WO2013065499A1 - 核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置 - Google Patents

核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置 Download PDF

Info

Publication number
WO2013065499A1
WO2013065499A1 PCT/JP2012/077024 JP2012077024W WO2013065499A1 WO 2013065499 A1 WO2013065499 A1 WO 2013065499A1 JP 2012077024 W JP2012077024 W JP 2012077024W WO 2013065499 A1 WO2013065499 A1 WO 2013065499A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
amplification method
reaction
substrate
region
Prior art date
Application number
PCT/JP2012/077024
Other languages
English (en)
French (fr)
Inventor
斎藤 俊郎
禎昭 杉村
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to CN201280052238.8A priority Critical patent/CN103890161A/zh
Priority to EP12846413.8A priority patent/EP2774978B1/en
Priority to JP2013541701A priority patent/JP5899234B2/ja
Priority to US14/346,342 priority patent/US9708649B2/en
Publication of WO2013065499A1 publication Critical patent/WO2013065499A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Definitions

  • the present invention relates to a nucleic acid amplification method, a nucleic acid substrate, and a nucleic acid analyzer used for nucleic acid base sequence analysis.
  • New technologies for determining the base sequences of DNA and RNA have been developed.
  • a method using electrophoresis has been used to determine a base sequence.
  • a cDNA fragment sample synthesized by performing a reverse transcription reaction from a DNA fragment or RNA sample for sequencing in advance is prepared, and a known Sanger method is used. After the dideoxy reaction, electrophoresis was performed, and molecular weight separation development patterns were measured and analyzed.
  • Non-Patent Document 1 a cluster of amplified gene fragments is formed on a substrate by performing a PCR reaction on the substrate using a primer fixed on the substrate.
  • Non-Patent Document 2 emulsion PCR is performed to amplify and fix the nucleic acid sequence on the surface of the fine particles, the fine particles are fixed on the substrate, and a plurality of samples are arranged on a plane.
  • cluster formation is an important step, and forming clusters at high density increases the number of amplified gene fragments per cluster by increasing the amount of sequence information that can be acquired from the image sensor at one time. This increases the signal strength of the sequence information, increases the reliability of the sequence information, and at the same time simplifies the detection apparatus.
  • a conventional method for producing a large number of clusters by amplification reaction on a substrate is as follows. For example, as disclosed in Patent Document 1, sample DNA as a template is randomly distributed on a substrate and fixed on the substrate in advance. The amplification reaction was performed using the placed primer as a reaction starting point. In this method of randomly distributing the template DNA, when trying to increase the cluster density, the frequency distribution with respect to the number of molecules of the template DNA supplied to a section of a certain area becomes a Poisson distribution. There was a limit that the section supplied with only one molecule would be about 37% at the maximum.
  • a cluster density of 4 million / mm 2 should ideally be obtained.
  • the sample DNA as a template is immobilized at a high concentration, the template DNA is immobilized on the substrate in close proximity, so that multiple types of DNA are amplified in the same compartment, making correct base sequence analysis impossible.
  • the sample DNA is fixed at a low concentration, there remains a problem that the cluster density is lowered and the throughput is lowered.
  • Patent Document 2 Also disclosed in Patent Document 2 is a method in which after the amplification reaction is performed, the amplification product is fixed on a fixing pad formed in advance on a substrate.
  • the amplification reaction is a rolling cycle amplification (RCA) reaction, and it has been difficult to achieve a high amplification factor exceeding 10,000 times.
  • RCA rolling cycle amplification
  • fluorescent bright spots must be detected at a high speed, and the number of DNA fragments per cluster is preferably high, but 10,000 by a RCA reaction alone with a practical reaction time of several hours. Achieving a high amplification factor exceeding the double is difficult in terms of DNA synthesis reaction rate.
  • the present invention provides a method for amplifying the number of DNA fragments in each cluster to 10,000 molecules or more that can be easily detected while realizing a cluster density higher than expected from the Poisson distribution ratio.
  • the inventors of the present invention have developed an amplification method that achieves both a higher density than the cluster density required from the Poisson distribution and a high amplification factor of 10,000 or more DNA fragments in the cluster. did.
  • the cluster density is higher than 1.3 million / mm 2 obtained from the Poisson distribution, and the number of DNA fragments in the cluster is amplified to 10,000 molecules or more.
  • a nucleic acid amplification method was developed.
  • a region where the primer is fixed at a high density on the substrate is isolated and provided at a high density, and the template DNA to be amplified is supplied to the region one molecule at a time.
  • a method of supplying molecules one by one it is possible to supply one molecule of template DNA to each fixed region by supplying the template DNA as a molecule having the same or larger physical size than the fixed region. More specifically, for example, a single molecule supply is realized by synthesizing macromolecules of each template DNA by RCA reaction and supplying them to each fixed region to which the primer DNA is fixed.
  • an amplification product based on the primer is fixed on the substrate in the primer fixing region by an amplification reaction such as a PCR reaction.
  • the RCA reaction product is a macromolecule, since it contains only one type of template DNA as a base sequence, only one type of amplification product is synthesized in each primer fixing region. Therefore, an amplification product substrate that can be sufficiently applied to the subsequent sequence reaction can be produced.
  • a cluster density higher than expected from the Poisson distribution ratio which cannot be realized by a conventional method of randomly fixing a sample DNA on a substrate, is realized, and the number of DNA fragments in each cluster is 10,000.
  • High-throughput sequence analysis can be realized by increasing the number of DNA fragments per field of view and increasing the number of DNA fragments per field of view and reducing the exposure time required for detection.
  • a step of arranging a region where the first nucleic acid is immobilized on the surface of the substrate and a region where the first nucleic acid is not immobilized, and at least two or more base sequences to be analyzed are provided on the same strand.
  • a nucleic acid amplification method characterized by comprising a step.
  • the average value of the diameter of the second nucleic acid is larger than 1 ⁇ 2 of the average value of the diameter of the region where the first nucleic acid is immobilized.
  • the Examples disclose a nucleic acid amplification method characterized in that, in the nucleic acid amplification method, the second nucleic acid is single-stranded and has a self-annealing structure.
  • the Examples disclose a nucleic acid amplification method characterized in that the nucleic acid amplification method includes a step of removing the complementary strand of the extension reaction product of the first nucleic acid after the amplification reaction.
  • the second nucleic acid is a strand displacement extension reaction product by a polymerase having strand displacement activity using a circular nucleic acid having a base sequence to be analyzed as a template.
  • a nucleic acid amplification method is disclosed.
  • a nucleic acid amplification method in which, in the nucleic acid amplification method, the amplification reaction is a constant temperature reaction.
  • the average value of the diameter of the region where the nucleic acid is immobilized is 500 nm or less, and the nucleic acid is immobilized.
  • a nucleic acid substrate characterized in that the average number of molecules of nucleic acid in the region is 10,000 or more.
  • a nucleic acid substrate having at least one channel for performing the nucleic acid amplification method is disclosed.
  • a nucleic acid analyzer having at least one temperature control device and a liquid feeding mechanism for performing the nucleic acid amplification method is disclosed.
  • a bulky DNA molecule 102 is synthesized based on the sample DNA 101 (1). It is necessary that individual bulky DNA molecules 102 hold the base sequence information of the sample DNA 101 on which they are based without being confused.
  • a rolling circle amplification (RCA) reaction can be used as a synthesis method therefor. Details thereof are disclosed in Example 3.
  • a primer DNA 104 is fixed in a pattern on the surface of the substrate 103. An example of the method for fixing the primer DNA 104 in a pattern is disclosed in Example 2.
  • the bulky DNA molecule 102 is fixed to the region where the primer DNA 104 is fixed by hybridization (2).
  • the primer DNA 104 has a complementary sequence to the base sequence of a part of the bulky DNA molecule 102.
  • the primer DNA 104 may have the same base sequence in each fixed region, and the bulky DNA molecule 102 may have a common base sequence so as to have a complementary sequence thereto.
  • the substrate is immersed in an aqueous solution containing a DNA synthase and four types of base substrates, and a primer DNA 104 is subjected to an extension reaction using the bulky DNA molecule 102 as a template to perform double-stranded synthesis (3).
  • the complementary strand synthesis reaction (3) using the bulky DNA molecule 102 as a template can be completed by reacting at a constant temperature of about 37 ° C. for about 10 minutes, depending on the type of polymerase used.
  • a primer DNA 105 having a direction opposite to that of the primer DNA 104 is provided, and a PCR reaction is performed (4). In this case, if the deenergization is performed at a normal temperature of about 95 ° C.
  • the PCR reaction is performed at a constant temperature, and when the double strands are partially separated, the primer DNA 104 anneals and a complementary strand synthesis reaction occurs.
  • the factors governing amplification efficiency are the reaction temperature and the concentration of the primer.
  • the reaction temperature is preferably between 50 ° C. and 70 ° C., more preferably about 60 ° C.
  • the relationship between the density of the primer DNA 104 and the amplification rate was studied earnestly. As a result, it was found that without a fixed density of about 50,000 molecules / ⁇ m 2 ( ⁇ 1 molecule / 4.5 nm square), even if the reaction was carried out for about 3 hours, the amplification factor did not reach 10,000 times. .
  • the fixed density of the primer DNA 104 is preferably 10,000 molecules / ⁇ m 2 or more, more preferably 100,000 molecules / ⁇ m 2 or more. With respect to the concentration of the primer DNA 105, sufficient amplification was obtained at about 0.1 to 0.5 ⁇ M, which is the same as the PCR reaction in a normal solution.
  • the polymerase an enzyme having strand displacement activity is preferable, and Phi29, Bst polymerase, Csa polymerase, 96-7 polymerase, and the like can be used. After the PCR reaction, a double strand of the extension reaction product of the primer DNA 104 and the extension reaction product of the primer DNA 105 fixed in advance on the substrate 103 is produced on the substrate 103.
  • extension reaction product of the primer DNA 105 is removed to form a single strand. It is preferable to keep it.
  • the removal method is most convenient and preferably a high temperature treatment, and a single strand sufficient for the sequence reaction can be carried out by treating at 70 ° C. or higher, more preferably 90 ° C. or higher for about 2 minutes.
  • the cluster density that is, the fixed region density depends on the fixed region density of the primer DNA 104, and is not restricted by the Poisson distribution.
  • One sample DNA 101 can be supplied at a time. For example, if a fixed region is formed with a diameter of 500 nm, a high cluster density of 2 million / mm 2 or more can be achieved.
  • the density of DNA in the cluster is determined depending on the amplification factor and the area per cluster. For example, if the primer DNA density is 50,000 molecules / ⁇ m 2 or more in a fixed region (cluster formation region) having a diameter of 500 nm, the amplification factor reaches about 10,000 times in a reaction time of about 3 hours. 10,000 molecules / cluster can be achieved.
  • An electron beam positive resist 202 is coated on a smooth support substrate 201 by a spin coating method.
  • a smooth support substrate a glass substrate, a sapphire substrate, a silicon wafer or the like is used.
  • a quartz substrate or a sapphire substrate having excellent light transmittance may be used.
  • the positive resist for electron beam include polymethyl methacrylate and ZEP-520A (manufactured by Nippon Zeon Co., Ltd.). After aligning using the position of the marker on the substrate, electron beam direct drawing exposure is performed to form a through hole in the resist.
  • a through hole having a diameter of 200 nm is formed.
  • Through-holes depend on the number of nucleic acid molecules that can be analyzed by parallel processing, but forming at a pitch of about 0.5 ⁇ m takes into account the simplicity of manufacturing, high yield, and the number of nucleic acid molecules that can be analyzed by parallel processing. Then it is suitable.
  • the through-hole formation region also depends greatly on the position accuracy and position resolution on the detection device side, depending on the number of nucleic acid molecules that can be analyzed by parallel processing. For example, when the primer DNA fixing region is formed at a pitch of 0.5 ⁇ m, 4 million clusters can be formed per 1 mm square.
  • a material constituting the bonding pad 203 for example, gold is formed by sputtering.
  • a glass substrate or sapphire substrate is used as a smooth support base and gold is used as a bonding pad material
  • a thin film of titanium or chromium is used to reinforce the bonding between the substrate material and the bonding pad material. It is preferable to add.
  • non-specific adsorption prevention treatment is performed on the surface of the smooth substrate other than that on which the bonding pads 203 are formed.
  • coat with molecules having negatively charged functional groups For example, epoxy silane is applied to the surface by spin coating, and after heat treatment, it is treated with a weakly acidic solution (pH 5 to pH 6) to open the epoxy group and introduce OH group to the surface. Adsorption prevention effect can be brought about.
  • a thiol group can be used as the functional group 204.
  • the substrate provided with the bonding pad 203 is dipped in an aqueous solution of primer DNA 205 having a functional group 204, taken out after a predetermined reaction time, washed with excess aqueous solution, and dried to form the primer DNA in a pattern.
  • An immobilized nucleic acid substrate can be prepared. In this embodiment, an example using an electron beam exposure apparatus has been shown, but a nucleic acid substrate can be similarly produced by using an optical exposure apparatus in exactly the same procedure.
  • a bonding pad can be provided in a pattern shape using a technique such as nanoimprinting or contact printing.
  • a micro phase separation structure is made using a block copolymer in which polymers with different compatibility are connected, and one polymer phase is dissolved to create a concave pattern, which is used as a mold to form a metal pad pattern. Can also be made.
  • Sample DNA 301 is fragmented by conventional means such as enzymatic digestion, shearing, or ultrasonic treatment (1).
  • the base length of the fragment 302 is preferably between 50 bases and 2000 bases, and more preferably between 100 bases and 500 bases.
  • the DNA is combined with the linker DNA to form a circular DNA, and then a DNA synthesis reaction is performed. Therefore, if the fragment is too long, the structure of the bulky DNA may deviate from the desired shape. On the other hand, if it is too short, there is a risk that the amplification factor does not reach a desired value during the amplification reaction on the substrate.
  • the fragment length is preferably determined in consideration of the above matters, and it is preferable to select the fragmentation (1) method so that a fragment of that length can be obtained.
  • both ends of the fragment 302 It is preferable to smoothen both ends of the fragment 302 and then ligate the adapter 303 to both ends (2).
  • a method of filling all overhang 5 ′ single strands with polymerase and dNTPs, or a method of removing 3 ′ overhangs with a polymerase having 3 ′ exonuclease activity can be used.
  • circular DNA 305 can be easily synthesized by joining with linker 304 for circularization (3).
  • Plasmid DNA can be used for the linker 304 for circularization.
  • a multicloning site of plasmid DNA is cleaved with an appropriate restriction enzyme, and a fragment 302 with an adapter 303 is incorporated.
  • the integrated plasmid can also be amplified by transformation of E. coli.
  • the primer DNA 306 is hybridized to the circular DNA 305 (4), and an RCA reaction is performed using a polymerase having strand displacement activity (5).
  • Examples of the polymerase that can be used for the RCA reaction include phi29 polymerase, Bst polymerase, Csa polymerase, and 96-7 polymerase. These polymerases are different in the optimum reaction temperature and conditions, and can be appropriately selected according to the Tm value of the primer sequence to be hybridized. In order to control the size of the RCA product 307, it is necessary to control the reaction time and temperature and to select a polymerase. Furthermore, in the linker 304 for making the ring, for example, as disclosed in Non-Patent Document 3, a base sequence that takes a self-loop structure is placed, so that the RCA product 307 has a spherical shape. Can be controlled to take.
  • Non-Patent Document 3 discloses the synthesis of spherical DNA having a diameter of 50 to 150 nm.
  • the inventors have obtained an RCA product having a diameter of 100 to 200 nm by incorporating an aptamer structure having a length of 10 to 20 bases into a plasmid DNA having a length of 500 bases and reacting with Csa polymerase for 3 hours.
  • the thiol-end modified oligo DNA was immobilized as a primer on a gold pad substrate having a diameter of 100 nm and a pitch between pads of 0.5 ⁇ m formed on a quartz substrate by using the electron beam lithography method described in Example 2.
  • Complementary strand synthesis based on the primer by placing the gold pad substrate in a reaction solution containing a predetermined amount of the RCA product, Csa polymerase, reverse primer, and dNTPs and first incubating at 37 ° C. for 10 minutes. Then, the temperature was raised to 60 ° C. and an amplification reaction was performed for 3 hours. After removing unreacted substances by washing, a fluorescent probe DNA having a complementary strand sequence of the synthesized DNA and labeled with Cy3 at the end was hybridized and observed with a fluorescence microscope. Was confirmed to be synthesized. The percentage of gold pads in which amplification products were confirmed was approximately 70%.
  • the nucleic acid analyzer of the present example is a bulky template DNA aqueous solution, washing solution, nucleic acid synthase solution, fluorescently labeled substrate (dNTP) for a nucleic acid substrate having a large number of isolated nucleic acid immobilization microregions formed on the surface.
  • the reaction chamber is formed by placing the nucleic acid substrate 401 on the temperature control plate 403 and bonding the flow path forming member 402 provided with the flow paths 404 thereon.
  • PDMS Polydimethylsiloxane
  • a liquid feeding unit 405 is connected to the injection port 714, and all the chemicals necessary for reaction and cleaning are stored in the liquid feeding unit 405.
  • a bulky template DNA aqueous solution, a nucleic acid synthesis substrate (dNTP) solution, a reverse primer solution, and a nucleic acid synthase solution are sequentially supplied from the liquid feeding unit 405 to the inlet 714, It is supplied via the flow path 404.
  • the temperature of the temperature control plate 403 is raised to 37 ° C., the temperature is kept constant for a predetermined time, and complementary strand synthesis is performed using the primer fixed to the substrate as a starting point.
  • the holding time is preferably about 3 to 10 minutes.
  • a DNA amplification reaction is performed.
  • the reaction time is preferably about 2 to 7 hours.
  • a washing solution for washing and removing the unreacted product and the complementary strand of the extension reaction product based on the primer is supplied from the solution feeding unit 405 via the inlet 714 and the channel 404. .
  • a sequence reaction is performed, and a single base extension reaction and fluorescence detection are repeated.
  • a sequence reaction for example, in the case of a sequential reaction system, a 3′-O-allyl group is protected at the 3′OH position of ribose as a nucleotide with a fluorescent dye as disclosed in Non-Patent Document 4.
  • those linked to a fluorescent dye via an allyl group at the 5-position of pyrimidine or at the 7-position of purine can be used. Since the allyl group is cleaved by light irradiation (for example, a wavelength of 355 nm) or contact with palladium, the quenching of the dye and the control of the extension reaction can be simultaneously achieved.
  • Fluorescence measurement is performed as follows.
  • the light source 407 it is preferable to use a xenon lamp from the viewpoint of necessity of exciting various kinds of phosphors and economical efficiency.
  • the optical filter 713 cuts near-ultraviolet light that is unnecessary for excitation and damages the fluorescent dye, and guides it to the objective lens 406 by the dichroic mirror 409, and the nucleic acid substrate 401 is irradiated.
  • the dichroic mirror 409 has four types of mirrors having wavelength characteristics suitable for each fluorescent dye. The wavelength to be measured (fluorescent dye) can be switched by holding them on a rotary mirror holder and rotating them at an appropriate angle.
  • a nucleic acid analyzer As described above, by assembling a nucleic acid analyzer with a liquid feeding unit, a temperature control plate, an excitation light source, and a fluorescence detection unit, it is possible to automatically perform from the amplification reaction on the sample DNA substrate to the sequence reaction / measurement. As a result, the throughput can be greatly improved over the prior art.
  • Fluorescent beads with known number of fluorescent molecules contained in the number of DNA molecules per cluster determined from the performance of the detection device of the present invention (Invitrogen Fluorosphere beads, diameter 200 nm, fluorescent molecules 1.1 ⁇ 10 5 ), the number of fluorescent molecules necessary for detection at a signal to noise ratio of 10 or more was determined. As a result, it was found that 1 ⁇ 10 4 molecules or more are necessary. Therefore, in order to detect a sequence reaction with a signal-to-noise ratio of 10 or more, it is required that at least 10,000 molecules exist per cluster, and an amplification factor of 10,000 times or more is preferable in terms of amplification factor. I understood.
  • the number of DNA fragments per cluster can be 10,000 molecules. Therefore, the sequence reaction can be detected with a signal to noise ratio of 10 or more. It was confirmed that it was possible to do.
  • nucleic acid analysis method using the nucleic acid amplification method of the present invention will be described with reference to FIG.
  • a method for accurately determining the abundance ratio between an abnormal sequence fragment having a mutation at a specific position and a normal sequence fragment having no mutation is disclosed.
  • fragmented sample DNA can be fixed and amplified one by one at different positions on the substrate. Therefore, mutations at specific locations contained therein are detected, and the abundance ratio is determined. It can be easily analyzed.
  • a bundle (cluster) 502 of nucleic acid sample fragments to be analyzed is formed on a smooth substrate 501.
  • a primer 503 having a base sequence up to the position adjacent to the position of the mutation to be detected is supplied to the bundle 502 of nucleic acid sample fragments to perform hybridization.
  • the primer 503 is modified with a fluorescent dye 505 at its end.
  • an elongation reaction is performed by adding a DNA synthase.
  • dideoxyguanine (ddG) is incorporated into the normal sequence to stop the extension reaction
  • dideoxyadenine (ddA) is incorporated into the mutant sequence to stop the extension reaction.
  • dideoxyguanine is labeled with Cy3
  • dideoxyadenine is labeled with Cy5.
  • fluorescence is observed by irradiating the smooth substrate 501 with excitation light using a normal fluorescence microscope. Whether or not the fragment includes a base sequence to be analyzed can be determined from the presence or absence of the fluorescent dye 505.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は、シーケンサによる配列解析の対象となる増幅核酸断片の束(クラスタ)を高いクラスタ密度で作製し、かつ、クラスタ内の核酸断片数を10,000分子以上とすることで、核酸配列解析のスループットを高め、かつ、読取り精度を高めるための核酸増幅手法に関し、基体上にプライマDNAをパターン状に形成しておき、そこに、試料DNAから合成した嵩高い鋳型DNAを固定して増幅反応を行うことで、高クラスタ密度とクラスタ内の増幅断片数を高めることを実現する。

Description

核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置
 本発明は、核酸の塩基配列解析に用いる核酸増幅法、核酸基板及び核酸分析装置に関する。
 DNAやRNAの塩基配列を決定する新しい技術が開発されてきている。旧来、塩基配列の決定には電気泳動を利用した方法が用いられており、予め配列決定用のDNA断片又はRNA試料から逆転写反応を行い合成したcDNA断片試料を調製し、周知のサンガー法によるジデオキシ反応を実行した後、電気泳動を行い、分子量分離展開パターンを計測して解析していた。
 これに対し近年では、基板に試料となるDNA断片を数多く固定して、パラレルに数多くの断片の配列情報を決定する方法が開発され、塩基解析速度は飛躍的に向上した。これらの技術では、解析対象となる核酸配列を増幅した束(クラスタ)を平面上に配置し、二次元画像センサを用いて測定することで、多数のサンプルを平行して解析している。例えば、非特許文献1では、基板上に固定されたプライマを用いて基板上でPCR反応を行うことで、基板上に増幅遺伝子断片のクラスタを形成している。また非特許文献2では、エマルジョンPCRを行い微粒子表面に核酸配列を増幅・固定し、その微粒子を基板上に固定し平面上に複数のサンプルを配置している。
 これらの超並列型シーケンサにおいて、クラスタの形成は重要なステップであり、高密度でクラスタを形成することは、一度に画像センサから取得できる配列情報を増加させ、クラスタあたりの増幅遺伝子断片数を高めることは、配列情報の信号強度を高め、配列情報の信頼性を高めると同時に検出装置の簡素化を実現する。
特表2002-525125号公報 特表2011-520420号公報
Nucleic Acids Research, 2000, vol.28, No.20, e87. Science 2005, vol.309, pp.1728-1732. Nano Letter 2010, vol.10, pp.788-792. P.N.A.S. 2006, vol.103, pp.19635-19640.
 超並列型シーケンサでは、平面上に配置した増幅遺伝子クラスタから生じる、蛍光もしくは発光反応を二次元画像センサにより取得し、各遺伝子断片の配列情報を得ている。よって増幅遺伝子クラスタの密度を高めるほどに、一枚の画像から得られる配列情報は増加し、高いスループットが望める。
 基板上での増幅反応により多数のクラスタを作製する従来の方法は、例えば特許文献1に開示されているように、鋳型となる試料DNAを基板上にランダムにばらまき、あらかじめ基板上に固定しておいたプライマを反応起点として増幅反応を行うものであった。このようにランダムに鋳型のDNAをばらまく方法では、クラスタの密度を上げようとすると、一定の面積の区画に供給される鋳型DNAの分子数に対する頻度分布はポアソン分布になることから、鋳型DNAが一分子だけ供給される区画は、最大約37%になってしまうという限界があった。したがって、例えば、基板上に平均500nm角の区画に一分子ずつ供給することを狙っても、理想的には400万個/mm2のクラスタ密度が得られるはずであるが、いくら鋳型DNAの濃度を最適化しても、その約1/3の130万個/mm2のクラスタ密度しか得られないという限界があった。つまり、高濃度で鋳型となる試料DNAを固定させると、鋳型DNAが近接して基板上に固定されるので複数種のDNAが同一区画内で増幅され、正しい塩基配列解析ができなくなり、一方、低濃度で試料DNAを固定させると、クラスタ密度が低下しスループットが低下してしまうという問題点が残されていた。
 増幅反応を行った後、その増幅産物をあらかじめ基板上に形成しておいた固定用パッド上に、固定するという方法も特許文献2に開示されている。しかし、この方法では、増幅反応がローリング・サイクル・アンプリフィケーション(RCA)反応であり10,000倍を越すような高い増幅倍率を達成することは困難であった。高スループットで解析するためには高速で蛍光輝点を検出せねばならず、クラスタ当たりのDNA断片数も高いことが好ましいが、実用的な数時間の反応時間でのRCA反応だけでは10,000倍を越すような高い増幅倍率を達成することはDNA合成反応速度の点から困難である。
 本発明では、ポアソン分布の割合から想定されるよりも高いクラスタ密度を実現するとともに、各クラスタ内のDNA断片数を検出が容易に行える10,000分子以上に増幅する方法を提供する。
 本発明の発明者らは、鋭意研究の結果、ポアソン分布から求められるクラスタ密度よりも高い密度と、クラスタ内のDNA断片数を10,000分子以上の高い増幅率とを両立する増幅方法を開発した。
 特に、500nm角をクラスタの一区画とした場合、ポアソン分布から求められるクラスタ密度130万個/mm2よりも高いクラスタ密度で、かつ、クラスタ内のDNA断片数を10,000分子以上に増幅する核酸増幅法を開発した。
 本方法では、基体上にプライマを高密度に固定した領域を孤立させて高密度に設け、その領域に増幅対象の鋳型DNAを一分子ずつ供給する。一分子ずつ供給する方法として、固定領域よりも物理的な大きさで同等かより大きな分子として鋳型DNAを供給することで、各固定領域に鋳型DNAを一分子ずつ供給することを可能とする。より具体的には、例えば、RCA反応により、各鋳型DNAの巨大分子を合成し、それらをプライマDNAを固定した各固定領域に供給することで、一分子供給を実現する。一分子供給後に、PCR反応等の増幅反応により、プライマ固定領域内でプライマを基点とした増幅産物が基体上に固定される。RCA反応産物は巨大分子ではあるが、鋳型DNAを塩基配列としては一種類のみ含んでいるため、個々のプライマ固定領域には一種類の増幅産物のみが合成されることになる。したがって、以降のシーケンス反応に十分に適用できる増幅産物基板を作製することができる。
 本発明では、従来の試料DNAを基板上にランダムに固定する方法では実現できない、ポアソン分布の割合から想定されるよりも高いクラスタ密度を実現するとともに、各クラスタ内のDNA断片数を10,000分子以上に増幅でき、一視野当たりの配列解析DNA断片数を増やすとともに、検出に必要な露光時間の短縮を実現することで、高スループットな配列解析を実現できる。
本発明の遺伝子増幅方式の構成の一例を説明するための図である。 本発明の遺伝子増幅方式に用いる基板の作成方法の一例である。 本発明の遺伝子増幅方式に用いる嵩高い鋳型DNAの作成方法の一例である。 本発明で作製した増幅遺伝子断片クラスタを用いてシーケンス反応を行う際の装置構成の一例である。 本発明の核酸分析方法の一例を示す図である。
 実施例では、基体の表面に第一の核酸を固定した領域と前記第一の核酸を固定していない領域を配置する工程と、解析対象となる塩基配列を少なくとも2つ以上同一鎖上に有する第二の核酸を前記第一の核酸を固定した領域上に固定する工程と、第三の核酸を供給し、前記第一及び第三の核酸をプライマとして前記第二の核酸の増幅反応を行う工程を含むことを特徴とする、核酸増幅法を開示する。
 また、実施例では、前記核酸増幅法において、第一の核酸を固定した領域の直径の平均値の1/2よりも、第二の核酸の直径の平均値が大きいことを特徴とする、核酸増幅法を開示する。
 また、実施例では、前記核酸増幅法において、第二の核酸が一本鎖であり、かつ、自己アニール構造を有することを特徴とする、核酸増幅法を開示する。
 また、実施例では、前記核酸増幅法において、増幅反応後に、第一の核酸の伸長反応産物の相補鎖を除去する工程を含むことを特徴とする、核酸増幅法を開示する。
 また、実施例では、前記核酸増幅法において、第二の核酸が、解析対象の塩基配列を有する環状核酸を鋳型とした、鎖置換活性を有するポリメラーゼによる鎖置換伸長反応産物であることを特徴とする、核酸増幅法を開示する。
 また、実施例では、前記核酸増幅法において、増幅反応が恒温反応であることを特徴とする、核酸増幅法を開示する。
 また、実施例では、解析対象となる塩基配列を含む核酸が基体上に固定された核酸基板において、前記核酸が固定された領域の直径の平均値が500nm以下であり、かつ、前記核酸の固定領域における核酸の分子数の平均値が10,000分子以上であることを特徴とする、核酸基板を開示する。
 また、実施例では、前記核酸増幅法を行うための、少なくとも1つ以上の流路を有する核酸基板を開示する。
 また、実施例では、前記核酸増幅法を行うための、少なくとも一つの温調装置と送液機構を有する核酸分析装置を開示する。
 以下、上記及びその他の本発明の新規な特徴と効果について、図を参照して説明する。ここでは、本発明を完全に理解してもらうため、特定の実施形態について詳細な説明を行うが、本発明はここに記した内容に限定されるものではない。
 本実施例では、本発明の核酸増幅法について、図1を用いて説明する。試料DNA101を基に嵩高いDNA分子102を合成する(1)。個々の嵩高いDNA分子102には、それらの基になった試料DNA101の塩基配列情報が混同されることなく保持されることが必要である。そのための合成方法として、ローリングサークルアンプリフィケーション(RCA)反応を用いることができる。その詳細は実施例3に開示する。一方、基体103の表面に、プライマとなるDNA104をパターン状に固定しておく。プライマDNA104をパターン状に固定する方法に関しては実施例2に、その例を開示する。嵩高いDNA分子102をプライマDNA104を固定した領域にハイブリダイゼーションにより固定する(2)。そのために、プライマDNA104には嵩高いDNA分子102の一部分の塩基配列の相補配列を持たせておく。プライマDNA104は各固定領域で同じ塩基配列を持たせればよく、それと相補の配列を持つように共通の塩基配列を嵩高いDNA分子102に持たせればよい。
 パターン状に固定したプライマDNA104の各固定領域に、試料DNA101を一種類ずつ供給する必要がある。固定領域の直径をD、嵩高いDNA102の直径をdとすると、d>D/2を満たせば、各固定領域に2個以上の嵩高いDNAが固定されないこと、すなわち、各固定領域に一種類のみの試料DNA101を供給できることを見出し、本発明を完成するに至った。d>D/2を満たせば、嵩高いDNA102が固定された領域には、もう一つの嵩高いDNAは物理的に固定されないことから、独立事象の繰り返しでもたらされるポアソン分布の条件は満たさず、したがって、ポアソン分布から予想される一分子の固定割合約37%以上の高い一分子の固定割合が達成できる。嵩高いDNA102の濃度を高くして基体103と反応させても、固定領域1箇所に2個以上嵩高いDNA102が固定されることがないため、例えば、ポアソン分布の限界値の2倍程度の約70%以上の高い一分子の固定割合が達成できる。
 次に、基体をDNA合成酵素、4種類の塩基の基質を含む水溶液に浸し、嵩高いDNA分子102を鋳型としたプライマDNA104の伸長反応を行い二本鎖合成を行う(3)。この嵩高いDNA分子102を鋳型とした相補鎖合成反応(3)は、用いるポリメラーゼの種類にもよるが、37℃程度の一定温度で10分程度反応させることで完了できる。次にプライマDNA104とは方向が逆のプライマDNA105を与え、PCR反応を行う(4)。ここで、PCR反応時に、通常の温度サイクルを掛けてディネーチャーを通常の95℃程度で行うと、鋳型の嵩高いDNA分子102が基板上から剥がれてしまうため、所望の増幅が得られなくなってしまう。そのため、PCR反応を一定温度で行い、二本鎖が部分的に乖離したときにプライマDNA104がアニールし、相補鎖の合成反応が起きることが好ましい。鋭意反応条件を検討した結果、増幅効率を支配する因子は、反応温度とプライマの濃度であることが判明した。反応温度が70℃以上になると、嵩高いDNA分子102の剥離が起きてしまい増幅率が低下してしまう。一方、反応温度が50℃以下になると、増幅率が低く、約3時間反応させても、増幅率は10,000倍に至らなかった。したがって、反応温度は50℃から70℃の間が好ましく、より好ましくは60℃程度であることが分かった。次に、プライマDNA104の密度と増幅率との関係を鋭意検討した。その結果、50,000分子/μm2(~1分子/4.5nm角)程度の固定密度がないと、約3時間反応させても、増幅率は10,000倍に至らないことが分かった。したがって、プライマDNA104の固定密度としては、10,000分子/μm2以上が好ましく、より好ましくは、100,000分子/μm2以上であることが判明した。プライマDNA105の濃度については、通常の溶液中のPCR反応と同程度の0.1~0.5μM程度で十分な増幅が得られた。ポリメラーゼとしては、鎖置換活性を有する酵素が好ましく、Phi29、Bstポリメラーゼ、Csaポリメラーゼ、96-7ポリメラーゼなどを用いることができる。PCR反応後は、基体103上に予め固定しておいたプライマDNA104の伸長反応産物と、プライマDNA105の伸長反応産物の二本鎖が基体103上に作製されることになる。これらの伸長反応産物に対して、塩基配列解析のためのシーケンス反応を行うことになるが、このシーケンス反応を効率よく進めるためには、プライマDNA105の伸長反応産物を除去して、一本鎖としておくことが好ましい。除去方法には高温処理によりディネーチャーがもっとも簡便で好ましく、70℃以上より好ましくは90℃以上に2分程度処理することで、シーケンス反応に十分な一本鎖化を実施することができる。
 本実施例で示したように、本発明によれば、クラスタ密度、すなわち、固定領域密度は、プライマDNA104の固定領域密度に依存し、ポアソン分布に縛られずに、高い固定密度で、各固定領域に試料DNA101を一種類ずつ供給できる。例えば、直径500nmに固定領域を作製すれば、200万個/mm2以上の高クラスタ密度を達成できる。一方、クラスタ内のDNAの密度は増幅率とクラスタ当たりの面積に依存して決定される。例えば、直径500nmの固定領域(クラスタ形成領域)で、50,000分子/μm2以上のプライマDNA密度であれば、約3時間の反応時間で増幅率が約10,000倍に達することから、10,000分子/クラスタを達成できる。
 本実施例では、本発明の核酸増幅法に用いる、基体上にプライマDNAをパターン状に固定する方法の好ましい一例について図2を参照しながら説明する。
 平滑な支持基体201上に電子線用ポジ型レジスト202をスピンコート法により塗工する。平滑な支持基体としては、ガラス基板、サファイア基板、シリコンウエハ等が用いられる。核酸基板としたときに、核酸を固定した面と反対側の裏面より励起光を照射する必要がある場合には、光透過性に優れた石英基板やサファイア基板を用いればよい。電子線用ポジ型レジストとしては、例えば、ポリメチルメタクリレートやZEP-520A(日本ゼオン社製)を挙げることができる。基板上のマーカーの位置を用いて位置合わせを行ったうえ電子線直描露光を行って、レジストにスルーホールを形成する。例えば、直径200nmのスルーホールを形成する。スルーホールは並行処理で解析できる核酸の分子数に依存するが、0.5μm程度のピッチで形成することが、製造上の簡便さ・歩留まりの高さと並行処理で解析できる核酸の分子数を勘案すると適している。スルーホール形成領域も、並行処理で解析できる核酸の分子数によるが、検出装置側の位置精度、位置分解能にも大きく依存する。例えば、0.5μmピッチでプライマDNA固定領域を構成した場合、1mm角当たり、400万クラスタを形成できる。スルーホールを形成後、接着用パッド203を構成する材料、例えば、金、をスパッタリングで製膜する。平滑な支持基体としてガラス基板、サファイア基板を用い、接着用パッド材料として金を用いる場合には、前記基板材料と前記接着用パッド材料との間に接着を補強する意味でチタンやクロムの薄膜を入れることが好ましい。レジストを剥離後、接着用パッド203を形成した以外の平滑基板表面に非特異吸着防止処理を施す。蛍光色素付きヌクレオチドに対する吸着防止を実現するには負の電荷を帯びた官能基を有する分子でコートする。例えば、エポキシシランを表面にスピンコートで塗工し、加熱処理後、弱酸性溶液(pH5~pH6程度)で処理することで、エポキシ基を開環させOH基を表面に導入することで非特異吸着防止効果をもたらすことができる。
 プライマDNA205には予め官能基204を修飾しておくことが好ましい。接着用パッド材料として金を用いる場合には、官能基204としてチオール基を用いることができる。接着用パッド203を設けた基体を、官能基204を有するプライマDNA205の水溶液に浸漬処理し、所定の反応時間後に取り出し、余分な水溶液を洗浄した後、乾燥することで、プライマDNAをパターン状に固定した、核酸基板を作製することができる。 本実施例では、電子線露光装置を用いた例を示したが、まったく同じ手順で、光露光装置を用いることでも同様に、核酸基板を作製することができる。
 また、上記のようなリソグラフィーの技術以外に、ナノインプリントやコンタクトプリントなどの技術を用いても、パターン状に接着パッドを設けることができる。さらに、相溶性の異なる高分子同士を結んだブロック共重合体を用いてミクロ相分離構造を作らせ、一方の高分子相を溶解することで、凹型パターンを作り、これを鋳型として金属パッドパターンを作ることもできる。
 本実施例では、本発明の核酸増幅法に用いる、試料DNAから嵩高いDNA分子を作製する方法の好ましい一例について図3を参照しながら説明する。
 試料DNA301を、酵素消化、せん断、または、超音波処理などの常套手段により、フラグメント化する(1)。フラグメント302の塩基長は、50塩基から2000塩基の間が好ましく、100塩基から500塩基の間がより好ましい。以降の工程でリンカーDNAとつなぎ合わせ、環状DNAとした後、DNAの合成反応を行うため、フラグメントが長過ぎると嵩高いDNAの構造が所望の形状からずれてしまう可能性がある。一方、短すぎると、基体上での増幅反応時に増幅率が所望の値に至らない危険性が生じる。以上の事柄を勘案してフラグメント長を決定することが好ましく、その長さのフラグメントが得られるようフラグメント化(1)の手法を選択することが好ましい。
 フラグメント302の両末端を平滑化処理してから、アダプター303を両末端にライゲーションする(2)ことが好ましい。平滑化処理は、オーバーハングの5′一本鎖をポリメラーゼとdNTP類を用いてすべて埋める方法や、3′エキソヌクレアーゼ活性をもつポリメラーゼを用いて3′オーバーハングを除去する方法を用いることができる。フラグメント同士がライゲーションされないように、平滑化処理の際に、例えばT4キナーゼの3′ホスファターゼ活性を利用して3′ホスフェート基をヒドロキシル基に変換しておくことが好ましい。すべてのフラグメント302にアダプター303をライゲーションで付加しておくことで、環状にするためのリンカー304との接合により容易に環状DNA305を合成できる(3)。環状にするためのリンカー304には、プラスミドDNAを用いることができる。例えば、プラスミドDNAのマルチクローニングサイトを適当な制限酵素で切断し、アダプター303がついたフラグメント302を組み込む。組み込んだプラスミドを大腸菌の形質転換で増幅することもできる。次に、環状DNA305にプライマDNA306をハイブリさせ(4)、鎖置換活性を有するポリメラーゼを用いてRCA反応を行う(5)。RCA反応に使用できるポリメラーゼとしては、phi29ポリメラーゼ、Bstポリメラーゼ、Csaポリメラーゼ、96-7ポリメラーゼを挙げることができる。これらのポリメラーゼは、各々、反応至適温度・条件が異なっており、ハイブリダイゼーションさせるプライマ配列のTm値に応じて、適宜選択することができる。RCA産物307の大きさを制御するためには、反応時間及び反応温度の制御とポリメラーゼの選択が必要である。さらに、環状にするためのリンカー304の中に、例えば、非特許文献3に開示されているように、自己ループ構造をとるような塩基配列を入れておくことで、RCA産物307を球状の形状を取るように制御することができる。さらに、自己ループ構造をとるような塩基配列として、パリンドローム構造という回文状の塩基配列を用いることも有効である。また、アプタマーと呼ばれる自己ループ構造を用いることもできる。以上のような自己ハイブリに基づく高次構造をとるような塩基配列をリンカー304に入れると、長い一本鎖のRCA産物307が周期的に縮んだ構造をとることで球状の構造をとることになる。RCA産物の形状が不定形になる場合に比べて、その形状を球状とすることで、固定領域の面積に合せて、鋳型となるDNA(RCA産物)の大きさを制御することが容易になる。非特許文献3では、直径が50~150nmの球状DNAの合成が開示されている。
 発明者らは、500塩基長のプラスミドDNAに、10から20塩基長のアプタマー構造を取り入れ、Csaポリメラーゼを用いて3時間反応させることで、直径100~200nmのRCA産物を得ている。実施例2で述べた電子線リソグラフィー法を用いて石英基板上に形成した直径100nm、パッド間のピッチが0.5μmの金パッド基板上に、チオール末端修飾したオリゴDNAをプライマとして固定した。前記RCA産物、Csaポリメラーゼ、逆方向プライマ、dNTP類を所定の量含む反応液中に前記金パッド基板を入れて、まず、37℃で10分間インキュベートすることで、プライマを基点とした相補鎖合成を行った後、温度を60℃に上げて3時間増幅反応を行った。未反応物を洗浄で除去した後、合成されたDNAの相補鎖の配列を有し末端にCy3が標識された蛍光プローブDNAをハイブリさせて、蛍光顕微鏡で観察したところ、金パッド上で増幅産物が合成されていることが確認された。増幅産物が確認された金パッドの割合は凡そ70%であった。したがって、凡そ2.8百万クラスタ/mm2のクラスタ密度が実現できることが確認された。また、パッド当たりのDNA分子数については、実施例4で述べる、含まれる蛍光分子数が既知の蛍光ビーズとの蛍光強度の比較から、少なくともパッド当たり(クラスタ当たり)凡そ10,000分子のDNAが合成されていると判断された。したがって、凡そ10,000DNA分子/クラスタのDNA断片密度が達成されることが確認された。
 以上の実施例より明らかなように、RCA反応等により嵩高いDNAを鋳型DNAとして合成し、プライマを孤立させた領域に固定した基体上に嵩高い鋳型DNAを固定して増幅することで、高いクラスタ密度と高いクラスタ当たりのDNA断片密度が実現できることが明らかとなった。
 本実施例では、本発明の核酸基板を用いた核酸分析装置の好ましい構成の一例について図4を参照しながら説明する。
 本実施例の核酸分析装置は、孤立した核酸固定用微小領域が表面に多数形成された核酸基板に対して、嵩高い鋳型DNAの水溶液、洗浄液、核酸合成酵素溶液、蛍光標識付き基質(dNTP)溶液、を供給する手段と、嵩高い鋳型DNAの増幅反応を制御するための温度調節手段と、核酸基板に光を照射する手段と、蛍光標識付き基質の蛍光を測定する発光検出手段、を備える。より具体的には、核酸基板401を温調プレート403上に置き、流路404を設けた流路形成部材402をその上に貼り合せることで反応チャンバを形成する。流路形成部材402には、例えばPDMS(Polydimethylsiloxane)を使用することができる。注入口714には送液ユニット405が接続されており、送液ユニット405中には反応、洗浄に必要な薬液がすべて保管されている。
 プライマが固定された核酸基板401に対して、嵩高い鋳型DNAの水溶液、核酸合成用基質(dNTP)溶液、逆方向プライマ溶液、核酸合成酵素溶液、が順次、送液ユニット405から注入口714、流路404を経由して供給される。温調プレート403の温度を37℃に昇温後、温度を所定の時間一定に保持し、基体に固定したプライマを基点とした相補鎖合成を行うが、保持時間は3分から10分程度が好ましい。次に、温調プレート403の温度を60℃まで昇温した後、DNAの増幅反応を行う。反応時間は2~7時間程度が好ましい。DNAの増幅反応後に、未反応物、プライマを基点とした伸長反応産物の相補鎖を洗浄して除去するための洗浄液を、送液ユニット405から注入口714、流路404を経由して供給する。
 次に、シーケンス反応を行い、一塩基伸長反応と蛍光検出とを繰り返し行う。シーケンス反応として、例えば、逐次反応方式の場合には、蛍光色素付きヌクレオチドとして、非特許文献4に開示されているような、リボースの3′OHの位置に3′-O-アリル基を保護基として入れ、また、ピリミジンの5位の位置にあるいはプリンの7位の位置にアリル基を介して蛍光色素と結びつけたものが使用できる。アリル基は光照射(例えば波長355nm)あるいはパラジウムと接触することで切断されるため、色素の消光と伸長反応の制御を同時に達成することができる。
 蛍光測定は以下のように実施する。光源407には多種類の蛍光体を励起する必要性と経済性の観点から、キセノンランプを用いることが好ましい。コリメータレンズ408で平行光線になるよう調整した後、光学フィルタ713で励起には不要で蛍光色素にダメージを与えるような近紫外の光をカットし、ダイクロイックミラー409によって対物レンズ406に導き、核酸基板401上に照射される。各塩基に標識されている蛍光色素分子から発せられる蛍光は、励起光と同軸光路を逆に進み、対物レンズ406で集められた後ダイクロイックミラー409を通過し、結像レンズ711により2次元CCDカメラ712の感光面上に結像される。励起光の散乱光は光学フィルタ710によって除去される。4種類の塩基を識別するため4種類の蛍光色素の蛍光を識別して観測する必要があるが、その一つの方法として、ダイクロイックミラー409を各蛍光色素に適した波長特性を持つ4種類のミラーとし、それらを回転式ミラーホルダに保持させて、適切な角度に回転させることで、計測する波長(蛍光色素)を切り替えるようにすることができる。
 上記のように、送液ユニット、温調プレート、励起光源及び蛍光検出ユニットで核酸分析装置を組上げることにより、試料DNAの基体上での増幅反応から、シーケンス反応・計測まで自動で行うことが可能となり、従来技術に対して大幅なスループットの改善が図れる。
 本発明の検出装置の性能から求められる、クラスタ当たりのDNA分子数について、含まれる蛍光分子の数が既知である蛍光ビーズ(インビトジェン社製フルオスフィアビーズ、直径200nm、蛍光分子1.1×105含有)を用いて、信号とノイズの比率が10以上で検出するために必要な蛍光分子数を求めた。その結果、1×104分子以上必要であることが判明した。したがって、シーケンス反応を信号とノイズの比率が10以上で検出するためには、クラスタあたり少なくとも10,000分子存在することが求められ、増幅倍率に直すと10,000倍以上の増幅率が好ましいことが分かった。
 実施例1で述べたように、本発明の増幅法では、クラスタ当たりのDNA断片数を10,000分子とすることが可能であり、したがって、シーケンス反応を信号とノイズの比率が10以上で検出することが可能であることが確認された。
 本実施例では、本発明の核酸増幅法を用いた、核酸分析方法の一例について図5を参照しながら説明する。特に、特定の位置に変異を有する異常配列断片と変異を有しない正常配列断片との存在比を正確に求める方法を開示する。本発明の核酸増幅法では、断片化した試料DNAを一分子ずつ基板上の異なる位置に固定し増幅することができるため、その中に含まれる特定箇所における変異を検出して、その存在比率を解析することが容易にできる。
 実施例1に記載した方法を用いて、平滑基板501に解析対象の核酸試料の断片の束(クラスタ)502を形成する。次に、検出したい変異の位置の隣接位置までの塩基配列を有するプライマ503を核酸試料の断片の束502に対して供給しハイブリダイゼーションを行う。プライマ503には、蛍光色素505が末端に修飾されている。次に、各塩基に固有の蛍光色素を有するダイデオキシヌクレオチド溶液を供給した後、DNA合成酵素を加えて伸長反応を行う。図5では、正常配列にはダイデオキシグアニン(ddG)が取り込まれて伸長反応が停止し、変異配列ではダイデオキシアデニン(ddA)が取り込まれて伸長反応が停止する。例えば、ダイデオキシグアニンにはCy3が、ダイデオキシアデニンにはCy5が標識してある。次に、通常の蛍光顕微鏡を用いて平滑基板501に励起光を照射して蛍光を観察する。変異解析対象の塩基配列を含む断片であるかどうかは、蛍光色素505の有無から判断できる。蛍光色素505の発光輝点でありかつCy3の蛍光を発する輝点数と、蛍光色素505の発光輝点でありかつCy5の蛍光を発する輝点数を求め、その比を算出することで、試料DNA中に含まれる、正常配列と異常配列の比率を正確に求めることができる。
101、301 試料DNA
102 嵩高いDNA分子
103 基体
104、205 プライマDNA
105 逆方向のプライマDNA
106 伸長反応産物
201 支持基体
202 電子線用ポジ型レジスト
203 接着用パッド
204 官能基
206 非特異吸着防止膜
302 フラグメント
303 アダプター
304 環状にするためのリンカー
305 環状DNA
306 プライマDNA
307 RCA産物
401 核酸基板
402 流路形成部材
403 温調プレート
404 流路
405 送液ユニット
406 対物レンズ
407 光源
408 コリメータレンズ
409 ダイクロイックミラー
410、413 光学フィルタ
411 結像レンズ
412 2次元CCDカメラ

Claims (16)

  1.  基体の表面に第一の核酸を固定した領域と前記第一の核酸を固定していない領域を配置する工程と、解析対象となる塩基配列を少なくとも2つ以上同一鎖上に有する第二の核酸を前記第一の核酸を固定した領域上に固定する工程と、前記第二の核酸の増幅反応を行う工程を含むことを特徴とする、核酸増幅法。
  2.  基体の表面に第一の核酸を固定した領域と前記第一の核酸を固定していない領域を配置する工程と、解析対象となる塩基配列を少なくとも2つ以上同一鎖上に有する第二の核酸を前記第一の核酸を固定した領域上に固定する工程と、第三の核酸を供給し、前記第一及び第三の核酸をプライマとして前記第二の核酸の増幅反応を行う工程を含むことを特徴とする、核酸増幅法。
  3.  請求項1に記載の核酸増幅法において、
     第一の核酸を固定した領域の直径の平均値の1/2よりも、第二の核酸の直径の平均値が大きいことを特徴とする、核酸増幅法。
  4.  請求項1に記載の核酸増幅法において、
     第二の核酸が一本鎖であり、かつ、自己アニール構造を有することを特徴とする、核酸増幅法。
  5.  請求項1に記載の核酸増幅法において、
     増幅反応後に、第一の核酸の伸長反応産物の相補鎖を除去する工程を含むことを特徴とする、核酸増幅法。
  6.  請求項1に記載の核酸増幅法において、
     第二の核酸が、解析対象の塩基配列を有する環状核酸を鋳型とした、鎖置換活性を有するポリメラーゼによる鎖置換伸長反応産物であることを特徴とする、核酸増幅法。
  7.  請求項1に記載の核酸増幅法において、
     前記増幅反応が恒温反応であることを特徴とする、核酸増幅法。
  8.  請求項1に記載の核酸増幅法において、
     前記第一の核酸が固定された領域の直径の平均値が500nm以下であり、かつ、各固定領域における前記第一の核酸の分子数の平均値が10,000分子以上であることを特徴とする、核酸増幅法。
  9.  請求項1に記載の核酸増幅法において、
     前記第一の核酸が固定されたそれぞれの領域における、前記第一の核酸の固定密度は10,000分子/μm2以上であることを特徴とする、核酸増幅法。
  10.  請求項9に記載の核酸増幅法において、
     前記固定密度は、100,000分子/μm2以上であることを特徴とする、核酸増幅法。
  11.  請求項1に記載の核酸増幅法において、
     前記増幅反応の反応温度が50℃~70℃の間の温度であることを特徴とする、核酸増幅法。
  12.  請求項1に記載の核酸増幅法において、
     前記第二の核酸は、ローリングサイクルアンプリフィケーション(RCA)反応を用いて合成した、嵩高い核酸であることを特徴とする、核酸増幅法。
  13.  請求項1~12のいずれかに記載の核酸増幅法を行った上で、蛍光標識付き塩基を取り込ませる伸長反応を行う手段と、前記蛍光標識の蛍光検出を行う手段を有することを特徴とする核酸分析方法。
  14.  解析対象となる塩基配列を含む核酸が基体上に固定された核酸基板において、前記核酸が固定された領域の直径の平均値が500nm以下であり、かつ、前記核酸の固定領域における核酸の分子数の平均値が10,000分子以上であることを特徴とする、核酸基板。
  15.  請求項1に記載の核酸増幅法を行うための、少なくとも1つ以上の流路を有する核酸基板。
  16.  請求項1に記載の核酸増幅法を行うための、少なくとも一つの温調装置と送液機構を有する核酸分析装置。
PCT/JP2012/077024 2011-10-31 2012-10-19 核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置 WO2013065499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280052238.8A CN103890161A (zh) 2011-10-31 2012-10-19 核酸扩增方法、核酸基板、核酸分析方法及核酸分析装置
EP12846413.8A EP2774978B1 (en) 2011-10-31 2012-10-19 Nucleic acid amplification method
JP2013541701A JP5899234B2 (ja) 2011-10-31 2012-10-19 核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置
US14/346,342 US9708649B2 (en) 2011-10-31 2012-10-19 Method and substrate for nucleic acid amplification, and method and apparatus for nucleic acid analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238156 2011-10-31
JP2011238156 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065499A1 true WO2013065499A1 (ja) 2013-05-10

Family

ID=48191854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077024 WO2013065499A1 (ja) 2011-10-31 2012-10-19 核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置

Country Status (5)

Country Link
US (1) US9708649B2 (ja)
EP (1) EP2774978B1 (ja)
JP (1) JP5899234B2 (ja)
CN (1) CN103890161A (ja)
WO (1) WO2013065499A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094067A (ja) * 2011-10-28 2013-05-20 Hitachi High-Technologies Corp 核酸増幅方法
JP2015116136A (ja) * 2013-12-17 2015-06-25 東ソー株式会社 核酸増幅方法および当該方法を利用した核酸増幅試薬
JP2015139373A (ja) * 2014-01-27 2015-08-03 株式会社日立ハイテクノロジーズ 生体分子分析デバイス、及び生体分子分析装置
WO2019207669A1 (ja) * 2018-04-25 2019-10-31 株式会社 日立ハイテクノロジーズ 核酸分析用基板、及び核酸分析用フローセル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111172247A (zh) * 2020-01-15 2020-05-19 深圳海普洛斯医学检验实验室 一种高通量测序文库定量检测结果校正的方法及检测方法
US11236388B1 (en) 2021-06-17 2022-02-01 Element Biosciences, Inc. Compositions and methods for pairwise sequencing
US11859241B2 (en) 2021-06-17 2024-01-02 Element Biosciences, Inc. Compositions and methods for pairwise sequencing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525125A (ja) 1998-09-30 2002-08-13 アプライド・リサーチ・システムズ・エイアールエス・ホールディング・ナムローゼ・フェンノートシャップ 核酸増幅および配列決定の方法
JP2009500004A (ja) * 2005-06-15 2009-01-08 カリダ・ジェノミックス・インコーポレイテッド 遺伝子解析および化学解析用の単分子アレイ
JP2011520420A (ja) 2007-12-05 2011-07-21 コンプリート・ジェノミックス・インコーポレイテッド シーケンシング反応における効率のよい塩基決定

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284497B1 (en) * 1998-04-09 2001-09-04 Trustees Of Boston University Nucleic acid arrays and methods of synthesis
EP1522853A4 (en) 2002-06-24 2005-10-19 Canon Kk DNA MICROARRAY WITH STANDARD PROBE AND KIT CONTAINING THE MICROARRAY
GB2413796B (en) * 2004-03-25 2006-03-29 Global Genomics Ab Methods and means for nucleic acid sequencing
WO2007120208A2 (en) * 2005-11-14 2007-10-25 President And Fellows Of Harvard College Nanogrid rolling circle dna sequencing
JP5299986B2 (ja) 2007-11-01 2013-09-25 国立大学法人山口大学 核酸の定量方法
WO2010043418A2 (de) * 2008-10-17 2010-04-22 Febit Holding Gmbh Integrierte amplifikation, prozessierung und analyse von biomolekülen in einem mikrofluidischen reaktionsträger
EP2182075A1 (en) * 2008-10-20 2010-05-05 Koninklijke Philips Electronics N.V. Real-time high multiplex detection by primer extension on solid surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525125A (ja) 1998-09-30 2002-08-13 アプライド・リサーチ・システムズ・エイアールエス・ホールディング・ナムローゼ・フェンノートシャップ 核酸増幅および配列決定の方法
JP2009500004A (ja) * 2005-06-15 2009-01-08 カリダ・ジェノミックス・インコーポレイテッド 遺伝子解析および化学解析用の単分子アレイ
JP2011520420A (ja) 2007-12-05 2011-07-21 コンプリート・ジェノミックス・インコーポレイテッド シーケンシング反応における効率のよい塩基決定

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDERSON JP. ET AL.: "Fluorescent structural DNA nanoballs functionalized with phosphate-linked nucleotide triphosphates", NANO LETT., vol. 10, no. 3, 2010, pages 788 - 792, XP055117086 *
NANO LETTER, vol. 10, 2010, pages 788 - 792
NUCLEIC ACIDS RESEARCH, vol. 28, no. 20, 2000, pages E87
P. N. A. S., vol. 103, 2006, pages 19635 - 19640
SCIENCE, vol. 309, 2005, pages 1728 - 1732
See also references of EP2774978A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094067A (ja) * 2011-10-28 2013-05-20 Hitachi High-Technologies Corp 核酸増幅方法
JP2015116136A (ja) * 2013-12-17 2015-06-25 東ソー株式会社 核酸増幅方法および当該方法を利用した核酸増幅試薬
JP2015139373A (ja) * 2014-01-27 2015-08-03 株式会社日立ハイテクノロジーズ 生体分子分析デバイス、及び生体分子分析装置
WO2019207669A1 (ja) * 2018-04-25 2019-10-31 株式会社 日立ハイテクノロジーズ 核酸分析用基板、及び核酸分析用フローセル

Also Published As

Publication number Publication date
JPWO2013065499A1 (ja) 2015-04-02
US20140309120A1 (en) 2014-10-16
US9708649B2 (en) 2017-07-18
CN103890161A (zh) 2014-06-25
EP2774978A1 (en) 2014-09-10
EP2774978B1 (en) 2019-05-15
JP5899234B2 (ja) 2016-04-06
EP2774978A4 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5899234B2 (ja) 核酸増幅法、核酸基板、核酸分析方法及び核酸分析装置
EP3336199B1 (en) Single molecule sequencing method, device, system, and application
WO2010087121A1 (ja) 核酸分析デバイス、及び核酸分析装置
US20050227231A1 (en) Device for sequencing nucleic acid molecules
US20160362741A1 (en) Single molecule sequencing of captured nucleic acids
JPWO2015015913A1 (ja) 核酸分析用フローセル、及び核酸分析装置
EP4271510A1 (en) Methods and compositions for light-controlled surface patterning using a polymer
US10590481B2 (en) Cyclic single molecule sequencing process
JP5663008B2 (ja) 核酸分析デバイスの製造方法
JP2023531463A (ja) 酵素的核酸伸長を用いたin situ単一細胞解析のための組成物及び方法
US20110092380A1 (en) Improved molecular-biological processing equipment
JP5822929B2 (ja) 核酸分析装置
JPWO2010137543A1 (ja) 核酸分析用デバイス、核酸分析装置、及び核酸分析方法
JP5635130B2 (ja) 単分子プローブ核酸付き微粒子及びその製造方法、並びに核酸分析方法
JP5309092B2 (ja) 核酸分析用デバイス,核酸分析装置、及び核酸分析用デバイスの製造方法
JP6339787B2 (ja) 核酸の分析方法
JP5908252B2 (ja) 核酸増幅方法
WO2011092780A1 (ja) 核酸分析装置,核酸分析反応デバイス、および核酸分析用反応デバイス用基板
US20050014147A1 (en) Method and apparatus for three label microarrays
JP2001299346A (ja) 固定化プライマーによる固相pcr法
WO2011108344A1 (ja) 基板上に固定化された複数の核酸検体の識別方法及び装置
JP2008151647A (ja) マイクロアレイ上のプローブ位置の確認方法
JP2010014560A (ja) 核酸分析デバイス、及び核酸分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541701

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012846413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14346342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE