WO2013066061A1 - Oil pump control valve - Google Patents

Oil pump control valve Download PDF

Info

Publication number
WO2013066061A1
WO2013066061A1 PCT/KR2012/009101 KR2012009101W WO2013066061A1 WO 2013066061 A1 WO2013066061 A1 WO 2013066061A1 KR 2012009101 W KR2012009101 W KR 2012009101W WO 2013066061 A1 WO2013066061 A1 WO 2013066061A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
oil
solenoid
oil pump
control valve
Prior art date
Application number
PCT/KR2012/009101
Other languages
French (fr)
Korean (ko)
Inventor
이창훈
노의동
박지훈
문지근
Original Assignee
주식회사 유니크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유니크 filed Critical 주식회사 유니크
Publication of WO2013066061A1 publication Critical patent/WO2013066061A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • F01M1/20Indicating or safety devices concerning lubricant pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps

Definitions

  • the present invention relates to an oil pump control valve, and more particularly, to an oil pump control valve capable of maintaining a constant pressure of oil pumped from an oil pump and discharged to an engine.
  • the engine of an automobile is designed to circulate oil for lubrication and cooling of various parts mounted on the engine.
  • the engine is provided with an oil pump for circulating oil and a relief valve for preventing an excessive rise in the pressure of the oil pumped by the oil pump.
  • the oil pump 1 includes a housing 10 having a transfer path 12 formed therein and a relief valve 20 provided on the transfer path 12.
  • the oil introduced into the lower portion of the housing 10 is conveyed along the conveying path 12, is compressed to a predetermined pressure in the conveying process and then discharged through the side surface of the housing 10.
  • the relief valve 20 installed on the conveying path 12 discharges a part of the conveyed oil to the outside when the pressure of the discharged oil is excessively increased. That is, when the pressure of the discharged oil is more than the set pressure, the relief valve 20 is operated to open a drain port 22 to discharge a part of the oil.
  • the oil pump 1 having the above-described structure is operated by the camshaft, when the revolutions per minute (rpm) of the engine increases, the pressure of oil discharged from the oil pump 1 also increases. . Therefore, since the pressure of the oil circulated in the engine cannot be kept constant, lubrication and cooling of various parts such as the cylinder head or the cylinder block are not performed smoothly, and in particular, excessive pressure is applied to the various parts to cause a significant decrease in durability. It will work.
  • An object of the present invention is to provide an oil pump control valve capable of maintaining a constant pressure of oil pumped from an oil pump and discharged to an engine.
  • an object of the present invention is to provide an oil pump control valve that can improve the operability by removing the internal residual pressure of the valve.
  • An oil pump control valve for achieving the above object includes a valve for controlling the inflow and out of fluid (hereinafter also referred to as oil), and a solenoid for operating the valve.
  • the valve is composed of a holder and a spool provided inside the holder.
  • the holder is formed in a tubular shape having a discharge port at one end, and a supply port and a control port connected to the inside of the hollow are formed on the outer circumferential surface.
  • the spool is formed in a multi-stage rod shape, the operation groove for connecting the supply port and the control port is formed on the outer peripheral surface, the flow path for connecting the outlet and the solenoid is formed therein.
  • the present invention described above is constantly discharged to the control port by adjusting the pressure of the oil flowing from the supply port through the working groove formed in the spool, so that even if the oil is supplied to the engine with an excessive pressure from the oil pump to be discharged to the engine
  • the pressure of the oil can be kept constant. Therefore, it is possible to smooth the lubrication and cooling of the various parts installed in the cylinder head or cylinder block of the engine, it is possible to prevent the deterioration of durability of the various parts due to excessive pressure.
  • the operability of the valve can be improved by removing the residual pressure inside the valve.
  • FIG. 1 is a cross-sectional view of an oil pump control valve according to an embodiment of the present invention.
  • Figure 2 is an enlarged view of a portion of the oil pump control valve according to an embodiment of the present invention.
  • 3 and 4 is an operating state of the oil pump control valve according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a change in the pressure change of the oil discharged to the engine when the on / off of the oil pump control valve according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the oil pump for a vehicle according to the prior art.
  • the oil pump control valve includes a valve 100 for controlling oil in and out, and a solenoid 200 for operating the valve 100.
  • the valve 100 is installed in the housing (10 of FIG. 6) of the oil pump (1 of FIG. 6) having a plurality of flow paths, and the valve 100 is provided to the oil supplied from the oil pump 1.
  • the control pressure is applied so that the oil discharged to the cylinder head (not shown) or the cylinder block (not shown) has a constant pressure.
  • the holder 110 the spool 120 is installed to be movable inside the holder 110, the upper end of the holder 110 (that is, the upper portion of the spool 120) It includes a spring 130 and the adjustment screw 140 provided.
  • Holder 110 is formed in a tubular shape having a predetermined length.
  • An operating space 112 which is a space for moving the spool 120, is formed inside the holder 110.
  • a supply port 114 into which oil supplied from an oil tank (not shown) flows, and a control port 116 through which the oil controlled at a predetermined pressure is discharged from the holder 110 is provided on the outer peripheral surface of the holder 110.
  • the upper end of the holder 110 is formed with a discharge port 118 through which the oil filled in the solenoid 200 is discharged to the outside or the external oil flows in when the spool 120 is moved.
  • the lower outer peripheral surface of the holder 110 is formed with a mounting groove 119 is installed O-ring (119r) for preventing the leakage of oil.
  • the supply port 114 and the control port 116 are formed to be spaced apart in the longitudinal direction of the holder 110, as shown in Figure 1, respectively connected to the working space 112 formed inside the holder (110).
  • the supply port 114 and the control port 116 is composed of a plurality of radially arranged along the outer peripheral surface of the holder (110).
  • the outer peripheral surface of the holder 110 in which the plurality of supply ports 114 are disposed and the outer peripheral surface of the holder 110 in which the control port 116 is formed are supplied to the oil entering and exiting through the supply port 114 and the control port 116. Filters 114f and 116f are installed to remove the foreign matter contained therein.
  • the outlet 118 is formed with a thread 118s on the inner circumferential surface to enable screwing of the adjusting screw 140.
  • the adjusting screw 140 installed in the outlet 118 is formed with a discharge port 144 through which oil is substantially entered.
  • the mounting groove 119 is an annular shape of a square cross section formed along the outer peripheral surface of the lower end of the holder 110, the O-ring 119r is a ring shape of a circular cross section inserted into the mounting groove 119.
  • O-ring 119r is in close contact with the installation hole (not shown) of the oil pump housing (10 of FIG. 6) in which the oil pump control valve is installed in the inserted groove 119 is supplied to the supply port 114
  • the oil and oil discharged from the control port 116 and the discharge port 144 are prevented from leaking between the oil pump control valve and the oil pump housing (10 in FIG. 6).
  • the mounting groove 119 and the O-ring 119r are described as being provided only at the lower portion of the supply port 114, but are not necessarily limited thereto. For example, it may be further provided between the supply port 114 and the control port 116, the upper portion of the control port 116 (between the control port 116 and the discharge port 144). In this case, when the mounting groove 119 and the O-ring 119r are further provided, not only an abnormal flow of oil leakage between the oil pump control valve and the oil pump housing (FIG. 10) can be prevented, and the control port 116 To prevent abnormal flow, such as discharged oil flows into the supply port 114 or the discharge port 144 or oil discharged from the discharge port 144 flows into the supply port 114 or the control port 142. can do.
  • the spool 120 is formed in a rod shape having a predetermined length.
  • a plurality of operating grooves 122a and 122b and protrusions 124a to 124c are formed on the outer circumferential surface of the spool 120, and flow paths 126a and 126b are formed inside the spool 120.
  • the first operating groove 122a and the second operating groove 122b are annular grooves formed along the outer circumferential surface of the spool 120, and the first operating groove 122a is formed at an interruption of the spool 120.
  • the working groove 122b is formed at the top of the spool 120.
  • the first protrusion 124a and the second protrusion 124b are annular protrusions formed along the outer circumferential surface of the spool 120, and the first protrusion 124a is the first operating groove 122a and the second operating groove ( It is formed between the 122b), the second projection 124b is formed in the lower portion of the first operating groove (122a).
  • the third protrusion 124c is formed of a plurality of radially arranged along the outer circumferential surface of the spool 120, as shown in FIG. 122b) is formed on top.
  • the first operation groove 122a described above connects the supply port 114 and the control port 116 when the spool 120 is raised so that oil introduced through the supply port 114 is discharged to the control port 116 side. do.
  • the second operation groove 122b discharges the oil existing at the control port 116 side when the spool 120 rises together with the third protrusion 124c to the discharge port 144.
  • the first protrusion 124a and the second protrusion 124b block the connection between the supply port 114 and the control port 116 when the spool 120 moves and flow into the first operating groove 122a. Prevent oil leakage.
  • the third protrusion 124c guides the movement of the spool 120 and discharges oil existing on the control port 116 side when the spool 120 rises together with the second operation groove 122b. To the side.
  • the flow paths 126a and 126b include a first flow path 126a extending in the longitudinal direction of the spool 120 and a second flow path formed under the first flow path 126a and formed at right angles with the first flow path 126a. 126b.
  • the flow paths 126a and 126b of this structure connect the discharge port 144 and the solenoid 200 of the adjusting screw 140 to discharge the oil filled in the solenoid 200 to the outside or the outside when the spool 120 is moved. Allow oil to flow in.
  • the spring 130 is installed between the upper portion of the spool 120, more specifically, between the spool 120 and the adjusting screw 140, while elastically supporting the spool 120 downward while moving the spool 120. Absorb the shock that occurs.
  • the adjusting screw 140 is formed in a cylindrical shape so as to be inserted into the outlet 118, the outer peripheral surface is formed with a screw thread 142 for screwing, the discharge port 144 is formed in the center. .
  • the adjusting screw 140 is compressed through the spring 130 to adjust the elasticity applied to the spool 120 to limit the movement of the spool 120 is introduced through the supply port 114 and discharged to the control port 116 The oil pressure.
  • the solenoid 200 includes a case 210, a bobbin 220 installed inside the case 210, a coil 230 wound around an outer circumferential surface of the bobbin 220, and a core coupled to an upper portion of the bobbin 220.
  • the yoke 250 coupled to the lower portion of the bobbin 220, the plunger 260 installed to be movable up and down inside the core 240 and the yoke 250, and the core 240.
  • a rod 270 coupled to the plunger 260.
  • the case 210 is formed of a cylinder having an upper and a lower opening, and the bobbin 220, the coil 230, the core 240, the yoke 250, the plunger 260, and the rod 270 described above. And the bottom of the holder 110 of the valve 100 is located.
  • the upper and lower ends of the case 210 are caulked by a press or the like as shown in FIG. 1, which simultaneously forms the valve 100 and the solenoid 200 and at the same time the upper part of the case 210. This is to prevent separation of the holder 110 and the yoke 250 respectively inserted through the lower part and the lower part.
  • the bobbin 220 is formed in a hollow spool shape so that a part of the core 240 and the yoke 250 can be inserted through the top and the bottom, and the coil generating the magnetic field when the power is applied can be wound. .
  • the bobbin 220 prevents electrical communication between the coil 230 and the core 240 as an insulator and between the coil 230 and the yoke 250.
  • the core 240 has a cylindrical shape with a flange 242 formed thereon. An upper end of the core 240 is inserted into the lower end of the holder 110, and an annular mounting groove 244 is formed on an upper outer circumferential surface of the core 240 inserted into the holder 110, and the mounting groove 244 O-ring 244r is installed. Inside the core 240, a first core hollow portion 246 is formed in which magnetic force is concentrated in a portion adjacent to the plunger 260, and one end of the plunger 260 is partially accommodated in the first core hollow portion 246. do.
  • a second core hollow portion 248 having a diameter smaller than that of the first core hollow portion 246 is formed at an upper end of the first core hollow portion 246, and a rod 270 is formed in the second core hollow portion 248. The top of is accommodated.
  • the yoke 250 is formed in a shape corresponding to the core 240. That is, the flange 252 is formed in a lower portion of the cylindrical shape, the first yoke hollow portion 254 is formed in a portion adjacent to the plunger 260, the first yoke hollow portion 254 of the plunger 260 The other end is partially accommodated.
  • a second yoke hollow portion 256 having a diameter smaller than that of the first yoke hollow portion 254 is formed below the first yoke hollow portion 254, and a rod 270 is formed in the second yoke hollow portion 256. The bottom of is accommodated.
  • the core 240 and the yoke 250 of the above-described shape are installed to be spaced apart by a predetermined interval, for example, it is preferably spaced at intervals of 1.5 ⁇ 2.5mm. If the separation distance between the core 240 and the yoke 250 is larger than the above-mentioned range, the magnetic force decreases, so that the rise of the plunger 260 is not smooth. On the other hand, if the separation distance is smaller than the above-mentioned range, there is a high possibility of malfunction because the return of the plunger 260 is not smooth when the power is off.
  • first and second bushings 282 and 284 are press-fitted into the second core hollow portion 248 of the core 240 and the second yoke hollow portion 256 of the yoke 250, respectively.
  • the first and second bushings 282 and 284 smooth the vertical reciprocation of the plunger 260 by excluding the interference according to the processing degree of the core 240, the yoke 250 and the plunger 260, and the plunger 260. Minimize left and right flow and tilt.
  • a guide 286 may be further provided between the core 240 and the yoke 250.
  • the guide 286 integrally forms the core 240 and the yoke 250, thereby preventing deformation of the transmission solenoid 200 when the external force is applied and improving durability.
  • the guide 286 is formed in a hollow cylindrical shape so as to surround a portion of the core 240 and the yoke 250 together, the core 240 and the yoke (with which the guide 286 is mounted) A stepped portion is formed on the outer circumferential surface of 250.
  • the plunger 260 is a metal rod that moves up and down inside the core 240 and the yoke 250 by the magnetic field generated by the coil 230.
  • the rod 270 is moved up and down by the plunger 260 and is a means for raising or lowering the spool 120 and is coupled through the plunger 260.
  • FIG 3 is a state in which power is not applied to the solenoid 200.
  • the spool 120, the plunger 260, and the rod 270 are positioned below by the spring 130 installed on the upper portion of the holder 110. Therefore, since the connection of the supply port 114 and the control port 116 is blocked by the spool 120, even if the oil (P) is supplied through the supply port 114 is not transferred to the control port 116.
  • FIG. 4 is a state in which power is applied to the solenoid 200. That is, power is applied to the solenoid 200 to generate a magnetic field in the coil 230, and the plunger 260 moves by the generated magnetic field to raise the rod 270 and the spool 120.
  • the supply port 114 and the control port 116 are connected to each other by the first operation groove 122a of the spool 120. Therefore, after the oil P introduced through the supply port 114 is controlled to a predetermined pressure in the course of passing through the first operation groove 122a, the oil C is discharged through the control port 116.
  • the inside of the solenoid 200 (more specifically, the first core hollow part 246 and the second core hollow part 248) is compressed, so that the solenoid ( The oil filled in the inside of the 200 is discharged through the discharge port 144 via the flow paths 126a and 126b.
  • the oil pump control valve described above it is possible to control the movement of the spool 120 through the current value applied to the solenoid 200. That is, since the opening amount of the control port 116 is controlled when the movement amount of the spool 120 is controlled, the pressure of the oil discharged through the control port 116 may be adjusted. Therefore, when operating the oil pump control valve, even if the engine speed increases, the pressure of the oil discharged to the engine through the oil pump control valve can be kept constant (see FIG. 5).
  • the driving force of the oil pump can be kept constant regardless of the number of engine revolutions, thereby preventing the engine driving force from being unnecessarily overused and improving the fuel efficiency of the engine. Can be.
  • the oil filled in the solenoid is discharged to the outside when the spool 120 and the plunger 260 are moved out, or the external oil flows into the solenoid. Can be. Therefore, it is possible to remove the internal residual pressure of the oil pump control valve, thereby improving the operability of the spool 120.
  • the residual pressure of the control port 116 can be removed through the second operation groove 122b and the third protrusion 124c formed on the upper portion of the spool 120, the operability of the spool 120 can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The present invention relates to an oil control valve capable of maintaining constant oil pressure, the oil of which is pumped from an oil pump and then discharged into an engine, the oil control valve comprising a valve for controlling the inflow and the outflow of oil, and a solenoid for operating the valve. Among the described features, the valve comprises a holder, and a spool disposed therein. The holder, which is tubular in shape, is provided with a discharge outlet on one end, and is provided with supply and control ports, which are connected to the interior central space thereof, on the outer circumferential surface. Additionally, the spool, formed in a multi-section rod shape, is provided with an operational groove, on the outer circumferential surface, which connects the supply port and the control port, and a fluid passageway, in the interior thereof, which connects the discharge outlet and the solenoid. According to the features described above, when the spool moves due to the solenoid, which is disposed at the other end of the holder, either the oil in the interior of the solenoid is discharged via the discharge outlet after passing through the fluid passageway, or the oil flows into the interior of the solenoid via the fluid passageway after passing through the discharge outlet.

Description

오일펌프 컨트롤 밸브Oil pump control valve
본 발명은 오일펌프 컨트롤 밸브에 관한 것으로, 더욱 자세하게는 오일펌프에서 압송되어 엔진으로 토출되는 오일의 압력을 일정하게 유지할 수 있는 오일펌프 컨트롤 밸브에 관한 것이다.The present invention relates to an oil pump control valve, and more particularly, to an oil pump control valve capable of maintaining a constant pressure of oil pumped from an oil pump and discharged to an engine.
자동차의 엔진은 엔진에 장착된 각종 부품들의 윤활 및 냉각을 위하여 오일이 순환하도록 설계된다. 예를 들어, 엔진에는 오일을 순환시키기 위한 오일펌프와, 오일펌프에 의해 압송되는 오일의 압력이 과도하게 상승하는 것을 방지하기 위한 릴리프밸브가 설치된다.The engine of an automobile is designed to circulate oil for lubrication and cooling of various parts mounted on the engine. For example, the engine is provided with an oil pump for circulating oil and a relief valve for preventing an excessive rise in the pressure of the oil pumped by the oil pump.
선행기술(대한민국특허공개공보 제10-2011-0056811호)을 참조하여 오일펌프에 대해 살펴보면 다음과 같다. 도 6에 도시된 바와 같이, 오일펌프(1)는, 이송로(12)가 내부에 형성된 하우징(10)과, 이송로(12) 상에 설치된 릴리프밸브(20)를 포함하여 구성된다. 상술한 구성에 따르면, 하우징(10)의 하부로 유입된 오일이 이송로(12)를 따라 이송되고, 그 이송과정에서 소정의 압력으로 압축된 후 하우징(10)의 측면을 통해 토출된다. 이때, 이송로(12) 상에 설치된 릴리프밸브(20)는 토출되는 오일의 압력이 과도하게 상승할 경우 이송되는 오일의 일부를 외부로 배출시킨다. 즉, 토출되는 오일의 압력이 설정된 압력 이상이 되면 릴리프밸브(20)가 작동하여 드레인 포트(22)를 개방함으로써 오일의 일부를 배출시킨다.Looking at the oil pump with reference to the prior art (Korean Patent Publication No. 10-2011-0056811) as follows. As shown in FIG. 6, the oil pump 1 includes a housing 10 having a transfer path 12 formed therein and a relief valve 20 provided on the transfer path 12. According to the above-described configuration, the oil introduced into the lower portion of the housing 10 is conveyed along the conveying path 12, is compressed to a predetermined pressure in the conveying process and then discharged through the side surface of the housing 10. In this case, the relief valve 20 installed on the conveying path 12 discharges a part of the conveyed oil to the outside when the pressure of the discharged oil is excessively increased. That is, when the pressure of the discharged oil is more than the set pressure, the relief valve 20 is operated to open a drain port 22 to discharge a part of the oil.
그런데, 상기한 바와 같은 구조의 오일펌프(1)는 캠축에 의해 작동되므로, 엔진의 회전수(revolutions per minute; rpm)가 상승할 경우 오일펌프(1)에서 토출되는 오일의 압력 또한 상승하게 된다. 따라서 엔진에서 순환되는 오일의 압력이 일정하게 유지되지 못하므로 실린더헤드나 실린더블록 등의 각종 부품들의 윤활 및 냉각이 원활히 이루어지지 않으며, 특히 각종 부품에 과도한 압력을 인가하여 내구성을 크게 저하시키는 원인으로 작용하게 된다.However, since the oil pump 1 having the above-described structure is operated by the camshaft, when the revolutions per minute (rpm) of the engine increases, the pressure of oil discharged from the oil pump 1 also increases. . Therefore, since the pressure of the oil circulated in the engine cannot be kept constant, lubrication and cooling of various parts such as the cylinder head or the cylinder block are not performed smoothly, and in particular, excessive pressure is applied to the various parts to cause a significant decrease in durability. It will work.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 오일펌프에서 압송되어 엔진으로 토출되는 오일의 압력을 일정하게 유지할 수 있는 오일펌프 컨트롤 밸브를 제공하는데 그 목적이 있다.An object of the present invention is to provide an oil pump control valve capable of maintaining a constant pressure of oil pumped from an oil pump and discharged to an engine.
또한, 본 발명은 밸브의 내부 잔압을 제거하여 작동성을 향상시킬 수 있는 오일펌프 컨트롤 밸브의 제공을 목적으로 한다.In addition, an object of the present invention is to provide an oil pump control valve that can improve the operability by removing the internal residual pressure of the valve.
상기 목적을 달성하기 위한 본 발명에 의한 오일펌프 컨트롤 밸브는, 유체(이하, 오일이라고도 함)의 출입을 단속하는 밸브와, 상기 밸브를 작동시키는 솔레노이드를 포함한다.An oil pump control valve according to the present invention for achieving the above object includes a valve for controlling the inflow and out of fluid (hereinafter also referred to as oil), and a solenoid for operating the valve.
상술한 구성요소 중 상기 밸브는, 홀더와, 홀더의 내부에 설치된 스풀로 구성된다. 홀더는 일단에 배출구가 마련된 관 형상으로 형성되고, 중공의 내부와 연결된 공급포트 및 제어포트가 외주면에 형성된다. 또한, 스풀은 다단의 봉 형상으로 형성되고, 상기 공급포트와 상기 제어포트를 연결하는 작동홈이 외주면에 형성되며, 상기 배출구와 상기 솔레노이드를 연결하는 유로가 내부에 형성된다.Among the above-mentioned components, the valve is composed of a holder and a spool provided inside the holder. The holder is formed in a tubular shape having a discharge port at one end, and a supply port and a control port connected to the inside of the hollow are formed on the outer circumferential surface. In addition, the spool is formed in a multi-stage rod shape, the operation groove for connecting the supply port and the control port is formed on the outer peripheral surface, the flow path for connecting the outlet and the solenoid is formed therein.
상술한 구성에 따르면 상기 홀더의 타단에 설치된 솔레노이드에 의해 상기 스풀의 이동할 경우 상기 솔레노이드 내부의 오일이 상기 유로를 거쳐 상기 배출구를 통해 배출되거나, 상기 배출구를 통해 유입된 오일이 상기 유로를 거쳐 상기 솔레노이드 내부로 유입된다.According to the above configuration, when the spool is moved by a solenoid installed at the other end of the holder, the oil inside the solenoid is discharged through the outlet through the flow path, or the oil introduced through the outlet is passed through the flow path through the solenoid. Flows inside.
상술한 본 발명은 스풀에 형성된 작동홈을 통해 공급포트에서 유입되는 오일의 압력을 일정하게 조절하여 제어포트로 배출하므로, 엔진의 회전수가 상승하여 오일펌프로부터 과도한 압력의 오일 공급되더라도 엔진으로 토출되는 오일의 압력을 일정하게 유지할 수 있다. 따라서 엔진의 실린더헤드나 실린더블록 등에 설치된 각종 부품들의 윤활 및 냉각을 원활하게 할 수 있으며, 과도한 압력으로 인한 각종 부품의 내구성 저하를 방지할 수 있다.The present invention described above is constantly discharged to the control port by adjusting the pressure of the oil flowing from the supply port through the working groove formed in the spool, so that even if the oil is supplied to the engine with an excessive pressure from the oil pump to be discharged to the engine The pressure of the oil can be kept constant. Therefore, it is possible to smooth the lubrication and cooling of the various parts installed in the cylinder head or cylinder block of the engine, it is possible to prevent the deterioration of durability of the various parts due to excessive pressure.
또한, 본 발명은 홀더의 일단에 형성된 배출구와 홀더의 타단에 설치된 솔레노이드를 연결하는 유로가 스풀의 내부에 형성되므로, 밸브의 내부 잔압을 제거하여 밸브의 작동성을 향상시킬 수 있다.In addition, in the present invention, since a flow path connecting the outlet formed at one end of the holder and the solenoid installed at the other end of the holder is formed inside the spool, the operability of the valve can be improved by removing the residual pressure inside the valve.
도 1은 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 단면도.1 is a cross-sectional view of an oil pump control valve according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 일부를 확대한 도면.Figure 2 is an enlarged view of a portion of the oil pump control valve according to an embodiment of the present invention.
도 3과 도 4는 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 작동상태도.3 and 4 is an operating state of the oil pump control valve according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 온/오프시 엔진으로 토출되는 오일의 압력 변화를 변화를 도시한 그래프.5 is a graph showing a change in the pressure change of the oil discharged to the engine when the on / off of the oil pump control valve according to an embodiment of the present invention.
도 6은 종래기술에 의한 자동차용 오일펌프의 단면도.6 is a cross-sectional view of the oil pump for a vehicle according to the prior art.
첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이하, 본 발명에 따른 실시예를 설명함에 있어, 그리고 각 도면의 구성요소들에 참조부호를 부가함에 있어, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 부가하였다.With reference to the accompanying drawings will be described embodiments of the present invention; In the following description of embodiments according to the present invention, and in adding reference numerals to the components of each drawing, the same reference numerals are added to the same elements as much as possible even though they are shown in different drawings.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브는, 오일의 출입을 단속하는 밸브(100)와, 밸브(100)를 작동시키는 솔레노이드(200)를 포함한다.As shown in FIG. 1, the oil pump control valve according to the exemplary embodiment of the present invention includes a valve 100 for controlling oil in and out, and a solenoid 200 for operating the valve 100.
상술한 구성요소(100,200) 중 밸브(100)는 복수의 유로를 가진 오일펌프(도 6의 1)의 하우징(도 6의 10)에 설치되어, 오일펌프(1)에서 공급되는 오일에 소정의 제어압력을 인가하여 실린더헤드(미도시)나 실린더블록(미도시) 등으로 배출되는 오일이 일정한 압력을 갖도록 한다.Of the above-described components 100 and 200, the valve 100 is installed in the housing (10 of FIG. 6) of the oil pump (1 of FIG. 6) having a plurality of flow paths, and the valve 100 is provided to the oil supplied from the oil pump 1. The control pressure is applied so that the oil discharged to the cylinder head (not shown) or the cylinder block (not shown) has a constant pressure.
밸브(100)의 구조를 살펴보면, 홀더(110)와, 홀더(110)의 내부에 이동 가능하게 설치된 스풀(120)과, 홀더(110)의 상단 내부(즉, 스풀(120)의 상부)에 구비된 스프링(130)과, 조절스크루(140)를 포함한다.Looking at the structure of the valve 100, the holder 110, the spool 120 is installed to be movable inside the holder 110, the upper end of the holder 110 (that is, the upper portion of the spool 120) It includes a spring 130 and the adjustment screw 140 provided.
홀더(110)는 소정의 길이를 가진 관 형상으로 형성된다. 홀더(110)의 내부에는 스풀(120)의 이동을 위한 공간인 작동공간(112)이 형성된다. 홀더(110)의 중단 외주면에는, 오일탱크(미도시)에서 공급된 오일이 유입되는 공급포트(114)와, 홀더(110)에서 소정의 압력으로 제어된 오일이 배출되는 제어포트(116)가 형성된다. 또한, 홀더(110)의 상단에는 스풀(120)의 이동시 솔레노이드(200) 내부에 충전된 오일이 외부로 배출되거나 외부의 오일이 유입되는 배출구(118)가 형성된다. 또한, 홀더(110)의 하단 외주면에는 오일의 누출을 방지하기 위한 오링(119r)이 설치되는 장착홈(119)이 형성된다. Holder 110 is formed in a tubular shape having a predetermined length. An operating space 112, which is a space for moving the spool 120, is formed inside the holder 110. On the outer peripheral surface of the holder 110, a supply port 114 into which oil supplied from an oil tank (not shown) flows, and a control port 116 through which the oil controlled at a predetermined pressure is discharged from the holder 110 is provided. Is formed. In addition, the upper end of the holder 110 is formed with a discharge port 118 through which the oil filled in the solenoid 200 is discharged to the outside or the external oil flows in when the spool 120 is moved. In addition, the lower outer peripheral surface of the holder 110 is formed with a mounting groove 119 is installed O-ring (119r) for preventing the leakage of oil.
공급포트(114)와 제어포트(116)는 도 1에 도시된 것처럼 홀더(110)의 길이방향으로 이격되게 형성되고, 홀더(110)의 내부에 형성된 작동공간(112)에 각각 연결된다. 이러한 공급포트(114)와 제어포트(116)는 홀더(110)의 외주면을 따라 방사상으로 배치된 다수개로 이루어진다. 또한, 다수개의 공급포트(114)가 배치된 홀더(110)의 외주면과 제어포트(116)가 형성된 홀더(110)의 외주면에 공급포트(114)와 제어포트(116)를 통해 출입하는 오일에 포함된 이물질을 제거하기 위한 필터(114f,116f)가 설치된다.The supply port 114 and the control port 116 are formed to be spaced apart in the longitudinal direction of the holder 110, as shown in Figure 1, respectively connected to the working space 112 formed inside the holder (110). The supply port 114 and the control port 116 is composed of a plurality of radially arranged along the outer peripheral surface of the holder (110). In addition, the outer peripheral surface of the holder 110 in which the plurality of supply ports 114 are disposed and the outer peripheral surface of the holder 110 in which the control port 116 is formed are supplied to the oil entering and exiting through the supply port 114 and the control port 116. Filters 114f and 116f are installed to remove the foreign matter contained therein.
배출구(118)는 조절스크루(140)의 나사 결합이 가능하도록 내주면에 나사산(118s)이 형성된다. 배출구(118)에 설치되는 조절스크루(140)에는 오일이 실질적으로 출입되는 배출포트(144)가 형성된다.The outlet 118 is formed with a thread 118s on the inner circumferential surface to enable screwing of the adjusting screw 140. The adjusting screw 140 installed in the outlet 118 is formed with a discharge port 144 through which oil is substantially entered.
장착홈(119)은 홀더(110)의 하단 외주면을 따라 형성된 사각 단면의 환형이고, 오링(119r)은 장착홈(119)에 삽입되는 원형 단면의 고리형상이다. 오링(119r)은 장착홈(119)에 삽입된 상태에서 오일펌프 컨트롤 밸브가 설치되는 오일펌프 하우징(도 6의 10)의 설치공(미도시)에 밀착되어, 공급포트(114)로 공급되는 오일, 그리고 제어포트(116) 및 배출포트(144)에서 배출된 오일이 오일펌프 컨트롤 밸브와 오일펌프 하우징(도 6의 10) 사이로 누출되는 것을 방지한다.The mounting groove 119 is an annular shape of a square cross section formed along the outer peripheral surface of the lower end of the holder 110, the O-ring 119r is a ring shape of a circular cross section inserted into the mounting groove 119. O-ring 119r is in close contact with the installation hole (not shown) of the oil pump housing (10 of FIG. 6) in which the oil pump control valve is installed in the inserted groove 119 is supplied to the supply port 114 The oil and oil discharged from the control port 116 and the discharge port 144 are prevented from leaking between the oil pump control valve and the oil pump housing (10 in FIG. 6).
본 실시예에서는 장착홈(119)과 오링(119r)이 공급포트(114)의 하부에만 마련된 것으로 기재하고 있으나 반드시 이에 한정되는 것은 아니다. 예를 들어, 공급포트(114)와 제어포트(116) 사이, 제어포트(116)의 상부(제어포트(116)와 배출포트(144) 사이)에도 추가적으로 마련될 수 있다. 이와 같이 장착홈(119)과 오링(119r)을 더 마련할 경우 오일펌프 컨트롤 밸브와 오일펌프 하우징(도 10) 사이로 오일이 누출되는 비정상적인 유동을 방지할 수 있을 뿐만 아니라, 제어포트(116)에서 배출된 오일이 공급포트(114) 또는 배출포트(144)로 유입되거나, 배출포트(144)에서 배출된 오일이 공급포트(114) 또는 제어포트(142)로 유입되는 등의 비정상적인 유동을 추가적으로 방지할 수 있다.In this embodiment, the mounting groove 119 and the O-ring 119r are described as being provided only at the lower portion of the supply port 114, but are not necessarily limited thereto. For example, it may be further provided between the supply port 114 and the control port 116, the upper portion of the control port 116 (between the control port 116 and the discharge port 144). In this case, when the mounting groove 119 and the O-ring 119r are further provided, not only an abnormal flow of oil leakage between the oil pump control valve and the oil pump housing (FIG. 10) can be prevented, and the control port 116 To prevent abnormal flow, such as discharged oil flows into the supply port 114 or the discharge port 144 or oil discharged from the discharge port 144 flows into the supply port 114 or the control port 142. can do.
스풀(120)은 소정의 길이를 가진 봉 형상으로 형성된다. 스풀(120)의 외주면에는 복수의 작동홈(122a,122b)과 돌기(124a~124c)가 형성되고, 스풀(120)의 내부에는 유로(126a,126b)가 형성된다.The spool 120 is formed in a rod shape having a predetermined length. A plurality of operating grooves 122a and 122b and protrusions 124a to 124c are formed on the outer circumferential surface of the spool 120, and flow paths 126a and 126b are formed inside the spool 120.
제1작동홈(122a)과 제2작동홈(122b)은 스풀(120)의 외주면을 따라 형성된 환형의 홈이며, 제1작동홈(122a)은 스풀(120)의 중단에 형성되고, 제2작동홈(122b)은 스풀(120)의 상단에 형성된다. 또한, 제1돌기(124a)와 제2돌기(124b)는 스풀(120)의 외주면을 따라 형성된 환형의 돌기이며, 제1돌기(124a)는 제1작동홈(122a)과 제2작동홈(122b) 사이에 형성되고, 제2돌기(124b)는 제1작동홈(122a)의 하부에 형성된다. 반면, 제3돌기(124c)는 제1 및 제2돌기(124a,124b)와는 달리 도 2에 도시된 것처럼 스풀(120)의 외주면을 따라 방사상으로 배치된 다수개로 이루어지며, 제2작동홈(122b)의 상부에 형성된다.The first operating groove 122a and the second operating groove 122b are annular grooves formed along the outer circumferential surface of the spool 120, and the first operating groove 122a is formed at an interruption of the spool 120. The working groove 122b is formed at the top of the spool 120. In addition, the first protrusion 124a and the second protrusion 124b are annular protrusions formed along the outer circumferential surface of the spool 120, and the first protrusion 124a is the first operating groove 122a and the second operating groove ( It is formed between the 122b), the second projection 124b is formed in the lower portion of the first operating groove (122a). On the other hand, unlike the first and second protrusions 124a and 124b, the third protrusion 124c is formed of a plurality of radially arranged along the outer circumferential surface of the spool 120, as shown in FIG. 122b) is formed on top.
상술한 제1작동홈(122a)은 스풀(120)의 상승시 공급포트(114)와 제어포트(116)를 연결하여 공급포트(114)를 통해 유입된 오일이 제어포트(116) 측으로 배출되도록 한다. 제2작동홈(122b)은 제3돌기(124c)와 함께 스풀(120)의 상승시 제어포트(116) 측에 존재하는 오일을 배출포트(144) 측으로 배출한다. 또한, 제1돌기(124a)와 제2돌기(124b)는 스풀(120)의 이동시 공급포트(114)와 제어포트(116)의 연결을 차단함과 동시에 제1작동홈(122a)에 유입된 오일의 누출을 방지한다. 제3돌기(124c)는 스풀(120)의 이동을 안내함과 동시에 제2작동홈(122b)과 함께 스풀(120)의 상승시 제어포트(116) 측에 존재하는 오일을 배출포트(144) 측으로 배출한다.The first operation groove 122a described above connects the supply port 114 and the control port 116 when the spool 120 is raised so that oil introduced through the supply port 114 is discharged to the control port 116 side. do. The second operation groove 122b discharges the oil existing at the control port 116 side when the spool 120 rises together with the third protrusion 124c to the discharge port 144. In addition, the first protrusion 124a and the second protrusion 124b block the connection between the supply port 114 and the control port 116 when the spool 120 moves and flow into the first operating groove 122a. Prevent oil leakage. The third protrusion 124c guides the movement of the spool 120 and discharges oil existing on the control port 116 side when the spool 120 rises together with the second operation groove 122b. To the side.
유로(126a,126b)는, 스풀(120)의 길이방향으로 연장된 제1유로(126a)와, 제1유로(126a)의 하부에 형성되고 제1유로(126a)와 직각으로 형성된 제2유로(126b)로 이루어진다. 이러한 구조의 유로(126a,126b)는 조절스크루(140)의 배출포트(144)와 솔레노이드(200)를 연결하여 스풀(120)의 이동시 솔레노이드(200) 내부에 충전된 오일을 외부로 배출하거나 외부의 오일이 유입되도록 한다.The flow paths 126a and 126b include a first flow path 126a extending in the longitudinal direction of the spool 120 and a second flow path formed under the first flow path 126a and formed at right angles with the first flow path 126a. 126b. The flow paths 126a and 126b of this structure connect the discharge port 144 and the solenoid 200 of the adjusting screw 140 to discharge the oil filled in the solenoid 200 to the outside or the outside when the spool 120 is moved. Allow oil to flow in.
스프링(130)은 스풀(120)의 상부, 좀 더 상세하게는 스풀(120)과 조절스크루(140) 사이에 설치되어, 스풀(120)을 하향으로 탄성 지지함과 동시에 스풀(120)의 이동시 발생하는 충격을 흡수한다.The spring 130 is installed between the upper portion of the spool 120, more specifically, between the spool 120 and the adjusting screw 140, while elastically supporting the spool 120 downward while moving the spool 120. Absorb the shock that occurs.
조절스크루(140)는 배출구(118)에 삽입되게 결합될 수 있도록 원기둥형상으로 형성되고, 그 외주면에는 나사 결합을 위한 나사산(142)이 형성되며, 중앙에는 상술한 배출포트(144)가 형성된다. 이러한 조절스크루(140)는 스프링(130)을 압축시켜 스풀(120)에 인가되는 탄성을 조절하여 스풀(120)의 이동을 제한함으로써 공급포트(114)를 통해 유입되어 제어포트(116)로 배출되는 오일의 압력을 조절한다.The adjusting screw 140 is formed in a cylindrical shape so as to be inserted into the outlet 118, the outer peripheral surface is formed with a screw thread 142 for screwing, the discharge port 144 is formed in the center. . The adjusting screw 140 is compressed through the spring 130 to adjust the elasticity applied to the spool 120 to limit the movement of the spool 120 is introduced through the supply port 114 and discharged to the control port 116 The oil pressure.
솔레노이드(200)는, 케이스(210)와, 케이스(210)의 내부에 설치된 보빈(220)과, 보빈(220)의 외주면에 감긴 코일(230)과, 보빈(220)의 상부에 결합된 코어(240)와, 보빈(220)의 하부에 결합된 요크(250)와, 코어(240) 및 요크(250)의 내부에서 상하로 이동 가능하게 설치된 플런저(260)와, 코어(240)를 관통하여 플런저(260)에 결합되는 로드(270)를 포함한다.The solenoid 200 includes a case 210, a bobbin 220 installed inside the case 210, a coil 230 wound around an outer circumferential surface of the bobbin 220, and a core coupled to an upper portion of the bobbin 220. 240, the yoke 250 coupled to the lower portion of the bobbin 220, the plunger 260 installed to be movable up and down inside the core 240 and the yoke 250, and the core 240. And a rod 270 coupled to the plunger 260.
케이스(210)는 상부 및 하부가 개방된 원통으로 형성되고, 그 내부에는 상술한 보빈(220), 코일(230), 코어(240), 요크(250), 플런저(260), 로드(270) 및 밸브(100)의 홀더(110) 하단이 위치된다. 이때, 케이스(210)의 상단과 하단은 도 1에 도시된 바와 같이 프레스 등에 의해 코킹(caulking)되는데, 이는 밸브(100)와 솔레노이드(200)를 일체로 형성함과 동시에 케이스(210)의 상부와 하부를 통해 각각 삽입된 홀더(110)와 요크(250)의 이탈을 방지하기 위함이다.The case 210 is formed of a cylinder having an upper and a lower opening, and the bobbin 220, the coil 230, the core 240, the yoke 250, the plunger 260, and the rod 270 described above. And the bottom of the holder 110 of the valve 100 is located. In this case, the upper and lower ends of the case 210 are caulked by a press or the like as shown in FIG. 1, which simultaneously forms the valve 100 and the solenoid 200 and at the same time the upper part of the case 210. This is to prevent separation of the holder 110 and the yoke 250 respectively inserted through the lower part and the lower part.
보빈(220)은 상부와 하부를 통해 코어(240)와 요크(250)의 일부가 삽입될 수 있도록, 그리고 전원 인가시 자기장을 발생하는 코일이 감길 수 있도록 중공의 스풀(spool)형상으로 형성된다. 이러한 보빈(220)은 절연체로 코일(230)과 코어(240) 사이, 그리고 코일(230)과 요크(250) 사이의 전기적인 소통을 방지한다.The bobbin 220 is formed in a hollow spool shape so that a part of the core 240 and the yoke 250 can be inserted through the top and the bottom, and the coil generating the magnetic field when the power is applied can be wound. . The bobbin 220 prevents electrical communication between the coil 230 and the core 240 as an insulator and between the coil 230 and the yoke 250.
코어(240)는 상부에 플랜지(242)가 형성된 원통형상이다. 코어(240)의 상단은 홀더(110)의 하단 내부로 삽입되며, 홀더(110)에 삽입되는 코어(240)의 상단 외주면에는 환형의 장착홈(244)이 형성되고, 장착홈(244)에 오링(244r)이 설치된다. 코어(240)의 내부에는 플런저(260)와 인접한 부분에 자기력이 집중되는 제1코어중공부(246)가 형성되고, 제1코어중공부(246) 내에는 플런저(260)의 일단이 일부 수용된다. 또한, 제1코어중공부(246)의 상단에는 제1코어중공부(246)보다 작은 직경의 제2코어중공부(248)가 형성되고, 제2코어중공부(248)에는 로드(270)의 상단이 수용된다.The core 240 has a cylindrical shape with a flange 242 formed thereon. An upper end of the core 240 is inserted into the lower end of the holder 110, and an annular mounting groove 244 is formed on an upper outer circumferential surface of the core 240 inserted into the holder 110, and the mounting groove 244 O-ring 244r is installed. Inside the core 240, a first core hollow portion 246 is formed in which magnetic force is concentrated in a portion adjacent to the plunger 260, and one end of the plunger 260 is partially accommodated in the first core hollow portion 246. do. In addition, a second core hollow portion 248 having a diameter smaller than that of the first core hollow portion 246 is formed at an upper end of the first core hollow portion 246, and a rod 270 is formed in the second core hollow portion 248. The top of is accommodated.
요크(250)는 코어(240)와 대응되는 형상으로 형성된다. 즉, 하부에 플랜지(252)가 형성된 원통형상으로 형성되고, 플런저(260)와 인접한 부분에 제1요크중공부(254)가 형성되며, 제1요크중공부(254)에 플런저(260)의 타단이 일부 수용된다. 또한, 제1요크중공부(254)의 하부에는 제1요크중공부(254)보다 직경이 작은 제2요크중공부(256)가 형성되며, 제2요크중공부(256)에는 로드(270)의 하단이 수용된다.The yoke 250 is formed in a shape corresponding to the core 240. That is, the flange 252 is formed in a lower portion of the cylindrical shape, the first yoke hollow portion 254 is formed in a portion adjacent to the plunger 260, the first yoke hollow portion 254 of the plunger 260 The other end is partially accommodated. In addition, a second yoke hollow portion 256 having a diameter smaller than that of the first yoke hollow portion 254 is formed below the first yoke hollow portion 254, and a rod 270 is formed in the second yoke hollow portion 256. The bottom of is accommodated.
상술한 형상의 코어(240)와 요크(250)는 일정 간격 이격되게 설치되는데, 일례로 1.5~2.5mm의 간격으로 이격되는 것이 바람직하다. 만약, 코어(240)와 요크(250)의 이격거리가 상술한 범위보다 크면 자기력이 감소하여 플런저(260)의 상승이 원활하지 못하다. 반면, 이격거리가 상술한 범위보다 작으면 전원 오프(off) 시 플런저(260)의 복귀가 원활하지 못하여 오작동의 우려가 높다.The core 240 and the yoke 250 of the above-described shape are installed to be spaced apart by a predetermined interval, for example, it is preferably spaced at intervals of 1.5 ~ 2.5mm. If the separation distance between the core 240 and the yoke 250 is larger than the above-mentioned range, the magnetic force decreases, so that the rise of the plunger 260 is not smooth. On the other hand, if the separation distance is smaller than the above-mentioned range, there is a high possibility of malfunction because the return of the plunger 260 is not smooth when the power is off.
한편, 코어(240)의 제2코어중공부(248) 및 요크(250)의 제2요크중공부(256)에는 제1 및 제2부싱(282,284)이 각각 압입된다. 제1 및 제2부싱(282,284)은 코어(240), 요크(250) 및 플런저(260)의 가공정도에 따른 간섭을 배제함으로써 플런저(260)의 상하 왕복운동을 원활하게 하며, 플런저(260)의 좌우 유동 및 기울어짐을 최소화한다.Meanwhile, first and second bushings 282 and 284 are press-fitted into the second core hollow portion 248 of the core 240 and the second yoke hollow portion 256 of the yoke 250, respectively. The first and second bushings 282 and 284 smooth the vertical reciprocation of the plunger 260 by excluding the interference according to the processing degree of the core 240, the yoke 250 and the plunger 260, and the plunger 260. Minimize left and right flow and tilt.
다른 한편, 코어(240)와 요크(250) 사이에는 가이드(286)를 추가로 마련될 수 있다. 이 가이드(286)는 코어(240)와 요크(250)를 일체로 형성함으로써 외력의 작용시 변속기용 솔레노이드(200)의 변형을 방지하고 내구성을 향상시킬 수 있다. 그 형상을 살펴보면, 가이드(286)는 코어(240)와 요크(250)의 일부 영역을 함께 둘러쌀 수 있도록 중공의 원기둥 형상으로 형성되고, 가이드(286)가 장착되는 코어(240)와 요크(250)의 외주면에는 단턱이 형성된다.On the other hand, a guide 286 may be further provided between the core 240 and the yoke 250. The guide 286 integrally forms the core 240 and the yoke 250, thereby preventing deformation of the transmission solenoid 200 when the external force is applied and improving durability. Looking at the shape, the guide 286 is formed in a hollow cylindrical shape so as to surround a portion of the core 240 and the yoke 250 together, the core 240 and the yoke (with which the guide 286 is mounted) A stepped portion is formed on the outer circumferential surface of 250.
플런저(260)는 코일(230)에서 발생한 자기장에 의해 코어(240)와 요크(250)의 내부에서 상하로 이동하는 금속 막대이다. 또한, 로드(270)는 플런저(260)에 의해 상하로 이동하며 스풀(120)을 상승 또는 하강시키는 수단으로, 플런저(260)를 관통하여 결합된다.The plunger 260 is a metal rod that moves up and down inside the core 240 and the yoke 250 by the magnetic field generated by the coil 230. In addition, the rod 270 is moved up and down by the plunger 260 and is a means for raising or lowering the spool 120 and is coupled through the plunger 260.
도 3과 도 4를 참조하여 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 작동과정을 살펴보면 다음과 같다.Looking at the operation of the oil pump control valve according to an embodiment of the present invention with reference to Figure 3 and 4 as follows.
도 3은 솔레노이드(200)에 전원이 인가되지 않은 상태이다. 이 상태에서는 홀더(110)의 상부에 설치된 스프링(130)에 의해 스풀(120), 플런저(260) 및 로드(270)가 하부에 위치한다. 따라서 공급포트(114)와 제어포트(116)의 연결이 스풀(120)에 의해 차단되므로 공급포트(114)를 통해 오일(P)이 공급되더라도 제어포트(116)로 이송되지 않는다.3 is a state in which power is not applied to the solenoid 200. In this state, the spool 120, the plunger 260, and the rod 270 are positioned below by the spring 130 installed on the upper portion of the holder 110. Therefore, since the connection of the supply port 114 and the control port 116 is blocked by the spool 120, even if the oil (P) is supplied through the supply port 114 is not transferred to the control port 116.
도 4는 솔레노이드(200)로 전원이 인가된 상태이다. 즉, 솔레노이드(200)에 전원이 인가되어 코일(230)에서 자기장이 발생하고, 발생된 자기장에 의해 플런저(260)가 이동하며 로드(270) 및 스풀(120)을 상승시킨다. 상술한 과정을 통해 스풀(120)이 상승하면 스풀(120)의 제1작동홈(122a)에 의해 공급포트(114)와 제어포트(116)가 서로 연결된다. 따라서 공급포트(114)를 통해 유입된 오일(P)이 제1작동홈(122a)을 거치는 과정에서 소정의 압력으로 제어된 후 제어포트(116)를 통해 오일(C)이 배출된다.4 is a state in which power is applied to the solenoid 200. That is, power is applied to the solenoid 200 to generate a magnetic field in the coil 230, and the plunger 260 moves by the generated magnetic field to raise the rod 270 and the spool 120. When the spool 120 rises through the above-described process, the supply port 114 and the control port 116 are connected to each other by the first operation groove 122a of the spool 120. Therefore, after the oil P introduced through the supply port 114 is controlled to a predetermined pressure in the course of passing through the first operation groove 122a, the oil C is discharged through the control port 116.
또한, 스풀(120)과 플런저(260)가 상승하므로 솔레노이드(200)의 내부(좀 더 상세하게는 제1코어중공부(246)와 제2코어중공부(248))가 압축되므로, 솔레노이드(200)의 내부에 충전된 오일이 유로(126a,126b)를 거쳐 배출포트(144)를 통해 배출된다.In addition, since the spool 120 and the plunger 260 are raised, the inside of the solenoid 200 (more specifically, the first core hollow part 246 and the second core hollow part 248) is compressed, so that the solenoid ( The oil filled in the inside of the 200 is discharged through the discharge port 144 via the flow paths 126a and 126b.
반면, 솔레노이드(200)에 인가되던 전원이 차단되면 홀더(110)의 상부에 설치된 스프링(130)에 의해 스풀(120), 플런저(260) 및 로드(270)가 하강한다(도 3 참조). 이에, 솔레노이드(200)의 내부(좀 더 상세하게는 제1코어중공부(246)와 제2코어중공부(248))가 확장되므로, 외부의 오일이 배출포트(144)와 유로(126a,126b)를 거쳐 솔레노이드(200)의 내부로 유입된다.On the other hand, when the power applied to the solenoid 200 is cut off, the spool 120, the plunger 260 and the rod 270 are lowered by the spring 130 installed on the upper portion of the holder 110 (see FIG. 3). Thus, since the inside of the solenoid 200 (more specifically, the first core hollow portion 246 and the second core hollow portion 248) is expanded, the external oil is discharged to the discharge port 144 and the flow path 126a, It is introduced into the solenoid 200 via 126b).
상술한 오일펌프 컨트롤 밸브의 구성 및 작동에 따르면, 솔레노이드(200)로 인가되는 전류값을 통해 스풀(120)의 이동을 제어할 수 있다. 즉, 스풀(120)의 이동량을 제어할 경우 제어포트(116)의 개방량이 조절되므로 제어포트(116)를 통해 배출되는 오일을 압력을 조절할 수 있다. 따라서 오일펌프 컨트롤 밸브를 작동시킬 경우 엔진의 회전수가 상승하더라도 오일펌프 컨트롤 밸브를 통해 엔진으로 토출되는 오일의 압력을 일정하게 유지할 수 있다(도 5 참조). 결국, 본 실시예에 따른 오일펌프 컨트롤 밸브를 적용할 경우 엔진의 회전수에 관계없이 오일펌프의 구동력을 일정하게 유지할 수 있으므로, 엔진의 구동력이 불필요하게 초과 사용되는 것을 막아 엔진의 연비를 개선할 수 있다.According to the configuration and operation of the oil pump control valve described above, it is possible to control the movement of the spool 120 through the current value applied to the solenoid 200. That is, since the opening amount of the control port 116 is controlled when the movement amount of the spool 120 is controlled, the pressure of the oil discharged through the control port 116 may be adjusted. Therefore, when operating the oil pump control valve, even if the engine speed increases, the pressure of the oil discharged to the engine through the oil pump control valve can be kept constant (see FIG. 5). As a result, when the oil pump control valve according to the present embodiment is applied, the driving force of the oil pump can be kept constant regardless of the number of engine revolutions, thereby preventing the engine driving force from being unnecessarily overused and improving the fuel efficiency of the engine. Can be.
또한, 스풀(120)의 내부에 유로(126a,126b)가 형성되므로 스풀(120) 및 플런저(260)의 이동시 솔레노이드의 내부에 충전된 오일이 외부로 배출되거나 외부의 오일이 솔레노이드의 내부로 유입될 수 있다. 따라서 오일펌프 컨트롤 밸브의 내부 잔압을 제거할 수 있으며, 이를 통해 스풀(120)의 작동성을 향상시킬 수 있다. 특히, 스풀(120)의 상부에 형성된 제2작동홈(122b)과 제3돌기(124c)를 통해 제어포트(116)의 잔압을 제거할 수 있으므로 스풀(120)의 작동성을 더욱 향상시킬 수 있다In addition, since the flow paths 126a and 126b are formed in the spool 120, the oil filled in the solenoid is discharged to the outside when the spool 120 and the plunger 260 are moved out, or the external oil flows into the solenoid. Can be. Therefore, it is possible to remove the internal residual pressure of the oil pump control valve, thereby improving the operability of the spool 120. In particular, since the residual pressure of the control port 116 can be removed through the second operation groove 122b and the third protrusion 124c formed on the upper portion of the spool 120, the operability of the spool 120 can be further improved. have
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been described through the preferred embodiments, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes may be made without departing from the technical idea of the present invention. Those of ordinary skill will understand. Therefore, the protection scope of the present invention should be interpreted not by the specific embodiments, but by the matters described in the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (9)

  1. 유체의 출입을 단속하는 밸브와, 상기 밸브를 작동시키는 솔레노이드를 포함하는 오일펌프 컨트롤 밸브에 있어서,An oil pump control valve comprising a valve for intermitting fluid in and out, and a solenoid for operating the valve.
    상기 밸브는,The valve,
    일단에 배출구가 마련된 관 형상으로 형성되고, 중공의 내부와 연결된 공급포트 및 제어포트가 외주면에 형성된 관 형상의 홀더; 및A tubular holder formed in a tubular shape having an outlet formed at one end thereof and having a supply port and a control port connected to the inside of the hollow; And
    상기 홀더의 내부에 설치되고, 상기 공급포트와 상기 제어포트를 연결하는 작동홈이 외주면에 형성되며, 상기 배출구와 상기 솔레노이드를 연결하는 유로가 내부에 형성된 스풀을 포함하고,Is installed in the holder, the operating groove for connecting the supply port and the control port is formed on the outer peripheral surface, the flow path for connecting the outlet and the solenoid includes a spool formed therein,
    상기 홀더의 타단에 설치된 솔레노이드에 의해 상기 스풀이 이동하면, 상기 솔레노이드 내부의 유체가 상기 유로를 거쳐 상기 배출구를 통해 배출되거나, 상기 배출구를 통해 유입된 유체가 상기 유로를 거쳐 상기 솔레노이드 내부로 유입되는 것을 특징으로 하는 오일펌프 컨트롤 밸브.When the spool is moved by a solenoid installed at the other end of the holder, the fluid inside the solenoid is discharged through the outlet through the flow path, or the fluid introduced through the outlet flows into the solenoid through the flow path. Oil pump control valve, characterized in that.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 홀더의 일단에 설치되고 배출포트가 형성된 조절스크루; 및A control screw installed at one end of the holder and having a discharge port formed thereon; And
    상기 홀더와 상기 조절스크루 사이에 설치된 탄성수단을 더 포함하는 오일펌프 컨트롤 밸브.The oil pump control valve further comprises an elastic means installed between the holder and the adjustment screw.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 공급포트와 상기 제어포트는 상기 홀더의 길이방향으로 이격되고, 상기 홀더의 외주면을 따라 방사상으로 배치되며,The supply port and the control port is spaced apart in the longitudinal direction of the holder, disposed radially along the outer circumferential surface of the holder,
    상기 공급포트가 배치된 상기 홀더의 외주면과 상기 제어포트가 배치된 상기 홀더의 외주면에 필터가 설치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.An oil pump control valve, characterized in that a filter is installed on the outer peripheral surface of the holder, the supply port is arranged and the outer peripheral surface of the holder, the control port is arranged.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 홀더의 외주면에 환형의 장착홈이 형성되고, 상기 장착홈에 오링이 설치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.An annular mounting groove is formed on an outer circumferential surface of the holder, and an oil ring control valve is installed in the mounting groove.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 장착홈과 상기 오링은, 상기 홀더의 일단과 상기 공급포트 사이, 상기 공급포트와 상기 제어포트 사이, 그리고 상기 제어포트와 상기 홀더의 타단 사이 중 적어도 한 곳에 마련된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The mounting groove and the O-ring are provided in at least one of one end of the holder and the supply port, between the supply port and the control port, and between the control port and the other end of the holder. .
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 솔레노이드는,The solenoid is,
    외주면에 코일이 감긴 보빈;Bobbin coiled around its outer circumference;
    상기 보빈의 양단에 각각 결합된 코어 및 요크;Cores and yokes respectively coupled to both ends of the bobbin;
    상기 보빈의 내부에서 설치되며 전원 인가시 왕복운동을 하는 플런저; 및A plunger installed inside the bobbin and reciprocating upon application of power; And
    상기 플런저에 고정되며 일단이 상기 코어를 관통하여 상기 스풀의 타단과 접촉하는 로드를 포함하고,A rod fixed to the plunger and having one end penetrating the core and contacting the other end of the spool,
    상기 코어의 내부에는 상기 플런저 및 상기 로드의 이동공간이 마련되며, 상기 이동공간은 상기 유로를 통해 외부와 연결된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The interior of the core is provided with a movement space of the plunger and the rod, the movement space is an oil pump control valve, characterized in that connected to the outside through the flow path.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 코어의 일단은 상기 홀더의 타단 내부로 삽입되고, 상기 코어의 일단 외주면에 환형의 장착홈이 형성되며, 상기 장착홈에 오링이 설치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.One end of the core is inserted into the other end of the holder, an annular mounting groove is formed on one outer peripheral surface of the core, the oil pump control valve, characterized in that the O-ring is installed in the mounting groove.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 로드의 이동시 발생하는 마찰을 감소시키는 부싱이 상기 코어의 내벽에 설치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.Oil pump control valve, characterized in that the bushing to reduce the friction generated when the rod is moved on the inner wall of the core.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 로드의 타단은 상기 플런저를 관통하여 돌출되고, 상기 로드의 이동시 발생하는 마찰을 감소시키는 부싱이 상기 요크의 내벽에 설치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The other end of the rod protrudes through the plunger, the oil pump control valve, characterized in that a bushing for reducing the friction generated when the rod is moved on the inner wall of the yoke.
PCT/KR2012/009101 2011-11-01 2012-11-01 Oil pump control valve WO2013066061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110112717A KR101167503B1 (en) 2011-11-01 2011-11-01 Oil pump control valve
KR10-2011-0112717 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013066061A1 true WO2013066061A1 (en) 2013-05-10

Family

ID=46717191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009101 WO2013066061A1 (en) 2011-11-01 2012-11-01 Oil pump control valve

Country Status (2)

Country Link
KR (1) KR101167503B1 (en)
WO (1) WO2013066061A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101911101B1 (en) * 2013-10-16 2018-12-28 현대중공업 주식회사 Variable valve timing apparatus
KR101911102B1 (en) * 2013-12-06 2018-10-23 현대중공업 주식회사 Variable valve timing apparatus
WO2016056860A1 (en) * 2014-10-10 2016-04-14 주식회사 유니크 Oil pump control valve for
KR101679803B1 (en) * 2015-07-06 2016-11-28 주식회사 유니크 Oil pump control valve
KR101822502B1 (en) * 2016-09-06 2018-01-26 에스앤티모티브 주식회사 Automotive oil pump unit
EP3524784B1 (en) * 2016-10-10 2022-01-05 Unick Corporation Oil pump control valve
KR101816015B1 (en) * 2016-10-10 2018-01-09 주식회사 유니크 Oil pump control valve
KR101786820B1 (en) 2016-10-10 2017-10-19 주식회사 유니크 Oil pump control valve
WO2018092931A1 (en) * 2016-11-16 2018-05-24 주식회사 유니크 Variable oil pump control system and variable oil pump control valve used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193896A (en) * 2000-01-12 2001-07-17 Mikuni Adec Corp Lubricating oil feeder
KR100567737B1 (en) * 2005-12-02 2006-04-07 주식회사 유니크 Solenoid valve
KR100656892B1 (en) * 2006-04-18 2006-12-13 주식회사 유니크 Intake timing valve
KR20100128231A (en) * 2009-05-27 2010-12-07 히드라우리크-링 게엠베하 Vane cells cam schaft adjuster system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193896A (en) * 2000-01-12 2001-07-17 Mikuni Adec Corp Lubricating oil feeder
KR100567737B1 (en) * 2005-12-02 2006-04-07 주식회사 유니크 Solenoid valve
KR100656892B1 (en) * 2006-04-18 2006-12-13 주식회사 유니크 Intake timing valve
KR20100128231A (en) * 2009-05-27 2010-12-07 히드라우리크-링 게엠베하 Vane cells cam schaft adjuster system

Also Published As

Publication number Publication date
KR101167503B1 (en) 2012-07-20

Similar Documents

Publication Publication Date Title
WO2013066061A1 (en) Oil pump control valve
WO2013066062A1 (en) Oil pump control valve
WO2016003139A1 (en) Oil pump control valve
WO2016056859A1 (en) Oil pump control valve
WO2011090256A1 (en) Solenoid valve for transmission
CN100487291C (en) Releasable non-return valve
WO2011149273A2 (en) Hydraulic solenoid valve for an automatic transmission of a vehicle
WO2012161514A2 (en) Control valve for a variable capacity compressor and method for manufacturing same
US20180180194A1 (en) Solenoid valve
WO2011021730A1 (en) Solenoid valve
WO2024043582A1 (en) Check valve-integrated normally closed type solenoid valve
KR101093449B1 (en) Oil control valve
GB2487446A (en) Three chamber accumulator reservoir with venting system for residual chamber
WO2016056860A1 (en) Oil pump control valve for
WO2012057439A1 (en) Solenoid valve
WO2013172520A1 (en) Solenoid valve
JP7030678B2 (en) Control valve
WO2018092930A1 (en) Oil pump control valve
WO2018070621A1 (en) Oil pump control valve
WO2016148361A1 (en) Oil jet solenoid valve
CN203756269U (en) Engine and engine oil filtering device thereof
KR101487451B1 (en) Oil pump control valve
KR101444066B1 (en) Oil pump control valve
KR101922887B1 (en) Solenoid valve
WO2018092931A1 (en) Variable oil pump control system and variable oil pump control valve used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846369

Country of ref document: EP

Kind code of ref document: A1