn, unter den im Folgenden noch im Detail erläuterten Bedingungen, die Steuerschaltung 1 1 das Einsetzen des zweiten Temperaturabfalls zum Anlass nimmt, den Verdichter 7 wieder auszuschalten. In diesem Fall ergibt sich ein Temperaturverlauf, wie exemplarisch durch die Kurve B dargestellt: nach Ausschalten des Verdichters 7 setzt sich die Temperaturabnahme noch für kurze Zeit fort, da das bereits in den Verdampfer 6 gelangte flüssige Kältemittel den Temperaturfühler 12 zunächst noch weiter abkühlt. Nach kurzer Zeit ist dieses Kältemittel jedoch verdampft, so dass die Temperatur Tv wieder zu steigen beginnt.
Eine Abschwächung des unmittelbar auf das Einschalten des Verdichters 7 folgenden Temperaturabfalls, dargestellt durch die Kurve C, kann sich ergeben, wenn die Temperatur des Gefrierfachs 2 deutlich oberhalb ihres Sollbereichs liegt, sei es ,weil ein Benutzer eine größere Menge warmen Kühlguts in das Gefrierfach 2 geladen hat, oder weil der Verdichter 7 lange Zeit ausgeschaltet gewesen ist. Um ein zügiges Gefrieren von frisch in das Gefrierfach 2 geladenem Kühlgut zu gewährleisten, ist einer ersten Ausgestaltung der Erfindung zufolge das Kältegerät mit einem vom Benutzer betätigbaren Schalter 16 zum Aktivieren einer Schnellkühlfunktion ausgestattet. Ein Arbeitsverfahren der Steuerschaltung 1 1 gemäß dieser ersten Ausgestaltung ist in Fig. 4 als Flussdiagramm dargestellt. Bei Betätigung des Schnellkühlschalters 16 durch den Benutzer startet die Steuerschaltung 1 1 zunächst in Schritt S1 einen internen Zeitgeber, dessen Abiaufzeit, typischerweise zwischen 24 und 72 Stunden, die Zeitspanne festlegt, in der das Gerät nach Betätigung des Schalters 16 im Schnellkühlmodus verbleibt. Der nächste Schritt S2 ist ein Einschalten des Verdichters 7. Dieses Einschalten kann ohne Berücksichtigung der vom Temperaturfühler 13 erfassten Lufttemperatur Tnk des Normalkühlfachs 3 erfolgen.
In Schritt S3 wartet die Steuerschaltung 1 1 den Beginn des mit dem Vordringen von frischem flüssigem Kältemittel in den Verdampfer 6 verbundenen zweiten Temperaturabfall ab. Sobald sich dieser abzeichnet, sei es weil die zweite Abnahme der Temperatur Tv nach Einschalten des Verdichters 7 beginnt, weil die Geschwindigkeit der Temperaturabnahme nach Durchlaufen eines zeitweiligen Minimums wieder zunimmt oder weil die Temperatur Tv unter eine Grenztemperatur abfällt, die zwischen den Solltemperaturen des Gefrierfachs 2 und des Normalkühlfachs 3 festgelegt ist und hier z.B. -5°C betragen kann, wird in Schritt S4 der Verdichter 7 wieder ausgeschaltet. Es schließt sich eine Wartezeit S5 an, deren Länge so bemessen ist, dass in ihr das zum Zeitpunkt des Ausschaltens im Verdampfer 6 enthaltene flüssige Kältemittel vollständig verdampfen kann. Falls im Verlaufe dieser Wartezeit ein Anstieg von Tnk über eine vom Benutzer eingestellte Einschalt-Grenztemperatur Tein festgestellt wird, wird der Verdichterbetrieb wieder aufgenommen, bis die erforderliche Abkühlung des Normalkühlfachs 3 erreicht ist, und die Wartezeit S5 beginnt von Neuem.
Da eine Abkühlung des Normalkühlfachs 3 nicht völlig zu vermeiden ist, auch wenn der Verdichter 7 in Schritt S4 sofort wieder ausgeschaltet wird, wenn das flüssige Kältemittel den Temperaturfühler 12 erreicht, ist es nicht ausgeschlossen, dass mehrere solche kurze Verdichter-Betriebsphasen nacheinander auch zu einer Abkühlung des Normalkühlfachs 3 unter seinen Sollbereich führen. Daher wird in Schritt S6 die Temperatur Tnk des Normalkühlfachs 3 mit einer Mindesttemperatur verglichen, die unter dem Sollbereich für dieses Fach liegt und die keinesfalls unterschritten werden darf. Diese Mindesttemperatur wird typischerweise knapp über 0°C liegen. Wenn die Mindesttemperatur erreicht oder unterschritten ist, verharrt das Verfahren in Schritt S6, bis Tnk wieder über die Mindesttemperatur angestiegen ist.
Wenn anschließend in Schritt S7 der Zeitgeber noch nicht abgelaufen ist, kehrt das Verfahren nach S2 zurück; anderenfalls endet der Schnellkühlmodus.
Ergebnis dieses Verfahren ist, dass der Verdampfer 5 im Schnellkühlmodus praktisch ständig flüssiges Kältemittel enthält und den Inhalt des Gefrierfachs 2 mit hoher Leistung kühlen kann, während die Kühlung des Normalkühlfachs 3 allenfalls geringfügig verstärkt ist.
Fig. 5 ist ein Flussdiagramm eines Arbeitsverfahrens der Steuerschaltung 1 1 gemäß einer zweiten Ausgestaltung der Erfindung. Dieses Verfahren kann für sich allein oder auch zeitgleich mit demjenigen der Fig. 4 ausgeführt werden. Da das Verfahren der Fig. 5 zyklisch wiederholt wird, kann die Beschreibung mit einem beliebigen seiner Schritte beginnen, hier z.B. unmittelbar anschließend an ein Ausschalten des Verdichters 7. Der erste Verfahrensschritt ist dann ein Schritt S1 1 , in dem überprüft wird, ob ein für die Umgebungstemperatur repräsentativer Schalter gesetzt ist. Bei diesem Schalter kann es sich um einen physischen Schalter an einer Benutzerschnittstelle des Geräts wie den Schalter 16 handeln, an dem ein Benutzer einstellen kann, ob das Gerät z.B. in einem geheizten oder einem ungeheizten Raum aufgestellt ist. Es kann sich aber auch um einen logischen Schalter wie etwa eine Speicherzelle 17 handeln, wie später noch in Verbindung mit Fig. 6 genauer erläutert. Wenn der Schalter 16 oder 17 nicht gesetzt ist, was bei Aufstellung des Geräts in normal warmer Umgebung der Fall sein sollte, dann setzt eine an sich bekannte Thermostatsteuerung des Verdichterbetriebs ein: in Schritt S12 wird abgewartet, bis die Temperatur Tnk des Normalkühlfachs 3 eine Einschaltschwelle Tein überschreitet, um dann in Schritt S13 den Verdichter 7 einzuschalten. Anschließend wird die Unterschreitung einer Ausschaltschwelle Taus abgewartet (S14), der Verdichter 7 wird in Schritt S15 wieder ausgeschaltet, und das Verfahren kehrt zum Ausgangspunkt zurück.
Ist hingegen in Schritt S1 1 der Schalter 16 oder 17 gesetzt, dann verzweigt das Verfahren zu Schritt S16, in welchem ein Zeitgeber gestartet wird. Die Abiaufzeit des Zeitgebers ist etwas länger als die normalerweise bei Aufstellung des Kältegeräts in warmer Umgebung zu erwartende Dauer einer Ruhephase des Verdichters 7, d.h. die Zeitspanne zwischen Aus- und Wiedereinschalten des Verdichters 7. In Schritt S17 folgt wie in Schritt S12 ein Vergleich mit der Einschaltschwelle Tein, und im Falle ihrer Überschreitung verzweigt das Verfahren zum Schritt S13 der Thermostatregelung. Wenn die Einschaltschwelle Tein noch nicht erreicht ist, wird stattdessen in Schritt S18 geprüft, ob der Zeitgeber abgelaufen ist. Wenn nicht, kehrt das Verfahren zu Schritt S17 zurück, anderenfalls wird der Verdichter in S19 eingeschaltet. Die Steuerschaltung 1 1 wartet nun in Schritt S20 auf den zweiten Abfall der Verdampfertemperatur Tv oder einer anderen geeigneten Bedingung, die das Eintreffen des frischen flüssigen Kältemittels am Verdampfer 6 anzeigt. Sobald dies geschieht, wird der Verdichter in Schritt S21 wieder ausgeschaltet und das Verfahren kehrt wieder zum Ausgangspunkt zurück.
Durch die Schritte S19 bis S21 wird gezielt das Gefrierfach 2 gekühlt, unabhängig davon, ob das Normalkühlfach 3 Kältebedarf hat oder nicht, und im Wesentlichen ohne letzteres mitzukühlen. Zusätzliche Energie für die gezielte Kühlung des Gefrierfachs 2 wird nur dann aufgewandt, wenn ein langes Ausschaltzeitintervall des Verdichters 7 tatsächlich auf eine niedrige Umgebungstemperatur schließen lässt.
Fig. 6 zeigt eine Weiterentwicklung des Verfahrens aus Fig. 5, bei der das Setzen des Schalters 17 vollautomatisch und nach Bedarf von der Steuerschaltung 1 1 selber vorgenommen wird. Schritte, die denjenigen der Fig. 5 entsprechen, sind mit denselben Bezugszeichen versehen und werden nicht erneut erläutert. Im Laufe der Thermostatsteuerung der Schritte S12 bis S15 ist hinter das Einschalten des Verdichters S13 ein zusätzlicher Schritt S13' des Überwachens der Entwicklung der Verdampfertemperatur Tv eingeschoben. Wenn diese im Zeitintervall vom Einschalten des Verdichters 7 bis zum Eintreffen des frischen flüssigen Kältemittels am Temperaturfühler 12 einen normalen Verlauf entsprechend der Kurve A aus Fig. 3 zeigt, dann geht das Verfahren mit Schritt S14 normal und wie mit Bezug auf Fig. 5 beschrieben weiter. Wenn hingegen die Abnahme der Temperatur Tv schwächer oder langsamer als normal ist, was, wie mit Bezug auf Fig. 3 erläutert, auf eine zu hohe Temperatur des Gefrierfachs 2 hindeutet, dann wird vor Erreichen des Schritts S14 der Schalter 17 in Schritt S13" eingeschaltet. Die Prüfung, ob die Temperaturabnahme normal ist, kann beispielsweise erfolgen, indem die Steuerschaltung 1 1 die Differenz zwischen dem tatsächlich gemessenen Verlauf der Temperatur Tv und dem erwarteten, der Kurve A entsprechenden Verlauf integriert und eine nicht normale Temperaturabnahme feststellt, wenn dieses der von den Kurven C und A von Fig. 3 eingeschlossenen Fläche D entsprechende Integral einen vorgegebenen Grenzwert überschreitet.
Ein Schritt S19' des Überwachens der Abnahme der Temperatur Tv folgt auch auf den Schritt S19 des Einschaltens des Verdichters. Die Beurteilung kann nach den gleichen Kriterien erfolgen wie in Schritt S13'. Wenn dabei eine normale Temperaturabnahme festgestellt wird, wird der Schalter in Schritt S19" wieder ausgeschaltet, anderenfalls geht das Verfahren direkt zu Schritt S20 über. So passt die Steuerschaltung 1 1 die Betriebsphase des Verdichters 7 vollautomatisch, ohne dass es des Eingriffs durch einen Benutzer bedarf, an eine kalte bzw. warme Umgebung an und hält unabhängig von der Umgebungstemperatur sowohl das Normalkühlfach 3 als auch das Gefrierfach 2 in einem geeigneten Temperaturbereich, ohne dass dafür eine Messung der Temperatur im Gefrierfach 2 selber erforderlich wäre.

Claims

PATENTANSPRÜCHE
1 Kältegerät, insbesondere Haushaltskältegerät, mit wenigstens zwei unterschiedlichen, durch in Reihe mit einem Verdichter (7) verbundene Verdampfer (5, 6) gekühlten Temperaturzonen (2, 3), einem ersten Temperaturfühler (12) und einer Steuerschaltung (1 1 ) zum Steuern des Betriebs des Verdichters (7), dadurch gekennzeichnet, dass der erste Temperaturfühler (12) an einem der Verdampfer (5, 6) angeordnet ist und die Steuerschaltung (1 1 ) einen Betriebsmodus aufweist, in dem sie eingerichtet ist, wenn der erste Temperaturfühler (12) bei eingeschaltetem Verdichter (7) einer Temperaturabnahme ausgesetzt ist, den Verdichter (7) auszuschalten (S4; S21 ).
2 Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Temperaturfühler (12) am stromabwärtigen Verdampfer (6), insbesondere in einer stromaufwärtigen Region des stromabwärtigen Verdampfers (6), angeordnet ist.
3 Kältegerät nach Anspruch 2, dadurch gekennzeichnet, dass der erste Temperaturfühler (12) in einem unteren Bereich des stromabwärtigen Verdampfers (6) angeordnet ist. 4 Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vom stromaufwärtigen Verdampfer (5) gekühlte Temperaturzone (2) kälter ist als die vom stromabwärtigen Verdampfer (6) gekühlte Temperaturzone (3). 5 Kältegerät nach Anspruch 4, dadurch gekennzeichnet, dass die Temperaturabnahme, die zum Ausschalten (S4; S21 ) des Verdichters (7) führt, die zweite ist, die nach Einschalten (S2; S19) des Verdichters (7) erfassbar ist. 6 Kältegerät nach Anspruch 4, dadurch gekennzeichnet, dass die Temperaturabnahme erst dann zum Ausschalten des Verdichters führt, wenn die Geschwindigkeit der Temperaturabnahme ein Minimum durchlaufen hat. Kältegerät nach Anspruch 4, dadurch gekennzeichnet, dass die Temperaturabnahme erst dann zum Ausschalten des Verdichters führt, wenn die von dem Temperaturfühler erfasste Temperatur eine Grenztemperatur unterschritten hat, die niedriger ist als eine Solltemperatur der vom stromabwärtigen Verdampfer gekühlten Temperaturzone.
Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Temperaturfühler in einer stromabwärtigen Region des stromaufwärtigen Verdampfers angeordnet ist.
Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerschaltung (1 1 ) eingerichtet ist, den Verdichter (7) einzuschalten (S13; S19), wenn die Temperatur in der vom stromabwärtigen Verdampfer gekühlten Temperaturzone einen Grenzwert (Tein) übersteigt (S12) oder wenn die seit dem letzten Ausschalten des Verdichters verstrichene Zeit einen Grenzwert übersteigt (S18), und den Verdichter (7) nur dann bei Erkennung der Temperaturabnahme wieder auszuschalten (S21 ), wenn das Einschalten (S19) durch Überschreitung des Grenzwerts der Zeit (S18) verursacht war.
Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betriebsmodus durch einen Benutzer einschaltbar ist.
Kältegerät nach Anspruch 9, dadurch gekennzeichnet, dass die Steuerschaltung (1 1 ) eingerichtet ist, den Betriebsmodus nach einer vorgegebenen Wartezeit (S7) auszuschalten.
Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerschaltung (1 1 ) eingerichtet ist, den Betriebsmodus einzuschalten, wenn ein beim Einschalten (S13) des Verdichters (7) erfasster Temperaturabfall schwächer ist als ein erwarteter Wert (S13').
Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuerschaltung (1 1 ) eingerichtet ist, die relative Einschaltdauer des Verdichters (7) zu erfassen und den Betriebsmodus einzuschalten, wenn die relative Einschaltdauer unter einem Grenzwert liegt.
PCT/EP2012/071702 2011-11-08 2012-11-02 Einkreis-kältegerät WO2013068303A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2014121075/13A RU2579803C2 (ru) 2011-11-08 2012-11-02 Одноконтурный холодильный аппарат
CN201280054962.4A CN103958990B (zh) 2011-11-08 2012-11-02 单回路式制冷器具
EP12786898.2A EP2776768B1 (de) 2011-11-08 2012-11-02 Kältegerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011085959A DE102011085959A1 (de) 2011-11-08 2011-11-08 Einkreis-Kältegerät
DE102011085959.4 2011-11-08

Publications (2)

Publication Number Publication Date
WO2013068303A2 true WO2013068303A2 (de) 2013-05-16
WO2013068303A3 WO2013068303A3 (de) 2013-09-06

Family

ID=47178624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/071702 WO2013068303A2 (de) 2011-11-08 2012-11-02 Einkreis-kältegerät

Country Status (6)

Country Link
EP (1) EP2776768B1 (de)
CN (1) CN103958990B (de)
DE (1) DE102011085959A1 (de)
RU (1) RU2579803C2 (de)
TR (1) TR201802285T4 (de)
WO (1) WO2013068303A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059021A1 (en) * 2015-09-30 2017-04-06 Electrolux Home Products, Inc. Temperature control of refrigeration cavities in low ambient temperature conditions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718609A1 (de) 1996-11-22 1998-05-28 Aeg Hausgeraete Gmbh Kühlgerät mit einem Kühlraum und einem Gefrierraum

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT325644B (de) * 1973-10-11 1975-10-27 Bosch Hausgeraete Gmbh Kühlmöbel, insbesondere zweitemperaturen-kühlschrank
DE3317083C2 (de) * 1983-05-10 1986-07-17 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Kombiniertes Kühl- und Gefriergerät mit einem gemeinsamen Kälteaggregat
RU2137064C1 (ru) * 1994-11-11 1999-09-10 Самсунг Электроникс Ко., Лтд. Холодильник с высокоэффективным холодильным циклом с несколькими испарителями (н.и.цикл) и способ управления этим холодильником
IT1289491B1 (it) * 1996-12-20 1998-10-15 Whirpool Europ S R L Dispositivo di controllo della temperatura di un vano a temperatura controllata inferiore o sostanzialmente pari a 0°c ricavato entro il
RU2191956C2 (ru) * 1997-09-29 2002-10-27 Гурова Елена Владимировна Схема регулирования температурного режима в холодильнике (варианты)
DE19828061C1 (de) * 1998-06-24 1999-12-23 Danfoss As Verfahren zur Regelung der Temperatur eines Kühlmöbels und Temperaturregelvorrichtung für ein Kühlmöbel
DE10161306A1 (de) * 2001-12-13 2003-06-26 Bsh Bosch Siemens Hausgeraete Kältegerät mit regelbarer Entfeuchtung
SI22068A (sl) * 2005-05-19 2006-12-31 Gorenje Gospodinjski Aparati, D.D. Regulacija hladilno zamrzovalnega aparata
CN100476327C (zh) * 2006-04-06 2009-04-08 松下电器产业株式会社 电冰箱
WO2010133506A2 (en) * 2009-05-22 2010-11-25 Arcelik Anonim Sirketi A cooling device comprising two compartments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718609A1 (de) 1996-11-22 1998-05-28 Aeg Hausgeraete Gmbh Kühlgerät mit einem Kühlraum und einem Gefrierraum

Also Published As

Publication number Publication date
CN103958990B (zh) 2016-03-09
DE102011085959A1 (de) 2013-05-08
EP2776768A2 (de) 2014-09-17
TR201802285T4 (tr) 2018-03-21
RU2579803C2 (ru) 2016-04-10
RU2014121075A (ru) 2015-12-20
WO2013068303A3 (de) 2013-09-06
EP2776768B1 (de) 2018-01-10
CN103958990A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
EP2059733B1 (de) Kältemaschine und betriebsverfahren dafür
EP2841856B1 (de) Einkreis-kältegerät und betriebsverfahren dafür
EP2776768B1 (de) Kältegerät
DE4132719C2 (de) Mehrtemperaturen-Kühlschrank
WO2008077750A1 (de) Kältegerät mit einem eisbereiter
WO2012150196A1 (de) Einkreis-kältegerät
EP2841857B1 (de) Einkreis-kältegerät
EP1813897A2 (de) Verfahren zur Regelung eines Kühlgerätes
EP2880384A2 (de) Kältegerät mit automatischer abtauung sowie verfahren zum betreiben eines solchen kältegeräts
DE102015200728A1 (de) Kombinationskältegerät
DE2623879A1 (de) Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank
DE102011078320B4 (de) Kältegerät mit Verdunstungsschale und Hilfseinrichtung zur Verdunstungsförderung
EP2810003B1 (de) Kältegerät mit zwei lagerkammern
DE102015211961A1 (de) Kältegerät und Betriebsverfahren dafür
WO2013000773A2 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
WO2013000765A1 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
DE102012002654A1 (de) Kühl- und/oder Gefriergerät
DE60013374T2 (de) Automatisches Kältegerät mit Abtausteuerung
DE102017206488A1 (de) Kältegerät und Betriebsverfahren dafür
WO2022037880A1 (de) Verfahren zum abtauen eines verdampfers eines kältegeräts
DE102012206803A1 (de) Kältegerät
DE102011078323A1 (de) Kältegerät mit Verdunstungsschale und Hilfseinrichtung zur Verdunstungsförderung
DE102017221865A1 (de) Einkreis-Kältegerät
WO2013160110A1 (de) Einkreis-kältegerät
DE102012216849A1 (de) Kältegerät mit Kondensationsschutz

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280054962.4

Country of ref document: CN

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012786898

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014121075

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786898

Country of ref document: EP

Kind code of ref document: A2