WO2018092930A1 - Oil pump control valve - Google Patents

Oil pump control valve Download PDF

Info

Publication number
WO2018092930A1
WO2018092930A1 PCT/KR2016/013229 KR2016013229W WO2018092930A1 WO 2018092930 A1 WO2018092930 A1 WO 2018092930A1 KR 2016013229 W KR2016013229 W KR 2016013229W WO 2018092930 A1 WO2018092930 A1 WO 2018092930A1
Authority
WO
WIPO (PCT)
Prior art keywords
notch groove
land
oil pump
port
oil
Prior art date
Application number
PCT/KR2016/013229
Other languages
French (fr)
Korean (ko)
Inventor
이창훈
문국찬
박지훈
정영진
Original Assignee
주식회사 유니크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유니크 filed Critical 주식회사 유니크
Priority to PCT/KR2016/013229 priority Critical patent/WO2018092930A1/en
Publication of WO2018092930A1 publication Critical patent/WO2018092930A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to a valve for controlling the flow rate of the oil supplied to the oil pump, more specifically, the discharge port by gradually increasing or decreasing the flow rate of the oil discharged through the control port and / and the discharge port during the movement of the spool It is an oil pump control valve which can reduce the loss through and extend the control section.
  • the oil pump sucks oil stored in an oil pan and drives the oil pump to each part of the engine when the engine is driven.
  • the oil pressurized by the oil pump is applied to the friction causing part to reduce the frictional resistance and prevent the wear of the part.
  • the pressure and flow rate of the oil discharged from the oil pump is proportional to the revolutions per minute (rpm) of the engine. For example, a large amount of high pressure oil is pumped in a high speed driving section where the engine speed is high. However, when oil is supplied in a large amount, the resistance due to the viscosity of the oil is increased and power performance and fuel economy are deteriorated.
  • variable oil pump in which a pumping volume is changed by a slider rotating around a pivot, is used to maintain a constant oil pressure and flow rate regardless of the engine rotation speed.
  • the variable oil pump can reduce the pump load and reduce fuel consumption in the high speed operation section by changing the pumping volume and adjusting the oil pressure and flow rate.
  • variable oil pump includes a pair of chambers in which oil is supplied so that the slider can rotate about the pivot, and an oil pump control valve for controlling oil supplied to the pair of chambers.
  • the holder 10 installed inside the upper end of the holder 10, the adjusting screw 30 coupled to the upper end of the holder 10 and , A spring 40 interposed between the spool 20 and the adjusting screw 30, a case 40 surrounding the lower end of the holder 10, a bobbin 50 installed inside the case 40, and a bobbin.
  • the coil 60 wound around the outer circumferential surface of the 50, the plunger 70 installed inside the lower end of the holder 10, the cover 92 coupled to the lower end of the case 80, and the side surface of the case 80. It consists of a protruding connector 94.
  • the upper outer peripheral surface of the holder 10 is provided with a supply port 12 for supplying oil and a control port 14 for discharging the oil controlled at a predetermined pressure, and the control screw 30 through the control port 14.
  • a discharge port 32 for discharging the introduced oil to the outside is formed.
  • a first land 22 and a second land 24 are formed at an upper end and a lower end of the spool 20, and an operating groove 26 is formed between the first land 22 and the second land 24. do.
  • the present invention is to solve the above-mentioned problems of the prior art, by gradually increasing or decreasing the flow rate of the oil discharged through the control port or / and the discharge port when moving the spool to reduce the loss through the discharge port and control
  • the purpose is to provide an oil pump control valve that can extend the section.
  • the valve has a pipe-shaped holder having a discharge port formed at an upper end, a control port formed at an interruption thereof, and a supply port formed at a lower end thereof, and a first land and a second land contacting the inner circumferential surface of the holder at an upper end and a lower end, respectively. And a spool which is formed and an operating groove is formed between the first land and the second land.
  • a first notch groove for connecting the control port and the discharge port is formed at an upper end of the first land, and a second notch groove for connecting the supply port and the control port is formed at a lower end of the first land.
  • the first notch groove has a tapered shape in which the width thereof is extended toward the upper portion
  • the second notch groove has a tapered shape in which the width thereof is expanded toward the lower portion thereof.
  • the first notch groove connecting the control port and the discharge port, the second notch groove connecting the supply port and the control port has a shape that extends toward the end of the first land, the spool
  • the flow rate (or pressure) of oil discharged through the control port and / or the discharge port gradually increases or decreases. Therefore, it is possible to linearly control the change in the flow rate (or pressure) according to the increase or decrease of the current, and because the slope of the current-flow rate (or pressure) graph rises slowly, the control section can be extended.
  • the first notch groove is gradually closed, thereby reducing the loss of oil through the discharge port, thereby reducing the load of the oil pump and improving fuel economy.
  • FIG. 1 is a cross-sectional view of an oil pump control valve according to an embodiment of the present invention.
  • FIG. 2 is a view showing a spool of the oil pump control valve according to an embodiment of the present invention.
  • Figure 3 is an enlarged view of the notch groove of the oil pump control valve according to an embodiment of the present invention.
  • FIG 4 and 6 are views showing the operation of the oil pump control valve according to an embodiment of the present invention.
  • 9 and 10 are views of the oil pump control valve according to the prior art.
  • an oil pump control valve includes a valve 100 for controlling oil in and out, and a solenoid 200 for operating the valve 100.
  • the valve 100 is positioned on a flow path of an oil pump housing (not shown) to selectively supply oil transferred from an oil pan (not shown) to the chamber (not shown).
  • the holder 110, the spool 120 is installed to be movable inside the holder 110, the adjusting screw 130 coupled to the upper portion of the spool 120, the spool 120 and the adjustment It includes a spring 140 interposed between the screw 130.
  • the holder 110 has a pipe shape extending from the valve 100 to the solenoid 200.
  • the upper part of the holder 110 (the upper part based on the flange 110c) is a part which controls and discharges the pressure of the oil supplied to the valve 100, and the lower part of the holder 110 is a magnetic field for operating the valve 100. This is the part that induces.
  • the upper portion of the holder 110 will be referred to as the hydraulic portion 110a and the lower portion of the holder 110 will be referred to as the magnetic portion 110b.
  • the hydraulic part 110a has a pipe shape having an outer diameter larger than that of the magnetic part 110b.
  • a supply port 112 for supplying oil is formed at a lower end of the hydraulic part 110a, and a control port 114 for discharging oil controlled at a predetermined pressure is formed at the hydraulic part 110a.
  • an O-ring 116 is installed on the lower outer circumferential surface of the hydraulic unit 110a to prevent leakage of oil.
  • the adjusting screw 130 is provided at the upper end of the hydraulic unit 110a, and the spring 140 is installed at the lower portion of the adjusting screw 130.
  • the adjusting screw 130 is for controlling the moving distance and the moving speed of the spool 120 by adjusting the elasticity of the spring 140 supporting the spool 120.
  • the adjusting screw 130 is screwed to the top of the hydraulic portion (110a) to finely adjust the elasticity of the spring (140).
  • the adjustment screw 130 is formed with a discharge port 132.
  • the discharge port 132 is a port for discharging a portion of the oil introduced from the supply port 112 and the oil introduced from the control port 114 to an outside, that is, an oil pan (not shown).
  • the discharge port 132 is formed at a position (outside of the spring 140) a predetermined distance from the center of the adjustment screw 130, and consists of four radially disposed relative to the center of the adjustment screw 130. .
  • the discharge port 32 when the discharge port 32 is located at the center of the adjusting screw 30, that is, inside the spring 40, the oil is discharged through the discharge port 32 when the spring 40 is compressed. Will interfere.
  • the discharge port 132 of the present embodiment since the discharge port 132 of the present embodiment is located outside the spring 140, it can exclude the interference by the spring 140 in the discharge process of the oil. Therefore, the oil can be smoothly discharged through the discharge port 132, the discharge port 132 is composed of four radially arranged can be more smoothly discharged oil.
  • the structure through which the spring 140 is inserted into the upper end of the spool 120 may discharge the oil more effectively.
  • the magnetic part 110b has a pipe shape having an outer diameter smaller than that of the hydraulic part 110a.
  • a magnetic induction groove 118 is formed on the outer peripheral surface of the magnetic part 110b, and an O-ring 116 is installed on the lower outer peripheral surface to prevent leakage of oil.
  • Magnetic induction groove 118 is a means for securing a sufficient magnetic force to effectively control the high pressure and high flow oil. As shown in FIG. 1, the stopping wall surface of the magnetic part 110b in which the magnetic induction grooves 118 are formed is formed to be thinner than the upper and lower portions thereof. The magnetic field generated from the coil 230 when the power is applied is induced along the magnetic part 110b but is concentrated in the magnetic induction groove 118 having a relatively thin thickness.
  • the magnetic induction groove 118 described above uses the principle that the magnetic flux density increases as the area of the object on which the magnetic field is formed decreases.
  • the magnetic induction groove 118 of the present embodiment has a tapered shape, the thickness of which becomes thinner toward the center, and thus can concentrate the magnetic field more effectively. Therefore, it is possible to precisely control the plunger 240 moving by the magnetic field, through which it is possible to control the high pressure and high flow oil.
  • the spool 120 is a means for selectively connecting the supply port 112, the control port 114, the discharge port 132 during its movement.
  • the spool 120 has a rod shape having a plurality of stages having different outer diameters, and is installed to be movable in the hydraulic part 110a.
  • the spool 120 has a rod shape extending in the longitudinal direction of the holder 110.
  • the first land 122 and the second land 124 are formed at the upper end and the lower end of the spool 120, and the operation groove 126, which is a small diameter part, is formed at the stop.
  • a flow path 128 connecting the discharge port 132 and the magnetic part 110b is formed in the spool 120.
  • the first land 122 and the second land 124 contact the inner circumferential surface of the holder 110 to guide the movement of the spool 120.
  • the first land 122 contacts the upper or lower portion of the control port 114 when the spool 120 moves to block the connection of the ports 112, 114, and 132.
  • the spool 120 rises, the supply port 112 and the control port 114 are connected, and the connection between the control port 114 and the discharge port 132 is blocked (see FIG. 6).
  • the connection of the supply port 112 and the control port 114 is blocked, and the control port 114 and the discharge port 132 are connected.
  • notch grooves 122a and 122b are formed in the first land 122 according to the present embodiment to gradually increase or block the connection of the ports 112, 114 and 132.
  • the notch grooves 122a and 122b may include a first notch groove 122a disposed radially along the upper circumference of the first land 122 and a second radially disposed along the lower circumference of the first land 122. It consists of a notch groove 122b.
  • the first notch groove 122a and the second notch groove 122b have a tapered shape that extends toward the end portion so that the opening between the holder 110 and the first land 122 may be gradually opened when the spool 120 moves.
  • the first notch groove 122a has a semi-conical shape that extends toward the top
  • the second notch groove 122b has a semi-cone shape that extends toward the bottom.
  • the ratio of the volume of the 1st notch groove 122a and the 2nd notch groove 122b is as follows (refer FIG. 3).
  • the ratio of the length L 2 of the second notched groove 122b and the thickness W 2 of the second notched groove 122b is 1:10, and the height H 2 of the second notched groove 122b is The thickness W 2 ratio of the second notch grooves 122b is 1: 6.
  • the spool 120 including the notch grooves 122a and 122b having the above-described shape has an overlap section in which both the first notch grooves 122a and the second notch grooves 122b are opened. That is, there is a section in which the control port 124 is connected to both the supply port 122 and the control port 124 by the notch grooves 122a and 122b.
  • the solenoid 200 includes a case 210 surrounding the magnetic part 11b, a bobbin 220 installed inside the case 210, and a coil wound around the outer circumferential surface of the bobbin 220. 230, a plunger 240 installed inside the magnetic part 11b, a cover 250 coupled to the other end of the case 210, and a connector 260 protruding to the side of the case 210. .
  • the case 210 has a cup shape in which a lower surface is opened and the upper surface is closed.
  • An accommodation space 212 is formed inside the case 210, and a bobbin 220 is installed in the storage space 212.
  • the lower end of the case 210 is curled to surround the cover 250.
  • Bobbin 220 is a hollow spool shape.
  • the coil 230 is wound around the outer circumferential surface of the bobbin 220.
  • the magnetic field generated from the coil 230 when the power is applied is induced by the magnetic part 110b and the case 210 to raise the plunger 240.
  • the strength of the magnetic field is proportional to the strength of the current flowing along the coil 230 and the number of coils 230 wound on the bobbin 220. Therefore, since a strong magnetic field is generated as a strong current is applied to the coil 230 or the coil 230 is wound much, the movement of the plunger 240 can be reliably controlled.
  • the plunger 240 is a movable iron core reciprocating by the magnetic field generated by the coil 230, is installed to be movable in the magnetic part 110b, and is in contact with the lower end of the spool 120.
  • the plunger 240 is formed with a passage 242 penetrating the plunger 240 up and down.
  • the passage 242 has oil filled in the upper portion of the plunger 240 to the lower portion of the plunger 240 and oil filled in the lower portion of the plunger 240 is the plunger 240. Is transported to the top of the.
  • the passage 242 is eccentric a predetermined distance from the center of the plunger 240, to prevent the passage 242 is closed by the contact with the spool 120.
  • the lower end of the plunger 240 is formed into a curved surface to make local surface contact with the bottom of the cover 250.
  • the plunger 240 and the cover 250 is in contact with the local surface, the plunger 240 can be smoothly raised by blocking the flow of the magnetic field which was directly led to the plunger 240 through the cover 250.
  • the frictional resistance due to the inclination of the plunger 240 may be eliminated without affecting the inclination of the plunger 240.
  • the connector 260 is a means for applying power to the coil 230.
  • a plurality of terminals 262 are installed inside the connector 260.
  • the connector 260 protrudes outward through the side of the case 210.
  • FIG. 4 is a state in which power is not applied to the solenoid 200 of FIG. 1.
  • the spool 120 is elastically supported by the elasticity of the spring 140, the spool 120 is lowered to the bottom dead center.
  • the first land 122 of the spool 120 is in contact with the lower portion of the control port 114 to block the connection of the supply port 112 and the control port 114 and at the same time control port 114 and the discharge port 132 ) Allows the connection.
  • FIG. 5 is an initial state in which power is applied to the solenoid 200 (in FIG. 1), which is the overlap state described above.
  • the spool 120 is raised to a certain height so that the first land 122 is spaced apart from both the upper and lower portions of the control port 114.
  • the supply port 112 is connected to the control port 114 through the second notch groove 122b, and the control port 114 is connected to the discharge port 132 through the first notch groove 122a. Therefore, a part of the oil transferred from the supply port 112 to the control port 114 is discharged to the outside through the discharge port (132).
  • FIG. 6 is a state in which the maximum oil is applied to the solenoid 200 (200), and the spool 120 is raised to the top dead center.
  • the first land 122 of the spool 120 is in contact with the upper portion of the control port 114 to block the connection of the control port 114 and the discharge port 132 and at the same time supply port 112 and the control port 114 ) Allows the connection. Therefore, the total amount of oil transferred from the supply port 112 to the control port 114 is pumped through the control port 114.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The present invention relates to an oil pump control valve enabling expansion of a control section and reduction of loss due to a discharge port by means of gradually increasing or decreasing the flow rate of an oil discharged through a control port and/or the discharge port during the movement of a spool. The present invention comprises: a valve for controlling the inlet and outlet of an oil; and a solenoid for driving the valve. The valve comprises: a pipe-shaped holder having the discharge port on the upper end, the control port on the middle end and a supply port on the lower end; and the spool having a first land and a second land, which come in contact with the inner peripheral side of the holder, on the upper end and the lower end, respectively, and having a driving groove between the first land and second land. A first notch groove, which connects the control port and discharge port, is formed on the upper end of the first land. A second notch groove, which connects the supply port and control port, is formed on the lower end of the first land. The first notch groove is in a tapered shape which gradually becomes wider upward. And the second notch groove is in a tapered shape which gradually becomes wider downward.

Description

오일펌프 컨트롤 밸브Oil pump control valve
본 발명은 오일펌프로 공급되는 오일의 유량을 제어하는 밸브에 관한 것으로, 더욱 자세하게는 스풀의 이동 시 제어포트 또는/및 배출포트를 통해 배출되는 오일의 유량을 점진적으로 증가시키거나 감소시켜 배출포트를 통한 손실을 줄일 수 있으며 제어구간을 확장할 수 있는 오일펌프 컨트롤 밸브에 관한 것이다.The present invention relates to a valve for controlling the flow rate of the oil supplied to the oil pump, more specifically, the discharge port by gradually increasing or decreasing the flow rate of the oil discharged through the control port and / and the discharge port during the movement of the spool It is an oil pump control valve which can reduce the loss through and extend the control section.
오일펌프는 엔진의 구동 시 오일 팬(oil pan)에 저장된 오일을 흡입하여 엔진의 각 부분으로 압송하는 역할을 한다. 오일펌프에 의해 압송된 오일은 마찰을 일으키는 부분에 도포되어 마찰저항을 감소시키고 부품의 마모를 방지하는 역할을 한다.The oil pump sucks oil stored in an oil pan and drives the oil pump to each part of the engine when the engine is driven. The oil pressurized by the oil pump is applied to the friction causing part to reduce the frictional resistance and prevent the wear of the part.
일반적으로, 오일펌프에서 토출되는 오일의 압력과 유량은 엔진의 회전수(revolutions per minute; rpm)에 비례한다. 예를 들어, 엔진의 회전수가 높은 고속운전구간에서는 고압의 오일이 다량으로 압송된다. 그런데 오일이 다량으로 공급될 경우 오일의 점성에 의한 저항이 커지며 동력성능과 연비가 오히려 저하되는 문제가 발생하였다.In general, the pressure and flow rate of the oil discharged from the oil pump is proportional to the revolutions per minute (rpm) of the engine. For example, a large amount of high pressure oil is pumped in a high speed driving section where the engine speed is high. However, when oil is supplied in a large amount, the resistance due to the viscosity of the oil is increased and power performance and fuel economy are deteriorated.
최근에는 엔진의 회전수와 관계없이 일정한 오일의 압력 및 유량을 일정하게 유지할 수 있도록 피벗(pivot)을 중심으로 회전하는 슬라이더에 의해 펌핑 체적이 변하는 가변오일펌프를 사용하고 있다. 가변오일펌프는 펌핑 체적을 변화시켜 오일의 압력 및 유량을 조절함으로써 고속운전구간에서 불필요한 펌프의 부하를 경감시키고 연료소모를 줄일 수 있다.Recently, a variable oil pump, in which a pumping volume is changed by a slider rotating around a pivot, is used to maintain a constant oil pressure and flow rate regardless of the engine rotation speed. The variable oil pump can reduce the pump load and reduce fuel consumption in the high speed operation section by changing the pumping volume and adjusting the oil pressure and flow rate.
한편, 가변오일펌프는, 슬라이더가 피벗을 중심으로 회동할 수 있도록 오일이 공급되는 한 쌍의 챔버와, 상기 한 쌍의 챔버로 공급되는 오일을 제어하기 위한 오일펌프 컨트롤 밸브를 포함하여 구성된다.Meanwhile, the variable oil pump includes a pair of chambers in which oil is supplied so that the slider can rotate about the pivot, and an oil pump control valve for controlling oil supplied to the pair of chambers.
도 9를 참조하여 종래의 오일펌프 컨트롤 밸브를 살펴보면, 홀더(10)와, 홀더(10)의 상단 내부에 설치된 스풀(20)과, 홀더(10)의 상단에 결합된 조절스크루(30)와, 스풀(20)과 조절스크루(30) 사이에 개재된 스프링(40)과, 홀더(10)의 하단을 감싸는 케이스(40)와, 케이스(40)의 내부에 설치된 보빈(50)과, 보빈(50)의 외주면에 감긴 코일(60)과, 홀더(10)의 하단 내부에 설치된 플런저(70)와, 케이스(80)의 하단에 결합된 덮개(92)와, 케이스(80)의 측면으로 돌출된 커넥터(94)로 구성된다.Looking at the conventional oil pump control valve with reference to Figure 9, the holder 10, the spool 20 installed inside the upper end of the holder 10, the adjusting screw 30 coupled to the upper end of the holder 10 and , A spring 40 interposed between the spool 20 and the adjusting screw 30, a case 40 surrounding the lower end of the holder 10, a bobbin 50 installed inside the case 40, and a bobbin. The coil 60 wound around the outer circumferential surface of the 50, the plunger 70 installed inside the lower end of the holder 10, the cover 92 coupled to the lower end of the case 80, and the side surface of the case 80. It consists of a protruding connector 94.
홀더(10)의 상단 외주면에는 오일이 공급되는 공급포트(12) 및 소정의 압력으로 제어된 오일이 배출되는 제어포트(14)가 형성되고, 조절스크루(30)에는 제어포트(14)를 통해 유입된 오일을 외부로 배출하는 배출포트(32)가 형성된다. 또한, 스풀(20)의 상단과 하단에는 제1랜드(22)와 제2랜드(24)가 형성되며, 제1랜드(22)와 제2랜드(24) 사이에는 작동홈(26)이 형성된다.The upper outer peripheral surface of the holder 10 is provided with a supply port 12 for supplying oil and a control port 14 for discharging the oil controlled at a predetermined pressure, and the control screw 30 through the control port 14. A discharge port 32 for discharging the introduced oil to the outside is formed. In addition, a first land 22 and a second land 24 are formed at an upper end and a lower end of the spool 20, and an operating groove 26 is formed between the first land 22 and the second land 24. do.
상술한 구성의 오일펌프 컨트롤 밸브는, 스풀(20)이 상승하면 제1랜드(22)에 의해 공급포트(12)와 제어포트(14)가 연결되고, 공급포트(12)를 통해 공급된 오일이 제어포트(14)를 거쳐 챔버(미도시)로 배출된다. 반면, 스풀(20)이 상승할 경우 제1랜드(22)에 의해 제어포트(14)와 배출포트(32)가 연결되어 제어포트(14)를 통해 유입된 오일이 배출포트(32)를 거쳐 오일 팬(미도시)으로 배출된다.In the oil pump control valve having the above-described configuration, when the spool 20 rises, the supply port 12 and the control port 14 are connected by the first land 22, and the oil supplied through the supply port 12 is provided. It is discharged to a chamber (not shown) via this control port 14. On the other hand, when the spool 20 rises, the control port 14 and the discharge port 32 are connected by the first land 22 so that oil introduced through the control port 14 passes through the discharge port 32. Drained to an oil pan (not shown).
그런데, 스풀(20)이 상승하여 제어포트(14)와 공급포트(12)를 연결하는 초기에는 제어포트(14)와 배출포트(32) 사이가 차단되지 않고 연결된 상태로 유지되므로, 공급포트(12)에서 제어포트(14)로 이송된 오일의 대부분이 배출포트(32)를 통해 오일 팬(미도시)으로 배출된다(도 10 참조). 즉, 제어포트(14)를 통해 오일펌프(미도시)로 유입되는 오일의 양의 부족하게 된다. 따라서 오일펌프의 부하가 증가하게 되고 연비가 저하되는 문제를 야기하게 된다.By the way, since the spool 20 is raised to connect the control port 14 and the supply port 12 at the initial stage, the control port 14 and the discharge port 32 are not blocked but remain connected to each other. Most of the oil transferred to the control port 14 in 12) is discharged to the oil pan (not shown) through the discharge port 32 (see FIG. 10). That is, the amount of oil flowing into the oil pump (not shown) through the control port 14 is insufficient. Therefore, the load of the oil pump increases and causes a problem of lowering fuel economy.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 스풀의 이동 시 제어포트 또는/및 배출포트를 통해 배출되는 오일의 유량을 점진적으로 증가시키거나 감소시켜 배출포트를 통한 손실을 줄일 수 있으며 제어구간을 확장할 수 있는 오일펌프 컨트롤 밸브를 제공하는데 그 목적이 있다.The present invention is to solve the above-mentioned problems of the prior art, by gradually increasing or decreasing the flow rate of the oil discharged through the control port or / and the discharge port when moving the spool to reduce the loss through the discharge port and control The purpose is to provide an oil pump control valve that can extend the section.
상기 목적을 달성하기 위한 본 발명에 의한 오일펌프 컨트롤 밸브는, 오일의 출입을 단속하는 밸브와, 상기 밸브를 작동시키는 솔레노이드를 포함한다. 상기 밸브는, 배출포트가 상단에 형성되고 제어포트가 중단에 형성되며 공급포트가 하단에 형성된 파이프 형상의 홀더와, 상기 홀더의 내주면에 접촉되는 제1랜드와 제2랜드가 상단과 하단에 각각 형성되고 상기 제1랜드와 상기 제2랜드 사이에 작동홈이 형성된 스풀을 포함하여 구성된다.An oil pump control valve according to the present invention for achieving the above object includes a valve for regulating the entry and exit of oil, and a solenoid for operating the valve. The valve has a pipe-shaped holder having a discharge port formed at an upper end, a control port formed at an interruption thereof, and a supply port formed at a lower end thereof, and a first land and a second land contacting the inner circumferential surface of the holder at an upper end and a lower end, respectively. And a spool which is formed and an operating groove is formed between the first land and the second land.
상기 제1랜드의 상단에는 상기 제어포트와 상기 배출포트를 연결하는 제1노치홈이 형성되고, 상기 제1랜드의 하단에는 상기 공급포트와 상기 제어포트를 연결하는 제2노치홈이 형성된다. 이때, 상기 제1노치홈은 상부로 갈수록 넓이가 확장되는 테이퍼 형상이며, 상기 제2노치홈은 하부로 갈수록 넓이가 확장되는 테이퍼 형상을 갖는다.A first notch groove for connecting the control port and the discharge port is formed at an upper end of the first land, and a second notch groove for connecting the supply port and the control port is formed at a lower end of the first land. In this case, the first notch groove has a tapered shape in which the width thereof is extended toward the upper portion, and the second notch groove has a tapered shape in which the width thereof is expanded toward the lower portion thereof.
상술한 바와 같이 구성된 본 발명은, 제어포트와 배출포트를 연결하는 제1노치홈, 공급포트와 제어포트를 연결하는 제2노치홈이 제1랜드의 단부로 갈수록 확장되는 형상을 가지므로, 스풀이 상승하거나 하강할 때 제어포트 또는/및 배출포트를 통해 배출되는 오일의 유량(또는 압력)이 점진적으로 증가하거나 감소하게 된다. 따라서 전류의 증감에 따른 유량(또는 압력)의 변화를 선형적으로 제어할 수 있으며, 전류-유량(또는 압력) 그래프의 기울기가 완만하게 상승하므로 제어구간을 확장할 수 있다. 특히, 스풀이 상승할 경우 제1노치홈이 점진적으로 폐쇄되므로 배출포트를 통한 오일의 손실을 줄일 수 있으며, 이를 통해 오일펌프의 부하를 경감시키고 연비를 향상시킬 수 있다.According to the present invention configured as described above, the first notch groove connecting the control port and the discharge port, the second notch groove connecting the supply port and the control port has a shape that extends toward the end of the first land, the spool When this rises or falls, the flow rate (or pressure) of oil discharged through the control port and / or the discharge port gradually increases or decreases. Therefore, it is possible to linearly control the change in the flow rate (or pressure) according to the increase or decrease of the current, and because the slope of the current-flow rate (or pressure) graph rises slowly, the control section can be extended. In particular, when the spool rises, the first notch groove is gradually closed, thereby reducing the loss of oil through the discharge port, thereby reducing the load of the oil pump and improving fuel economy.
도 1은 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 단면도.1 is a cross-sectional view of an oil pump control valve according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브 중 스풀을 도시한 도면.2 is a view showing a spool of the oil pump control valve according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브 중 노치홈을 확대한 도면.Figure 3 is an enlarged view of the notch groove of the oil pump control valve according to an embodiment of the present invention.
도 4와 도 6은 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 작동과정을 도시한 도면.4 and 6 are views showing the operation of the oil pump control valve according to an embodiment of the present invention.
도 7과 도 8은 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브의 성능 그래프.7 and 8 is a performance graph of the oil pump control valve according to an embodiment of the present invention.
도 9와 도 10은 종래기술에 따른 오일펌프 컨트롤 밸브의 도면.9 and 10 are views of the oil pump control valve according to the prior art.
첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이하, 본 발명에 따른 실시예를 설명함에 있어, 그리고 각 도면의 구성요소들에 참조부호를 부가함에 있어, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 부가하였다.With reference to the accompanying drawings will be described embodiments of the present invention; In the following description of embodiments according to the present invention, and in adding reference numerals to the components of each drawing, the same reference numerals are added to the same components as much as possible even though they are shown in different drawings.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 오일펌프 컨트롤 밸브는, 오일의 출입을 단속하는 밸브(100)와, 밸브(100)를 작동시키는 솔레노이드(200)로 구성된다.As shown in FIG. 1, an oil pump control valve according to an exemplary embodiment of the present invention includes a valve 100 for controlling oil in and out, and a solenoid 200 for operating the valve 100.
밸브(100)는 오일펌프 하우징(미도시)의 유로 상에 위치되어 오일 팬(미도시)에서 이송된 오일을 챔버(미도시)에 선택적으로 공급하는 역할을 한다. 그 구성을 살펴보면, 홀더(110)와, 홀더(110)의 내부에 이동 가능하게 설치된 스풀(120)과, 스풀(120)의 상부에 결합된 조절스크루(130)와, 스풀(120)과 조절스크루(130) 사이에 개재된 스프링(140)을 포함한다.The valve 100 is positioned on a flow path of an oil pump housing (not shown) to selectively supply oil transferred from an oil pan (not shown) to the chamber (not shown). Looking at the configuration, the holder 110, the spool 120 is installed to be movable inside the holder 110, the adjusting screw 130 coupled to the upper portion of the spool 120, the spool 120 and the adjustment It includes a spring 140 interposed between the screw 130.
홀더(110)는 밸브(100)에서 솔레노이드(200)까지 연장된 파이프 형상이다. 홀더(110)의 상부(플랜지(110c)를 기준으로 상부)는 밸브(100)로 공급된 오일의 압력을 제어하여 배출하는 부분이고, 홀더(110)의 하부는 밸브(100)를 작동시키는 자기장을 유도하는 부분이다. 이하에서는, 홀더(110)의 상부를 유압부(110a)라 하고, 홀더(110)의 하부를 자기부(110b)라 하겠다.The holder 110 has a pipe shape extending from the valve 100 to the solenoid 200. The upper part of the holder 110 (the upper part based on the flange 110c) is a part which controls and discharges the pressure of the oil supplied to the valve 100, and the lower part of the holder 110 is a magnetic field for operating the valve 100. This is the part that induces. Hereinafter, the upper portion of the holder 110 will be referred to as the hydraulic portion 110a and the lower portion of the holder 110 will be referred to as the magnetic portion 110b.
유압부(110a)는 자기부(110b)보다 큰 외경을 가진 파이프 형상이다. 유압부(110a)의 하단에는 오일이 공급되는 공급포트(112)가 형성되고, 중단에는 유압부(110a)에서 소정의 압력으로 제어된 오일이 배출되는 제어포트(114)가 형성된다. 또한, 유압부(110a)의 하단 외주면에는 오일의 누출을 방지하기 위한 오링(116)이 설치된다.The hydraulic part 110a has a pipe shape having an outer diameter larger than that of the magnetic part 110b. A supply port 112 for supplying oil is formed at a lower end of the hydraulic part 110a, and a control port 114 for discharging oil controlled at a predetermined pressure is formed at the hydraulic part 110a. In addition, an O-ring 116 is installed on the lower outer circumferential surface of the hydraulic unit 110a to prevent leakage of oil.
유압부(110a)의 상단에는 조절스크루(130)가 구비되고, 조절스크루(130)의 하부에는 스프링(140)이 설치된다. 조절스크루(130)는 스풀(120)을 지지하는 스프링(140)의 탄성을 조절함으로써 스풀(120)의 이동거리와 이동속도를 제어하기 위한 것이다. 이러한 조절스크루(130)는 스프링(140)의 탄성을 미세하게 조절할 수 있도록 유압부(110a)의 상단에 나사 결합된다.The adjusting screw 130 is provided at the upper end of the hydraulic unit 110a, and the spring 140 is installed at the lower portion of the adjusting screw 130. The adjusting screw 130 is for controlling the moving distance and the moving speed of the spool 120 by adjusting the elasticity of the spring 140 supporting the spool 120. The adjusting screw 130 is screwed to the top of the hydraulic portion (110a) to finely adjust the elasticity of the spring (140).
조절스크루(130)에는 배출포트(132)가 형성된다. 배출포트(132)는 공급포트(112)에서 유입된 오일의 일부, 제어포트(114)에서 유입된 오일을 외부, 즉 오일 팬(미도시)으로 배출하기 위한 포트이다. 이때, 배출포트(132)는 조절스크루(130)의 중심에서 소정 거리 이격된 위치(스프링(140)의 외측)에 형성되고, 조절스크루(130)의 중심을 기준으로 방사상 배치된 4개로 구성된다.The adjustment screw 130 is formed with a discharge port 132. The discharge port 132 is a port for discharging a portion of the oil introduced from the supply port 112 and the oil introduced from the control port 114 to an outside, that is, an oil pan (not shown). At this time, the discharge port 132 is formed at a position (outside of the spring 140) a predetermined distance from the center of the adjustment screw 130, and consists of four radially disposed relative to the center of the adjustment screw 130. .
도 9에 도시된 것처럼, 배출포트(32)가 조절스크루(30)의 중심, 즉 스프링(40)의 내측에 위치된 경우, 스프링(40)의 압축 시 배출포트(32)를 통한 오일의 배출을 방해하게 된다. 반면, 본 실시예의 배출포트(132)는 스프링(140)의 외측에 위치되므로, 오일의 배출과정에서 스프링(140)에 의한 간섭을 배제할 수 있다. 따라서 오일이 배출포트(132)를 통해 원활하게 배출될 수 있으며, 배출포트(132)가 방사상으로 배치된 4개로 구성되어 오일이 더욱 원활하게 배출될 수 있다. 특히, 스프링(140)이 스풀(120)의 상단 내부에 삽입되는 구조를 통해 오일을 더욱 효과적으로 배출시킬 수 있다.As shown in FIG. 9, when the discharge port 32 is located at the center of the adjusting screw 30, that is, inside the spring 40, the oil is discharged through the discharge port 32 when the spring 40 is compressed. Will interfere. On the other hand, since the discharge port 132 of the present embodiment is located outside the spring 140, it can exclude the interference by the spring 140 in the discharge process of the oil. Therefore, the oil can be smoothly discharged through the discharge port 132, the discharge port 132 is composed of four radially arranged can be more smoothly discharged oil. In particular, the structure through which the spring 140 is inserted into the upper end of the spool 120 may discharge the oil more effectively.
자기부(110b)는 유압부(110a)보다 작은 외경을 가진 파이프 형상이다. 자기부(110b)의 중단 외주면에는 자력유도홈(118)이 형성되고, 하단 외주면에는 오일의 누출을 방지하기 위한 오링(116)이 설치된다.The magnetic part 110b has a pipe shape having an outer diameter smaller than that of the hydraulic part 110a. A magnetic induction groove 118 is formed on the outer peripheral surface of the magnetic part 110b, and an O-ring 116 is installed on the lower outer peripheral surface to prevent leakage of oil.
자력유도홈(118)은 고압 및 고유량의 오일을 효과적으로 제어할 수 있도록 충분한 자기력을 확보하기 위한 수단이다. 도 1에 도시된 것처럼, 자력유도홈(118)이 형성된 자기부(110b)의 중단 벽면은 그 상부 및 하부에 비해 얇은 두께로 형성된다. 전원 인가 시 코일(230)에서 발생한 자기장은 자기부(110b)를 따라 유도되되 두께가 상대적은 얇은 자력유도홈(118)에 집중된다. Magnetic induction groove 118 is a means for securing a sufficient magnetic force to effectively control the high pressure and high flow oil. As shown in FIG. 1, the stopping wall surface of the magnetic part 110b in which the magnetic induction grooves 118 are formed is formed to be thinner than the upper and lower portions thereof. The magnetic field generated from the coil 230 when the power is applied is induced along the magnetic part 110b but is concentrated in the magnetic induction groove 118 having a relatively thin thickness.
상술한 자력유도홈(118)은, 자기장이 형성된 물체의 면적이 줄어들수록 자속밀도(magnetic flux density)가 높아지는 원리를 이용한 것이다. 특히, 본 실시예의 자력유도홈(118)은 중심으로 갈수록 두께가 얇아지는 테이퍼 형상을 갖는바, 자기장을 더욱 효과적으로 집중시킬 수 있다. 따라서 자기장에 의해 이동하는 플런저(240)를 정밀하게 제어할 수 있으며, 이를 통해 고압 및 고유량의 오일을 제어할 수 있다.The magnetic induction groove 118 described above uses the principle that the magnetic flux density increases as the area of the object on which the magnetic field is formed decreases. In particular, the magnetic induction groove 118 of the present embodiment has a tapered shape, the thickness of which becomes thinner toward the center, and thus can concentrate the magnetic field more effectively. Therefore, it is possible to precisely control the plunger 240 moving by the magnetic field, through which it is possible to control the high pressure and high flow oil.
스풀(120)은 그 이동 시 공급포트(112), 제어포트(114), 배출포트(132)를 선택적으로 연결하기 위한 수단이다. 이러한 스풀(120)은 외경이 서로 다른 다단의 봉 형상을 가지며, 유압부(110a)의 내부에 이동 가능하게 설치된다.The spool 120 is a means for selectively connecting the supply port 112, the control port 114, the discharge port 132 during its movement. The spool 120 has a rod shape having a plurality of stages having different outer diameters, and is installed to be movable in the hydraulic part 110a.
도 1 내지 도 3을 참조하여, 스풀(120)의 형상을 좀 더 상세히 살펴보도록 한다.1 to 3, the shape of the spool 120 will be described in more detail.
스풀(120)은 홀더(110)의 길이방향으로 연장된 봉 형상이다. 스풀(120)의 상단과 하단에는 제1랜드(122)와 제2랜드(124)가 형성되고, 중단에는 소경부인 작동홈(126)이 형성된다. 또한, 스풀(120)의 내부에는 배출포트(132)와 자기부(110b)의 내부를 연결하는 유로(128)가 형성된다.The spool 120 has a rod shape extending in the longitudinal direction of the holder 110. The first land 122 and the second land 124 are formed at the upper end and the lower end of the spool 120, and the operation groove 126, which is a small diameter part, is formed at the stop. In addition, a flow path 128 connecting the discharge port 132 and the magnetic part 110b is formed in the spool 120.
제1랜드(122)와 제2랜드(124)는 홀더(110)의 내주면에 접촉되어 스풀(120)의 이동을 안내한다. 특히, 제1랜드(122)는 스풀(120)의 이동 시 제어포트(114)의 상부 또는 하부에 접촉하여 포트(112,114,132)의 연결을 차단한다. 예를 들어, 스풀(120)이 상승하면 공급포트(112)와 제어포트(114)를 연결하고, 제어포트(114)와 배출포트(132)의 연결을 차단한다(도 6 참조). 또한, 스풀(120)이 하강하면 공급포트(112)와 제어포트(114)의 연결을 차단하며, 제어포트(114)와 배출포트(132)를 연결한다.The first land 122 and the second land 124 contact the inner circumferential surface of the holder 110 to guide the movement of the spool 120. In particular, the first land 122 contacts the upper or lower portion of the control port 114 when the spool 120 moves to block the connection of the ports 112, 114, and 132. For example, when the spool 120 rises, the supply port 112 and the control port 114 are connected, and the connection between the control port 114 and the discharge port 132 is blocked (see FIG. 6). In addition, when the spool 120 is lowered, the connection of the supply port 112 and the control port 114 is blocked, and the control port 114 and the discharge port 132 are connected.
한편, 본 실시예에 따른 제1랜드(122)에는 각 포트(112,114,132)의 연결을 점진적으로 증가시키거나 차단시키기 위한 노치홈(122a,122b)이 형성된다. 노치홈(122a,122b)은, 제1랜드(122)의 상단 둘레를 따라 방사상으로 배치된 제1노치홈(122a)과, 제1랜드(122)의 하단 둘레를 따라 방사상으로 배치된 제2노치홈(122b)으로 이루어진다.Meanwhile, notch grooves 122a and 122b are formed in the first land 122 according to the present embodiment to gradually increase or block the connection of the ports 112, 114 and 132. The notch grooves 122a and 122b may include a first notch groove 122a disposed radially along the upper circumference of the first land 122 and a second radially disposed along the lower circumference of the first land 122. It consists of a notch groove 122b.
제1노치홈(122a)과 제2노치홈(122b)은 스풀(120)의 이동 시 홀더(110)와 제1랜드(122) 사이가 점진적으로 개방될 수 있도록 단부로 갈수록 확장되는 테이퍼 형상을 갖는다. 즉, 제1노치홈(122a)은 상부로 갈수록 확장되는 반원뿔 형상이고, 제2노치홈(122b)은 하부로 갈수록 확장되는 반원뿔 형상이다.The first notch groove 122a and the second notch groove 122b have a tapered shape that extends toward the end portion so that the opening between the holder 110 and the first land 122 may be gradually opened when the spool 120 moves. Have That is, the first notch groove 122a has a semi-conical shape that extends toward the top, and the second notch groove 122b has a semi-cone shape that extends toward the bottom.
제1노치홈(122a)과 제2노치홈(122b)의 부피의 비율은 다음과 같다(도 3 참조).The ratio of the volume of the 1st notch groove 122a and the 2nd notch groove 122b is as follows (refer FIG. 3).
제1노치홈(122a)의 두께(W1)와 제2노치홈(122b)의 두께(W2) 비율을 1 : 1.5라 규정했을 때, 제1노치홈(122a)의 길이(L1)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 15이고, 제1노치홈(122a)의 높이(H1)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 6이다.The length (L 1) when the provisions of 1.5 d, a first notched groove (122a): The first notched groove (122a) thickness (W 1) and the second one a thickness (W 2) the ratio of the notch groove (122b) of And the thickness W 2 ratio of the second notch groove 122b is 1:15, and the height H 1 of the height of the first notch groove 122a and the thickness W 2 of the second notch groove 122b are: 1: 6.
또한, 제2노치홈(122b)의 길이(L2)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 10이고, 제2노치홈(122b)의 높이(H2)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 6이다.In addition, the ratio of the length L 2 of the second notched groove 122b and the thickness W 2 of the second notched groove 122b is 1:10, and the height H 2 of the second notched groove 122b is The thickness W 2 ratio of the second notch grooves 122b is 1: 6.
상술한 형상의 노치홈(122a,122b)을 포함하는 스풀(120)은 그 이동과정에서 제1노치홈(122a)과 제2노치홈(122b)이 모두 개방되는 오버랩(overlap) 구간을 갖는다. 즉, 노치홈(122a,122b)에 의해 제어포트(124)가 공급포트(122) 및 제어포트(124)와 모두 연결되는 구간이 존재한다.The spool 120 including the notch grooves 122a and 122b having the above-described shape has an overlap section in which both the first notch grooves 122a and the second notch grooves 122b are opened. That is, there is a section in which the control port 124 is connected to both the supply port 122 and the control port 124 by the notch grooves 122a and 122b.
이와 같은 오버랩 구간에서는 공급포트(112)에서 제어포트(114)로 이송된 오일의 일부가 배출포트(132)를 통해 외부로 배출되므로, 제어포트(114)를 통해 이송되는 오일의 압력(또는 유량)이 급격하게 변동되는 것을 방지할 수 있다. 따라서 스풀(120)을 이동시키기 위한 전류의 증감에 따른 압력의 변화를 선형적으로 제어할 수 있다. 더불어, 전류-압력 그래프의 기울기가 완만하게 상승하므로 제어구간을 확장할 수 있다(도 7 참조). 특히, 스풀(120)이 상승함에 따라 제1노치홈(122a)이 점진적으로 폐쇄되므로 배출포트(132)를 통한 오일의 배출량, 즉 오일의 손실을 줄일 수 있다(도 8 참조).In this overlap section, since a part of the oil transferred from the supply port 112 to the control port 114 is discharged to the outside through the discharge port 132, the pressure (or flow rate) of the oil transferred through the control port 114 ) Can be prevented from rapidly changing. Therefore, it is possible to linearly control the change in pressure according to the increase or decrease of the current for moving the spool 120. In addition, since the slope of the current-pressure graph gradually rises, the control section can be extended (see FIG. 7). In particular, since the first notch groove 122a is gradually closed as the spool 120 rises, the discharge of oil through the discharge port 132, that is, the loss of oil, may be reduced (see FIG. 8).
도 1을 다시 참조하면, 솔레노이드(200)는, 자기부(11b)를 감싸는 케이스(210)와, 케이스(210)의 내부에 설치된 보빈(220)과, 보빈(220)의 외주면에 감긴 코일(230)과, 자기부(11b)의 내부에 설치된 플런저(240)와, 케이스(210)의 타단에 결합된 덮개(250)와, 케이스(210)의 측면으로 돌출된 커넥터(260)로 구성된다.Referring to FIG. 1 again, the solenoid 200 includes a case 210 surrounding the magnetic part 11b, a bobbin 220 installed inside the case 210, and a coil wound around the outer circumferential surface of the bobbin 220. 230, a plunger 240 installed inside the magnetic part 11b, a cover 250 coupled to the other end of the case 210, and a connector 260 protruding to the side of the case 210. .
케이스(210)는 하면이 개방되고 상면이 밀폐된 컵(cup) 형상이다. 케이스(210)의 내부에는 수납공간(212)이 형성되고, 수납공간(212)에는 보빈(220)이 설치된다. 케이스(210)의 하단은 덮개(250)를 감싸도록 컬링(curling) 처리된다. 케이스(210)의 하단을 컬링 처리할 경우 보빈(220)과 덮개(250)가 플랜지(116) 측으로 압착되어, 케이스(210)의 내부에 설치된 부품의 유동을 방지할 수 있고, 케이스(210)의 하부로 이물질이 유입되는 것을 방지할 수 있다.The case 210 has a cup shape in which a lower surface is opened and the upper surface is closed. An accommodation space 212 is formed inside the case 210, and a bobbin 220 is installed in the storage space 212. The lower end of the case 210 is curled to surround the cover 250. When curling the lower end of the case 210, the bobbin 220 and the cover 250 is pressed to the flange 116 side, it is possible to prevent the flow of parts installed in the case 210, the case 210 It is possible to prevent foreign matter from entering the lower portion of the.
보빈(220)은 중공의 스풀(spool) 형상이다. 보빈(220)의 외주면에는 코일(230)이 감긴다. 전원 인가 시 코일(230)에서 발생된 자기장은 자기부(110b)와 케이스(210)에 의해 유도되어 플런저(240)를 상승시킨다. 이때, 자기장의 세기는 코일(230)을 따라 흐르는 전류의 세기와 보빈(220)에 감긴 코일(230)의 수에 비례한다. 따라서 코일(230)에 강한 전류를 인가하거나 코일(230)을 많이 감을수록 강한 자기장이 발생하므로 플런저(240)의 이동을 확실하게 제어할 수 있다. Bobbin 220 is a hollow spool shape. The coil 230 is wound around the outer circumferential surface of the bobbin 220. The magnetic field generated from the coil 230 when the power is applied is induced by the magnetic part 110b and the case 210 to raise the plunger 240. At this time, the strength of the magnetic field is proportional to the strength of the current flowing along the coil 230 and the number of coils 230 wound on the bobbin 220. Therefore, since a strong magnetic field is generated as a strong current is applied to the coil 230 or the coil 230 is wound much, the movement of the plunger 240 can be reliably controlled.
플런저(240)는 코일(230)에서 발생한 자기장에 의해 왕복운동을 하는 가동철심으로, 자기부(110b)의 내부에 이동 가능하게 설치되고, 스풀(120)의 하단과 접촉된다.The plunger 240 is a movable iron core reciprocating by the magnetic field generated by the coil 230, is installed to be movable in the magnetic part 110b, and is in contact with the lower end of the spool 120.
플런저(240)에는 플런저(240)를 상하로 관통하는 통로(242)가 형성된다. 통로(242)는 플런저(240)가 왕복운동을 할 때, 플런저(240)의 상부에 충전된 오일이 플런저(240)의 하부로, 플런저(240)의 하부에 충전된 오일이 플런저(240)의 상부로 이송된다. 이때, 통로(242)는 플런저(240)의 중심에서 소정 거리 편심되는데, 이는 스풀(120)과의 접촉에 의해 통로(242)가 폐쇄되는 것을 방지하기 위함이다.The plunger 240 is formed with a passage 242 penetrating the plunger 240 up and down. When the plunger 240 reciprocates, the passage 242 has oil filled in the upper portion of the plunger 240 to the lower portion of the plunger 240 and oil filled in the lower portion of the plunger 240 is the plunger 240. Is transported to the top of the. At this time, the passage 242 is eccentric a predetermined distance from the center of the plunger 240, to prevent the passage 242 is closed by the contact with the spool 120.
플런저(240)의 하단은 곡면으로 형성되어 덮개(250)의 바닥과 국소 면접촉을 한다. 플런저(240)와 덮개(250)가 국소면접촉을 할 경우 덮개(250)를 통해 플런저(240)로 직접 이어지던 자기장의 흐름을 차단하여 플런저(240)가 원활하게 상승할 수 있도록 한다. 또한, 덮개(250)의 바닥이 다소 경사지더라도 플런저(240)의 기울기에 아무런 영향을 주지 않아 플런저(240)의 기울기에 따른 마찰저항을 해소할 수 있다.The lower end of the plunger 240 is formed into a curved surface to make local surface contact with the bottom of the cover 250. When the plunger 240 and the cover 250 is in contact with the local surface, the plunger 240 can be smoothly raised by blocking the flow of the magnetic field which was directly led to the plunger 240 through the cover 250. In addition, even if the bottom of the cover 250 is slightly inclined, the frictional resistance due to the inclination of the plunger 240 may be eliminated without affecting the inclination of the plunger 240.
플런저(240)의 표면은 무전해 니켈 도금 처리된다. 또한, 홀더(110)의 내주면, 특히 플런저(240)와 접촉되는 자기부(110b)의 내주면은 연질화 처리된다. 이처럼, 플런저(240)를 도금 처리하고 자기부(110b)를 연질화 처리할 경우 플런저(240)의 이동 시 발생하는 마찰을 저감시킬 수 있다.The surface of the plunger 240 is electroless nickel plated. In addition, the inner circumferential surface of the holder 110, in particular, the inner circumferential surface of the magnetic portion 110b in contact with the plunger 240 is softened. As described above, when the plunger 240 is plated and the magnetic portion 110b is soft nitrided, friction generated when the plunger 240 is moved may be reduced.
커넥터(260)는 코일(230)에 전원을 인가하는 수단이다. 커넥터(260)의 내부에는 복수의 터미널(262)이 설치된다. 커넥터(260)는 케이스(210)의 측면을 통해 외부로 돌출된다.The connector 260 is a means for applying power to the coil 230. A plurality of terminals 262 are installed inside the connector 260. The connector 260 protrudes outward through the side of the case 210.
도 4 내지 도 6을 참조하여 밸브의 작동과정을 살펴보도록 한다.The operation of the valve will be described with reference to FIGS. 4 to 6.
도 4는 솔레노이드(도 1의 200)에 전원이 인가되지 않은 상태이다. 이때, 스풀(120)은 스프링(140)의 탄성에 의해 탄성 지지되므로 하사점까지 하강하게 된다. 스풀(120)의 제1랜드(122)는 제어포트(114)의 하부와 접촉되어 공급포트(112)와 제어포트(114)의 연결을 차단함과 동시에 제어포트(114)와 배출포트(132)의 연결을 허용한다.4 is a state in which power is not applied to the solenoid 200 of FIG. 1. At this time, since the spool 120 is elastically supported by the elasticity of the spring 140, the spool 120 is lowered to the bottom dead center. The first land 122 of the spool 120 is in contact with the lower portion of the control port 114 to block the connection of the supply port 112 and the control port 114 and at the same time control port 114 and the discharge port 132 ) Allows the connection.
도 5는 솔레노이드(도 1의 200)에 전원이 인가된 초기 상태로, 전술한 오버랩 상태이다. 스풀(120)은 일정 높이까지 상승하여 제1랜드(122)가 제어포트(114)의 상부 및 하부와 모두 이격된 상태가 되도록 한다. 이때, 공급포트(112)는 제2노치홈(122b)을 통해 제어포트(114)와 연결되고, 제어포트(114)는 제1노치홈(122a)을 통해 배출포트(132)와 연결된다. 따라서 공급포트(112)에서 제어포트(114)로 이송된 오일의 일부가 배출포트(132)를 통해 외부로 배출된다.FIG. 5 is an initial state in which power is applied to the solenoid 200 (in FIG. 1), which is the overlap state described above. The spool 120 is raised to a certain height so that the first land 122 is spaced apart from both the upper and lower portions of the control port 114. In this case, the supply port 112 is connected to the control port 114 through the second notch groove 122b, and the control port 114 is connected to the discharge port 132 through the first notch groove 122a. Therefore, a part of the oil transferred from the supply port 112 to the control port 114 is discharged to the outside through the discharge port (132).
도 6은 솔레노이드(도 1의 200)에 최대치의 전유가 인가된 상태로, 스풀(120)이 상사점까지 상승한 상태이다. 스풀(120)의 제1랜드(122)는 제어포트(114)의 상부와 접촉되어 제어포트(114)와 배출포트(132)의 연결을 차단함과 동시에 공급포트(112)와 제어포트(114)의 연결을 허용한다. 따라서 공급포트(112)에서 제어포트(114)로 이송된 오일 전량이 제어포트(114)를 통해 압송된다.FIG. 6 is a state in which the maximum oil is applied to the solenoid 200 (200), and the spool 120 is raised to the top dead center. The first land 122 of the spool 120 is in contact with the upper portion of the control port 114 to block the connection of the control port 114 and the discharge port 132 and at the same time supply port 112 and the control port 114 ) Allows the connection. Therefore, the total amount of oil transferred from the supply port 112 to the control port 114 is pumped through the control port 114.
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been described through the preferred embodiments, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes may be made without departing from the technical idea of the present invention. Those of ordinary skill will understand. Therefore, the protection scope of the present invention should be interpreted not by the specific embodiments, but by the matters described in the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (10)

  1. 오일의 출입을 단속하는 밸브와, 상기 밸브를 작동시키는 솔레노이드를 포함하는 오일펌프 컨트롤 밸브에 있어서,An oil pump control valve comprising a valve for intercepting oil in and out, and a solenoid for operating the valve.
    상기 밸브는,The valve,
    배출포트가 상단에 형성되고, 제어포트가 중단에 형성되며, 공급포트가 하단에 형성된 파이프 형상의 홀더;A discharge port is formed at an upper end, a control port is formed at an interruption, and a pipe-shaped holder formed at a lower end of the supply port;
    상기 홀더의 내주면에 접촉되는 제1랜드와 제2랜드가 상단과 하단에 각각 형성되고, 상기 제1랜드와 상기 제2랜드 사이에 작동홈이 형성된 스풀;A spool having a first land and a second land contacting the inner circumferential surface of the holder at upper and lower ends, respectively, and an operation groove formed between the first land and the second land;
    상기 제1랜드의 상단과 상기 제1랜드의 하단 중 적어도 하나에 형성된 노치홈을 포함하는 오일펌프 컨트롤 밸브.An oil pump control valve comprising a notch groove formed in at least one of an upper end of the first land and a lower end of the first land.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 노치홈은, 상기 제1랜드의 상단에 형성되어 상기 제어포트와 상기 배출포트를 연결하는 제1노치홈과, 상기 제1랜드의 하단에 형성되어 상기 공급포트와 상기 제어포트를 연결하는 제2노치홈으로 구성된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The notch groove may include a first notch groove formed at an upper end of the first land and connecting the control port and the discharge port, and formed at a lower end of the first land to connect the supply port and the control port. An oil pump control valve comprising two notches.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 제1노치홈은 상부로 갈수록 확장되는 테이퍼 형상이며, 상기 제2노치홈은 하부로 갈수록 확장되는 테이퍼 형상인 것을 특징으로 하는 오일펌프 컨트롤 밸브.The first notch groove has a tapered shape that extends toward the upper portion, the second notched groove has a tapered shape that extends toward the lower portion of the oil pump control valve.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제1노치홈과 상기 제2노치홈은 서로 대응되는 반원뿔 형상인 것을 특징으로 하는 오일펌프 컨트롤 밸브.The first notch groove and the second notch groove is an oil pump control valve, characterized in that the semi-conical shape corresponding to each other.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 제1노치홈과 상기 제2노치홈은 상기 제1랜드의 둘레를 따라 방사상으로 배치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.And the first notch groove and the second notch groove are radially disposed along the circumference of the first land.
  6. 청구항 3에 있어서,The method according to claim 3,
    제1노치홈(122a)의 두께(W1)와 제2노치홈(122b)의 두께(W2) 비율을 1 : 1.5라 규정했을 때,When specified La 1.5: the thickness (W 1) of the first notched groove (122a) and a first thickness (W 2) the ratio of the two notched grooves (122b)
    제1노치홈(122a)의 길이(L1)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 15이고, 제1노치홈(122a)의 높이(H1)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 6이며,The ratio of the length L 1 of the first notch groove 122a to the thickness W 2 of the second notch groove 122b is 1:15, and the height H 1 of the first notch groove 122a and the second are not. The thickness (W 2 ) ratio of the notch grooves 122b is 1: 6,
    제2노치홈(122b)의 길이(L2)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 10이고, 제2노치홈(122b)의 높이(H2)와 제2노치홈(122b)의 두께(W2) 비율은 1 : 6인 것을 특징으로 하는 오일펌프 컨트롤 밸브.The ratio of the length L 2 of the second notch groove 122b to the thickness W 2 of the second notch groove 122b is 1:10, and the height H 2 of the second notch groove 122b and the second are not. Oil pump control valve, characterized in that the thickness (W 2 ) ratio of the notch groove (122b) is 1: 6.
  7. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 스풀의 이동 시 상기 제1노치홈과 상기 제2노치홈이 모두 개방되는 오버랩(overlap) 구간이 존재하는 것을 특징으로 하는 오일펌프 컨트롤 밸브.Oil pump control valve, characterized in that there is an overlap (overlap) section in which both the first notch groove and the second notch groove open when the spool moves.
  8. 청구항 1 내지 청구항 6 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 홀더의 상단에 결합된 조절스크루; 및A control screw coupled to the top of the holder; And
    상기 스풀과 상기 조절스크루 사이에는 개재된 스프링을 더 포함하고,Further comprising a spring interposed between the spool and the adjusting screw,
    상기 배출포트가 상기 조절스크루에 형성된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The oil pump control valve, characterized in that the discharge port is formed in the adjusting screw.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 배출포트는 상기 스프링보다 외측에 위치된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The discharge port is an oil pump control valve, characterized in that located outside the spring.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 배출포트는 상기 조절스크루의 중심을 기준으로 방사상 배치된 복수로 구성된 것을 특징으로 하는 오일펌프 컨트롤 밸브.The discharge port is an oil pump control valve, characterized in that consisting of a plurality of radially disposed relative to the center of the adjusting screw.
PCT/KR2016/013229 2016-11-16 2016-11-16 Oil pump control valve WO2018092930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/013229 WO2018092930A1 (en) 2016-11-16 2016-11-16 Oil pump control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/013229 WO2018092930A1 (en) 2016-11-16 2016-11-16 Oil pump control valve

Publications (1)

Publication Number Publication Date
WO2018092930A1 true WO2018092930A1 (en) 2018-05-24

Family

ID=62146454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013229 WO2018092930A1 (en) 2016-11-16 2016-11-16 Oil pump control valve

Country Status (1)

Country Link
WO (1) WO2018092930A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280705A (en) * 1998-03-27 1999-10-15 Shin Caterpillar Mitsubishi Ltd Hydraulic valve operation device
JP2005155804A (en) * 2003-11-26 2005-06-16 Hitachi Constr Mach Co Ltd Notched spool type flow control valve
KR20070063206A (en) * 2005-12-14 2007-06-19 현대자동차주식회사 Manual valve of hydraulic control system for continuously variable transmission
JP2008309298A (en) * 2007-06-18 2008-12-25 Aisin Aw Co Ltd Solenoid valve
KR101559423B1 (en) * 2014-10-08 2015-10-13 주식회사 유니크 Oil pump control valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280705A (en) * 1998-03-27 1999-10-15 Shin Caterpillar Mitsubishi Ltd Hydraulic valve operation device
JP2005155804A (en) * 2003-11-26 2005-06-16 Hitachi Constr Mach Co Ltd Notched spool type flow control valve
KR20070063206A (en) * 2005-12-14 2007-06-19 현대자동차주식회사 Manual valve of hydraulic control system for continuously variable transmission
JP2008309298A (en) * 2007-06-18 2008-12-25 Aisin Aw Co Ltd Solenoid valve
KR101559423B1 (en) * 2014-10-08 2015-10-13 주식회사 유니크 Oil pump control valve

Similar Documents

Publication Publication Date Title
US7950416B2 (en) Solenoid valve
WO2013066062A1 (en) Oil pump control valve
WO2013066061A1 (en) Oil pump control valve
KR101188178B1 (en) Pressure control valve
WO2012153893A1 (en) Pressure control valve
DE19733099A1 (en) Single control valve for variable stroke air-conditioner compressor for vehicle
US7172171B2 (en) Controllable solenoid valve
WO2011090256A1 (en) Solenoid valve for transmission
JP2014178028A (en) System and method for regulation of fluid pump outlet pressure
WO2016056859A1 (en) Oil pump control valve
CN1989364A (en) Releasable non-return valve
WO2018092930A1 (en) Oil pump control valve
EP0987444A2 (en) Proportional priority flow regulator with reverse flow control
EP0288854B1 (en) Rotary hydraulic machine
CN110671379A (en) Flow control type hoist balance valve
KR101679803B1 (en) Oil pump control valve
WO2018092931A1 (en) Variable oil pump control system and variable oil pump control valve used therefor
KR101093449B1 (en) Oil control valve
WO2018070621A1 (en) Oil pump control valve
CN203703241U (en) Electromagnetic valve
TW201723368A (en) Volume flow regulating valve
CN107689304B (en) A kind of hydraulic actuating mechanism
KR101183038B1 (en) Solenoid valve
KR101679804B1 (en) Variable displacement oil pump control system and variable displacement oil pump control valve for the same
WO2016056860A1 (en) Oil pump control valve for

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921732

Country of ref document: EP

Kind code of ref document: A1