WO2011108344A1 - 基板上に固定化された複数の核酸検体の識別方法及び装置 - Google Patents

基板上に固定化された複数の核酸検体の識別方法及び装置 Download PDF

Info

Publication number
WO2011108344A1
WO2011108344A1 PCT/JP2011/052881 JP2011052881W WO2011108344A1 WO 2011108344 A1 WO2011108344 A1 WO 2011108344A1 JP 2011052881 W JP2011052881 W JP 2011052881W WO 2011108344 A1 WO2011108344 A1 WO 2011108344A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
substrate
immobilized
acid sample
signal
Prior art date
Application number
PCT/JP2011/052881
Other languages
English (en)
French (fr)
Inventor
隆志 川辺
幸久 和田
直司 森谷
Original Assignee
株式会社 島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 島津製作所 filed Critical 株式会社 島津製作所
Publication of WO2011108344A1 publication Critical patent/WO2011108344A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the present invention relates to a method and device for identifying a plurality of nucleic acid specimens immobilized on a substrate (Method and Device for Distinguishing among Plural of Nucleic Acid Specimens Immobilized on Substrate). More specifically, the present invention relates to a method for identifying the type of nucleic acid sample immobilized on a substrate. The present invention also relates to a method for identifying the origin of a nucleic acid to be sequenced in a nucleic acid sequence. Furthermore, the present invention relates to an apparatus that can be used in such a method.
  • SBS sequencing-by-synthesis
  • US Pat. No. 4,863,849 Patent Document 1
  • a DNA base sequence is determined by measuring the order in which a dNTP analog complementary to a DNA template is incorporated using a DNA polymerase.
  • This dNTP analog has been fluorescently labeled and is mainly detected by TIRF (total reflection fluorescence microscope system) (New
  • the DNA sequence decoding method using the SBS method has an advantage that a dramatic improvement in throughput can be expected due to massive parallel processing.
  • the read length that can be decoded at one time is shorter than that of the Sanger method, so that the amount of sequence information that is output with parallelization increases, and the mapping method cannot be used.
  • De-Novo sequences that is, sequences of unknown sequences
  • a new identification index sequence is added to a DNA sample to be sequenced to clarify the nucleic acid from which each DNA sample is derived, thereby reducing the number of DNA sequence assemblies.
  • Non-Patent Document 2 the Maltiplexed Sequencing method is adopted, and in addition to two types of synthesis primers, a primer including an identification index sequence is prepared separately, and the identification sequence is added to the template. A complicated preparation process is required. The preparation step can be somewhat simplified by ligating (binding) an identification index sequence that also serves as a primer for synthesis. However, in any preparation method, it is necessary to prepare different index sequence fragments for identification for each type of template. Therefore, as the number of types of template sequences increases, the load on sample preparation and cost increases. There are drawbacks.
  • a template fixing method using ink jet or lithography is a template having a predetermined sequence such as a nucleic acid sequence fragment containing a specific disease gene.
  • a dedicated device is required for substrate fabrication, and since there is no design freedom on the user side, it is limited to the sequence application by the SBH (Sequence By Hybridization) method, etc. There is a disadvantage that it is not versatile.
  • the present inventors use base sequence information included in each of a plurality of types of nucleic acid samples immobilized on a substrate and / or the order in which the plurality of types of nucleic acid samples are immobilized on a substrate as an index.
  • the present inventors have found that a plurality of types of nucleic acid specimens immobilized at random positions on a substrate (that is, randomly) can be identified on the basis of their immobilized position information, thereby completing the present invention. .
  • the subject of the present invention is to identify a plurality of types of nucleic acid specimens by identifying the nucleic acid specimens immobilized at random positions on the substrate by acquiring their positional information.
  • the present invention includes the following inventions.
  • the invention described in (1) below uses a plurality of types of samples randomly immobilized on a substrate by using, as an index, base sequence information contained in each of a plurality of types of nucleic acid samples immobilized on the substrate. Is identified based on the fixed position information.
  • (1) Providing a plurality of types of nucleic acid samples to be identified, which are immobilized at random positions on the surface of the substrate and have a signal probe P (L) ; Detecting a signal derived from the signal probe P (L) , and obtaining information on a fixed position on the substrate of each of the immobilized nucleic acid specimens based on the signal; Obtaining base sequence information contained in each of the plurality of types of nucleic acid samples to be identified; A method of identifying a plurality of types of nucleic acid samples immobilized on a substrate, the method comprising: associating the base sequence information with the position information to identify the plurality of types of nucleic acid samples from each other.
  • a plurality of types of nucleic acid samples to be identified immobilized at random positions on the substrate are obtained by supplying a solution containing two or more types of the plurality of types of nucleic acid samples to be identified to the substrate.
  • the identification method according to (1) is obtained by supplying a solution containing two or more types of the plurality of types of nucleic acid samples to be identified to the substrate.
  • the signal probes included in the plurality of types of nucleic acid samples may be the same as each other.
  • the signal probes of the plurality of types of nucleic acid samples may be different from each other.
  • the signal probe in addition to the base sequence information, the signal probe can be combined as an additional index, and the identification reliability can be improved.
  • the nucleic acid sample having the signal probe P (L) can be obtained by hybridizing or ligating a nucleic acid labeled with a signal substance to a nucleic acid sample.
  • the step (A) includes supplying a solution containing a nucleic acid sample having the signal probe P (L) to the substrate, and the step (B) includes another type of the signal probe P (L).
  • the identification method according to (3) comprising supplying a solution containing a nucleic acid sample in an overlapping manner on the surface region to which the solution containing the nucleic acid sample is supplied.
  • the invention described in (5) below is a combination of the method described in (1) above and the method described in (3) or (4) above, that is, a plurality of types immobilized on a substrate.
  • the plurality of types of samples immobilized on the substrate are It is a method of identifying based on the fixed position information. This reduces the number of times of signal detection and acquisition of immobilization position information compared to the case of acquiring signal detection and immobilization position information for each type of nucleic acid sample in the methods described in (3) and (4) above. be able to.
  • the nucleic acid sample immobilized on the substrate surface and / or the other type of nucleic acid sample is supplied by a solution containing two or more types of nucleic acid samples to be identified among a plurality of types of nucleic acid samples to be identified.
  • the method further comprises obtaining base sequence information contained in each of the two or more kinds of nucleic acid samples to be identified immobilized on the substrate surface.
  • the method for identifying a nucleic acid sample according to 3) or (4).
  • the signal probes included in the plurality of types of nucleic acid samples may be the same as each other. In (5), the signal probes included in the plurality of types of nucleic acid samples may be different from each other. Thus, in addition to the order of immobilization, the signal probe can be combined as an additional index, and the reliability of identification can be improved.
  • the nucleic acid sample having the signal probe P (L) can be obtained by hybridizing or ligating a nucleic acid labeled with a signal substance to a nucleic acid sample.
  • the following (6) specifies the base sequence acquisition method in the above (1), (2) and (5).
  • Acquisition of the base sequence information contained in the nucleic acid sample is carried out by synthesizing a complementary strand using the nucleic acid sample to be identified as a template in a nucleic acid synthesis system containing a nucleotide N (L) labeled with a signal substance as a complementary strand synthesis substrate, Any one of (1), (2) and (5), wherein the signal substance-labeled nucleotide N (L) is detected by detecting a signal derived from the signal substance in the order in which the nucleic acid specimen is complementary-stranded. Identification method of description. In order to perform the method described in (6) above, the SBS method can be used.
  • the following invention is directed to an apparatus suitable for carrying out the nucleic acid sample identification method described in (1) to (7) above.
  • the following (8) and (9) are devices that can be used, for example, for implementing the identification methods (1) and (2).
  • (9) Means for recording the acquired fixed position information;
  • the apparatus according to (8) further comprising at least one of a unit that records the acquired base sequence information and a unit that associates the fixed position information with the base sequence information.
  • the following (10) is an apparatus that can be used for carrying out the identification method described in (3) or (4) above, for example.
  • An apparatus for identifying a plurality of types of specimens immobilized on a substrate comprising: a control means for causing a series of means of the supplying means, the detecting means, and the means for acquiring the fixed position information to function a plurality of times.
  • the following (11) is an apparatus that can be used for the implementation of the identification method described in (5) above, for example.
  • the following (12) is an apparatus that can be used for implementing the identification method described in (6) above, for example.
  • the means for obtaining the base sequence information comprises Means for supplying a fluorescent substance-labeled nucleotide, and a total reflection fluorescent microscope system for observing fluorescence derived from the fluorescent substance,
  • the apparatus according to any one of (8), (9), and (11), which may include means for converting the observed fluorescence into base sequence information.
  • the apparatus of (12) may further include means for converting the observed fluorescence into base sequence information.
  • the following (13) is an apparatus that can be used for carrying out the identification method described in (3), (4), (5) and (6), for example.
  • the following (14) is an apparatus that can be used for carrying out the identification method described in (7) above, for example.
  • nucleic acid sample identification it is not necessary to separately provide an index sequence for nucleic acid sample identification, and it is not necessary to immobilize at a position determined on the substrate for nucleic acid sample identification. Multiple types of nucleic acid samples can be identified. Further, in the present invention, when a sequence contained in a nucleic acid sample itself is used as an index, immobilization is performed at a time by supplying a plurality of types of nucleic acid samples on a substrate as a mixture, and each nucleic acid sample can be identified. It becomes possible.
  • nucleic acid sample In the case of amplifying a nucleic acid sample, an example of a mode in which a double-stranded primer is ligated to the nucleic acid sample is schematically shown, and (b) an example of a nucleic acid sample having a signal probe having a primer for initiating synthesis is schematically shown. It is shown in. Some examples of nucleic acid samples having a signal probe are schematically shown.
  • FIG. 1 schematically shows an example of a mode in which a base sequence (initial sequence of a nucleic acid sample) that can be used as an index of the nucleic acid sample is synthesized in a nucleic acid sample immobilized on a substrate and having a signal probe.
  • FIG. 2 schematically shows an example of a mode in which a base sequence (internal sequence of a nucleic acid sample) that can be used as an index of the nucleic acid sample is synthesized in a nucleic acid sample immobilized on a substrate and having a signal probe.
  • An example of an aspect in which a nucleic acid sample is immobilized on a substrate at random positions and positional information is acquired is schematically shown together with an enlarged view showing an aspect of the immobilized nucleic acid sample in a part on the substrate.
  • FIG. 2 schematically shows an example of an embodiment in which a partial sequence providing index base sequence information is synthesized in the nucleic acid sample and (a). After the position information is acquired in FIG. 5 (a), an example of a mode in which another nucleic acid sample is fixed at a random position and the position information is acquired is shown in FIG. It is typically shown with the enlarged view which shows an aspect.
  • nucleic acid sample is not particularly limited as long as there is a request to distinguish the type of nucleic acid sample immobilized on the substrate. Differentiating the types of nucleic acid samples can be performed, for example, for the purpose of recognizing a plurality of types of nucleic acid samples having different origins or a plurality of types of nucleic acid samples having different analysis targets as separate nucleic acid samples on the same substrate.
  • the present invention can be used to clarify the nucleic acid from which the sequence is derived.
  • a plurality of types of nucleic acid fragments obtained from a plurality of types of nucleic acids are immobilized, sequence information of the whole nucleic acid fragments is obtained, and sequence information of the nucleic acid fragments is reconstructed.
  • the present invention can be used to distinguish the types of nucleic acids from which the nucleic acid fragments originate from each other.
  • each of a plurality of types of nucleic acid samples having different origins is mutually connected.
  • the present invention can be used to distinguish between different inspection objects.
  • the plural types of nucleic acid samples refer to different types of nucleic acid samples, which are nucleic acid samples that need to be distinguished from each other by the user.
  • Examples of multiple types of nucleic acid samples include nucleic acids having different sequences, nucleic acids having the same sequence, and nucleic acids having substantially the same sequence (meaning that errors during replication, mutations, etc. are allowed).
  • nucleic acids with different origins, nucleic acids belonging to different populations, and different nucleic acids as analysis targets can be a plurality of types of nucleic acid samples.
  • nucleic acid samples belonging to the same type are nucleic acid samples that do not need to be distinguished from each other by the user.
  • the nucleic acid samples belonging to the same kind may be nucleic acids having the same sequence, nucleic acids having substantially the same sequence (meaning to allow errors during replication, mutations, etc.), and nucleic acids having different sequences.
  • nucleic acids having the same origin or nucleic acids belonging to the same population can be nucleic acid samples belonging to the same type.
  • nucleic acid samples From a structural point of view, it is a polymer in which nucleotide residues mainly composed of nucleobases, pentoses and phosphate groups are linked by phosphodiester bonds, and nucleobases include purine or pyridimine derivatives and base pairing. Any other possible nucleobase is acceptable. More specifically, DNA, RNA, other nucleic acid analogs, and mixtures thereof can be mentioned. Furthermore, the nucleic acid sample may be single-stranded or double-stranded. Also, from the viewpoint of sequence origin, naturally derived, artificially modified or synthetic sequences, and mixtures thereof are allowed.
  • examples include chromosomes, genomes, cDNAs, fragments thereof (however, units larger than the template nucleic acid) of various organisms including humans, and various microorganisms including viruses and bacteria.
  • the polynucleotides may be of the same sequence derived from different individuals.
  • the nucleic acid specimen may be derived from one cell or may be derived from a plurality of cells. Further, the nucleic acid sample may be derived from one sample or may be derived from a plurality of samples.
  • Nucleic acid specimens can be purified from cells. It may be appropriately fragmented.
  • the purification method is not particularly limited, and a known method is appropriately selected by those skilled in the art.
  • Plural kinds of nucleic acid specimens may exist in plural.
  • Examples of a method for obtaining a plurality of nucleic acid samples having the same sequence or substantially the same sequence for each of a plurality of types of nucleic acid samples include a method of preparing a copy of the nucleic acid sample.
  • Examples of a method for preparing a copy of a nucleic acid sample include a nucleic acid amplification method (a method typified by PCR) using a nucleic acid sample as a template. For example, when the nucleic acid sample is double-stranded, as schematically shown in FIG.
  • a double-stranded primer (this is expressed as p / p ′, for example) on the nucleic acid sample (this is expressed as X).
  • a double-stranded primer (this is expressed as p / p ′, for example) on the nucleic acid sample (this is expressed as X).
  • X nucleic acid sample
  • the primers can be hybridized and nucleic acid amplification can be performed. Any means may be used as means for performing nucleic acid amplification.
  • means for performing nucleic acid amplification may be provided as one means.
  • the specific protocol of the amplification method is not particularly limited, and is appropriately selected from known methods by those skilled in the art.
  • a method for preparing a copy of a nucleic acid sample for example, a method of inserting a nucleic acid sample into a vector and propagating it in a host cell can be mentioned. Also for this method, the specific protocol is not particularly limited, and a known method is appropriately selected by those skilled in the art.
  • Another method for obtaining a plurality of nucleic acid samples having the same sequence or substantially the same sequence for each nucleic acid sample is a method obtained by obtaining nucleic acid samples from different sources and fragmenting them.
  • Different sources include different cells. The different cells can be from different individuals.
  • the fragmentation step that can be performed to obtain a nucleic acid sample is appropriately performed by those skilled in the art using a known technique. Specifically, a method using ultrasonic waves or a restriction enzyme can be mentioned.
  • the nucleic acid sample to be identified has a signal probe for indicating its own location on the substrate.
  • the signal probe may be a signal substance itself, or may include a signal substance and other elements.
  • the embodiment in which the nucleic acid sample has a signal probe is not particularly limited.
  • the type of binding between the nucleic acid sample and the signal probe may be a covalent bond or a specific bond (such as a hydrogen bond or an antigen-antibody bond).
  • the signal probe can be, for example, a nucleic acid labeled with a signal substance.
  • the signal probe may have an immobilization tag (illustrated in FIG. 3A) as described later.
  • the nucleic acid sample only needs to have a signal probe until signal detection is performed. Therefore, the signal probe may be completed at any stage until signal detection of the nucleic acid sample to be identified is performed.
  • the signal probe may be obtained from the signal substance and other elements, and the obtained signal probe may be applied to the nucleic acid sample, or the signal probe is configured.
  • a signal probe may be completed on a nucleic acid sample by applying a portion to the nucleic acid sample and then applying other components of the signal probe.
  • the signal probe can be attached to the nucleic acid sample in such a manner that only itself or only its signal label portion can be removed.
  • the nucleic acid that can be used as a signal probe together with the signal substance label can include a relatively short nucleic acid that can also function as a primer for initiating synthesis used in a nucleic acid synthesis system, for example, as described above (FIG. 1B). And schematically illustrated in FIGS. 2A to 2C).
  • the primer is an oligonucleotide that serves as a starting point for nucleic acid synthesis in a nucleic acid synthesis reaction system.
  • the primer may be synthesized or isolated from the biological world.
  • nucleic acid sample having such a signal probe when a nucleic acid sample is expressed as X and a signal probe is expressed as p (L) , a short nucleic acid labeled with a signal substance is ligated to the nucleic acid sample (p (L) -X, exemplified in FIG. 2 (a)): short nucleic acid labeled with a signal substance hybridized to a nucleic acid sample (X / p (L) , exemplified in FIG.
  • nucleic acid p ′ ligated to X and the primer p in the signal probe P (L) hybridized thereto are at least a partial sequence. Need only be complementary, and it is not always necessary that both sequences are completely complementary.
  • nucleic acid sample identification method of the present invention uses the nucleic acid sample identification method of the present invention and is used for nucleic acid synthesis using the nucleic acid sample as a template.
  • the base sequence contained in the nucleic acid sample is synthesized by complementary strand synthesis by nucleic acid synthesis, and the obtained base sequence information is used as an index for nucleic acid sample identification ( Examples include 6-1), which will be described later, and other aspects in which the nucleic acid sample is subjected to nucleic acid synthesis in a step different from the nucleic acid sample identification method of the present invention.
  • signaling substance As the signal substance in the signal probe, one that can grasp the position on the substrate when the nucleic acid sample is immobilized on the substrate is used without particular limitation.
  • the signal substance may be any substance that can be detected by means known to those skilled in the art.
  • a fluorescent material is used. More specifically, for example, Dimethylcoumarine, BODIPY FL, BODIPY TMR, BODIPY630 / 650 ⁇ Naptofluorescein, Fluorescein, Fluorescein Chlorotriazinyl, OregonGreen488, Rohdamine Green, Alexa Fluor488, Alexa Fluor532, Alexa Fluor546, Alexa Fluor594, Cy3, Cy5, Cy5. 5, Cy3.5, Lissamine Rhodamine B, Tetramethylrhodamine, Texas Red and the like.
  • the same signal substance may be given among a plurality of types of nucleic acid samples to be identified. Since the method of the present invention uses the base sequence information contained in the nucleic acid sample and / or the order of immobilization of the nucleic acid sample as an index, the signal substances can be identified among different types of nucleic acid samples without making them different. Enable.
  • nucleic acid samples to be identified may be given (illustrated in FIG. 6).
  • a different signal substance may be used for each of a plurality of nucleic acid samples supplied on a substrate or for each of several types.
  • the nucleic acid sample fixation order is used as an index
  • a different signal substance can be used every time it is fixed once or several times.
  • the signal substance can be used as a further index. Therefore, the reliability of identification of the nucleic acid sample can be improved by combining a plurality of indexes.
  • the substrate is not particularly limited as long as it does not hinder immobilization of nucleic acid specimens, signal detection, and position information acquisition.
  • a material that transmits light can be used.
  • a substrate made of a material having a high light transmittance such as a silicon-containing base material such as silicone, glass, quartz glass, or quartz, or a resin base material such as polycarbonate, polyacrylamide, polystyrene, or polymethyl methacrylate is used.
  • the object should have a higher refractive index than that of the nucleic acid synthesis reaction solution and can generate an evanescent field on the reaction solution side when the laser is totally reflected at the interface between the substrate and the reaction solution. May be preferred.
  • the substrate as described above is particularly preferably used when obtaining base sequence information as an index (described later in 6-1) by using an evanescent field.
  • the substrate may be disposable.
  • the immobilization in a broad sense may mean performing a series of steps for preparing such an immobilized nucleic acid sample. Further, as immobilization in a narrow sense, it may mean that the substrate and the object to be immobilized are combined.
  • the immobilization method for obtaining the nucleic acid sample thus immobilized is appropriately determined by those skilled in the art and is not particularly limited.
  • the immobilization means that the nucleic acid sample is provided with the signal probe P (L), that the nucleic acid sample is supplied to a random position on the substrate, and that the nucleic acid sample achieves immobilization.
  • the conditions that can be applied are performed in an arbitrary order.
  • the nucleic acid sample having the signal probe P (L) may be bound to the substrate at the nucleic acid sample portion, or may be bound to the substrate at the signal probe P (L) portion.
  • the nucleic acid sample to be identified having the signal probe P (L) is immobilized on the substrate surface via an immobilization tag and a linker (illustrated in FIGS. 3A and 3B).
  • the immobilization tag may be a structure to be attached to the object to be immobilized or a part constituting the object to be immobilized.
  • the linker may be a structure to be attached to the substrate or a part constituting the substrate itself.
  • the position where the nucleic acid sample is immobilized on the substrate is determined randomly (illustrated in FIGS. 5 and 6). That is, in the operation for immobilization, the nucleic acid sample is not controlled so that the immobilization position can be identified depending on the type. That is, there is no ordering that is realized by immobilization using array technology. Therefore, when a plurality of types of nucleic acid samples are immobilized on the substrate, the various nucleic acid samples are distributed in a mixed state. The degree of mixing may vary depending on the supply mode and is not particularly limited.
  • the distribution ratio of the various nucleic acid specimens is substantially the same (illustrated in FIG. 6), or various kinds of places depending on the location on the board.
  • the former case can occur by supplying a solution containing all of a plurality of nucleic acid samples, or by supplying the nucleic acid samples in a plurality of times and overlapping them at the same position on the substrate.
  • the latter case can occur by supplying the nucleic acid sample in a plurality of times.
  • the density of the nucleic acid sample immobilized on the substrate can be set to a density that can be optically resolved by a detector for detecting a signal derived from the signal probe P (L) of the immobilized nucleic acid sample, for example. .
  • a density for example, when a CCD of 512 pixels ⁇ 512 pixels is used as a detector, it is possible to recognize a bright pixel of 1 pixel in 5 pixels ⁇ 5 pixels by combining with a near-field microscope. Up to about 10,000 bright spots per 80 ⁇ m ⁇ 80 ⁇ m) can be optically resolved.
  • the nucleic acid immobilization density is about 1,500,000 samples / mm 2 . Accordingly, those skilled in the art can appropriately determine the immobilization density as long as it is about 1,500,000 specimens / mm 2 or less.
  • nucleic acid sample supply when the base sequence information contained in the nucleic acid sample is used as an index, the nucleic acid sample is supplied onto the substrate by supplying a solution containing at least two of the plurality of types of nucleic acid samples to be identified. It can be broken. In this case, a plurality of types of nucleic acid samples to be identified may be supplied at a time, or may be supplied in a plurality of times. Of course, one type of nucleic acid sample to be identified is allowed. In either case, all the nucleic acid samples are supplied and immobilized before the signal is acquired.
  • nucleic acid samples to be identified when the order of immobilization is used as an index, nucleic acid samples to be identified can be supplied step by step for each nucleic acid sample to be identified. After supplying and immobilizing one type of nucleic acid sample and acquiring position information, the operation of supplying and immobilizing another type of nucleic acid sample and acquiring position information is repeated. Further, in the present invention, when both the base sequence information contained in the nucleic acid sample and the order of immobilization are used as an index, the supply of the nucleic acid sample onto the substrate can be performed multiple times. .
  • the means for supplying such a nucleic acid sample can be provided as one means in the nucleic acid sample identification apparatus, and can also be automated. What has a mechanism which can supply a different nucleic acid sample in multiple times is preferable.
  • a valve having a switching function of a plurality of flow paths a nucleic acid supply pump (a pump capable of quantitatively supplying a small amount of sample is, for example, a syringe pump) is connected to the flow path through a tube.
  • a nucleic acid supply pump a pump capable of quantitatively supplying a small amount of sample is, for example, a syringe pump
  • a container holding a plurality of different nucleic acid specimens, rinse fluid for washing the flow path, and the like is connected to the end of each flow path, and different nucleic acid specimens are introduced into the flow paths by sequentially switching valves. It becomes possible to do.
  • a method for introducing the solution a supply method by extrusion and a supply method by suction are conceivable, but the supply method by suction is preferable from the viewpoint that a plurality of solutions can be supplied by a single pump.
  • the immobilization means that the nucleic acid sample is equipped with the signal probe P (L) , that the nucleic acid sample is supplied to a random position on the substrate, and that the nucleic acid sample achieves immobilization. It is performed in an arbitrary order to be attached to the condition that can be performed. Examples of some aspects of immobilization performed in any order are as follows. The nucleic acid sample to which the signal probe P (L) is attached is supplied to the substrate, and the nucleic acid sample to which the signal probe P (L) is attached can be immobilized on the substrate under the condition that the immobilization can be achieved.
  • the signal probe P (L) attached to the nucleic acid sample is immobilized on a tag and a linker under the condition that the nucleic acid sample attached with the signal probe P (L) is supplied onto the substrate and can be immobilized.
  • the substrate surface illustrated in FIG. 3A.
  • the signal probe P (L) to be attached to the nucleic acid specimen is supplied onto the substrate, and the signal probe P (L) is transferred to the substrate surface via the immobilization tag and the linker under the condition that the immobilization can be achieved. Then, the nucleic acid sample is added to the signal probe P (L) that has been immobilized.
  • the signal probe P (L) to be attached to the nucleic acid sample is supplied onto the substrate, and the nucleic acid sample is supplied under conditions that can achieve immobilization.
  • the nucleic acid sample is passed through the immobilization tag and linker. Immobilized on the substrate surface and added to the signal probe P (L) .
  • the nucleic acid sample is immobilized on the substrate surface via the immobilization tag and the linker under the condition that the nucleic acid sample to be attached with the signal probe P (L) is supplied onto the substrate and can be immobilized. Thereafter, the signal probe P (L) is attached to the immobilized nucleic acid sample.
  • nucleic acid analyte to signal probe P (L) is attached is supplied onto a substrate, under conditions which can be achieved immobilized, signal probe P (L) is supplied, the signal probe P (L) is fixed It is immobilized on the surface of the substrate via the linking tag and linker and added to the nucleic acid sample. Therefore, in the present invention, the nucleic acid specimen to which the signal probe is attached, the nucleic acid specimen to which the signal probe is attached, the signal probe attached to the nucleic acid specimen and the signal probe to be attached to the nucleic acid specimen are immobilized. It may be described as a target (or an immobilization target).
  • the order in which the target to be immobilized, the immobilization tag, the linker, and the substrate are combined is not particularly limited.
  • the target to be immobilized is a signal probe attached to a nucleic acid sample or a probe to be attached to a nucleic acid sample
  • a signal probe having an immobilization tag specifically, an immobilization tag
  • a signal probe having a tag or a signal probe having a tag for immobilization as a part thereof on a substrate having a linker (specifically, a substrate having a linker or a substrate having a linker as a part thereof) Can be combined.
  • a signal probe having an immobilization tag can be bound to a substrate in the presence of a substance that provides a linker.
  • a signal probe may be immobilized on a substrate having an immobilization tag and a linker bonded thereto (specifically, an immobilization tag and a substrate to which the linker is attached, or a linker constituting a part of itself) Can be bonded to a substrate).
  • a signal probe can be bound to a substrate having a linker in the presence of a substance that provides an immobilization tag. The same applies to the case where the target to be immobilized is a nucleic acid specimen to which a signal probe is attached or a nucleic acid specimen to which a signal probe is to be attached.
  • the immobilization conditions are not particularly limited as long as the immobilization target, the immobilization tag, the linker, and the substrate can be bound to each other. It can be selected appropriately.
  • the conditions under which the linker and the immobilization tag can be combined can be appropriately selected by those skilled in the art based on the characteristics of the linker and the immobilization tag.
  • the type of binding between the linker and the immobilization tag is not particularly limited, and the linker and the immobilization tag are not undesirably separated under conditions in other steps (for example, conditions for nucleic acid synthesis). That's fine. Examples thereof include specific bonds such as hydrogen bonds, antigen-antibody bonds, and biotin-binding protein-biotin bonds, and bonds such as covalent bonds.
  • Examples of hydrogen bonds include complementary bonds between nucleic acids having an appropriate base sequence (illustrated in FIG. 3B), but also include any other hydrogen bond that does not involve nucleic acids.
  • a mere example of antigen-antibody binding is digoxigenin / digoxigenin antibody binding, but includes any antigen-antibody binding that can be used by those skilled in the art.
  • the biotin-binding protein-biotin bond is typified by an avidin-biotin bond, and includes a bond when one or both of them are derivatives.
  • the covalent bond is not particularly limited as long as it is a bond formed between reactive functional groups. The bond may be formed by interposing a linker reagent.
  • Examples of reactive functional groups include amino groups, hydroxyl groups, carboxyl groups and the like as just a few examples.
  • Examples of the linker reagent include EDC (1-Ethyl-3- [3-dimethylaminopropyl) carbohydrate) and NHS (N-hydroxysuccinimide) as just a few examples.
  • the immobilization tag may be a structure to be attached to an object to be immobilized (that is, a nucleic acid sample or a signal probe).
  • the immobilization tag may be a part of the target to be immobilized (that is, the nucleic acid sample itself or the signal probe itself) (illustrated in FIG. 3A).
  • the step of attaching the immobilization tag to the target to be immobilized may be performed at any stage prior to the immobilization step.
  • the functional group possessed by the target to be immobilized include any group that the nucleic acid molecule has, such as an amino group, a carbonyl group, a hydroxyl group, an aryl group, a hydrocarbon group, and a phosphate group.
  • the immobilization tag is not particularly limited as long as it has a structure capable of binding to a linker, and can be appropriately determined by those skilled in the art.
  • the type of binding between the immobilization tag and the linker is as described above. Therefore, as the immobilization tag, for example, a nucleic acid having an appropriate base sequence, an antigen or antibody, avidin or biotin, and a reactive functional group can be used.
  • the nucleic acid the same nucleic acid sample as described in the above item 1-2 is applied. Any antigen / antibody is allowed and can be appropriately selected by those skilled in the art, but a digoxigenin / digoxigenin antibody is just one example.
  • Avidin / biotin also includes derivatives thereof.
  • Examples of the reactive functional group include an amino group, a hydroxyl group, a carboxyl group, and a group containing them.
  • a nucleic acid having a sequence capable of complementary binding with a nucleic acid as a linker provided on the substrate surface can be used as an immobilization tag (illustrated in FIG. 3 (a)). ).
  • the linker may be a structure to be attached to the substrate or a part constituting the substrate itself.
  • the linker is a structure that the substrate has on its surface and has a binding ability to the immobilized tag.
  • the linker is not particularly limited as long as it has a structure capable of binding to the immobilization tag, and can be appropriately determined by those skilled in the art.
  • the type of binding between the immobilization tag and the linker is as described above. Accordingly, as the linker, for example, a nucleic acid having an appropriate base sequence, an antigen or antibody, avidin or biotin, and a reactive functional group (such as an amino group, a hydroxyl group, a carboxyl group, and a group containing them) can be used.
  • a nucleic acid having a sequence capable of complementary binding with a nucleic acid as an immobilization tag is preferably used as a linker (illustrated in FIG. 3 (a)).
  • Linkers that are part of the substrate itself include reactive functional groups that are exposed on the surface of the substrate, and reactive functional groups that are coated on the substrate surface. Examples thereof include those exposed on the surface of the coat layer. Only a few examples include silanol groups, hydroxyl groups, amino groups and the like.
  • the linker to be attached to the substrate can be provided by adding a structure having a binding ability to the immobilization tag to the reactive functional group which is a part of the substrate itself. .
  • a process for removing the unfixed nucleic acid sample is performed by washing or the like. This processing is appropriately performed by those skilled in the art.
  • Signal detection Since the nucleic acid sample having the signal probe P (L) is immobilized at random positions on the substrate surface, the presence of the nucleic acid sample can be recognized by detecting the signal probe of the nucleic acid sample. it can. Means for signal detection can be appropriately determined by those skilled in the art depending on the type of the signal probe described above. Signal detection means are usually an excitation light source that emits light that excites the signal, a light collecting part that collects the signal using a lens, a filter that removes excitation light and background, and digital data that can detect and analyze the signal. And a detection / digitization unit for converting the data into a digital signal. The signal detection means may be a scanner type or a camera type.
  • the excitation light source may be a laser or a lamp.
  • the condensing unit may be a galvanometer mirror method or a scan head movable type.
  • the detection / digitization unit may be a photomultiplier tube (PMT) or a CCD (Charge-Coupled Device).
  • the signal detection means one having detection accuracy capable of corresponding to the fixed density of the nucleic acid is selected. For example, as described above, when a 512 pixel ⁇ 512 pixel CCD is used as a detector, about 10,000 bright spots per screen (80 ⁇ m ⁇ 80 ⁇ m) can be optically resolved by combining with a near-field microscope. In this case, the nucleic acid immobilization density is about 1,500,000 samples / mm 2 .
  • the detected signal is converted into positional information on the substrate of the nucleic acid sample.
  • the position information may be expressed in any format, but is preferably expressed by specifying the position of the detected signal as coordinates on the substrate.
  • a coordinate system preferably an orthogonal coordinate system
  • the position of the signal is determined by a set of two real numbers that are uniquely determined for one detected signal. Can be specified (illustrated in FIGS. 5A and 6).
  • the position information contained in the nucleic acid sample can be acquired in one step for all of the nucleic acid samples to be identified immobilized on the substrate.
  • position information is acquired every time a nucleic acid sample to be identified is immobilized on a substrate. Specifically, position information is acquired for a nucleic acid sample to be identified that is immobilized on a substrate, and then position information is acquired for another nucleic acid sample to be identified that is newly immobilized on the substrate.
  • a difference is taken between the position coordinates of the already acquired nucleic acid sample and the position coordinates of the newly acquired nucleic acid sample, and the coordinates at which the new signal is detected are determined as the other nucleic acid sample. It can be acquired as position information.
  • Such means for acquiring position information can be provided as a means in a nucleic acid sample identification device and can be automated.
  • the position information reading means is not particularly limited, and is appropriately selected by those skilled in the art, such as a digitizer.
  • the acquired position information may be stored in a storage unit that may be provided in the identification device of the present invention, or stored in a storage unit in an external device by being output from the identification device of the present invention to an external device. May be.
  • the index enables identification of a nucleic acid sample by specifying a plurality of types of nucleic acid samples for each type.
  • the index used for identifying the type of nucleic acid sample includes base sequence information contained in the nucleic acid sample and the immobilization order of the nucleic acid sample. Only one of the indexes may be used, or both indexes may be used in combination.
  • [6-1. When using base sequence information as an index When using base sequence information contained in a nucleic acid sample as one of the indexes for identifying a plurality of nucleic acid samples to be identified, all of the plurality of nucleic acid samples to be identified are immobilized on a substrate and position information is acquired. After that (exemplified in FIG. 5 (a)), such base sequence information can be obtained (illustrated in FIG. 5 (b)).
  • Base sequence information used as an index is not particularly limited as long as it can provide unique sequence information for identifying a plurality of types of nucleic acid samples.
  • the base sequence is usually a partial sequence that constitutes a part of the nucleic acid sample, but depending on the length of the nucleic acid sample itself, it does not prevent the entire sequence from being formed.
  • the length of the base sequence contained in the nucleic acid sample is not particularly limited, but the length is sufficient to give a unique sequence that can identify a plurality of types of nucleic acid samples. It is possible to set the length to such an extent that it does not hinder the efficiency and simplicity of the identification method. Such a length can be easily determined by those skilled in the art.
  • the position of the base sequence as an index in the nucleic acid sample is not particularly limited. That is, it may be a sequence located at the end of the nucleic acid sample or a sequence located inside.
  • the method for obtaining base sequence information is not particularly limited as long as it is a method capable of performing sequencing based on an immobilized nucleic acid sample.
  • a method may be used in which an immobilized nucleic acid sample is used as a template, a complementary strand is synthesized using nucleotides that are substrates for complementary strand synthesis, and the nucleotide sequence is determined based on the order in which the nucleotides are bound to the template. it can.
  • the nucleic acid sample X as a template has a base sequence contained in the nucleic acid sample X as a template by using the nucleic acid sample X and the signal probe P (L) as well as a hybrid provided with a primer for starting synthesis in a nucleic acid synthesis system.
  • a complementary strand x (L) can be obtained (illustrated in FIGS. 3 (c) and 5 (b)).
  • the complementary strand x (L) is the target of the sequence, and the obtained base sequence information is an index of the present invention.
  • the synthesis and sequence of the complementary strand x (L) may be performed simultaneously (that is, SBS (sequencing by synthesis) may be performed), and after the complementary strand x (L) is synthesized, the synthesized complement Chain x (L) may be sequenced.
  • the signal probe P (L) may have a nucleic acid that can also function as a primer for initiating synthesis.
  • the nucleic acid sample having the signal probe P (L) is, for example, X / P (L) as illustrated in FIG. 2 (b), or p′-X / as illustrated in FIG. 2 (c).
  • complementary strand synthesis is possible as it is.
  • the signal probe P (L) comprises a nucleic acid
  • ligating member such that P (L) -X as illustrated in Figure nucleic acid analyte with a signal probe P (L) e.g. 2 (a)
  • complementary strand synthesis is performed by hybridizing the primer p having a sequence complementary to the nucleic acid contained in the signal probe P (L) to the ligated body (illustrated in FIG. 2 (a ′)).
  • a hybrid P (L) -X / p can be formed.
  • the synthesis start position may be present on the opposite side of the nucleic acid sample from the side on which the signal probe is ligated (illustrated in FIG. 2 (d)).
  • a hybrid capable of synthesizing complementary strands can be formed by ligating the double-stranded primer p / p 'on the opposite side or hybridizing the single-stranded primer p.
  • the sequence of the complementary strand x (L) as an index may be a sequence located at the end of the nucleic acid sample or may be a sequence located inside.
  • the terminal sequence indicates that the synthesis start position in the nucleic acid synthesis reaction of the complementary strand x (L) is the terminal base of the nucleic acid sample. It is preferable that it is obtained when it becomes a complementary binding position for (ie, initial sequence).
  • the hybrid to be used in the nucleic acid synthesis system is represented by, for example, p (L) -X / p exemplified in FIG. 2 (a ′), FIG. 3 (a), (b) and FIG. c, except for the one described at the bottom), and can be realized in the case of p′ ⁇ X / p (L) .
  • the internal sequence indicates that the synthesis start position in the nucleic acid synthesis reaction of the complementary strand x (L) is the internal base of the nucleic acid sample. It is obtained when it becomes a complementary binding position for.
  • the hybrid supplied to the nucleic acid synthesis system is, for example, X / p (L) exemplified in FIG.
  • This embodiment in which the sequence as an index is an internal sequence of a nucleic acid sample is useful when at least a part of the sequence of the nucleic acid sample is known. In this case, a primer is prepared based on the known sequence.
  • this embodiment in which the sequence as an index is the internal sequence of the nucleic acid sample is such that the primer in the hybrid provided for the nucleic acid synthesis system is extended prior to the synthesis of the complementary strand x (L) (FIG. 4 (a) ) To (c)).
  • the primer in the hybrid provided for the nucleic acid synthesis system is extended prior to the synthesis of the complementary strand x (L) (FIG. 4 (a) ) To (c)).
  • nucleotide analog N (L) labeled with a signal substance As a substrate for synthesizing the complementary strand x (L) as an index, a nucleotide analog N (L) labeled with a signal substance can be used.
  • the nucleotide part of the nucleotide analog N (L) is not particularly limited as long as it is mainly composed of a nucleobase, a pentose and one or more (usually 1 to 3) phosphate groups.
  • nucleobases are acceptable as derivatives of purine or pyridimine and any other nucleobase capable of base pairing by complementary binding to template nucleic acid X.
  • the pentose sugar is represented by deoxyribose and ribose, and if it has a 3′-OH group, it can be a derivative thereof. Specific examples include deoxyribonucleotides, ribonucleotides, and other nucleotide analogs.
  • Nucleotide analogs N are used in a mixture of a plurality of types having different nucleotide base nucleobases. Often, nucleotide N is used in a mixture of nucleobases of adenine (A), cytosine (C), guanine (G), and thymine (T) or uracil (U). For example, a mixture of four types of deoxyribonucleotide triphosphates (dATP, dCTP, dGTP, dTTP) may be used. The mixing amount is usually adjusted so that each nucleotide has the same amount (molar basis).
  • Examples of the labeling portion of the nucleotide analog N (L) with a signal substance include groups derived from the following fluorescent substances. Dimethylcoumarine, BODIPY FL, BODIPY TMR, BODIPY630 / 650 ⁇ Naptofluorescein, Fluorescein, Fluorescein Chlorotriazinyl, OregonGreen488, Rohdamine Green, Alexa Fluor488, Alexa Fluor532, Alexa Fluor546, Alexa Fluor594, Cy3, Cy5, Cy5.5, Cy3.5, Lissamine Rohdamine B, Tetramethylrhodamine, Texas Red, etc.
  • an anionic fluorescent group may be preferably used. This is because the affinity between the nucleotide analog N (L) having an anionic fluorescent group as a signal label and DNA polymerase ⁇ can be used effectively.
  • the anionic fluorescent label include fluorescein, Oregon Green 488, naphthofluorescein, Cy3.5 ⁇ 5 ⁇ 5.5 and the like.
  • the labeling part can be selected so as to emit a different signal depending on the type of the nucleotide part so that the difference in the nucleotide part can be identified by the signal derived from the labeling part.
  • the signal substance is a fluorescent substance
  • the fluorescent substance can be selected so as to emit fluorescence having different wavelengths depending on the type of the nucleotide moiety. This allows a sequence to be performed based on the emitted signal.
  • nucleic acid synthesis system is constructed together with a hybrid containing the nucleic acid sample X as a template and the signal probe p (L) .
  • the nucleic acid synthesis system is constructed by placing a nucleic acid synthesis reaction solution containing the above components under appropriate conditions, and the use and conditions of components other than the above components can be appropriately determined by those skilled in the art. .
  • the nucleic acid synthesis reaction solution contains a pH buffer solution, salts such as MgCl 2 and KCl, and nucleic acid synthase in addition to the above components.
  • substances such as surfactants and proteins can be added as necessary.
  • pH buffer solution for example, a combination of tris (hydroxymethyl) aminomethane and a mineral acid such as hydrochloric acid, nitric acid, sulfuric acid, and other various pH buffer solutions can be used.
  • the pH-adjusted buffer can be used at a concentration between 10 mM and 100 mM in the PCR reaction solution.
  • the nucleic acid synthase is not particularly limited as long as it has the ability to bind the complementary strand synthesis substrate to the primer in a template nucleic acid-dependent manner, and includes any nucleic acid polymerizing enzyme that can be used in this field.
  • Nucleic acid polymerizing enzymes include DNA polymerases, RNA polymerases, reverse transcriptases, ligases, kinases, and recombinants thereof.
  • the species that is the source of the enzyme There is no particular limitation on the species that is the source of the enzyme.
  • DNA polymerase ⁇ E.I. E. coli DNA polymerase, E. coli. Klenow fragment of E. coli DNA polymerase, T4 DNA polymerase, Taq DNA polymerase, T. coli. Litoralis DNA polymerase, Tth DNA polymerase, Pfu DNA polymerase, Hot Start Taq polymerase, KOD DNA polymerase, EX Taq DNA polymerase, reverse transcriptase and the like can be used
  • those skilled in the art can appropriately select a nucleic acid polymerizing enzyme having a high uptake activity of the nucleotide analog N (L) labeled with a signal substance which is a complementary chain synthesis substrate.
  • a nucleic acid polymerizing enzyme having a high uptake activity of the nucleotide analog N (L) labeled with a signal substance which is a complementary chain synthesis substrate it may be preferable to select DNA polymerase ⁇ among the above-mentioned nucleic acid synthetases as a nucleic acid polymerizing enzyme having a high uptake activity of fluorescently labeled deoxyribonucleotides.
  • the nucleic acid synthesis reaction can be performed under conditions where the pH at 25 ° C. is 8.5 to 9.5 and the temperature is 65 to 95 ° C.
  • a method for stopping complementary strand synthesis a method in which a certain proportion of nucleotides with terminators are mixed in deoxyribonucleotides, which are raw materials for synthesis, can be employed.
  • the mixing ratio can be appropriately determined by those skilled in the art.
  • the preferred embodiment of this method is similar to the method employed in the conventional Sanger method in that a terminator is used, but the fluorescent modification is not necessarily required for the nucleotide with a terminator, and the fact that the terminator is reversible is the Sanger method. And different.
  • the reversible terminator refers to a terminator having a reversible function that allows resumption of nucleotide extension by releasing itself as well as a function of terminating the nucleotide end so that further extension does not occur during nucleotide extension.
  • reversible terminators have a structure that can prevent the incorporation of additional nucleotides into a growing nucleic acid.
  • a modified part in at least the 3′-hydroxy group of the pentose sugar (that is, a substituent of the 3′-hydroxy group) can be mentioned.
  • the modified portion can be removed under conditions that do not hinder the interaction between the primer p and the template nucleic acid X.
  • the complementary strand x (L) is sequenced by the sequence.
  • base sequence information contained in the nucleic acid sample X that can be used as an index can be obtained.
  • the signal substance can be selected so as to emit a different signal depending on the type of the nucleotide part so that the difference in the nucleotide part of the deoxyribonucleotide can be identified. Therefore, in the above-described complementary strand extension, the sequence can be performed by detecting signals derived from the signal substance in the order in which the signal substance labeled nucleotides N (L) are bound.
  • the means for detecting the signal substance is not particularly limited, and means capable of performing detection with single base resolution can be used.
  • Examples of means capable of performing detection with single base resolution include US Pat. No. 6,818,395 and Proceeding of the National Academy of Science of United States of America, 100, 3960-3964 (2003). ).
  • the necessary types usually 4 types
  • the necessary types of solutions are sequentially flowed one by one, and washing is repeated, so that each fluorescently labeled deoxyribonucleotide has a base. Analyze while confirming the presence or absence of uptake.
  • TIRFM total internal reflection fluorescence microscope
  • the hybrid containing the template nucleic acid X is immobilized on the substrate.
  • an evanescent field is generated on the surface of the substrate on which the hybrid containing the template nucleic acid X is immobilized.
  • the fluorescently labeled deoxyribonucleotide is incorporated into the nucleic acid synthase by the nucleic acid synthesis reaction, the fluorescent label of the incorporated fluorescently labeled deoxyribonucleotide is excited by the evanescent field.
  • excited fluorescence can be detected.
  • total reflection illumination can be performed to generate an evanescent field on the surface of the substrate.
  • the area where the evanescent light oozes out is limited to about 200 nm from the surface of the substrate, and the area farther than that is a non-illuminated area. For this reason, the observation of the fluorescence phenomenon occurring in the limited region can be performed with high sensitivity in a state with little background fluorescence.
  • Fluorescently labeled deoxyribonucleotides perform Brownian motion at a speed that cannot be detected by a camera for detection, and therefore normally fluorescently labeled deoxyribonucleotides that are within the illumination range cannot be recognized.
  • the fluorescence-labeled deoxyribonucleotide can be recognized by a detection camera because its Brownian motion is suppressed. This makes it possible to distinguish between incorporated deoxyribonucleotides and unincorporated deoxyribonucleotides, ie free deoxyribonucleotides floating in solution.
  • the excited fluorescently labeled deoxyribonucleotide is quenched by the action of active oxygen generated by the excitation light until the next fluorescently labeled deoxyribonucleotide is incorporated and emits light, or the next fluorescently labeled deoxyribonucleotide is incorporated. Prior to light emission and quenching, the previous fluorescently labeled deoxyribonucleotides are quenched. For this reason, only the fluorescence labeled deoxyribonucleotide to be read can be detected. In this way, the sequence of the complementary strand x (L) can be performed by sequentially reading the wavelength and / or intensity of the emitted fluorescent molecules.
  • the means for obtaining the arrangement as described above can be provided as one means in the sample identification device of the present invention, and can be automated.
  • Such means may include a means for providing a fluorescently labeled nucleotide and a total internal reflection fluorescence microscope system for observing fluorescence originating from said fluorescent substance.
  • the sample identification device of the present invention may further include means for converting the observed fluorescence into base sequence information.
  • Such means can be realized by software.
  • the acquired sequence information may be stored in a storage unit that can be provided in the identification device of the present invention, or stored in the storage unit in the external device by being output from the identification device of the present invention to an external device. May be.
  • a nucleic acid sample that is immobilized at random positions on the surface of the substrate and has the signal probe P (L) is prepared. Completion of the signal probe P (L) to the nucleic acid sample, supply of the nucleic acid sample, and immobilization to the substrate are performed in any order as described above. Thereafter, a signal derived from the signal probe P (L) in the nucleic acid sample is detected, and position information is acquired (illustrated in FIG. 5A). Next, another nucleic acid specimen having a signal probe P (L) immobilized at random positions on the same substrate surface is prepared.
  • the signal label possessed by the nucleic acid sample immobilized later is shown to be different from the signal label possessed by the nucleic acid sample immobilized earlier, but the same signal label can also be used.
  • a difference is obtained between the position coordinates of the previously acquired nucleic acid sample and the position coordinates of the newly acquired nucleic acid sample to obtain a new signal. Can be acquired as position information of the subsequent nucleic acid sample.
  • a series of means including a means for supplying a nucleic acid sample to be immobilized, a means for detecting a signal, and a means for acquiring fixed position information are caused to function a plurality of times in this order.
  • the control means can be provided.
  • Such means can be realized by software.
  • nucleic acid specimens can be identified by associating with information. For example, as shown in FIG. 5 (a), the immobilized and signal-detected specimens are given the symbols A1, A2, A3... An, and the position coordinates are obtained for each, and shown in FIG.
  • the sequence information is obtained by synthesizing complementary strands of sequences contained in each nucleic acid sample.
  • the acquired sequence is used as an index and associated with each specimen (not shown). Since each sample has unique position information and an index indicating the type of nucleic acid sample is associated with each sample, the type of nucleic acid sample can be specified from the position information.
  • each time position information is acquired the acquired position information is called from the sample identification device of the present invention or the storage unit of the external device, and the nucleic acid from which the position information is acquired
  • Various nucleic acid samples can be identified by associating the immobilization order of the samples.
  • the specimens immobilized and signal-detected in step A are given reference signs A1, A2, A3,...
  • the coordinates are obtained, and as shown in FIG. 6, reference symbols B1, B2, B3,... Bm, in which an index B indicating the process order is attached to another type of sample that is newly immobilized and signal-detected in the process B.
  • the position information is acquired for each. Since each sample has unique position information and an index indicating the type of nucleic acid sample is associated with each sample, the type of nucleic acid sample can be specified from the position information.
  • the sample identification device of the present invention may be provided with means for associating position information and index information in this way.
  • the means can be realized by software.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 本発明は核酸検体識別用のインデックス配列を別途付与する必要がなく、核酸検体識別のために基板上に作為的に決定した位置に固定化する必要もない、基板上に固定化された複数種の核酸検体を識別することができる方法を提供する。基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する複数種の識別すべき核酸検体を用意することと、前記シグナルプローブP(L)に由来するシグナルを検出することと、前記固定化された複数種の核酸検体それぞれの前記基板上の固定位置情報を前記シグナルに基づいて取得することとを含む工程と、前記位置情報に基づいて前記複数種の核酸検体を互いに識別する工程とを含む方法。

Description

基板上に固定化された複数の核酸検体の識別方法及び装置
 本発明は、基板上に固定化された複数の核酸検体の識別方法及び装置(Method and Device for Distinguishing among Plural of Nucleic Acid Specimens Immobilized on Substrate)に関する。
 より具体的には、本発明は、基板上に固定された核酸検体の種類を識別する方法に関する。また、本発明は、核酸シーケンスにおいて、シーケンス対象となる核酸の由来元を識別する方法に関する。さらに、本発明は、そのような方法に用いることができる装置に関する。
 DNAシーケンス法として、合成時解読(sequencing by synthesis;SBS)法が知られている(米国特許第4863849号明細書(特許文献1))。SBS法においては、DNAポリメラーゼを用い、DNAテンプレートに相補的なdNTPアナログが取り込まれる順番を測定することでDNA塩基配列を決定する。このdNTPアナログは蛍光標識されていたものであり、主にTIRF(全反射蛍光顕微鏡システム)で検出する(New High Throughput Technologies for DNA Sequencing and Genomics, Volume 2, p.216-217(非特許文献1))。
 近年、SBS法を採用した新型シーケンサが市場投入され、サンガー法に変わる次世代シーケンサとしての地位を築きつつある。SBS法を用いたDNA配列の解読法は、超並列処理化によるスループットの飛躍的な向上が見込めるという長所を有する。一方、SBS法を用いたDNA配列の解読法は、一度に解読できるリード長がサンガー法に比較して短いため、並列化に伴い出力される配列情報量が増大し、特にマッピング法が使えないDe Novoシーケンス(すなわち未知配列のシーケンス)における配列復元処理に多大な負荷と困難が伴うという短所を有する。
 配列復元処理の負荷低減策の例として、シーケンス対象となるDNA検体に識別用インデックス配列を新たに付加し、個々のDNA検体が由来する核酸を明確にすることで、DNA配列のアセンブリ回数を低減する方法が採用されている(Illumina社ホームページ<URL:http://www.illumina.com/pages.ilmn?ID=328>(非特許文献2)、及びCraig DW, Pearson JV, Szelinger S, Sekar A, Redman M, et al. (2008) Nat Methods 5:887-93(非特許文献3))。
 また、個々のDNA検体が由来する核酸を明確にする他の方法として、核酸の種類ごとに基板上の固定位置を制御することによって、核酸の種類を識別する方法がある。この方法にはスタンフォード大学によって開発されたインクジェット技術を応用した方法(米国特許第5,807,522号明細書(特許文献2)、及び米国特許第6,110,426号明細書(特許文献3))や、Affymetrix社が開発した、リソグラフィ技術を利用した基板上での核酸の直接合成法(米国特許第6,949,638号明細書(特許文献4))等がある。これらの方法は、多種類の核酸プローブを、高密度に基板上に作為的に決定される位置で配置したDNAチップを作製する技術として応用されている。
米国特許第4,863,849号明細書 米国特許第5,807,522号明細書 米国特許第6,110,426号明細書 米国特許第6,949,638号明細書
New High Throughput Technologies for DNA Sequencing and Genomics, Volume 2, p.216-217 Illumina社、[online]、インターネット<URL:http://www.illumina.com/pages.ilmn?ID=328> Craig DW, Pearson JV, Szelinger S, Sekar A, Redman M, et al. (2008) Nat Methods 5:887-93
 非特許文献2に記載の方法ではMaltiplexed Sequencing法を採用しており、2種類の合成用プライマーに加えて、別途識別用インデックス配列を含むプライマーを用意し、テンプレートに当該識別用配列を付与するという煩雑な調製工程が必要である。当該調製工程は、合成用プライマーを兼ねた識別用インデックス配列をライゲーション(結合)することによって、当該調製工程を幾分簡略化することが可能である。しかしながら、いずれの調製方法においても、テンプレートの種類ごとに異なる識別用インデックス配列断片を用意する必要があるため、テンプレート配列の種類が増大するほど、サンプル調製面及びコスト面での負荷が増大するという欠点がある。
 また、特許文献2、特許文献3及び特許文献4に記載のように、インクジェット又はリソグラフィを用いたテンプレート固定法は、特定疾患遺伝子を含む核酸配列断片のように、あらかじめ決められた配列を持つテンプレートを固定する用途には適している反面、基板作製には専用の装置が必要であり、またユーザーサイドでの設計自由度がないために、SBH(Sequence By Hybridization)法によるシーケンス用途に限られるなど、汎用性に乏しいという欠点がある。
 本発明の目的は、核酸検体識別用のインデックス配列を別途付与する必要がなく、核酸検体識別のために基板上に作為的に決定した位置に固定化する必要もない、基板上に固定化された複数種の核酸検体を識別することができる方法を提供することにある。
 本発明者らは、基板上に固定化された複数種の核酸検体それぞれに含まれる塩基配列情報、及び/又は複数種の核酸検体が基板上に固定化された順番をインデックスとして利用することによって、基板上の無作為の位置で(すなわちランダムに)固定化された複数種の核酸検体を、それらの固定化位置情報に基づいて識別することができることを見出し、本発明を完成するに至った。
 本発明は、基板上の無作為の位置で固定化された核酸検体を、その位置情報を取得することによって識別することによって、複数種の核酸検体を識別することを主題とする。
 本発明は、以下の発明を含む。
 下記(1)に記載の発明は、基板上に固定化された複数種の核酸検体それぞれに含まれる塩基配列情報をインデックスとして利用することによって、基板上にランダムに固定化された複数種の検体を、それらの固定化位置情報に基づいて識別する方法である。
(1)
 基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する複数種の識別すべき核酸検体を用意する工程と、
 前記シグナルプローブP(L)に由来するシグナルを検出し、前記固定化された複数種の核酸検体それぞれの前記基板上の固定位置情報を前記シグナルに基づいて取得する工程と、
 前記複数種の識別すべき核酸検体のそれぞれに含まれる塩基配列情報を取得する工程と、
 前記塩基配列情報を前記位置情報と関連付けることによって、前記複数種の核酸検体を互いに識別する工程とを含む、基板上に固定化された複数種の核酸検体の識別法。
(2)
 前記基板上に無作為の位置で固定化された複数種の識別すべき核酸検体が、前記複数種の識別すべき核酸検体のうち二種以上を含む溶液を前記基板に供給することによって得られるものである(1)記載の識別法。
 前記(2)の方法において、前記複数種の核酸検体が有する前記シグナルプローブは互いに同じものであってよい。
 前記(2)の方法において、前記複数種の核酸検体が有する前記シグナルプローブは互いに異なっていてよい。このことによって、塩基配列情報に加え、シグナルプローブをさらなるインデックスとして組み合わせることができ、識別の信頼性を向上させることができる。
 前記(2)の方法において、前記シグナルプローブP(L)を有する核酸検体は、シグナル物質標識された核酸を核酸検体にハイブリダイズ又はライゲートすることによって得られうる。
 下記(3)に記載の発明は、核酸検体が基板上に固定化された順番をインデックスとして利用することによって、基板上にランダムに固定化された複数種の検体を、それらの固定化位置情報に基づいて識別する方法である。
(3)
 基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する識別すべき核酸検体を用意する工程、及び
 前記シグナルプローブP(L)に由来するシグナルを検出し、前記固定化された核酸検体の前記基板上の固定位置情報を前記シグナルに基づいて取得する工程を含む工程(A)と、
 前記基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する他種の識別すべき核酸検体を用意する工程、及び
 前記シグナルプローブP(L)に由来するシグナルを検出し、前記固定化された他種の核酸検体の前記基板上の固定位置情報を前記シグナルに基づいて取得する工程を含む工程(B)とを少なくとも含み、
 前記工程(A)及び(B)を含む工程の順番と、それぞれの工程において取得された前記位置情報とを関連付けることによって、複数種の前記核酸検体を互いに識別する、基板上に固定化された核酸検体の識別法。
 上記(3)に記載の方法において、(A)工程~(B)工程の一連の工程をさらに繰り返すこともできる。
(4)
 前記工程(A)が、前記シグナルプローブP(L)を有する核酸検体を含む溶液を前記基板に供給することを含み、前記工程(B)が、前記シグナルプローブP(L)を有する他種の核酸検体を含む溶液を、前記核酸検体を含む溶液が供給された前記表面の領域に重ねて供給することを含む、(3)に記載の識別法。
 下記(5)に記載の発明は、上記(1)に記載の方法と上記(3)又は(4)に記載の方法とを組み合わせたものであり、すなわち、基板上に固定化された複数種の核酸検体それぞれに含まれる塩基配列情報、及び複数種の核酸検体が基板上に固定化された順番をインデックスとして利用することによって、基板上にランダムに固定化された複数種の検体を、それらの固定化位置情報に基づいて識別する方法である。このことによって、上記(3)や(4)に記載の方法において核酸検体の種類ごとにシグナル検出及び固定化位置情報を取得する場合に比べ、シグナル検出及び固定化位置情報の取得の回数を減らすことができる。
(5)
 前記基板表面に固定化された前記核酸検体及び/又は前記他種の核酸検体が、複数種の前記識別すべき核酸検体のうち二種以上の識別すべき核酸検体を含む溶液によって供給されるものであり、工程(A)及び/又は(B)において、前記基板表面に固定化された前記二種以上の識別すべき核酸検体のそれぞれに含まれる塩基配列情報を取得することをさらに含む、(3)又は(4)に記載の核酸検体の識別法。
 前記(5)において、前記複数種の核酸検体が有する前記シグナルプローブは互いに同じものであってよい。
 前記(5)において、前記複数種の核酸検体が有する前記シグナルプローブは互いに異なっていてよい。このことによって、固定化の順番に加え、シグナルプローブをさらなるインデックスとして組み合わせることができ、識別の信頼性を向上させることができる。
 前記(5)において、前記シグナルプローブP(L)を有する核酸検体は、シグナル物質標識された核酸を核酸検体にハイブリダイズ又はライゲートすることによって得られうる。
 下記(6)は、上記(1)、(2)及び(5)における塩基配列取得方法を特定したものである。
(6)
 前記核酸検体に含まれる前記塩基配列情報の取得を、シグナル物質標識されたヌクレオチドN(L)を相補鎖合成基質として含む核酸合成系において、前記識別すべき核酸検体を鋳型として相補鎖合成し、前記シグナル物質標識されたヌクレオチドN(L)が前記核酸検体に相補鎖結合した順に前記シグナル物質に由来するシグナルを検出することによって行う、(1)、(2)及び(5)のいずれかに記載の識別法。
 上記(6)に記載の方法を行うために、SBS法を用いることができる。
(7)
 前記複数種の識別すべき核酸検体それぞれが増幅されたものである、(1)~(7)のいずれかに記載の識別法。
 以下の発明は、上記(1)~(7)に記載の核酸検体の識別法の実施に適した装置に向けられる。
 下記(8)及び(9)は、例えば上記(1)や(2)の識別法の実施に用いることができる装置である。
(8)
 複数種の識別すべき検体が基板表面の無作為の位置で固定化されるように、検体を基板上に供給する手段と、
 固定化された前記検体に由来するシグナルを検出する手段と、
 前記検体の前記基板上の固定位置情報を取得する手段と、
 前記検体に含まれる塩基配列情報を取得する手段と、
を備える、基板上に固定化された複数種の検体の識別装置。
(9)
 前記取得した固定位置情報を記録する手段、
 前記取得した塩基配列情報を記録する手段、及び
 前記固定位置情報と前記塩基配列情報とを関連付ける手段の少なくともいずれかをさらに備える、(8)に記載の装置。
 下記(10)は、例えば上記(3)や(4)に記載の識別法の実施に用いることができる装置である。
(10)
 複数種の識別すべき検体が基板表面の無作為の位置で固定化されるように、検体を基板上に複数回供給する手段と、
 固定化された前記検体に由来するシグナルを検出する手段と、
 前記検体の前記基板上の固定位置情報を取得する手段と、
 前記供給する手段、前記検出する手段及び前記固定位置情報を取得する手段の一連の手段を複数回機能させるための制御手段と
を備える、基板上に固定化された複数種の検体の識別装置。
 下記(11)は、例えば上記(5)に記載の識別法の実施に用いることができる装置である。
(11)
 前記検体に含まれる塩基配列情報を取得する手段をさらに備える、(10)に記載の装置。
 下記(12)は、例えば上記(6)に記載の識別法の実施に用いることができる装置である。
(12)
 前記塩基配列情報を取得する手段が、
 蛍光物質標識されたヌクレオチドを供給する手段と、前記蛍光物質に由来する蛍光を観察する全反射蛍光顕微鏡システムとを含み、
 前記観察された蛍光を塩基配列情報に変換する手段を含んでよい、(8)、(9)及び(11)のいずれかに記載の装置。
 上記(12)の装置においては、前記観察された蛍光を塩基配列情報に変換する手段をさらに含んでよい。
 下記(13)は、例えば上記(3)、(4)、(5)や(6)に記載の識別法の実施に用いることができる装置である。
(13)
 前記取得した固定位置情報を記録する手段、及び
 前記固定位置情報と前記一連の手段を機能させた順番とを関連付ける手段の少なくともいずれかをさらに備える、(10)~(12)のいずれかに記載の装置。
 下記(14)は、例えば上記(7)に記載の識別法の実施に用いることができる装置である。
(14)
 核酸増幅手段をさらに備える、(8)~(13)のいずれかに記載の装置。
 本発明によると、核酸検体識別用のインデックス配列を別途付与する必要がなく、核酸検体識別のために基板上に作為的に決定した位置に固定化する必要もない、基板上に固定化された複数種の核酸検体の識別が可能になる。また、本発明において、核酸検体自身に含まれる配列をインデックスとして利用する場合、複数種の核酸検体を混合物として基板上に供給することによって一度に固定化を行うとともに、それぞれの核酸検体の識別が可能になる。
核酸検体を増幅する場合において、核酸検体に二本鎖プライマーをライゲートした態様の一例を模式的に示したもの、及び(b)合成開始用プライマーを有するシグナルプローブを有する核酸検体の一例を模式的に示したものである。 シグナルプローブを有する核酸検体のいくつかの例を模式的に示したものである。 シグナルプローブを有する核酸検体が、固定化用タグを介して基板上のリンカーに結合することによって、基板表面に固定化される態様の一例を模式的に示したもの(a)及び(b)、及び基板上に固定化され且つシグナルプローブを有する核酸検体において、当該核酸検体のインデックスとなりうる塩基配列(核酸検体の初期配列)が合成される態様の一例を模式的に示したものである。 及び基板上に固定化され且つシグナルプローブを有する核酸検体において、当該核酸検体のインデックスとなりうる塩基配列(核酸検体の内部配列)が合成される態様の一例を模式的に示したものである。 核酸検体が基板上に無作為の位置で固定化され、位置情報が取得された態様の一例を、基板上の一部における固定化された核酸検体の態様を示す拡大図と共に模式的に示したもの(a)、及びさらにその後、当核酸検体において、インデックス用塩基配列情報を与える部分配列を合成した態様の一例を模式的に示したものである。 図5(a)において位置情報が取得された後、さらに別の核酸検体を無作為の位置で固定化し位置情報を取得した態様の一例を、基板上の一部における固定化された核酸検体の態様を示す拡大図と共に模式的に示したものである。
[1.シグナルプローブを有する複数種の識別すべき核酸検体]
[1-1.識別すべき複数種の核酸検体]
 核酸検体は、基板上に固定化された状態でその種類を区別する要請があるものであれば、特に限定されるものではない。核酸検体の種類の区別は、例えば、由来元が異なる複数種の核酸検体や、解析対象として異なる複数種の核酸検体を、同一基板上で互いに別個の核酸検体として認識する目的で行われうる。
 具体的な例としては、配列決定すべき核酸に含まれる複数の部分配列を取得し、取得された複数の部分配列を再構築することによって当該核酸の配列決定を行う場合において、当該複数の部分配列が由来する核酸を明確にするために、本発明を用いることができる。
 この場合におけるより具体的な例としては、複数種の核酸から得られた複数種の核酸断片を固定化して、当該核酸断片全体の配列情報を得て、当該核酸断片の配列情報を再構築して当該核酸の配列を決定する場合に、それぞれの核酸断片の由来元となる核酸の種類を互いに区別するために本発明を用いることができる。
 具体的な他の例としては、異なる個体に由来する複数種の核酸検体を、同一基板上で免疫検出などの検出法によって検査する場合に、当該由来が異なる複数種の核酸検体それぞれを、互いに異なる検査対象として区別するために本発明を用いることができる。
 本発明において、複数種の核酸検体とは、異なる種類の核酸検体をいい、ユーザーにとって互いに区別することを要する核酸検体である。複数種の核酸検体の例としては、異なる配列を有する核酸同士、同配列を有する核酸同士、及び実質的に同配列(複製時のエラーや、変異等を許容する意)の核酸同士を問わない。例えば、由来元が異なる核酸同士や、異なる母集団に属する核酸同士、解析対象として異なる核酸同士も、複数種の核酸検体となりうる。
 従って、本発明において、同じ種類に属する核酸検体は、ユーザーにとって互いに区別することを要しない核酸検体である。同じ種類に属する核酸検体としては、同配列を有する核酸同士、実質的に同配列(複製時のエラーや、変異等を許容する意)の核酸同士、及び異なる配列を有する核酸同士を問わない。例えば、由来が同じ核酸同士や、同じ母集団に属する核酸同士も、同じ種類に属する核酸検体となりうる。
[1-2.核酸検体の種類]
 構造的観点からは、主として核酸塩基、五炭糖およびリン酸基から構成されるヌクレオチド残基がホスホジエステル結合により連結したポリマーであり、核酸塩基としては、プリン又はピリジミンの誘導体及び塩基対形成が可能なその他のいかなる核酸塩基も許容される。より具体的には、DNA、RNA、その他核酸アナログ、及びそれらの混合が挙げられる。さらに、核酸検体は一本鎖であっても二本鎖であってもよい。
 また、配列由来の観点からは、天然に由来するもの、人為的に変更されたもの又は合成配列、及びそれらの混合が許容される。より具体的には、ヒトを含む様々な生物、及びウイルス及び細菌を含む様々な微生物の染色体、ゲノム、cDNA、それらの断片(但し鋳型核酸より大きな単位のもの)などが挙げられる。また、ポリヌクレオチドは、異なる個体に由来する同じ配列のものであってもよい。
[1-3.核酸検体の調製法]
 核酸検体は、1つの細胞に由来するものであってもよいし、複数の細胞に由来するものであってもよい。また、核酸検体は、1つの検体に由来するものであってもよいし、複数の検体に由来するものであってもよい。
 核酸検体は、細胞から精製されたものでありうる。適宜断片化されたものであってもよい。精製の手法としては特に限定されるものではなく、当業者によって公知の方法が適宜選択される。
 複数種の核酸検体は、各種が複数本存在していてよい。複数種の核酸検体それぞれについて同配列或いは実質的に同配列のものを複数本得るための方法としては、当該核酸検体のコピーを調製する方法が挙げられる。
 核酸検体のコピーを調製する方法としては、例えば、核酸検体を鋳型とする核酸増幅法(PCRに代表される方法)が挙げられる。例えば核酸検体が二本鎖である場合、図1(a)に模式的に示されるように、核酸検体(これをXと表記する)に二本鎖プライマー(これを例えばp/p’と表記する)をライゲートするとともに核酸増幅を行うことができる。また例えば、核酸検体に含まれる塩基配列情報をインデックスとして用いる場合(後述6-1)であって、当該インデックスを与える塩基配列が核酸検体の既知配列の間に存在する場合は、当該既知配列を有するプライマーをハイブリダイズするとともに核酸増幅を行うことができる。
 核酸増幅を行うための手段としては、いかなる手段を用いてもよい。また、本発明の検体識別装置において、核酸増幅を行うための手段が一手段として備えられてよい。
 増幅法の具体的なプロトコルも特に限定されるものではなく、当業者によって公知の方法から適宜選択される。
 また、核酸検体のコピーを調製する他の方法としては、例えば、核酸検体をベクターに挿入し、宿主細胞で増殖させることによって行う方法が挙げられる。この方法についても、具体的なプロトコルは特に限定されるものではなく、当業者によって公知の方法が適宜選択される。
 核酸検体それぞれについて同配列或いは実質的に同配列のものを複数本得るための他の方法としては、異なるソースから核酸検体を取得し、断片化することによって得る方法が挙げられる。異なるソースとしては、異なる細胞が挙げられる。当該異なる細胞は、異なる個体に由来しうる。
 核酸検体を得るために行われうる断片化工程は、公知の手法を用いて当業者によって適宜行われる。具体的には、超音波や制限酵素を用いた方法が挙げられる。
[1-4.シグナルプローブを有する核酸検体]
 識別すべき核酸検体は、基板上における自らの存在位置を示すためのシグナルプローブを有する。シグナルプローブは、シグナル物質そのものであってもよいし、シグナル物質とその他の要素とを含むものであってもよい。
 核酸検体がシグナルプローブを有する態様としては特に限定されない。核酸検体とシグナルプローブとの結合の種類としては、共有結合及び特異的結合(水素結合や抗原抗体結合など)を問わない。シグナルプローブは、例えば、シグナル物質で標識された核酸でありうる。また、シグナルプローブは、後述するように固定化用タグ(図3(a)に例示される)を有するものであってもよい。
 核酸検体は、シグナル検出が行われるまでにシグナルプローブを有していればよい。従って、シグナルプローブは、識別すべき核酸検体のシグナル検出が行われるまでのいかなる段階で完成してもよい。また、シグナルプローブを有する核酸検体の調製を行うに当たっては、シグナル物質とその他の要素とからシグナルプローブを得て、得られたシグナルプローブを核酸検体に付与してもよいし、シグナルプローブを構成する一部分を核酸検体に付与し、その後、シグナルプローブの他の構成部分を付与することによって、核酸検体にシグナルプローブを完成してもよい。さらに、シグナルプローブは、それ自身又はそのシグナル標識部分のみが取り外し可能な態様で核酸検体に付されることができる。
 シグナル物質標識とともにシグナルプローブとして供されうる当該核酸は、例えば前述のように、核酸合成系で用いられる合成開始用プライマーとしても機能することができる比較的短い核酸を含みうる(図1(b)及び図2(a)~(c)等に模式的に例示される)。なお、プライマーは、核酸合成反応系において、核酸合成の開始点として働くオリゴヌクレオチドである。プライマーは合成したものであっても良く、生物界から単離したものであっても良い。
 このようなシグナルプローブを有する核酸検体のより具体的な例としては、核酸検体をX、シグナルプローブをp(L)と表記すると、シグナル物質標識された短い核酸が核酸検体にライゲートしたもの(p(L)-X、図2(a)に例示される);シグナル物質標識された短い核酸が核酸検体にハイブリダイズしたもの(X/p(L)、図2(b)に例示される);又は、シグナル物質標識された短い核酸が、核酸検体にライゲートした他の核酸(これをp’と表記する)にハイブリダイズしているもの(p’-X/p(L) 、図2(c)に例示される)が挙げられる。なお、図2(c)にいくつか例示されるように、Xにライゲートしている核酸p’と、それにハイブリダイズしているシグナルプローブP(L)におけるプライマーpとは、少なくとも一部の配列が相補的であればよく、両者の全配列が完全に相補的であることを必ずしも要しない。
 このようなシグナルプローブを用いることは、本発明の核酸検体識別方法を用いるとともに核酸検体を鋳型とする核酸合成に供する態様において有用である。そのような態様としては、本発明の核酸検体識別法において、核酸検体に含まれる塩基配列を核酸合成によって相補鎖合成し、得られた塩基配列情報を核酸検体識別のためのインデックスとして用いる態様(後述6-1)や、その他、本発明の核酸検体識別法とは別の工程で核酸検体を核酸合成に供する態様が挙げられる。
[1-5.シグナル物質]
 シグナルプローブにおけるシグナル物質は、核酸検体が基板上に固定化された場合に、基板上における存在位置を把握することができるものが特に限定されることなく用いられる。
 シグナル物質は、当業者に公知の手段によって検出可能なものであればよい。好ましくは、蛍光物質が挙げられる。より具体的には、例えば、Dimethylcoumarine、BODIPY FL、BODIPY TMR、BODIPY630/650・Naptofluorescein、Fluorescein、Fluorescein Chlorotriazinyl、OregonGreen488、Rohdamine Green、Alexa Fluor488、Alexa Fluor532、Alexa Fluor546、Alexa Fluor594、Cy3、Cy5、Cy5.5、Cy3.5、Lissamine Rohdamine B、Tetramethylrohdamine、Texas Redなどが挙げられる。
 シグナル物質は、識別すべき複数種の核酸検体の間で同じものが付されてよい。本発明の方法は、核酸検体に含まれる塩基配列情報及び/又は核酸検体の固定化の順番をインデックスとして利用するため、複数種の核酸検体の間でシグナル物質を異ならしめることなく、それらの識別を可能にする。
 しかしながら、本発明においては、識別すべき複数種の核酸検体の間で異なるものを付すことも許容する(図6に例示する)。例えば、本発明においてインデックスとして核酸検体に含まれる塩基配列情報を利用する場合は、基板上に供給する複数の核酸検体について一種類ごと又は数種類ごとに異なるシグナル物質を用いてよい。また、本発明においてインデックスとして核酸検体の固定順を利用する場合は、一回固定するごと又は数回固定するごとに異なるシグナル物質を用いることができる。
 このことによって、シグナル物質をさらなるインデックスとして利用することができるため、複数のインデックスの組み合わせによって、核酸検体の識別の信頼性を向上させることができる。
[2.基板]
 基板としては、核酸検体の固定化、シグナル検出及び位置情報取得に支障がない限り特に限定されるものではない。例えば、少なくとも光を透過させる材質から構成されるものが用いられうる。例えば、シリコーン、ガラス、石英ガラス、石英などのケイ素含有基材や、ポリカーボネート、ポリアクリルアミド、ポリスチレン、ポリメタクリル酸メチルなどの樹脂基材など、高い光透過率を有する材質から構成される基板が用いられうる。
 また、核酸合成反応液より高い屈折率を有し、且つ、基板と反応液との界面でレーザーを全反射させたときに、反応液側にエバネッセント場を生じることができるような物体であることが好ましい場合がある。上記のような基板は、特に、インデックスとしての塩基配列情報の取得(後述6-1)を、エバネッセント場を利用することによって行う場合に好適に用いられる。
 さらに、基板はディスポーザブルであってよい。
[3.固定化]
 本発明においては、基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する複数種の識別すべき核酸検体を用意する。本発明においては、広義の固定化として、このような固定化された核酸検体を用意するための一連の工程を行うことを意味する場合がある。また、狭義の固定化として、基板と固定化対象とを結合させることを意味する場合もある。
 このように固定化された核酸検体を得るための固定化方法は当業者によって適宜決定されるものであって、特に限定されるものではない。通常、固定化は、核酸検体にシグナルプローブP(L)が核酸検体に備えられること、核酸検体が基板上の無作為の位置へ供給されることと、核酸検体が固定化を達成することができる条件に付されることとが任意の順番で行われることによって行われる。
 シグナルプローブP(L)を有する核酸検体は、核酸検体部分において基板と結合していてもよいし、シグナルプローブP(L)部分で基板と結合していてもよい。また、シグナルプローブP(L)を有する識別すべき核酸検体は、固定化用タグ及びリンカーを介して基板表面へ固定化されている(図3(a)及び(b)に例示される)。なお後述するが、固定化用タグは、固定化される対象に付されるべき構造又は固定化される対象自身を構成する一部でありうる。また、リンカーは、基板に付されるべき構造又は基板自身を構成する一部でありうる。
[3-1.核酸検体の基板上における固定化位置]
 本発明においては、核酸検体が基板上に固定化される位置は無作為に定まるものである(図5及び図6に例示される)。すなわち、固定化にかかる操作において、核酸検体はその種類によって固定化位置が識別可能となるようには制御されない。すなわち、アレイ技術を用いた固定化によって実現されるような整然さは伴わない。従って、複数種の核酸検体が基板上に固定化されると、各種核酸検体は互いに混合した状態で分布する。混合の度合いは供給態様によって異なる場合もあり、特に限定されない。例えば、基板上の複数の核酸検体が固定化されている領域全体において、各種核酸検体の混合割合がほぼ同じとなる分布である場合(図6に例示される)や、基板上の場所によって各種核酸検体の混合割合において不連続な変化が生じるような分布である場合がある。前者の場合は、複数の核酸検体の全てを含む溶液を供給することや、核酸検体を複数回に分けて且つ基板上の同じ位置に重ねて供給することによって生じうる。後者の場合は、核酸検体を複数回に分けて供給することによって生じうる。
[3-2.核酸検体の基板上における固定化密度]
 基板上に固定化する核酸検体の密度としては、例えば固定化された核酸検体が有するシグナルプローブP(L)に由来するシグナルを検出するための検出器によって光学分解可能な密度とすることができる。そのような密度としては、例えば、512pixel×512pixelのCCDを検出器として用いる場合、近接場顕微鏡と組み合わせることで、5pixelx5pixelの中の1pixelの輝点を認識することは可能であるから、1画面(80μm×80μm)あたり10,000個程度までの輝点を光学分解可能である。またその場合の核酸固定化密度は1,500,000検体/mm2程度となる。従って、固定化密度は、1,500,000検体/mm2程度以下であれば当業者が適宜決定することができる。
[3-3.核酸検体の供給]
 本発明において、核酸検体に含まれる塩基配列情報をインデックスとする場合、核酸検体の基板上への供給は、識別すべき複数種の核酸検体のうち少なくとも二種を含む溶液を供給することによって行われうる。この場合、識別すべき複数種の核酸検体を一時に供給してもよいし、複数回に分けて供給してもよい。無論、識別すべき核酸検体を一種類ずつ供給することも許容される。いずれの場合も、シグナルの取得を行うまでに全ての核酸検体が供給され固定化される。
 本発明において、固定化の順番をインデックスとする場合、核酸検体の基板上への供給は、識別すべき核酸検体が一種類ずつステップワイズに供給されうる。核酸検体の一種類について供給及び固定化され、位置情報が取得された後に、核酸検体の他の一種類について供給及び固定化され、位置情報が取得される、という操作が繰り返される。
 また、本発明において、核酸検体に含まれる塩基配列情報と固定化の順番との両方をインデックスとする場合、核酸検体の基板上への供給は、複数種の核酸検体が複数回にわたって供給されうる。
 このような核酸検体の供給を行う手段は、核酸検体の識別装置に一手段として備えられることができ、自動化することもできる。異なる核酸検体を複数回にわたって供給することができる機構を有しているものが好ましい。
 そのような手段としては、複数流路の切り換え機能を有するバルブ、核酸供給用のポンプ(微量検体を定量的に供給できるポンプとしては、例えばシリンジポンプ等がある)がチューブを介して流路に接続される形態を有するものが挙げられる。それぞれの流路の先端には、複数の異なる核酸検体、流路洗浄用のリンス液等が保持された容器が接続されており、バルブを順次切り替えることにより、異なる核酸検体を流路中に導入することが可能となる。溶液の導入方法としては、押し出しによる供給と、吸い込みによる供給方法が考えられるが、複数溶液の供給を1台のポンプで実現できる観点から、吸い込みによる供給方法が好ましい。
[3-4.固定化の態様]
 すでに述べたとおり、固定化は、核酸検体にシグナルプローブP(L)が備えられることと、核酸検体が基板上の無作為の位置へ供給されることと、核酸検体が固定化を達成することができる条件に付されることとが任意の順番で行われる。
 上記任意の順番で行われる固定化のいくつかの態様の例として、以下が挙げられる。
 シグナルプローブP(L)が付された核酸検体が基板上へ供給され、固定化を達成することができる条件下、シグナルプローブP(L)が付された核酸検体が、固定化用タグ及びリンカーを介して基板表面へ固定化される。
 シグナルプローブP(L)が付された核酸検体が基板上へ供給され、固定化を達成することができる条件下、核酸検体に付されたシグナルプローブP(L)が、固定化用タグ及びリンカーを介して基板表面へ固定化される(図3(a)に例示される)。
 核酸検体に付されるべきシグナルプローブP(L)が基板上へ供給され、固定化を達成することができる条件下、シグナルプローブP(L)が固定化用タグ及びリンカーを介して基板表面へ固定化され、その後、固定化されたシグナルプローブP(L)に核酸検体が付加される。
 核酸検体に付されるべきシグナルプローブP(L)が基板上へ供給され、固定化を達成することができる条件下、核酸検体が供給され、核酸検体が、固定化用タグ及びリンカーを介して基板表面へ固定化されるとともにシグナルプローブP(L)に付加する。
 シグナルプローブP(L)が付されるべき核酸検体が基板上へ供給され、固定化を達成することができる条件下、核酸検体が、固定化用タグ及びリンカーを介して基板表面へ固定化され、その後、固定化された核酸検体にシグナルプローブP(L)が付される。
 シグナルプローブP(L)が付されるべき核酸検体が基板上へ供給され、固定化を達成することができる条件下、シグナルプローブP(L)が供給され、シグナルプローブP(L)が、固定化用タグ及びリンカーを介して基板表面へ固定化されるとともに核酸検体に付加する。
 従って、本発明においては、シグナルプローブが付された核酸検体、シグナルプローブが付されるべき核酸検体、核酸検体に付されたシグナルプローブ及び核酸検体に付されるべきシグナルプローブを、固定化される対象(又は固定化対象)と記載することがある。
 また、固定化される対象、固定化用タグ、リンカー及び基板を結合させる順番は、特に限定されるものではない。
 例えば、固定化される対象が、核酸検体に付されたシグナルプローブ又は核酸検体に付されるべきプローブである場合を挙げると、固定化用タグを有するシグナルプローブ(具体的には、固定化用タグが付されたシグナルプローブ又は固定化用タグをその一部として有するシグナルプローブ)を、リンカーを有する基板(具体的には、リンカーが付された基板又はその一部としてリンカーを有する基板)に結合させることができる。例えば、固定化用タグを有するシグナルプローブを、リンカーを与える物質の存在下、基板に結合させることができる。例えば、シグナルプローブを、固定化用タグ及びそれに結合したリンカーを有する基板(具体的には、固定化用タグ及びリンカーが付された基板、又は自身の一部を構成するリンカーに固定化用タグが結合した基板)に結合させることができる。例えば、シグナルプローブを、固定化用タグを与える物質の存在下、リンカーを有する基板に結合させることができる。
 固定化される対象が、シグナルプローブが付された核酸検体又はシグナルプローブが付されるべき核酸検体である場合も、上記に準じる。
 固定化の条件としては、固定化される対象、固定化用タグ、リンカー及び基板を結合させることができる条件であれば特に限定されることなく、それぞれの要素の特性に基づいて、当業者が適宜選択することができる。
 例えば、リンカーと固定化用タグとを結合させることができる条件は、当該リンカーや固定化用タグの特性に基づいて、当業者が適宜選択することができる。
 リンカーと固定化用タグとの間の結合の種類については特に限定されず、他の工程における条件下(例えば核酸合成条件下)においてリンカーと固定化用タグとが不所望に離れないものであればよい。例えば、水素結合、抗原抗体結合、及びビオチン結合性タンパク質-ビオチン間結合などの特異的結合や、共有結合などの結合が挙げられる。
 水素結合の例としては、適当な塩基配列を有する核酸同士の相補的結合が挙げられる(図3(b)に例示される)が、その他核酸が関与しない水素結合のあらゆるものも含まれる。
 抗原抗体結合のごく一例としては、ジゴキシゲニン/ジゴキシゲニン抗体間の結合が挙げられるが、その他当業者によって用いられうる抗原抗体間結合のいかなるものも含まれる。ビオチン結合性タンパク質-ビオチン間結合としては、アビジン-ビオチン結合に代表されるもので、それらの一方又は両方が誘導体である場合の結合も含まれる。
 共有結合としては、反応性官能基間において形成される結合であれば特に限定されるものではない。また、当該結合は、リンカー試薬を介在させることによって形成されるものであってもよい。反応性官能基としては、ごくいくつかの例として、アミノ基、水酸基、カルボキシル基などが挙げられる。また、リンカー試薬としては、ごくいくつかの例として、EDC(1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide Hydrochloride)やNHS(N-hydroxysuccinimide)などが挙げられる。
 基板とリンカーとの間の結合の種類、及び固定化される対象と固定化用タグとの間の結合の種類については後述する。
[3-5.固定化用タグ]
 固定化用タグは、固定化される対象(すなわち核酸検体若しくはシグナルプローブ)に付されるべき構造でありうる。或いは、固定化用タグは、固定化される対象自身(すなわち核酸検体自身若しくはシグナルプローブ自身)を構成する一部でありうる(図3(a)に例示される)。固定化用タグは、固定化工程が行われるまでに固定化される対象に備えられていれば良いため、固定化される対象自身を構成する一部(例えば固定化される対象自身が有する官能基)をそのまま固定化タグとして用いる場合を除き、当該固定化用タグを固定化される対象に付す工程は、固定化工程を行う以前のいずれの段階で行われてもよい。
 固定化される対象自身が有する官能基としては、例えば核酸分子が有するいかなる基も挙げられ、例えばアミノ基、カルボニル基、水酸基、アリール基、炭化水素基、及びリン酸基などが挙げられる。
 固定化用タグは、リンカーに対する結合能を有する構造であれば特に限定されるものではなく、当業者が適宜決定することができる。固定化用タグとリンカーとの結合の種類については、上述のとおりである。従って固定化タグとしては、例えば、適当な塩基配列を有する核酸、抗原又は抗体、アビジン又はビオチン、及び反応性官能基などを用いることができる。
 核酸としては、前述の項目1-2において述べた核酸検体と同様のものが適用される。抗原/抗体としては、あらゆるものが許容され当業者が適宜選択することができるが、ごく一例として、ジゴキシゲニン/ジゴキシゲニン抗体が挙げられる。アビジン/ビオチンとしては、それらの誘導体も含む。反応性官能基としては、アミノ基、水酸基、カルボキシル基及びそれらを含む基などが含まれる。
 本発明においては、核酸であって、基板表面に設けられたリンカーとしての核酸と相補的結合が可能な配列を有するものが固定化用タグとして用いられうる(図3(a)に例示される)。
[3-6.リンカー]
 リンカーは、基板に付されるべき構造又は基板自身を構成する一部でありうる。リンカーは、基板がその表面に有するものであって、上記固定化タグに対する結合能を有する構造である。
 リンカーは、固定化タグに対する結合能を有する構造であれば特に限定されるものではなく、当業者が適宜決定することができる。固定化用タグとリンカーとの結合の種類については、上述のとおりである。従ってリンカーとしては、例えば、適当な塩基配列を有する核酸、抗原又は抗体、アビジン又はビオチン、及び反応性官能基(アミノ基、水酸基、カルボキシル基及びそれらを含む基など)などを用いることができる。本発明においては、核酸であって、固定化用タグとしての核酸と相補的結合が可能な配列を有するものが、リンカーとして好ましく用いられる(図3(a)に例示される)。
 基板自身を構成する一部であるリンカーとしては、基板を構成する高分子が有する反応性官能基であって基板表面に露出しているものや、基板表面にコーティングされた物質が有する反応性官能基であってコート層表面に露出しているものなどが挙げられる。ごくいくつかの例として、シラノール基、水酸基、アミノ基などが挙げられる。
 また、基板に付されるべきリンカーは、上述の基板自身を構成する一部である反応性官能基に対して、固定化用タグとの結合能を有する構造を付与することによって設けることができる。
 核酸検体が基板上に固定化された後においては、洗浄などによって、未固定の核酸検体を除去する処理が行われていることが好ましい。この処理は当業者によって適宜行われる。
[4.シグナルの検出]
 基板表面上に無作為の位置で、シグナルプローブP(L)を有する核酸検体が固定化されているため、当該核酸検体が有するシグナルプローブを検出することによって、核酸検体の存在を認識することができる。
 シグナル検出のための手段は、上述のシグナルプローブの種類に応じて当業者が適宜決定することができるものである。シグナル検出手段は、通常、シグナルを励起させる光を発する励起光源、レンズなどを用いてシグナルを集める集光部と、励起光やバックグラウンドを取り除くフィルターと、シグナルを検出し、解析可能なデジタルデータに変換する検出・デジタル化部とを有しうる。シグナル検出手段は、スキャナータイプ及びカメラタイプを問わない。従って、励起光源としてはレーザー及びランプを問わない。集光部としては、ガルバノミラー方式及びスキャンヘッド可動式を問わない。検出・デジタル化部としては、光電子増倍管(Photo Multiplier Tube :PMT)及びCCD(Charge-Coupled Device)を問わない。
 シグナル検出手段の選択に当たっては、核酸の固定密度に対応可能な検出精度を有するものを選択する。例えば、前記のように、512pixel×512pixelのCCDを検出器として用いる場合、近接場顕微鏡と組み合わせることで、1画面(80μm×80μm)あたり10,000個程度の輝点を光学分解可能である。またその場合の核酸固定化密度は1,500,000検体/mm2程度となる。
[5.位置情報の取得]
 検出されたシグナルは、核酸検体の基板上における位置情報に変換される。位置情報は、どのような形式で表されるものであってもよいが、検出されたシグナルの位置を、基板上の座標として特定することによって表されるものであることが好ましい。具体的には、基板上に座標系(好ましくは直交座標系)を定め、検出された一のシグナルに対して一義的に定まる二の実数の組によって、シグナルの位置(すなわち核酸検体の位置)を特定することができる(図5(a)及び図6に例示される)。
 核酸検体に含まれる塩基配列情報をインデックスとする場合、基板上に固定化された識別すべき核酸検体の全てについて、一工程で位置情報を取得することができる。
 固定化の順番をインデックスとする場合、識別すべき核酸検体が基板上に固定化される都度、位置情報の取得を行う。具体的には、基板上に固定化された識別すべき核酸検体について位置情報を取得し、その後新たに基板上に固定化された別の識別すべき核酸検体について位置情報を取得する。このとき、例えば、既に取得された核酸検体の位置座標と、新たに取得された核酸検体の位置座標との間で差分をとり、新たなシグナルが検出された座標を、当該別の核酸検体の位置情報として取得することができる。
 このような位置情報を取得する手段は、核酸検体の識別装置に一手段として備えられることができ、自動化することができる。位置情報読み取り手段としては特に限定されることなく、デジタイザなど、当業者によって適宜選択される。
 取得された位置情報は、本発明の識別装置に備えられうる記憶手段に記憶されてもよいし、本発明の識別装置から外部の装置に出力されることによって、外部の装置における記憶手段に記憶されてもよい。
[6.インデックス]
 インデックスは、複数種の核酸検体を種類ごとに特定することによって、核酸検体の識別を可能にする。本発明において、核酸検体の種類の識別のために用いられるインデックスには、核酸検体に含まれる塩基配列情報と、核酸検体の固定化順番とが挙げられる。いずれか一方のインデックスのみを用いてもよいし、両方のインデックスを組み合わせて用いることもできる。
[6-1.インデックスとして塩基配列情報を利用する場合]
 識別すべき複数の核酸検体を識別するためのインデックスの一つとして、核酸検体に含まれる塩基配列情報を利用する場合、識別すべき複数の核酸検体の全てを基板に固定化し、位置情報を取得した(図5(a)に例示される)後、このような塩基配列情報の取得を行う(図5(b)に例示される)ことができる。
 インデックスとして利用される塩基配列情報は、複数種の核酸検体を識別するための固有配列情報を与えることができるものであれば特に限定されない。
 また、当該塩基配列は、通常、核酸検体の一部を構成する部分配列であるが、核酸検体自体の長さによっては、その全配列となることを妨げない。核酸検体に含まれる塩基配列の長さとしては特に限定されないが、複数種の核酸検体を識別することができる固有の配列を与える十分な長さであって、塩基配列情報の取得工程が本発明の識別法の効率性や簡便性の支障にならない程度の長さとすることができる。このような長さは、当業者であれば容易に決定することができる。
 インデックスとしての塩基配列の、核酸検体中の位置としては特に限定されない。すなわち、核酸検体の末端に位置する配列であってもよいし、内部に位置する配列であってもよい。
 塩基配列情報の取得の方法としては、固定化された核酸検体に基づいてシーケンスを行うことができる方法であれば特に限定されない。例えば、固定化された核酸検体を鋳型とし、相補鎖合成用基質であるヌクレオチドを用いて相補鎖を合成し、当該ヌクレオチドが鋳型に結合した順番に基づいて塩基配列を決定する方法を用いることができる。
[6-1-1.シグナルプローブを有する核酸検体を含むハイブリッド]
 当該方法においては、鋳型である核酸検体X及びシグナルプローブP(L)とともに、合成開始用プライマーを備えたハイブリッドを核酸合成系に供することによって、鋳型である核酸検体Xに含まれる塩基配列を有する相補鎖x(L)を得ることができる(図3(c)及び図5(b)に例示される)。相補鎖x(L)がシーケンスの対象であり、得られる塩基配列情報が本発明のインデックスとなる。相補鎖x(L)の合成とシーケンスとは、同時に行ってもよい(すなわちSBS(sequencing by synthesis)法を行ってもよい)し、相補鎖x(L)を合成した後、合成された相補鎖x(L)をシーケンスしてもよい。
 核酸合成系に供される当該ハイブリッドの態様としては、プライマーの3’末端から核酸検体Xに含まれる配列を相補鎖合成できる態様であればいかなる態様も許容される。
 上述のとおり、シグナルプローブP(L)は、合成開始用プライマーとしても機能することができる核酸を有しうる。この場合、シグナルプローブP(L)を有する核酸検体が例えば図2(b)で例示されるようなX/P(L)や、図2(c)で例示されるようなp’-X/P(L)といったハイブリッド体であれば、そのまま相補鎖合成が可能である。
 また、シグナルプローブP(L)が核酸を含む場合であって、シグナルプローブP(L)を有する核酸検体が例えば図2(a)で例示されるようなP(L)-Xといったライゲート体であれば、シグナルプローブP(L)に含まれる当該核酸に相補的な配列を有するプライマーpを、当該ライゲート体にハイブリダイズさせる(図2(a’)で例示される)ことによって、相補鎖合成が可能なハイブリッドP(L)-X/pを形成することができる。
 上記例の変形例として、核酸検体において、シグナルプローブがライゲートした側とは反対側に合成開始位置が存在してもよい(図2(d)に例示される)。この場合、当該反対側に二本鎖プライマーp/p’をライゲート、又は一本鎖プライマーpをハイブリダイズさせることによって、相補鎖合成が可能なハイブリッドを形成することができる。
 前述のとおり、インデックスとしての相補鎖x(L)の配列は、核酸検体の末端に位置する配列であってもよいし、内部に位置する配列であってもよい。
 インデックスとしての相補鎖x(L)の配列が、核酸検体の末端に位置する配列である場合、末端配列は、相補鎖x(L)の核酸合成反応における合成開始位置が、核酸検体の末端塩基に対する相補結合位置となる場合に得られるもの(すなわち初期配列)であることが好ましい。このような態様は、核酸合成系に供される当該ハイブリッドが例えば図2(a’)に例示されるp(L)-X/pや、図3(a)、(b)及び図2(c、但し一番下に記載するものは除く)に例示されるp’-X/p(L)といったものである場合に実現されうる。
 インデックスとしての相補鎖x(L)の配列が、核酸検体の内部に位置する配列である場合、内部配列は、相補鎖x(L)の核酸合成反応における合成開始位置が、核酸検体の内部塩基に対する相補結合位置となる場合に得られる。このような態様は、核酸合成系に供される当該ハイブリッドが例えば図2(b)に例示されるX/p(L)である場合に実現されうる。
 インデックスとしての配列が核酸検体の内部配列であるこの態様は、核酸検体の配列の少なくとも一部が既知である場合に有用である。この場合において、当該既知の配列に基づいてプライマーが調製される。
 さらに、インデックスとしての配列が核酸検体の内部配列であるこの態様は、核酸合成系に供されるハイブリッドにおけるプライマーが、相補鎖x(L)の合成に先立って伸長される場合(図4(a)~(c)に例示される)にも有用である。プライマーpが予め伸長されることにより、引き続く相補鎖x(L)の核酸合成反応における合成開始位置が、核酸検体の内部塩基に対する相補結合位置となり、これによって、核酸検体の内部配列を有する相補鎖x(L)を得ることができる(図4(c)に例示される)。
[6-1-2.相補鎖合成基質]
 インデックスとしての相補鎖x(L)を合成するための基質としては、シグナル物質で標識されたヌクレオチドアナログN(L)を用いることができる。
 ヌクレオチドアナログN(L)のヌクレオチド部は、主として核酸塩基、五炭糖および1以上(通常1~3)のリン酸基から構成されるものであれば特に限定されるものではない。従って、核酸塩基としては、プリン又はピリジミンの誘導体、及び鋳型核酸Xへの相補結合により塩基対形成が可能なその他のいかなる核酸塩基も許容される。五炭糖としては、デオキシリボースやリボースに代表され、3’-OH基を有していればそれらの誘導体であることも許容する。具体的には、デオキシリボヌクレオチド、リボヌクレオチド、及びその他ヌクレオチドアナログなどが挙げられる。
 ヌクレオチドアナログN(L)は、ヌクレオチド部の核酸塩基が異なる複数種のものが混合されて用いられる。しばしば、ヌクレオチドNは、その核酸塩基が、アデニン(A)、シトシン(C)、グアニン(G)、及びチミン(T)又はウラシル(U)であるものが混合されて用いられる。例えば、4種のデオキシリボヌクレオチド三リン酸(dATP、dCTP、dGTP、dTTP)が混合されたものが用いられる場合がある。混合量としては、通常それぞれのヌクレオチドが同量程度(モル基準)となるように調整される。
 ヌクレオチドアナログN(L)のシグナル物質による標識部については、例えば以下の蛍光物質に由来する基が挙げられる。Dimethylcoumarine、BODIPY FL、BODIPY TMR、BODIPY630/650・Naptofluorescein、Fluorescein、Fluorescein Chlorotriazinyl、OregonGreen488、Rohdamine Green、Alexa Fluor488、Alexa Fluor532、Alexa Fluor546、Alexa Fluor594、Cy3、Cy5、Cy5.5、Cy3.5、Lissamine Rohdamine B、Tetramethylrohdamine、Texas Redなど。
 また、核酸合成酵素として例えばDNAポリメラーゼβを用いる場合に、陰イオン性の蛍光基が好ましく用いられる場合がある。これは、陰イオン性の蛍光基をシグナル標識として有するヌクレオチドアナログN(L)とDNAポリメラーゼβとの相性を有効に利用することができる場合があるためである。上述の蛍光基のうち、陰イオン性の蛍光標識としては、フルオレセイン、Oregon Green 488、ナフトフルオレセイン、Cy3.5・5・5.5などが挙げられる。
 標識部に由来するシグナルによってヌクレオチド部の違いを識別することができるように、標識部は、ヌクレオチド部の種類に応じてそれぞれ異なるシグナルを発するように選択されうる。例えばシグナル物質が蛍光物質である場合、蛍光物質は、ヌクレオチド部の種類に応じてそれぞれ異なる波長の蛍光を発するように選択されうる。このことによって、発せられたシグナルに基づいてシーケンスを行うことができる。
[6-1-3.相補鎖伸長]
 このような相補鎖合成基質を用いて、鋳型である核酸検体Xとシグナルプローブp(L)とを含むハイブリッドとともに核酸合成系を構築する。
 核酸合成系は、上記成分を含んだ核酸合成反応液を適切な条件下におくことによって構築されるものであり、上記成分以外の成分の使用及び条件などは当業者が適宜決定することができる。
 具体的には、核酸合成反応液は、上記成分の他に、pH緩衝液、MgCl、KClなどの塩類及び核酸合成酵素を含む。その他に、界面活性剤やタンパク質などの物質を必要に応じて添加することができる。
 pH緩衝液としては、例えば、トリス(ヒドロキシメチル)アミノメタンと、塩酸、硝酸、硫酸などの鉱酸とを組み合わせたもの、及び、その他種々のpH緩衝液を用いることができる。pH調製された緩衝液は、PCR反応液の中で10mMから100mMの間の濃度で使用することができる。
 核酸合成酵素としては、上記相補鎖合成基質を鋳型核酸依存的にプライマーへ結合させる能力を有するものであれば特に限定されず、当該分野で用いられうるいかなる核酸重合酵素も含まれる。
 核酸重合酵素には、DNAポリメラーゼ類、RNAポリメラーゼ類、逆転写酵素類、リガーゼ類、キナーゼ類、及びそれらの組み換え体などが含まれる。酵素の起源となる種についても特に限定されない。
 例えば、DNAポリメラーゼβ、E.coliのDNAポリメラーゼ、E.coliのDNAポリメラーゼのクレノーフラグメント、T4DNAポリメラーゼ、TaqDNAポリメラーゼ、T.litoralisDNAポリメラーゼ、TthDNAポリメラーゼ、PfuDNAポリメラーゼ、Hot Start Taqポリメラーゼ、KODDNAポリメラーゼ、EX TaqDNAポリメラーゼ、逆転写酵素などを用いることができる。
 なお、好ましくは、補鎖合成基質であるシグナル物質で標識されたヌクレオチドアナログN(L)の取り込み活性が高い核酸重合酵素を当業者が適宜選択することができる。例えば蛍光標識デオキシリボヌクレオチドの取り込み活性が高い核酸重合酵素として、上記の核酸合成酵素のうち、DNAポリメラーゼβを選択することが好ましい場合がある。
 増幅反応におけるその他の条件としては、核酸合成酵素の活性を保持することができる条件が当業者によって適宜選択される。例えば、25℃におけるpHが8.5~9.5、温度が65~95℃である条件下で核酸合成反応を行うことができる。
 相補鎖合成を止める方法としては、合成原料であるデオキシリボヌクレオチド中に、ターミネータ付きのヌクレオチドを一定割合混合しておく方法が採用できる。混合割合は、当業者が適宜決定することができるものである。この方法の好ましい態様は、ターミネータを用いる点で従来のサンガー法で採用されている方法に類似するが、ターミネータ付きヌクレオチドに蛍光修飾が必ずしも必要ではない点と、ターミネータがリバーシブルである点がサンガー法とにおいて異なる。
 なお、リバーシブルターミネータは、ヌクレオチドの伸長において、さらなる伸長が起こらないようにヌクレオチド末端をターミネートする機能とともに、自身が外れることによってヌクレオチドの伸長を再開することを可能とするリバーシブル機能を有するターミネータをいう。従って、リバーシブルターミネータは、成長中の核酸へさらなるヌクレオチドの取り込みを妨害することが可能な構造を有する。例えば、五炭糖の少なくとも3’-水酸基における改変部(すなわち3’-水酸基の置換基)が挙げられる。当該改変部は、プライマーpと鋳型核酸Xとの相互作用に支障をきたさない条件下で除去することができるものである。
[6-1-4.シーケンス]
 相補鎖x(L)はシーケンスによりその配列が解読される。このことによって、インデックスとして利用することができる、核酸検体Xに含まれる塩基配列情報を得ることができる。
 前述のように、シグナル物質は、デオキシリボヌクレオチドのヌクレオチド部の違いを識別できるように、ヌクレオチド部の種類に応じてそれぞれ異なるシグナルを発するように選択されうる。従って、上述の相補鎖伸長において、シグナル物質標識ヌクレオチドN(L)が結合した順に当該シグナル物質に由来するシグナルを検出することによってシーケンスが行われうる。
 シグナル物質の検出の手段としては特に限定されるものではないが、単塩基分解能で検出を行うことができる手段を用いることができる。
 単塩基分解能で検出を行うことができる手段の例としては、米国特許第6,818,395号明細書やProceeding of the National Academy of Science of the United States of America,100,3960-3964,(2003)に記載されている方法が挙げられる。この方法においては、必要な種類(通常4種)の蛍光標識デオキシリボヌクレオチドを用意し、それら必要な種類の溶液を1種類ずつ順に流し、洗浄することを繰り返すことによって、蛍光標識デオキシリボヌクレオチドごとに塩基取り込みの有無を確認しながら解析していく。
 単塩基分解能で検出を行うことができる手段の他の例としては、全反射蛍光顕微鏡技術(total internal reflection fluorescence microscopy;TIRFM)を用いる方法が挙げられる。この場合、鋳型核酸Xを含むハイブリッドが基板に固定化される。そして、この基板における、鋳型核酸Xを含むハイブリッドが固定化された表面に、エバネッセント場を発生させる。核酸合成反応によって、蛍光標識デオキシリボヌクレオチドが核酸合成酵素に取り込まれたときに、取り込まれた蛍光標識デオキシリボヌクレオチドの蛍光標識がエバネッセント場によって励起される。このように励起された蛍光を検出することができる。
 蛍光分子を励起するために、全反射照明を行い、基板の表面にエバネッセント場を発生させることができる。エバネッセント光が染み出すエリアは基板の表面から約200nm以内に限定され、それより遠い領域は非照明領域となる。このため、その限定された領域において生じる蛍光現象の観察を、バックグラウンド蛍光の少ない状態で高感度に行うことが可能になる。
 蛍光標識されたデオキシリボヌクレオチドは、検出用のカメラでは捉えきれない速度でブラウン運動を行っているため、通常は、照明範囲内にある蛍光標識デオキシリボヌクレオチドは認識することができない。一方、核酸合成酵素に取り込まれると、蛍光標識デオキシリボヌクレオチドはそのブラウン運動が抑えられるため、検出用カメラで認識することが可能になる。このことによって、取り込まれたデオキシリボヌクレオチドと、取り込まれていないデオキシリボヌクレオチドすなわち溶液中を漂う遊離のデオキシリボヌクレオチドを区別することができる。
 さらに、励起された蛍光標識デオキシリボヌクレオチドは、励起光によって生成した活性酸素の働きにより、次の蛍光標識デオキシリボヌクレオチドが取り込まれて発光するまでに消光する、もしくは次の蛍光標識デオキシリボヌクレオチドが取り込まれて発光し消光する以前に前の蛍光標識デオキシリボヌクレオチドが消光する。このため、読みたい蛍光標識デオキシリボヌクレオチドのみを検出することができる。このようにして、発光した蛍光分子の波長及び/又は強度を順に読み取ることによって、相補鎖x(L)のシーケンスを行うことができる。
 上記のような配列を取得する手段は、本発明の検体識別装置に一手段として備えられることができ、自動化することもできる。そのような手段には、蛍光物質標識されたヌクレオチドを供給する手段、及び前記蛍光物質に由来する蛍光を観察する全反射蛍光顕微鏡システムが含まれうる。
 また、本発明の検体識別装置は、観察された蛍光を塩基配列情報に変換する手段をさらに含んでもよい。このような手段はソフトウェアによって実現されうる。
 取得された配列情報は、本発明の識別装置に備えられうる記憶手段に記憶されてもよいし、本発明の識別装置から外部の装置に出力されることによって、外部の装置における記憶手段に記憶されてもよい。
[6-2.インデックスとして固定化の順番を利用する場合]
 識別すべき複数の核酸検体を識別するためのインデックスの一つとして、核酸検体が基板上に固定化された順番を利用する場合、識別すべき核酸検体が基板上に固定化される都度、位置情報の取得を行う。すなわち、工程順番の違いが識別すべき核酸検体の違いを反映する。
 まず、基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する核酸検体を用意する。当該核酸検体へのシグナルプローブP(L)の完備、当該核酸検体の供給及び基板への固定化は、前述のとおり順不同で行われる。その後、当該核酸検体におけるシグナルプローブP(L)に由来するシグナルが検出され、位置情報が取得される(図5(a)に例示される)。次に、同一の基板表面上において、無作為の位置で固定化され且つシグナルプローブP(L)を有する他の核酸検体を用意する。当該他の核酸検体へのシグナルプローブP(L)の完備、当該他の核酸検体の供給及び基板への固定化は順不同で行われる。その後、当該他の核酸検体におけるシグナルプローブP(L)に由来するシグナルが検出され、位置情報が取得される(図6に例示される)。同様の工程が、さらに繰り返して行われることもできる。
 なお、図6の例においては、後に固定化した核酸検体が有するシグナル標識は、先に固定化した核酸検体が有するシグナル標識と異なるように示されているが、同じシグナル標識を用いることもできる。いずれの場合であっても、位置情報取得においては、既に取得された先の核酸検体の位置座標と、新たに取得された後の核酸検体の位置座標との間で差分をとり、新たなシグナルが検出された座標を、当該後の核酸検体の位置情報として取得することができる。
 本発明の検体識別装置においては、固定化されるべき核酸検体を供給する手段と、シグナルを検出する手段と、固定位置情報を取得する手段を含む一連の手段をこの順で複数回機能させるための制御手段が備えられうる。このような手段は、ソフトウェアによって実現されうる。
[7.位置情報とインデックスとの関連付け]
 インデックスとして、核酸検体に含まれる配列を利用する場合、取得された位置情報と配列情報とを本発明の検体識別装置又は外部装置の記憶手段から呼び出し、位置情報と、当該位置において取得された配列情報とを関連付けることによって、各種核酸検体を識別することができる。
 例えば図5(a)に示すように、固定化及びシグナル検出された検体に、符号A1、A2、A3・・・Anを付し、それぞれについて位置座標を取得し、図5(b)に示すように、それぞれの核酸検体に含まれる配列の相補鎖合成を行って、配列情報を取得する。取得した配列をインデックスとして、それぞれの検体に関連付ける(図示せず)。それぞれの検体が固有の位置情報を有し、それぞれに核酸検体の種類を表すインデックスが関連付けられているため、位置情報から核酸検体の種類を特定することができる。
 インデックスとして、核酸検体の固定化順番を利用する場合、位置情報を取得するごとに、取得された位置情報を本発明の検体識別装置又は外部装置の記憶手段から呼び出し、当該位置情報を取得した核酸検体の固定化順番を関連付けることによって、各種核酸検体を識別することができる。
 例えば図5(a)に示すように、工程Aにおいて固定化及びシグナル検出された検体に、工程順番を表すインデックスAを付した符号A1、A2、A3・・・Anを付し、それぞれについて位置座標を取得し、図6に示すように、工程Bにおいて、新たに固定化及びシグナル検出された別種類の検体に、工程順番を表すインデックスBを付した符号B1、B2、B3・・・Bmを付し、それぞれについて位置情報を取得する。それぞれの検体が固有の位置情報を有し、それぞれに核酸検体の種類を表すインデックスが関連付けられているため、位置情報から核酸検体の種類を特定することができる。
 本発明の検体識別装置においては、このように位置情報とインデックス情報とを関連付ける手段が備えられていてよい。当該手段は、ソフトウェアによって実現されうる。

Claims (14)

  1.  基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する複数種の識別すべき核酸検体を用意する工程と、
     前記シグナルプローブP(L)に由来するシグナルを検出し、前記固定化された複数種の核酸検体それぞれの前記基板上の固定位置情報を前記シグナルに基づいて取得する工程と、
     前記複数種の識別すべき核酸検体のそれぞれに含まれる塩基配列情報を取得する工程と、
     前記塩基配列情報を前記位置情報と関連付けることによって、前記複数種の核酸検体を互いに識別する工程とを含む、基板上に固定化された複数種の核酸検体の識別法。
  2.  前記基板上に無作為の位置で固定化された複数種の識別すべき核酸検体が、前記複数種の識別すべき核酸検体のうち二種以上を含む溶液を前記基板に供給することによって得られるものである、請求項1に記載の核酸検体の識別法。
  3.  基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する識別すべき核酸検体を用意する工程、及び
     前記シグナルプローブP(L)に由来するシグナルを検出し、前記固定化された核酸検体の前記基板上の固定位置情報を前記シグナルに基づいて取得する工程を含む工程(A)と、
     前記基板の表面上に無作為の位置で固定化され且つシグナルプローブP(L)を有する他種の識別すべき核酸検体を用意する工程、及び
     前記シグナルプローブP(L)に由来するシグナルを検出し、前記固定化された他種の核酸検体の前記基板上の固定位置情報を前記シグナルに基づいて取得する工程を含む工程(B)とを少なくとも含み、
     前記工程(A)及び(B)を含む工程の順番と、それぞれの工程において取得された前記位置情報とを関連付けることによって、複数種の前記核酸検体を互いに識別する、基板上に固定化された核酸検体の識別法。
  4.  前記工程(A)が、前記シグナルプローブP(L)を有する核酸検体を含む溶液を前記基板に供給することを含み、前記工程(B)が、前記シグナルプローブP(L)を有する他種の核酸検体を含む溶液を、前記核酸検体を含む溶液が供給された前記表面の領域に重ねて供給することを含む、請求項3に記載の核酸検体の識別法。
  5.  前記基板表面に固定化された前記核酸検体及び/又は前記他種の核酸検体が、複数種の前記識別すべき核酸検体のうち二種以上の識別すべき核酸検体を含む溶液によって供給されるものであり、工程(A)及び/又は(B)において、前記基板表面に固定化された前記二種以上の識別すべき核酸検体のそれぞれに含まれる塩基配列情報を取得することをさらに含む、請求項3に記載の核酸検体の識別法。
  6.  前記核酸検体に含まれる前記塩基配列情報の取得を、シグナル物質標識されたヌクレオチドN(L)を相補鎖合成基質として含む核酸合成系において、前記識別すべき核酸検体を鋳型として相補鎖合成し、前記シグナル物質標識されたヌクレオチドN(L)が前記核酸検体に相補鎖結合した順に前記シグナル物質に由来するシグナルを検出することによって行う、請求項1又は5に記載の核酸検体の識別法。
  7.  前記複数種の識別すべき核酸検体それぞれが増幅されたものである、請求項1又は3に記載の核酸検体の識別法。
     
  8.  複数種の識別すべき検体が基板表面の無作為の位置で固定化されるように、検体を基板上に供給する手段と、
     固定化された前記検体に由来するシグナルを検出する手段と、
     前記検体の前記基板上の固定位置情報を取得する手段と、
     前記検体に含まれる塩基配列情報を取得する手段と、
    を備える、基板上に固定化された複数種の検体の識別装置。
  9.  前記取得した固定位置情報を記録する手段、
     前記取得した塩基配列情報を記録する手段、及び
     前記固定位置情報と前記塩基配列情報とを関連付ける手段の少なくともいずれかをさらに備える、請求項8に記載の装置。
  10.  複数種の識別すべき検体が基板表面の無作為の位置で固定化されるように、検体を基板上に複数回供給する手段と、
     固定化された前記検体に由来するシグナルを検出する手段と、
     前記検体の前記基板上の固定位置情報を取得する手段と、
     前記供給する手段、前記検出する手段及び前記固定位置情報を取得する手段の一連の手段を複数回機能させるための制御手段と
    を備える、基板上に固定化された複数種の検体の識別装置。
  11.  前記検体に含まれる塩基配列情報を取得する手段をさらに備える、請求項10に記載の装置。
  12.  前記塩基配列情報を取得する手段が、
     蛍光物質標識されたヌクレオチドを供給する手段と、前記蛍光物質に由来する蛍光を観察する全反射蛍光顕微鏡システムとを含む、請求項8又は11に記載の装置。
  13.  前記取得した固定位置情報を記録する手段、及び
     前記固定位置情報と前記一連の手段を機能させた順番とを関連付ける手段の少なくともいずれかをさらに備える、請求項10に記載の装置。
  14.  核酸増幅手段をさらに備える、請求項8又は10に記載の装置。
     
PCT/JP2011/052881 2010-03-03 2011-02-10 基板上に固定化された複数の核酸検体の識別方法及び装置 WO2011108344A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010046170 2010-03-03
JP2010-046170 2010-03-03

Publications (1)

Publication Number Publication Date
WO2011108344A1 true WO2011108344A1 (ja) 2011-09-09

Family

ID=44542009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052881 WO2011108344A1 (ja) 2010-03-03 2011-02-10 基板上に固定化された複数の核酸検体の識別方法及び装置

Country Status (1)

Country Link
WO (1) WO2011108344A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAVID W CRAIG ET AL.: "Identification of genetic variants using bar-coded multiplexed sequencing", NATURE METHODS, vol. 5, no. 10, October 2008 (2008-10-01), pages 887 - 893, XP002662394, DOI: doi:10.1038/NMETH.1251 *
MASAFUMI YODA: "Jisedai Genome Kaiseki Gijutsu - Yotsudomoe no Tatakai no Yukue", BIO TECHNOLOGY JOURNAL, 2007, pages 392 - 393 *
MIO TOMOUCHI: "Genome Kaiseki no Kakumeiteki Tool: Illumina Genome Analyzer", BIO TECHNOLOGY JOURNAL, vol. 11, 2007, pages 742 - 743 *
MIO TONOUCHI: "Jisedai Sequencer de Gan Genome o Kaimei susu: Illumina Genome Analyzer", BIO CLINICA, vol. 23, no. 9, 2008, pages 817 - 821 *

Similar Documents

Publication Publication Date Title
US9200320B2 (en) Real-time sequencing methods and systems
US20090163366A1 (en) Two-primer sequencing for high-throughput expression analysis
JP6789935B2 (ja) データの速度および密度を増大させるための多数のプライマーからのシーケンシング
US20070141598A1 (en) Nucleotide Compositions and Uses Thereof
US20110008775A1 (en) Sequencing of nucleic acids
JP6510978B2 (ja) 核酸を配列決定する方法および装置
CN116323974A (zh) 多路复用covid-19锁式测定
US20240060954A1 (en) Obtaining information from a biological sample in a flow cell
US20210147833A1 (en) Systems and methods for information storage and retrieval using flow cells
JP7332235B2 (ja) ポリヌクレオチドを配列決定する方法
CN110997934A (zh) 具有电子检测系统的寡核苷酸探针阵列
TW202120693A (zh) 偵測核苷酸之聚合酶併入的方法
WO2011108344A1 (ja) 基板上に固定化された複数の核酸検体の識別方法及び装置
CN113151427A (zh) 一种核苷非标记fret的核酸测序方法
CN113308524A (zh) 一种基于荧光共振能量转移的核酸高通量测序方法
JP5020734B2 (ja) 核酸解析方法及び装置
JP2004290123A (ja) マイクロアレイを用いたアプタマーの取得方法
JP2012191876A (ja) ポリヌクレオチドシーケンス法
CN101245373A (zh) 对核酸分子多片段基因进行平行检测和实时定量分析的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP