WO2016148361A1 - Oil jet solenoid valve - Google Patents

Oil jet solenoid valve Download PDF

Info

Publication number
WO2016148361A1
WO2016148361A1 PCT/KR2015/010672 KR2015010672W WO2016148361A1 WO 2016148361 A1 WO2016148361 A1 WO 2016148361A1 KR 2015010672 W KR2015010672 W KR 2015010672W WO 2016148361 A1 WO2016148361 A1 WO 2016148361A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
operating space
plunger
solenoid valve
oil
Prior art date
Application number
PCT/KR2015/010672
Other languages
French (fr)
Korean (ko)
Inventor
이창훈
문국찬
이지용
박지훈
심윤용
Original Assignee
주식회사 유니크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유니크 filed Critical 주식회사 유니크
Publication of WO2016148361A1 publication Critical patent/WO2016148361A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to an oil jet solenoid valve, and more particularly to a solenoid valve used to control the flow of oil for cooling and lubricating the piston.
  • automobiles are classified into gasoline vehicles using gasoline as a fuel, diesel vehicles using diesel as a fuel, and LPG vehicles using Liquefied Petroleum Gas (LPG) as fuel.
  • a diesel vehicle is usually powered by a high injection pressure of 100 to 300 atm in the air of 500 to 550 ° C. compressed in the combustion chamber at about 40 atm to obtain power, that is, injected with compressed heat of air.
  • Fuel causes self-ignition and uses engines that convert thermal energy into mechanical energy.
  • An oil pan is installed in the lower part of the cylinder block constituting the engine, and the oil pan stores engine oil (lubricating oil) for cooling and lubrication.
  • Oil stored in the oil pan is pumped to the main gallery by lubricators such as oil pan, oil strainer and oil pump, and supplied to the head gallery and oil jet gallery to cool and lubricate each part of the engine and then to the oil pan. It is recovered.
  • the conventional lubrication method is configured to supply the same amount of oil for each gallery, when the amount of oil required in the gallery differs depending on the driving region and the operating state of the engine, oil is wasted.
  • the main and head galleries require large amounts of oil, but the oil jet gallery requires a relatively small amount of oil.
  • the gallery has a problem with more oil than necessary.
  • the present invention relates to a solenoid valve installed between a main gallery and an oil jet gallery.
  • the present invention provides an oil jet solenoid valve capable of minimizing frictional resistance generated during movement of a spool and relieving the operating resistance of a plunger. There is a purpose.
  • Oil jet solenoid valve for achieving the above object is the upper body formed therein the first operating space for connecting a plurality of ports and the lower body extending downward from the upper body and the second operating space formed therein
  • a hollow holder comprising: a spool movably installed in the first operating space to connect or block the port; a spring installed in the first operating space and elastically supporting the spool downward; and the second A plunger movably installed in the operating space to move the spool, a bobbin coupled to the circumference of the lower body and wound with a coil on an outer circumferential surface, a plate positioned below the bobbin and inserted into a lower end of the lower body; And a case surrounding the holder, the bobbin, the housing, and the plate.
  • the spool includes a large diameter portion contacting the inner wall of the first operating space and a small diameter portion spaced apart from the inner wall of the first operating space.
  • the spool is formed with a flow path connecting the top and bottom of the spool.
  • a connecting passage is formed between the first operating space and the second operating space, and a rod is installed in the connecting passage so as to be movable.
  • the connecting passage has a smaller diameter than the first operating space and the second operating space, and a cylindrical stopper is installed at a lower end of the connecting passage, and the stopper is lower than an upper surface of the second operating space. It protrudes.
  • the upper surface of the plate is formed with a mounting groove into which the lower end of the lower body is inserted, the lower end of the lower body is spaced apart from the bottom of the mounting groove.
  • the frictional resistance generated during the movement of the spool can be minimized.
  • the rod moving with the spool is formed with a smaller diameter than the connecting passage, precision processing is not required when manufacturing the rod, thereby reducing labor and cost.
  • the stopper installed in the connection passage protrudes into the second working space to separate the plunger which is raised when the power is applied from the upper surface of the second working space. Therefore, the operating resistance of the plunger generated by the magnetic field remaining in the holder when the power supply is cut off can be eliminated.
  • the present invention is spaced apart from the bottom of the mounting groove in a state in which the lower body of the holder is inserted into the mounting groove of the plate, preventing the lower body from contacting the plate in the process of caulking the bottom of the case when assembling the valve can do.
  • FIG. 1 is a front view of an oil jet solenoid valve according to an embodiment of the present invention.
  • FIG. 2 is a plan view of an oil jet solenoid valve according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG.
  • Figure 4 is an operating state of the oil jet solenoid valve according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of an oil jet solenoid valve according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an oil jet solenoid valve according to another embodiment of the present invention.
  • an oil jet solenoid valve (hereinafter referred to as a “valve”) according to an embodiment of the present invention includes a hollow holder 100 having first and second operating spaces 132 and 134 formed therein. ), A spool 200 and a spring 300 installed in the first operating space 132, a plunger 400 movably installed in the second operating space 134, and a bobbin coupled to the holder 100.
  • Holder 100 is a multi-stage cylindrical shape consisting of the upper body 110 and the lower body 120.
  • the upper body 110 of the holder 100 is formed with a larger diameter than the lower body 120.
  • a supply port 112 connected to the main gallery (not shown) is formed at the middle of the upper body 110, and a control port 114 connected to an oil jet gallery (not shown) is formed on an upper surface of the upper body 110.
  • a first operating space 132 connecting the supply port 112 and the control port 114 is formed inside the upper body 110.
  • the oil pumped from the main galler and introduced into the supply port 112 is controlled by the spool 200 in a process of being transported along the first operating space 132 and then through the control port 114. Ejected to an oil jet gallery (not shown).
  • an annular filter 116a is provided at the middle of the upper body 110, and a plate-shaped filter 116b is installed at the upper surface of the upper body 110.
  • the lower body 120 of the holder 100 has a cylindrical shape having a diameter smaller than that of the upper body 110.
  • Magnetic reinforcement grooves 122 are formed in the middle of the lower body 120.
  • the magnetic reinforcement groove 122 is manufactured in a tapered shape that becomes narrower toward the center of the lower body 120 so that the magnetic field generated around the lower body 120 is concentrated in the magnetic reinforcement groove 122. As such, when the magnetic field is concentrated and the magnetic flux density of the magnetic reinforcement groove 122 is increased, sufficient magnetic force may be secured to smoothly move the plunger 400.
  • the second operating space 134 is formed in the lower body 120, and the plunger 400 is installed in the second operating space 134 to be movable.
  • the second working space 134 is connected to the first working space 132 through a connection passage 136.
  • the connection passage 136 has a smaller diameter than the first and second operating spaces 132 and 134, and an insertion groove 138 for installing the stopper 140 is formed at a lower end thereof.
  • the stopper 140 is a means for limiting the rise of the plunger 400. That is, the lower end of the stopper 140 protrudes into the second operating space 134 to limit the rise of the plunger 400 to prevent the plunger 400 from contacting the upper surface of the second operating space 134. This is to solve the operating resistance of the plunger 400 due to the magnetic field remaining in the holder 100 when the power is cut off.
  • the magnetic field generated around the holder 100 that is, the lower body 120
  • This residual magnetic field interferes with the movement (falling) of the plunger 400, and the influence of the residual magnetic field is greater when the plunger 400 is in contact with the upper surface of the second operating space 134.
  • the stopper 140 by using the stopper 140 to separate the plunger 400 from the upper surface of the second operating space 134, it is possible to solve the operating resistance of the plunger 500 by the magnetic field remaining in the lower body 120.
  • the non-magnetic stopper 140 when used, the effect of the residual magnetic field can be reliably blocked to more effectively solve the operating resistance of the plunger 400.
  • the spool 200 is installed to be movable in the first operating space 132 to open or close the supply port 112 and to control the oil introduced through the supply port 112 to a predetermined pressure.
  • the spool 200 has a multistage cylindrical shape including a large diameter portion 210 and a small diameter portion 220.
  • the large diameter portion 210 of the spool 200 is formed to have the same diameter as the inner diameter of the first operating space 132 to contact the inner wall of the first operating space 132 when the spool 200 moves.
  • the small diameter portion 220 of the spool 200 is formed to have a smaller diameter than the large diameter portion 210 and is spaced apart from the inner wall of the first operating space 132. Since the spool 200 having such a shape can reduce the contact area with the first operating space 132, the frictional resistance generated during the movement of the spool 200 can be minimized.
  • the flow path 230 is formed inside the spool 200.
  • the flow path 230 connects the first operating space 132 partitioned by the spool 200 to operate the resistance of the spool 200 by the oil filled in the first operating space 132 when the spool 200 is moved. To solve the problem.
  • a mounting groove 212 is formed on an upper surface of the large diameter portion 210 of the spool 200, and a spring 300 that elastically supports the spool 200 downward is installed in the mounting groove 212.
  • the rod 240 is press-fitted to the lower surface of the small diameter portion 220, and the rod 240 extends through the connection passage 136 to the second operation space 134. At this time, the rod 240 is formed with a smaller diameter than the connection passage 136, there is no fear that friction resistance with the connection passage 124 is generated during the movement.
  • the spool 200 has a structure in which the rod 240 is press-fitted, and the spool 200 and the rod 240 are disposed on the same axis, so that the distance between the connection passage 136 and the rod 240 is constant. I can keep it. Therefore, it is possible to solve the operating resistance by the oil moving the first operating space 132 and the second operating space 134.
  • the bobbin 500 has a spool shape in which a flange 510 is formed at an upper end and a lower end.
  • the flange 510 serves to guide the coil 600 to be wound to a certain thickness while protecting the coil 600 wound around the outer circumferential surface of the bobbin 500.
  • the coil 600 is a conductive wire that generates a magnetic field around the bobbin 500.
  • the coil 600 is tightly and uniformly wound around the outer circumferential surface of the bobbin 500 to form a cylindrical shape of a constant thickness.
  • the magnetic field generated in the coil 600 is concentrated in the magnetic reinforcement groove 122 to move (raise) the plunger 400.
  • the strength of the magnetic field for moving the plunger 400 is proportional to the strength of the current flowing along the coil 600 and the number of coils 600 wound on the bobbin 500. Therefore, when a high current is applied to the coil 600 and when the coil 600 is wound up a lot, a strong magnetic field may be generated to reliably control the movement of the plunger 400.
  • the plunger 400 is a movable iron core movably installed in the second operation space 134 to reciprocate by a magnetic field generated in the coil 600.
  • the plunger 400 has a passage 410 penetrating the plunger 400 up and down.
  • the passage 410 connects the second operation space 134 partitioned by the plunger 400 to operate the resistance of the plunger 400 by the oil filled in the second operation space 134 when the plunger 400 moves.
  • the passage 410 is eccentric a predetermined distance from the center of the plunger 400, to prevent the passage 410 is closed by the contact with the rod 240.
  • the lower surface of the plunger 400 is formed into a curved surface to make point contact with the bottom of the plate 800.
  • the plunger 400 can be smoothly moved by blocking the flow of the magnetic field leading to the plunger 400 through the bottom of the plate 800.
  • the frictional resistance due to the inclination of the plunger 400 may be eliminated without affecting the inclination of the plunger 400.
  • the housing 700 is formed to surround the bobbin 500, and a connector 710 is formed at one side.
  • the terminal 720 is electrically connected to the coil 600 in the connector 710.
  • the plate 800 is a fixed iron core for inducing a magnetic field generated in the coil 600 to move the plunger 400 which is a movable iron core.
  • the plate 800 is located at the bottom of the bobbin 400 and is coupled to the bottom of the lower body 120.
  • a mounting groove 810 into which the lower end of the lower body 120 is inserted is formed on the upper surface of the plate 800.
  • the lower end of the lower body 120 inserted into the mounting groove 810 is spaced apart from the bottom of the mounting groove 810. Therefore, when the plate 800 is assembled, the deformation caused by the contact between the lower body 120 and the plate 800, that is, the deformation of the lower body 120 may be prevented.
  • the case 900 is a cylindrical shape in which the top and bottom are open.
  • An interior of the case 900 includes a storage space 910, and components 100 to 800 including the bobbin 500 are installed in the storage space 910.
  • the lower end of the case 900 is caulked to surround the plate 800 so that the parts 100 to 800 installed inside the case 800 are in close contact with each other.
  • FIG 3 illustrates a state in which no power is applied to the valve.
  • the spool 200 descends by the elasticity of the spring 300 and connects the supply port 112 and the control port 114. Therefore, the oil conveyed from the main gallery (not shown) is transferred to the first operating space 132 supplied through the supply port 112, and is transferred to the oil jet gallery (not shown) through the control port 114.
  • FIG 5 illustrates an oil jet solenoid valve according to another embodiment of the present invention.
  • the valve according to the present embodiment includes a hollow holder 100, a spool 200 and a spring 300 installed in the first operating space 132 of the holder 100, and a second operating space of the holder 100.
  • a plunger 400 movably installed at 134, a bobbin 500 coupled to the holder 100, a coil 600 wound around the outer circumferential surface of the bobbin 500, and a housing surrounding the bobbin 500.
  • 700 a plate 800 coupled to the lower end of the holder 100, and a case 900 surrounding the circumference of the valve.
  • the rod 240 is installed between the spool 200 and the plunger 400 among the valves of the above-described configuration, and the rod 240 is manufactured in a form extending from the spool 200 unlike the above-described embodiment. That is, it extends from the bottom of the spool 200 and contacts the plunger 400.
  • the spool 200 described above has a structure formed integrally with the rod 240. Since the spool 200 and the rod 240 are disposed on the same axis, the spool 200 has a first operating space 132 and a second operating space 134. It can eliminate the working resistance caused by the moving oil. In particular, compared to the structure of the spool 200 (rod 240 press-fit structure) according to an embodiment has the advantage of easy processing of the spool 200.
  • FIG 6 illustrates an oil jet solenoid valve according to another embodiment of the present invention.
  • the valve according to the present embodiment includes a hollow holder 100, a spool 200 and a spring 300 installed in the first operating space 132 of the holder 100, and a second operating space of the holder 100.
  • a plunger 400 movably installed at 134, a bobbin 500 coupled to the holder 100, a coil 600 wound around the outer circumferential surface of the bobbin 500, and a housing surrounding the bobbin 500.
  • 700 a plate 800 coupled to the lower end of the holder 100, and a case 900 surrounding the circumference of the valve.
  • the rod 240 is installed between the spool 200 and the plunger 400 among the valves having the above-described configuration, and the rod 240 is manufactured in a form separate from the spool 200 unlike the above-described embodiments. That is, the rod 240 is installed to be movable in the connecting passage 136, the upper and lower ends are in contact with the spool 200 and the plunger 400, respectively.
  • the rod 240 when the rod 240 is manufactured in a form separated from the spool 200, even if the center of the spool 200 and the rod 240 are slightly displaced, the rod 240 has no effect on the reciprocating motion of the spool 200. There is no concern, and precise manufacturing is not necessary when manufacturing the rod 240, thereby reducing manufacturing cost and manufacturing time.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

The present invention relates to a solenoid valve which is used to control the flow of an oil for cooling and lubricating a piston, comprising: a hollow holder which consists of an upper body having a first operating space for connecting a plurality of ports formed thereinside, and a lower body which extends downward from the upper body and has a second operating space formed thereinside; a spool which is movably installed in the first operating space to turn the ports on or off; a spring which is installed in the first operating space and elastically supports the spool downwardly; a plunger which is movably installed in the second operating space and is in contact with the lower end of the spool; a bobbin which is joined around the circumference of the lower body and has a coil wound around the circumferential surface thereof; a plate which is located in the lower part of the bobbin and into which the lower end of the lower body is inserted; and a case which surrounds the holder, the bobbin, the housing, and the plate.

Description

오일 젯 솔레노이드 밸브Oil jet solenoid valve
본 발명은 오일 젯 솔레노이드 밸브에 관한 것으로, 더욱 자세하게는 피스톤의 냉각 및 윤활을 위한 오일의 흐름을 제어하는데 사용되는 솔레노이드 밸브에 관한 것이다.The present invention relates to an oil jet solenoid valve, and more particularly to a solenoid valve used to control the flow of oil for cooling and lubricating the piston.
일반적으로, 자동차는 가솔린을 연료로 사용하는 가솔린 차량, 디젤을 연료로 사용하는 디젤 차량, LPG(Liquefied Petroleum Gas)를 연료로 사용하는 LPG 차량으로 구분된다. 예를 들어, 디젤 차량은 통상적으로 약 40기압으로 연소실 내에 압축된 500~550℃ 정도의 공기 중에 100~300기압의 높은 분사 압력으로 연료를 분사하여 동력을 얻는, 즉 공기의 압축열로 분사된 연료가 자기 착화를 일으켜 열에너지를 기계적 에너지로 바꾸는 엔진을 사용하게 된다.In general, automobiles are classified into gasoline vehicles using gasoline as a fuel, diesel vehicles using diesel as a fuel, and LPG vehicles using Liquefied Petroleum Gas (LPG) as fuel. For example, a diesel vehicle is usually powered by a high injection pressure of 100 to 300 atm in the air of 500 to 550 ° C. compressed in the combustion chamber at about 40 atm to obtain power, that is, injected with compressed heat of air. Fuel causes self-ignition and uses engines that convert thermal energy into mechanical energy.
엔진을 구성하는 실린더 블록의 하부에는 오일팬이 설치되고, 오일팬에는 냉각 및 윤활을 위한 엔진 오일(윤활유)이 저장된다. 오일팬에 저장된 오일은 오일팬, 오일스트레이너 및 오일펌프 등의 윤활장치에 의해 메인 갤러리로 압송되고, 헤드 갤러리와 오일 젯 갤러리로 공급되어 엔진의 각 부분에서 냉각 및 윤활작용을 한 후 오일팬으로 회수된다.An oil pan is installed in the lower part of the cylinder block constituting the engine, and the oil pan stores engine oil (lubricating oil) for cooling and lubrication. Oil stored in the oil pan is pumped to the main gallery by lubricators such as oil pan, oil strainer and oil pump, and supplied to the head gallery and oil jet gallery to cool and lubricate each part of the engine and then to the oil pan. It is recovered.
그런데 종래의 윤활방식은 갤러리마다 동일한 양의 오일을 공급하는 구조이므로, 엔진의 운전 영역 및 작동 상태에 따라 갤러리에서 요구되는 오일의 양이 다를 경우 오일이 낭비되는 문제를 야기하게 된다. 예를 들어, 엔진브레이크가 작동하면 메인 갤러리와 헤드 갤러리에서는 다량의 오일이 필요하지만 오일 젯 갤러리에는 상대적으로 소량의 오일이 요구되는데, 그럼에도 불구하고 각 갤러리마다 동일한 양의 오일이 공급되므로, 오일 젯 갤러리에는 필요 이상의 오일이 공급되는 문제가 생긴다.However, since the conventional lubrication method is configured to supply the same amount of oil for each gallery, when the amount of oil required in the gallery differs depending on the driving region and the operating state of the engine, oil is wasted. For example, when the engine brake is activated, the main and head galleries require large amounts of oil, but the oil jet gallery requires a relatively small amount of oil. The gallery has a problem with more oil than necessary.
또한, 엔진의 운전 영역 및 작동 상태와 관계없이 갤러리마다 동일한 양의 오일을 공급하기 위해서는 오일을 압송하는 펌프의 용량이 커야하고, 대용량의 펌프를 작동시키기 위해서는 더 많은 동력이 소모되므로 연비 저하시키게 된다. 이에, 엔진의 운전 영역 및 작동 상태에 따라 오일 젯 갤러리로 공급되는 오일의 양을 조절하기 위한 밸브가 요구된다.In addition, regardless of the operating area and operating state of the engine, the pump pumping oil must be large in order to supply the same amount of oil in each gallery, and the fuel consumption is reduced because more power is consumed to operate a large capacity pump. . Accordingly, there is a need for a valve for adjusting the amount of oil supplied to the oil jet gallery in accordance with the operating region and operating conditions of the engine.
본 발명은 메인 갤러리와 오일 젯 갤러리 사이에 설치되는 솔레노이드 밸브에 관한 것으로서, 스풀의 이동 중 발생하는 마찰저항을 최소화할 수 있고, 플런저의 작동저항을 해소할 수 있는 오일 젯 솔레노이드 밸브를 제공하는데 그 목적이 있다.The present invention relates to a solenoid valve installed between a main gallery and an oil jet gallery. The present invention provides an oil jet solenoid valve capable of minimizing frictional resistance generated during movement of a spool and relieving the operating resistance of a plunger. There is a purpose.
상기 목적을 달성하기 위한 본 발명에 의한 오일 젯 솔레노이드 밸브는 복수의 포트를 연결하는 제1작동공간이 내부에 형성된 상부 몸체 및 상기 상부 몸체에서 하향으로 연장되며 내부에 제2작동공간이 형성된 하부 몸체로 이루어진 중공의 홀더와, 상기 제1작동공간에 이동 가능하게 설치되어 상기 포트를 연결 또는 차단하는 스풀과, 상기 제1작동공간에 설치되고 상기 스풀을 하향으로 탄성 지지하는 스프링과, 상기 제2작동공간에 이동 가능하게 설치되어 상기 스풀을 이동시키는 플런저와, 상기 하부 몸체의 둘레에 결합되고 외주면에 코일이 감긴 보빈과, 상기 보빈의 하부에 위치되며 상기 하부 몸체의 하단이 삽입되는 플레이트와, 상기 홀더, 상기 보빈, 상기 하우징, 상기 플레이트를 감싸는 케이스를 포함한다.Oil jet solenoid valve according to the present invention for achieving the above object is the upper body formed therein the first operating space for connecting a plurality of ports and the lower body extending downward from the upper body and the second operating space formed therein A hollow holder comprising: a spool movably installed in the first operating space to connect or block the port; a spring installed in the first operating space and elastically supporting the spool downward; and the second A plunger movably installed in the operating space to move the spool, a bobbin coupled to the circumference of the lower body and wound with a coil on an outer circumferential surface, a plate positioned below the bobbin and inserted into a lower end of the lower body; And a case surrounding the holder, the bobbin, the housing, and the plate.
상술한 구성 중 상기 스풀은, 상기 제1작동공간의 내벽에 접촉되는 대경부와, 상기 제1작동공간의 내벽에서 이격된 소경부로 이루어진다. 또한, 상기 스풀에는 상기 스풀의 상부와 하부를 연결하는 유로가 형성된다.In the above-described configuration, the spool includes a large diameter portion contacting the inner wall of the first operating space and a small diameter portion spaced apart from the inner wall of the first operating space. In addition, the spool is formed with a flow path connecting the top and bottom of the spool.
상기 제1작동공간과 상기 제2작동공간 사이에 연결통로가 형성되고, 상기 연결통로에 로드가 이동 가능하게 설치된다.A connecting passage is formed between the first operating space and the second operating space, and a rod is installed in the connecting passage so as to be movable.
상기 연결통로는 상기 제1작동공간 및 상기 제2작동공간에 비해 작은 직경으로 형성되고, 상기 연결통로의 하단에는 원통 형상의 스토퍼가 설치되며, 상기 스토퍼가 상기 제2작동공간의 상면보다 하향으로 돌출된다.The connecting passage has a smaller diameter than the first operating space and the second operating space, and a cylindrical stopper is installed at a lower end of the connecting passage, and the stopper is lower than an upper surface of the second operating space. It protrudes.
상기 플레이트의 상면에는 상기 하부 몸체의 하단이 삽입되는 장착홈이 형성되고, 상기 하부 몸체의 하단이 상기 장착홈의 바닥에서 이격된다.The upper surface of the plate is formed with a mounting groove into which the lower end of the lower body is inserted, the lower end of the lower body is spaced apart from the bottom of the mounting groove.
상술한 바와 같이 구성된 본 발명은, 밸브의 작동 시 스풀의 일부만이 제1작동공간의 내벽에 접촉되어 이동하므로 스풀의 이동 중 발생하는 마찰저항을 최소화할 수 있다. 특히, 스풀과 함께 이동하는 로드가 연결통로에 비해 작은 직경으로 형성되어 로드의 제작 시 정밀가공이 필요하지 않으므로 공수와 비용을 절감할 수 있다.According to the present invention configured as described above, since only a part of the spool is moved in contact with the inner wall of the first operating space during operation of the valve, the frictional resistance generated during the movement of the spool can be minimized. In particular, since the rod moving with the spool is formed with a smaller diameter than the connecting passage, precision processing is not required when manufacturing the rod, thereby reducing labor and cost.
또한, 본 발명은 연결통로에 설치된 스토퍼가 제2작동공간으로 돌출되어 전원 인가 시 상승한 플런저를 제2작동공간의 상면으로부터 이격시킨다. 따라서 전원을 차단했을 때 홀더에 잔류하는 자기장에 의해 발생하는 플런저의 작동저항을 해소할 수 있다.In addition, in the present invention, the stopper installed in the connection passage protrudes into the second working space to separate the plunger which is raised when the power is applied from the upper surface of the second working space. Therefore, the operating resistance of the plunger generated by the magnetic field remaining in the holder when the power supply is cut off can be eliminated.
또한, 본 발명은 홀더의 하부 몸체가 플레이트의 장착홈에 삽입된 상태에서 장착홈의 바닥으로부터 이격되므로, 밸브의 조립 시 케이스의 하단을 코킹하는 과정에서 하부 몸체가 플레이트에 접촉되어 변형되는 것을 방지할 수 있다.In addition, the present invention is spaced apart from the bottom of the mounting groove in a state in which the lower body of the holder is inserted into the mounting groove of the plate, preventing the lower body from contacting the plate in the process of caulking the bottom of the case when assembling the valve can do.
도 1은 본 발명의 일 실시예에 따른 오일 젯 솔레노이드 밸브의 정면도.1 is a front view of an oil jet solenoid valve according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 오일 젯 솔레노이드 밸브의 평면도.2 is a plan view of an oil jet solenoid valve according to an embodiment of the present invention.
도 3은 도 2의 A-A 단면도.3 is a cross-sectional view taken along the line A-A of FIG.
도 4는 본 발명의 일 실시예에 따른 오일 젯 솔레노이드 밸브의 작동상태도.Figure 4 is an operating state of the oil jet solenoid valve according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 오일 젯 솔레노이드 밸브의 단면도.5 is a cross-sectional view of an oil jet solenoid valve according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 따른 오일 젯 솔레노이드 밸브의 단면도.6 is a cross-sectional view of an oil jet solenoid valve according to another embodiment of the present invention.
100: 홀더 200: 스풀100: holder 200: spool
300: 스프링 400: 플런저300: spring 400: plunger
500: 보빈 600: 코일500: bobbin 600: coil
700: 하우징 800: 플레이트700: housing 800: plate
900: 케이스900: case
첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이하, 본 발명에 따른 실시예를 설명함에 있어, 그리고 각 도면의 구성요소들에 참조부호를 부가함에 있어, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 부가하였다.With reference to the accompanying drawings will be described embodiments of the present invention; In the following description of embodiments according to the present invention, and in adding reference numerals to the components of each drawing, the same reference numerals are added to the same components as much as possible even though they are shown in different drawings.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 오일 젯 솔레노이드 밸브(이하 '밸브'라 함)는, 제1 및 제2작동공간(132,134)이 형성된 중공의 홀더(100)와, 제1작동공간(132)에 설치된 스풀(200) 및 스프링(300)과, 제2작동공간(134)에 이동 가능하게 설치된 플런저(400)와, 홀더(100)에 결합된 보빈(500)과, 보빈(500)의 외주면에 감긴 코일(600)과, 보빈(500)의 둘레를 감싸는 하우징(700)과, 홀더(100)의 하단에 결합된 플레이트(800)와, 밸브의 둘레를 감싸는 케이스(900)를 포함한다.As shown in FIGS. 1 to 3, an oil jet solenoid valve (hereinafter referred to as a “valve”) according to an embodiment of the present invention includes a hollow holder 100 having first and second operating spaces 132 and 134 formed therein. ), A spool 200 and a spring 300 installed in the first operating space 132, a plunger 400 movably installed in the second operating space 134, and a bobbin coupled to the holder 100. 500, the coil 600 wound around the outer circumferential surface of the bobbin 500, the housing 700 surrounding the circumference of the bobbin 500, the plate 800 coupled to the lower end of the holder 100, the circumference of the valve It includes a case 900 surrounding the.
홀더(100)는 상부 몸체(110)와 하부 몸체(120)로 이루어진 다단의 원통 형상이다. 홀더(100)의 상부 몸체(110)는 하부 몸체(120)보다 큰 직경으로 형성된다. 상부 몸체(110)의 중단에는 메인 갤러리(미도시)와 연결된 공급포트(112)가 형성되고, 상부 몸체(110)의 상면에는 오일 젯 갤러리(미도시)와 연결된 제어포트(114)가 형성된다. 또한, 상부 몸체(110)의 내부에는 공급포트(112)와 제어포트(114)를 연결하는 제1작동공간(132)이 형성된다. Holder 100 is a multi-stage cylindrical shape consisting of the upper body 110 and the lower body 120. The upper body 110 of the holder 100 is formed with a larger diameter than the lower body 120. A supply port 112 connected to the main gallery (not shown) is formed at the middle of the upper body 110, and a control port 114 connected to an oil jet gallery (not shown) is formed on an upper surface of the upper body 110. . In addition, a first operating space 132 connecting the supply port 112 and the control port 114 is formed inside the upper body 110.
메인 갤리러에서 압송되어 공급포트(112)로 유입된 오일은, 제1작동공간(132)을 따라 이송되는 과정에서 스풀(200)에 의해 소정의 압력의 제어된 후 제어포트(114)를 통해 오일 젯 갤러리(미도시)로 배출된다. 이때, 상부 몸체(110)의 중단에는 환형의 필터(116a)가, 상부 몸체(110)의 상면에는 판형의 필터(116b)가 각각 설치된다.The oil pumped from the main galler and introduced into the supply port 112 is controlled by the spool 200 in a process of being transported along the first operating space 132 and then through the control port 114. Ejected to an oil jet gallery (not shown). In this case, an annular filter 116a is provided at the middle of the upper body 110, and a plate-shaped filter 116b is installed at the upper surface of the upper body 110.
홀더(100)의 하부 몸체(120)는 상부 몸체(110)보다 직경이 작은 원통 형상이다. 하부 몸체(120)의 중단에는 자력강화홈(122)이 형성된다. 자력강화홈(122)은 하부 몸체(120)의 중심으로 갈수록 폭이 좁아지는 테이퍼 형상으로 제작되어, 하부 몸체(120)의 주위에서 발생한 자기장이 자력강화홈(122)에 집중되도록 한다. 이처럼, 자기장이 집중되어 자력강화홈(122)의 자속밀도를 증가하면 플런저(400)를 원활하게 이동시킬 수 있는 충분한 자기력을 확보할 수 있다.The lower body 120 of the holder 100 has a cylindrical shape having a diameter smaller than that of the upper body 110. Magnetic reinforcement grooves 122 are formed in the middle of the lower body 120. The magnetic reinforcement groove 122 is manufactured in a tapered shape that becomes narrower toward the center of the lower body 120 so that the magnetic field generated around the lower body 120 is concentrated in the magnetic reinforcement groove 122. As such, when the magnetic field is concentrated and the magnetic flux density of the magnetic reinforcement groove 122 is increased, sufficient magnetic force may be secured to smoothly move the plunger 400.
하부 몸체(120)의 내부에는 제2작동공간(134)이 형성되고, 제2작동공간(134)에는 플런저(400)가 이동 가능하게 설치된다. 제2작동공간(134)은 연결통로(136)를 통해 제1작동공간(132)과 연결된다. 연결통로(136)는 제1 및 제2작동공간(132,134)에 비해 작은 직경으로 형성되고, 그 하단에는 스토퍼(140)의 설치를 위한 삽입홈(138)이 형성된다.The second operating space 134 is formed in the lower body 120, and the plunger 400 is installed in the second operating space 134 to be movable. The second working space 134 is connected to the first working space 132 through a connection passage 136. The connection passage 136 has a smaller diameter than the first and second operating spaces 132 and 134, and an insertion groove 138 for installing the stopper 140 is formed at a lower end thereof.
스토퍼(140)는 플런저(400)의 상승을 제한하는 수단이다. 즉, 스토퍼(140)의 하단이 제2작동공간(134)으로 돌출되어 플런저(400)의 상승을 제한함으로써 플런저(400)가 제2작동공간(134)의 상면에 접촉되는 것을 방지한다. 이는, 전원 차단 시 홀더(100)에 잔류하는 자기장에 의한 플런저(400)의 작동저항을 해소하기 위함이다.The stopper 140 is a means for limiting the rise of the plunger 400. That is, the lower end of the stopper 140 protrudes into the second operating space 134 to limit the rise of the plunger 400 to prevent the plunger 400 from contacting the upper surface of the second operating space 134. This is to solve the operating resistance of the plunger 400 due to the magnetic field remaining in the holder 100 when the power is cut off.
잔류 자기장에 의한 플런저(400)의 작동저항에 대해 좀 더 상세히 설명하면, 전원 인가 시 홀더(100, 즉 하부 몸체(120))의 주위에서 발생한 자기장은 전원이 차단되더라도 소멸되지 않고 소정 시간 하부 몸체(120)에 잔류하게 된다. 이러한 잔류 자기장은 플런저(400)의 이동(하강)을 방해하는데, 플런저(400)가 제2작동공간(134)의 상면에 접촉될 경우 잔류 자기장에 의한 영향이 더욱 크다.In more detail about the operating resistance of the plunger 400 due to the residual magnetic field, the magnetic field generated around the holder 100 (that is, the lower body 120) when the power is applied does not disappear even if the power is cut off the lower body for a predetermined time It remains at 120. This residual magnetic field interferes with the movement (falling) of the plunger 400, and the influence of the residual magnetic field is greater when the plunger 400 is in contact with the upper surface of the second operating space 134.
본 실시예에서는 스토퍼(140)를 이용하여 플런저(400)를 제2작동공간(134)의 상면에서 이격시킴으로써 하부 몸체(120)에 잔류하는 자기장에 의한 플런저(500)의 작동저항을 해소할 수 있으며, 특히 비자성체 스토퍼(140)를 사용할 경우 잔류 자기장에 의한 영향을 확실하게 차단하여 플런저(400)의 작동저항을 더욱 효과적으로 해소할 수 있다.In this embodiment, by using the stopper 140 to separate the plunger 400 from the upper surface of the second operating space 134, it is possible to solve the operating resistance of the plunger 500 by the magnetic field remaining in the lower body 120. In particular, when the non-magnetic stopper 140 is used, the effect of the residual magnetic field can be reliably blocked to more effectively solve the operating resistance of the plunger 400.
스풀(200)은 제1작동공간(132)에 이동 가능하게 설치되어 공급포트(112)를 개방 또는 폐쇄하며 공급포트(112)를 통해 유입된 오일을 소정의 압력으로 제어한다.The spool 200 is installed to be movable in the first operating space 132 to open or close the supply port 112 and to control the oil introduced through the supply port 112 to a predetermined pressure.
스풀(200)은 대경부(210)와 소경부(220)를 포함하는 다단의 원기둥 형상이다. 스풀(200)의 대경부(210)는 제1작동공간(132)의 내경과 동일한 직경으로 형성되어 스풀(200)의 이동 시 제1작동공간(132)의 내벽에 접촉된다. 스풀(200)의 소경부(220)는 대경부(210)보다 작은 직경으로 형성되어 제1작동공간(132)의 내벽에서 이격된다. 이러한 형상의 스풀(200)은 제1작동공간(132)과의 접촉면적을 줄일 수 있으므로 스풀(200)의 이동 중 발생하는 마찰저항을 최소화할 수 있다.The spool 200 has a multistage cylindrical shape including a large diameter portion 210 and a small diameter portion 220. The large diameter portion 210 of the spool 200 is formed to have the same diameter as the inner diameter of the first operating space 132 to contact the inner wall of the first operating space 132 when the spool 200 moves. The small diameter portion 220 of the spool 200 is formed to have a smaller diameter than the large diameter portion 210 and is spaced apart from the inner wall of the first operating space 132. Since the spool 200 having such a shape can reduce the contact area with the first operating space 132, the frictional resistance generated during the movement of the spool 200 can be minimized.
스풀(200)의 내부에는 유로(230)가 형성된다. 유로(230)는 스풀(200)에 의해 구획된 제1작동공간(132)을 연결하여 스풀(200)의 이동 시 제1작동공간(132)에 충전된 오일에 의한 스풀(200)의 작동저항을 해소한다.The flow path 230 is formed inside the spool 200. The flow path 230 connects the first operating space 132 partitioned by the spool 200 to operate the resistance of the spool 200 by the oil filled in the first operating space 132 when the spool 200 is moved. To solve the problem.
스풀(200)의 대경부(210) 상면에는 안착홈(212)이 형성되고, 안착홈(212)에는 스풀(200)을 하향으로 탄성 지지하는 스프링(300)이 설치된다. 소경부(220)의 하면에는 로드(240)가 압입되며, 로드(240)는 연결통로(136)를 관통하여 제2작동공간(134)까지 연장된다. 이때, 로드(240)는 연결통로(136)보다 작은 직경으로 형성되어 그 이동 시 연결통로(124)와의 마찰저항이 발생될 우려가 없다.A mounting groove 212 is formed on an upper surface of the large diameter portion 210 of the spool 200, and a spring 300 that elastically supports the spool 200 downward is installed in the mounting groove 212. The rod 240 is press-fitted to the lower surface of the small diameter portion 220, and the rod 240 extends through the connection passage 136 to the second operation space 134. At this time, the rod 240 is formed with a smaller diameter than the connection passage 136, there is no fear that friction resistance with the connection passage 124 is generated during the movement.
상술한 스풀(200)은 로드(240)가 압입된 구조로, 스풀(200)과 로드(240)가 동일한 축선 상에 배치되므로 연결통로(136)와 로드(240) 사이의 이격거리를 일정하게 유지할 수 있다. 따라서 제1작동공간(132)과 제2작동공간(134)을 이동하는 오일에 의한 작동저항을 해소할 수 있다.The spool 200 has a structure in which the rod 240 is press-fitted, and the spool 200 and the rod 240 are disposed on the same axis, so that the distance between the connection passage 136 and the rod 240 is constant. I can keep it. Therefore, it is possible to solve the operating resistance by the oil moving the first operating space 132 and the second operating space 134.
보빈(500)은 상단 및 하단에 플랜지(510)가 형성된 스풀(spool) 형상이다. 플랜지(510)는 보빈(500)의 외주면에 감긴 코일(600)을 보호함과 동시에 코일(600)이 일정한 두께로 감길 수 있도록 안내하는 역할을 한다.The bobbin 500 has a spool shape in which a flange 510 is formed at an upper end and a lower end. The flange 510 serves to guide the coil 600 to be wound to a certain thickness while protecting the coil 600 wound around the outer circumferential surface of the bobbin 500.
코일(600)은 보빈(500)의 주위에 자기장을 발생시키는 도선이다. 코일(600)은 보빈(500)의 외주면에 촘촘하고 균일하게 감겨 일정한 두께의 원통 형상을 이룬다. 코일(600)에서 발생한 자기장은 자력강화홈(122)에 집중되어 플런저(400)를 이동(상승)시킨다. 이때, 플런저(400)를 이동시키는 자기장의 세기는 코일(600)을 따라 흐르는 전류의 세기 및 보빈(500)에 감긴 코일(600)의 수에 비례한다. 따라서 코일(600)에 높은 전류를 인가할 경우, 그리고 코일(600)을 많이 감을 경우 강한 자기장을 발생시켜 플런저(400)의 이동을 확실하게 제어할 수 있다.The coil 600 is a conductive wire that generates a magnetic field around the bobbin 500. The coil 600 is tightly and uniformly wound around the outer circumferential surface of the bobbin 500 to form a cylindrical shape of a constant thickness. The magnetic field generated in the coil 600 is concentrated in the magnetic reinforcement groove 122 to move (raise) the plunger 400. In this case, the strength of the magnetic field for moving the plunger 400 is proportional to the strength of the current flowing along the coil 600 and the number of coils 600 wound on the bobbin 500. Therefore, when a high current is applied to the coil 600 and when the coil 600 is wound up a lot, a strong magnetic field may be generated to reliably control the movement of the plunger 400.
플런저(400)는 제2작동공간(134)에 이동 가능하게 설치되어 코일(600)에서 발생한 자기장에 의해 왕복운동을 하는 가동철심이다. 플런저(400)에는 플런저(400)를 상하로 관통하는 통로(410)가 형성된다. 통로(410)는 플런저(400)에 의해 구획된 제2작동공간(134)을 연결하여 플런저(400)의 이동 시 제2작동공간(134)에 충전된 오일에 의한 플런저(400)의 작동저항을 해소한다. 이때, 통로(410)는 플런저(400)의 중심에서 소정 거리 편심되는데, 이는 로드(240)와의 접촉에 의해 통로(410)가 폐쇄되는 것을 방지하기 위함이다.The plunger 400 is a movable iron core movably installed in the second operation space 134 to reciprocate by a magnetic field generated in the coil 600. The plunger 400 has a passage 410 penetrating the plunger 400 up and down. The passage 410 connects the second operation space 134 partitioned by the plunger 400 to operate the resistance of the plunger 400 by the oil filled in the second operation space 134 when the plunger 400 moves. To solve the problem. At this time, the passage 410 is eccentric a predetermined distance from the center of the plunger 400, to prevent the passage 410 is closed by the contact with the rod 240.
플런저(400)의 하면은 곡면으로 형성되어 플레이트(800)의 바닥과 점접촉을 한다. 플런저(400)와 플레이트(800)가 점접촉을 할 경우 플레이트(800)의 바닥을 통해 플런저(400)로 이어지던 자기장의 흐름을 차단하여 플런저(400)가 원활하게 이동할 수 있도록 할 수 있도록 한다. 또한, 플레이트(800)의 바닥이 다소 경사지더라도 플런저(400)의 기울기에 영향을 주지 않아 플런저(400)의 기울기에 따른 마찰저항을 해소할 수 있다.The lower surface of the plunger 400 is formed into a curved surface to make point contact with the bottom of the plate 800. When the plunger 400 and the plate 800 make point contact, the plunger 400 can be smoothly moved by blocking the flow of the magnetic field leading to the plunger 400 through the bottom of the plate 800. In addition, even if the bottom of the plate 800 is slightly inclined, the frictional resistance due to the inclination of the plunger 400 may be eliminated without affecting the inclination of the plunger 400.
하우징(700)은 보빈(500)의 둘레를 감싸도록 형성되며, 일측에 커넥터(710)가 형성된다. 커넥터(710)의 내부에는 코일(600)과 전기적으로 연결된 터미널(720)이 마련된다.The housing 700 is formed to surround the bobbin 500, and a connector 710 is formed at one side. The terminal 720 is electrically connected to the coil 600 in the connector 710.
플레이트(800)는 가동철심인 플런저(400)를 이동시키기 위해 코일(600)에서 발생한 자기장을 유도하는 고정철심이다. 플레이트(800)는 보빈(400)의 하부에 위치되며 하부 몸체(120)의 하단에 결합된다. 이를 위하여, 플레이트(800)의 상면에는 하부 몸체(120)의 하단이 삽입되는 장착홈(810)이 형성된다. 이때, 장착홈(810)에 삽입된 하부 몸체(120)의 하단은 장착홈(810)의 바닥에서 이격된다. 따라서 플레이트(800)의 조립 시 하부 몸체(120)와 플레이트(800)의 접촉에 의한 변형, 즉 하부 몸체(120)의 변형을 방지할 수 있다.The plate 800 is a fixed iron core for inducing a magnetic field generated in the coil 600 to move the plunger 400 which is a movable iron core. The plate 800 is located at the bottom of the bobbin 400 and is coupled to the bottom of the lower body 120. To this end, a mounting groove 810 into which the lower end of the lower body 120 is inserted is formed on the upper surface of the plate 800. At this time, the lower end of the lower body 120 inserted into the mounting groove 810 is spaced apart from the bottom of the mounting groove 810. Therefore, when the plate 800 is assembled, the deformation caused by the contact between the lower body 120 and the plate 800, that is, the deformation of the lower body 120 may be prevented.
케이스(900)는 상부와 하부가 개방된 원통 형상이다. 케이스(900)의 내부에는 수납공간(910)이 형성되고, 수납공간(910)에는 보빈(500)을 포함한 부품(100~800)이 설치된다. 케이스(900)의 하단은 플레이트(800)를 감싸도록 코킹(caulking) 처리되어 케이스(800)의 내부에 설치된 부품(100~800)을 밀착되도록 한다.The case 900 is a cylindrical shape in which the top and bottom are open. An interior of the case 900 includes a storage space 910, and components 100 to 800 including the bobbin 500 are installed in the storage space 910. The lower end of the case 900 is caulked to surround the plate 800 so that the parts 100 to 800 installed inside the case 800 are in close contact with each other.
도 3과 도 4를 참조하여, 본 실시예에 따른 밸브의 작동과정을 살펴보도록 한다.3 and 4, the operation of the valve according to the present embodiment will be described.
도 3은 밸브에 전원이 인가되지 않은 상태를 도시한다. 전원이 인가되지 않은 상태에서는 스프링(300)의 탄성에 의해 스풀(200)이 하강하며 공급포트(112)와 제어포트(114)를 연결한다. 따라서 메인 갤러리(미도시)에서 압송된 오일은 공급포트(112)를 통해 공급된 제1작동공간(132)으로 이송되고, 제어포트(114)를 통해 오일 젯 갤러리(미도시)로 이송된다.3 illustrates a state in which no power is applied to the valve. In the state where power is not applied, the spool 200 descends by the elasticity of the spring 300 and connects the supply port 112 and the control port 114. Therefore, the oil conveyed from the main gallery (not shown) is transferred to the first operating space 132 supplied through the supply port 112, and is transferred to the oil jet gallery (not shown) through the control port 114.
반면, 밸브에 전원이 인가되면 코일(600)에서 발생한 자기장이 홀더(100)와 플레이트(800)에 의해 유도되어 플런저(400)를 상승시킨다. 따라서 로드(240)를 통해 플런저(400)와 접촉된 스풀(200)이 상승하며 공급포트(112)를 폐쇄한다. 따라서 메인 갤러리(미도시)에서 압송된 오일이 오일 젯 갤러리(미도시)로 이송되지 못한다(도 4 참조).On the other hand, when power is applied to the valve, the magnetic field generated in the coil 600 is guided by the holder 100 and the plate 800 to raise the plunger 400. Therefore, the spool 200 is brought into contact with the plunger 400 through the rod 240 and closes the supply port 112. Therefore, oil pumped from the main gallery (not shown) cannot be transferred to the oil jet gallery (not shown) (see FIG. 4).
도 5는 본 발명의 다른 실시예에 따른 오일 젯 솔레노이드 밸브를 도시한다.5 illustrates an oil jet solenoid valve according to another embodiment of the present invention.
본 실시예에 따른 밸브는, 중공의 홀더(100)와, 홀더(100)의 제1작동공간(132)에 설치된 스풀(200) 및 스프링(300)과, 홀더(100)의 제2작동공간(134)에 이동 가능하게 설치된 플런저(400)와, 홀더(100)에 결합된 보빈(500)과, 보빈(500)의 외주면에 감긴 코일(600)과, 보빈(500)의 둘레를 감싸는 하우징(700)과, 홀더(100)의 하단에 결합된 플레이트(800)와, 밸브의 둘레를 감싸는 케이스(900)를 포함한다.The valve according to the present embodiment includes a hollow holder 100, a spool 200 and a spring 300 installed in the first operating space 132 of the holder 100, and a second operating space of the holder 100. A plunger 400 movably installed at 134, a bobbin 500 coupled to the holder 100, a coil 600 wound around the outer circumferential surface of the bobbin 500, and a housing surrounding the bobbin 500. 700, a plate 800 coupled to the lower end of the holder 100, and a case 900 surrounding the circumference of the valve.
상술한 구성의 밸브 중 스풀(200)과 플런저(400) 사이에는 로드(240)가 설치되는데, 로드(240)는 전술한 일 실시예와 달리 스풀(200)에서 연장된 형태로 제작된다. 즉, 스풀(200)의 하단에서 연장되어 플런저(400)에 접촉된다.The rod 240 is installed between the spool 200 and the plunger 400 among the valves of the above-described configuration, and the rod 240 is manufactured in a form extending from the spool 200 unlike the above-described embodiment. That is, it extends from the bottom of the spool 200 and contacts the plunger 400.
상술한 스풀(200)은 로드(240)와 일체로 형성된 구조로, 스풀(200)과 로드(240)가 동일한 축선 상에 배치되므로 제1작동공간(132)과 제2작동공간(134)을 이동하는 오일에 의한 작동저항을 해소할 수 있다. 특히, 일 실시예에 따른 스풀(200)의 구조(로드(240) 압입형 구조)에 비해 스풀(200)의 가공이 용이한 장점을 갖는다.The spool 200 described above has a structure formed integrally with the rod 240. Since the spool 200 and the rod 240 are disposed on the same axis, the spool 200 has a first operating space 132 and a second operating space 134. It can eliminate the working resistance caused by the moving oil. In particular, compared to the structure of the spool 200 (rod 240 press-fit structure) according to an embodiment has the advantage of easy processing of the spool 200.
도 6은 본 발명의 또 다른 실시예에 따른 오일 젯 솔레노이드 밸브를 도시한다.6 illustrates an oil jet solenoid valve according to another embodiment of the present invention.
본 실시예에 따른 밸브는, 중공의 홀더(100)와, 홀더(100)의 제1작동공간(132)에 설치된 스풀(200) 및 스프링(300)과, 홀더(100)의 제2작동공간(134)에 이동 가능하게 설치된 플런저(400)와, 홀더(100)에 결합된 보빈(500)과, 보빈(500)의 외주면에 감긴 코일(600)과, 보빈(500)의 둘레를 감싸는 하우징(700)과, 홀더(100)의 하단에 결합된 플레이트(800)와, 밸브의 둘레를 감싸는 케이스(900)를 포함한다.The valve according to the present embodiment includes a hollow holder 100, a spool 200 and a spring 300 installed in the first operating space 132 of the holder 100, and a second operating space of the holder 100. A plunger 400 movably installed at 134, a bobbin 500 coupled to the holder 100, a coil 600 wound around the outer circumferential surface of the bobbin 500, and a housing surrounding the bobbin 500. 700, a plate 800 coupled to the lower end of the holder 100, and a case 900 surrounding the circumference of the valve.
상술한 구성의 밸브 중 스풀(200)과 플런저(400) 사이에는 로드(240)가 설치되는데, 로드(240)는 전술한 실시예들과 달리 스풀(200)과 분리된 형태로 제작된다. 즉, 로드(240)가 연결통로(136)에 이동 가능하게 설치되고, 상단과 하단이 스풀(200)과 플런저(400)에 각각 접촉된다.The rod 240 is installed between the spool 200 and the plunger 400 among the valves having the above-described configuration, and the rod 240 is manufactured in a form separate from the spool 200 unlike the above-described embodiments. That is, the rod 240 is installed to be movable in the connecting passage 136, the upper and lower ends are in contact with the spool 200 and the plunger 400, respectively.
이와 같이, 로드(240)를 스풀(200)과 분리된 형태로 제작할 경우, 스풀(200)과 로드(240)의 중심이 다소 어긋나더라도 스풀(200)의 왕복운동에 아무런 영향을 주지 않으므로 오작동의 우려가 없고, 로드(240)의 제작 시 정밀 가공이 필요치 않아 제작비용 및 제작시간을 절감할 수 있다.As such, when the rod 240 is manufactured in a form separated from the spool 200, even if the center of the spool 200 and the rod 240 are slightly displaced, the rod 240 has no effect on the reciprocating motion of the spool 200. There is no concern, and precise manufacturing is not necessary when manufacturing the rod 240, thereby reducing manufacturing cost and manufacturing time.
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been described through the preferred embodiments, the above-described embodiments are merely illustrative of the technical idea of the present invention, and various changes may be made without departing from the technical idea of the present invention. Those of ordinary skill will understand. Therefore, the protection scope of the present invention should be interpreted not by the specific embodiments, but by the matters described in the claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (9)

  1. 복수의 포트를 연결하는 제1작동공간이 내부에 형성된 상부 몸체와, 상기 상부 몸체에서 하향으로 연장되며 내부에 제2작동공간이 형성된 하부 몸체로 이루어진 중공의 홀더;A hollow holder formed of an upper body having a first operating space connecting the plurality of ports therein and a lower body extending downward from the upper body and having a second operating space formed therein;
    상기 제1작동공간에 이동 가능하게 설치되어 상기 포트를 연결 또는 차단하는 스풀;A spool movably installed in the first operating space to connect or block the port;
    상기 제1작동공간에 설치되고 상기 스풀을 하향으로 탄성 지지하는 스프링;A spring installed in the first operating space and elastically supporting the spool downward;
    상기 제2작동공간에 이동 가능하게 설치되어 상기 스풀을 이동시키는 플런저;A plunger movably installed in the second operation space to move the spool;
    상기 하부 몸체의 둘레에 결합되고 외주면에 코일이 감긴 보빈;A bobbin coupled to a circumference of the lower body and having a coil wound around its outer circumferential surface;
    상기 보빈의 하부에 위치되며 상기 하부 몸체의 하단이 삽입되는 플레이트; 및A plate positioned below the bobbin and into which a lower end of the lower body is inserted; And
    상기 홀더, 상기 보빈, 상기 하우징, 상기 플레이트를 감싸는 케이스를 포함하는 오일 젯 솔레노이드 밸브.An oil jet solenoid valve comprising a case surrounding the holder, the bobbin, the housing, and the plate.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 스풀은, 상기 제1작동공간의 내벽에 접촉되는 대경부와, 상기 제1작동공간의 내벽에서 이격된 소경부로 이루어진 것을 특징으로 하는 오일 젯 솔레노이드 밸브.The spool may include a large diameter portion in contact with an inner wall of the first operating space and a small diameter portion spaced apart from an inner wall of the first operating space.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 스풀의 상부와 하부를 연결하는 유로가 상기 스풀에 형성된 것을 특징으로 하는 오일 젯 솔레노이드 밸브.An oil jet solenoid valve, characterized in that a flow passage connecting the upper and lower portions of the spool is formed in the spool.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 제1작동공간과 상기 제2작동공간 사이에 연결통로가 형성되고, 상기 연결통로에 로드가 이동 가능하게 설치된 것을 특징으로 하는 오일 젯 솔레노이드 밸브.A connecting passage is formed between the first operating space and the second operating space, the oil jet solenoid valve, characterized in that the rod is installed to be movable in the connecting passage.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 로드는 일단이 상기 스풀에 압입되고 타단이 상기 플런저에 접촉되는 것을 특징으로 하는 오일 젯 솔레노이드 밸브.And the rod has one end pressed into the spool and the other end in contact with the plunger.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 로드는 상기 스풀에서 연장되어 상기 플런저에 접촉되는 것을 특징으로 하는 오일 젯 솔레노이드 밸브.The rod extends from the spool and contacts the plunger.
  7. 청구항 4에 있어서,The method according to claim 4,
    상기 로드는 양단이 상기 스풀과 상기 플런저에 각각 접촉되는 것을 특징으로 하는 오일 젯 솔레노이드 밸브.The rod is oil-jet solenoid valve, characterized in that both ends in contact with the spool and the plunger, respectively.
  8. 청구항 4에 있어서,The method according to claim 4,
    상기 연결통로는 상기 제1작동공간 및 상기 제2작동공간에 비해 작은 직경으로 형성되고, 상기 연결통로의 하단에는 원통 형상의 스토퍼가 설치되며, 상기 스토퍼가 상기 제2작동공간의 상면보다 하향으로 돌출된 것을 특징으로 하는 오일 젯 솔레노이드 밸브.The connecting passage has a smaller diameter than the first operating space and the second operating space, and a cylindrical stopper is installed at a lower end of the connecting passage, and the stopper is lower than an upper surface of the second operating space. Oil jet solenoid valve, characterized in that protruding.
  9. 청구항 1 내지 청구항 8 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 플레이트의 상면에는 상기 하부 몸체의 하단이 삽입되는 장착홈이 형성되고, 상기 하부 몸체의 하단이 상기 장착홈의 바닥에서 이격되는 것을 특징으로 하는 오일 젯 솔레노이드 밸브.The upper surface of the plate is provided with a mounting groove for inserting the lower end of the lower body, the lower end of the lower body oil jet solenoid valve, characterized in that spaced apart from the bottom of the mounting groove.
PCT/KR2015/010672 2015-03-18 2015-10-08 Oil jet solenoid valve WO2016148361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150037284A KR101696256B1 (en) 2015-03-18 2015-03-18 Oil jet solenoid valve
KR10-2015-0037284 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016148361A1 true WO2016148361A1 (en) 2016-09-22

Family

ID=56920077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010672 WO2016148361A1 (en) 2015-03-18 2015-10-08 Oil jet solenoid valve

Country Status (2)

Country Link
KR (1) KR101696256B1 (en)
WO (1) WO2016148361A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086424B1 (en) * 2018-08-08 2020-03-09 주식회사 유니크 Solenoid valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106472A (en) * 2001-09-11 2003-04-09 Hyundai Motor Co Ltd Oil control valve
KR20070025246A (en) * 2005-09-01 2007-03-08 현대모비스 주식회사 Brake oil flux control typed solenoid valve
JP2007170400A (en) * 2005-12-23 2007-07-05 Delphi Technologies Inc Method and device for operating oil flow control valve
KR101093449B1 (en) * 2011-07-15 2011-12-19 주식회사 유니크 Oil control valve
KR20140066558A (en) * 2012-11-23 2014-06-02 주식회사 유니크 Solenoid valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100552742B1 (en) 2003-10-29 2006-02-20 현대자동차주식회사 Lubrication system for diesel engine in vehicle
JP4569371B2 (en) * 2005-04-28 2010-10-27 株式会社デンソー Linear solenoid
KR101183038B1 (en) * 2012-07-16 2012-09-20 주식회사 유니크 Solenoid valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106472A (en) * 2001-09-11 2003-04-09 Hyundai Motor Co Ltd Oil control valve
KR20070025246A (en) * 2005-09-01 2007-03-08 현대모비스 주식회사 Brake oil flux control typed solenoid valve
JP2007170400A (en) * 2005-12-23 2007-07-05 Delphi Technologies Inc Method and device for operating oil flow control valve
KR101093449B1 (en) * 2011-07-15 2011-12-19 주식회사 유니크 Oil control valve
KR20140066558A (en) * 2012-11-23 2014-06-02 주식회사 유니크 Solenoid valve

Also Published As

Publication number Publication date
KR101696256B1 (en) 2017-01-24
KR20160113345A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6537776B2 (en) System and method for fluid pump outlet pressure regulation
WO2016056859A1 (en) Oil pump control valve
CN106232978A (en) High-pressure fuel feed pump
WO2016148361A1 (en) Oil jet solenoid valve
CN104781543A (en) Pump for supplying high-pressure fuel
JP5909502B2 (en) High pressure fuel supply pump
US6688578B1 (en) Electromagnetic actuator for a fuel injector having an integral magnetic core and injector valve body
US20160290299A1 (en) High-Pressure Fuel Supply Pump
CA1141248A (en) Fuel system for engines
CN109416132A (en) Control valve for variable displacement compressor
US10006561B2 (en) Electromagnet of an electromagnetically actuated fluid valve
CN211951495U (en) Intelligent control electromagnetic valve of engine piston cooling system
EP1336751A1 (en) In-tank solenoid fuel pump
KR102087200B1 (en) Piston of an internal combustion engine
KR101838010B1 (en) Oil jet solenoid valve
CN110985694A (en) Electromagnetic control valve with opening pressure for engine piston cooling nozzle
US10876444B2 (en) Electric valve device, fresh air passage mechanism, and internal-combustion engine
GB2073319A (en) Electromagnetic ball valve fuel injectors
JP2013194616A (en) High pressure fuel supply pump
KR20200069244A (en) Valve for metering a fluid, in particular fuel injection valve
WO2016056860A1 (en) Oil pump control valve for
KR102508244B1 (en) Solenoid valve
CN211951647U (en) Large-flow intelligent control electromagnetic valve of engine piston cooling system
JP2018179025A (en) Air bypass valve
JP2019015290A (en) High-pressure fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885663

Country of ref document: EP

Kind code of ref document: A1