WO2013065399A1 - 走査電子顕微鏡 - Google Patents

走査電子顕微鏡 Download PDF

Info

Publication number
WO2013065399A1
WO2013065399A1 PCT/JP2012/072839 JP2012072839W WO2013065399A1 WO 2013065399 A1 WO2013065399 A1 WO 2013065399A1 JP 2012072839 W JP2012072839 W JP 2012072839W WO 2013065399 A1 WO2013065399 A1 WO 2013065399A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
sample
magnetic field
scanning electron
backscattered
Prior art date
Application number
PCT/JP2012/072839
Other languages
English (en)
French (fr)
Inventor
純一 片根
祐博 伊東
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to JP2013541666A priority Critical patent/JP5953314B2/ja
Publication of WO2013065399A1 publication Critical patent/WO2013065399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel

Definitions

  • the present invention relates to a charged particle beam apparatus using charged particle beams such as an electron beam and an ion beam, and in particular, forms an image of a beam to be irradiated onto a sample, and captures secondary electrons and reflected electrons generated from the sample. Belongs to the technology to form.
  • charged particle beams such as an electron beam and an ion beam
  • an energy separator (E ⁇ B) based on the Wien principle is obtained by winding up the secondary electrons in an objective lens in Japanese Patent Laid-Open No. 7-192679.
  • the detection method used is described.
  • This is effective for a type of objective lens such as a snorkel type objective lens in which a magnetic field leaks to the sample side.
  • the characteristic of the snorkel type objective lens is that it can be observed with a short focal length, so the spherical aberration coefficient and the chromatic aberration coefficient are very small and high resolution observation is possible, and the secondary electron is wound up by the leaked magnetic field and the above detection Secondary electrons can be detected with high efficiency by the method.
  • the out-lens type objective lens is designed to suppress the leakage magnetic field onto the sample as much as possible, and the image is observed with the secondary electron detector or the semiconductor backscattered electron detector placed near the sample. Since the leaked magnetic field of the objective lens does not affect the trajectories of the electrons to be detected, the change in the image quality due to the above-mentioned condition change does not occur.
  • the advantage of the snorkel type objective lens is that the focal point is extremely short and each aberration coefficient is small, so that the resolution is improved, the secondary electron winding up by the magnetic field is effective, the detection efficiency is almost 100%, and the retarding effect is expected There is a point that can be done.
  • the drawback is that if the excitation current increases, the coil temperature rises and cooling becomes necessary, and since the magnetic flux in the magnetic pole increases, permendur is often used as the material, but permendur is difficult to process and assemble The material itself is also expensive, and the image quality is changed because the reflected electrons are affected by the magnetic field, which causes a large error in the crystal orientation analysis.
  • Snorkel objective lenses are extremely powerful for high resolution / high efficiency signal detection.
  • the snorkel-type objective lens has a defect in the backscattered electron image and the analysis performance, and the price merit has been lost due to its configuration.
  • the advantage of the out-lens objective lens is that secondary electrons are efficiently detected by the secondary electron detector fixed in the sample chamber, and reflected electrons are not affected by this magnetic field, so the effect of the magnetic field on the sample is Is minimal, coil current is small and temperature rise is small, and pure iron or free-cutting pure iron is selected as the material, and low-cost design is possible.
  • the drawback is that the aberration is large compared to the snorkel type objective lens, and a secondary electron detector fixed to the sample chamber is used around the objective lens, and the secondary electron is affected by the surrounding grounding parts. The point is that the loss of detection is large.
  • the out-lens type objective lens is a general lens as a highly versatile lens, but due to this aberration and secondary electron detection efficiency, it is an objective lens compared to the case where a snorkel type objective lens is used.
  • the improvement in image quality and resolution that can be expected by the improvement in performance is limited.
  • a form that is totally optimal as an objective lens is a configuration that makes the advantages of the snorkel type objective lens and the out lens type objective lens compatible, and minimizes both defects.
  • a scanning electron microscope in which secondary electrons generated from a sample are wound up in an objective lens by a magnetic field generated by an objective lens, and the secondary electron detector detects the electrons to obtain an image, wherein the reflected electrons are from the sample
  • the objective lens is configured such that a magnetic field of an intensity that can reach the backscattered electron detector while maintaining the emission direction is generated in the space between the sample and the objective lens.
  • an orifice for differential evacuation is disposed in the vicinity of the main surface of the objective lens, the electron beam passage can be divided into high vacuum, and the sample chamber in which the sample is arranged can be divided into low vacuum. Make it a microscope.
  • FIG. 1 is a schematic view of the whole electron optical system
  • FIG. 2 is a diagram of an on-axis magnetic field curve of the objective lens.
  • FIG. 1 shows an overall configuration based on an electron optical system including the objective lens 7 of the present embodiment.
  • Display means for displaying the formed image on the observation screen or monitor (display unit: 15), and information input means for inputting information necessary for the operation of the apparatus to the GUI displayed on the display means Etc.
  • the user inputs desired values on the observation screen or monitor automatically or observation conditions. It is adjusted by the control unit.
  • the electron source 1 provided in the scanning electron microscope generally emits a primary electron beam 18 of 0.3 kV to 30 kV.
  • a plurality of lenses (first condenser lens: 2, second condenser lens 3) are controlled to conditions suitable for observation, and have the function of focusing the primary electron beam 18.
  • the objective lens 7 of the present embodiment also has the function of focusing the primary electron beam 18, and is imaged on the sample 8 to be observed to bring a focus suitable for observation.
  • the deflector 4 scans the irradiation position of the primary electron beam 18 on the sample 8 in accordance with the desired observation field of view. Further, it is assumed that the scanning speed can be varied by the deflection signal control unit 26 that controls the deflector 4. As the primary electron beam 18 is irradiated, secondary electrons 10 and reflected electrons 26 are emitted from the sample.
  • the focused primary electron beam 18 is scanned on the sample 8 and the secondary electrons 10 generated from the sample 8 are generated from the snorkel objective lens exuded in the sample direction.
  • the lens is wound up by the lens magnetic field 11 and accelerated to several hundred volts by electrodes provided in the lens. Thereafter, the secondary electrons are separated by an energy separator (E ⁇ B) 5 into a primary electron beam 18 and secondary electrons 10 which have been wound up from the sample 8 by the lens magnetic field 11.
  • the secondary electron detector (lens fixed) 6 has an electrode 20 applied to about 10 kV, and the secondary electrons are taken into the detector by the electric field of this electrode, and pass through the secondary electron detector amplifier 14 to the display unit 15 Image is formed.
  • a secondary electron detector (lens fixed) 6 is called an Everhart Thornley type detector, and detects a secondary electron 10 by a detector consisting of a scintillator and a photomultiplier, and +10 kV 20 is applied in the vicinity of the scintillator.
  • a secondary electron detector (sample chamber fixed) 27 attached to the sample chamber is also provided, and like the secondary electron detector (lens fixed) 6, it becomes an Everhart Thornley type detector.
  • a potential gradient is supplied into the sample chamber 23 by the secondary electron collector electrode 28 to which +300 V is typically applied.
  • the electron optical system is not limited to the one described above.
  • the backscattered electrons in order to take in the backscattered electrons close to the optical axis 35 in the energy separator (E ⁇ B) 5, the backscattered electrons in the vicinity of or inside the energy separator
  • the detector 19 or a reflection electron reflector may be incorporated.
  • the degree of vacuum inside the sample chamber 23 is controlled by closing the needle valve 16 at the air inlet to the sample chamber 23.
  • this low vacuum SEM has a high vacuum observation mode, and during high vacuum observation, the needle valve 27 is closed and the inside of the sample chamber 23 has a pressure of 10 -3 Pa or less. Keep in high vacuum.
  • the backscattered electrons 26 are detected by a backscattered electron detector 19 disposed directly below the objective lens 7.
  • a backscattered electron detector 19 a semiconductor detector, a microchannel plate, or a detector such as YAG is used.
  • the backscattered electron can be detected even in the low vacuum observation mode described later.
  • the backscattered electron detector 19 is a semiconductor detector.
  • the detected secondary electrons and signals derived from the reflected electrons are electrically amplified, then A / D converted by the control unit, and displayed on the display unit 15 in synchronization with the scanning of the primary electron beam 18. Thereby, an SEM image of the observation visual field range is obtained.
  • the inside of the sample chamber 23 is maintained at a constant gas pressure by closing the needle valve 16. Further, the potential of the secondary electron collector electrode 28 is switched to the ground potential.
  • the gas pressure inside a typical sample chamber is 1 to 300 Pa, but in special cases it can be controlled up to 3000 Pa. However, in order to realize low vacuum observation, it is necessary to keep the electron gun chamber at 10-2 to 10-4 while applying low vacuum (1 Pa to about 3000 Pa) to the sample chamber. It is necessary to differentially pressure the inside of the lens barrel and the sample chamber.
  • the secondary electrons may be interrupted depending on the position of the diaphragm (differential exhaust diaphragm), and the secondary There is a possibility that the detection efficiency of electrons may be reduced.
  • the optimum position of the vacuum differential evacuation diaphragm is the principal surface position of the objective lens. The closer to the sample to be observed, the less the scattering of the primary electron beam traveling in the low vacuum region, and the higher resolution image can be obtained.
  • This embodiment mainly focuses on the on-axis magnetic field generated by the objective lens and considers the influence on secondary electrons or reflected electrons, thereby making the performance compatibility of the snorkel type objective lens and the out lens type objective lens I am trying.
  • the on-axis magnetic field curve shown in FIG. 2 is representative of a snorkel type objective lens on-axis magnetic field curve 29, an out-lens type objective lens on-axis magnetic field curve 30, and an on-axis objective magnetic field curve 31 of this embodiment. Is shown.
  • the relationship between the shapes of the snorkel type, out lens type, and lenses of the present embodiment and the on-axis magnetic field generated will be described with reference to FIG. These are distinguished by the positional relationship between the illustrated inner magnetic path and the outer magnetic path among the lens shapes shown in FIG.
  • the objective lens main surface 25, ie, the position where the axial magnetic field strength is the highest is the Z axis axial magnetic field curve 29 shown in FIG. It is located on the plus side (sample side) of the axis coordinate 0 mm.
  • the objective lens main surface 25 (position where the most on-axis magnetic field is strong) is negative side than the Z axis coordinate 0 mm (objective lens Located inside).
  • the fact that the position of the objective lens main surface 25 of the snorkel-type objective lens approaches the sample means that the focal length from the objective lens main surface 25 becomes short (short focalization), so that each aberration can be reduced and high resolution is achieved. It becomes a lens.
  • the sample can not be placed above the position of the outer magnetic path, so the distance from the objective lens main surface 25 to the sample is limited and the short focus is limited. There is also a limit to high resolution.
  • the inner magnetic path and the outer magnetic path are located between the lens main surface position of the snorkel type objective lens and the lens main surface position of the out-lens type objective lens. And the shape optimization is mentioned. The important point here is to arrange the inner magnetic path and the outer magnetic path so that the vicinity of the Z axis coordinate of 0 mm is the maximum on-axis magnetic field.
  • the reason is that if the inner magnetic path and the outer magnetic path are arranged such that the Z axis coordinate 0 mm is on the positive side (sample side) as described above, a snorkel type objective lens which is a high resolution lens is obtained.
  • a strong magnetic field approaches the sample, and the strong magnetic field causes the reflected electron orbit generated from the sample to change.
  • the backscattered electron trajectories become undetectable.
  • the backscattered electron detector 19 in this case is disposed at the position shown in FIG.
  • the above-described out-lens type objective lens is obtained.
  • the out-lens type objective lens is in line with the intention of this example because the magnetic field strength on the sample is small and does not affect the reflected electron trajectory, but the focal distance from the lens main surface position to the sample is limited The present invention can not be achieved because of the limited resolution enhancement.
  • the inner magnetic path and the outer magnetic path should be arranged such that the Z axis coordinate 0 mm is the largest on-axis magnetic field so that the objective lens axial magnetic field curve 31 of the present embodiment shown in FIG. Is important.
  • the ideal on-axis magnetic field is the objective lens magnetic field curve 31 of the present embodiment shown in FIG. 2, but when used in a scanning electron microscope, the magnetic field intensity on the observation sample, secondary electrons or reflected electrons Trajectories (field intensity of leaked magnetic field of objective lens and electric field strength by pulling electrode etc.), representatively spherical aberration, reduction of chromatic aberration, and four items of operation diaphragm arrangement at low vacuum observation become important points of the invention.
  • the Z-axis coordinate of the peak be large as in the on-axis magnetic field curve 29 of the snorkel type objective lens in terms of resolution, but as described above, the snorkel type objective lens also has disadvantages.
  • the shape of the objective lens is designed to have an intermediate magnetic field characteristic between the snorkel-type objective lens and the out-lens type objective lens in the example. A simulation of the magnetic field is used for the design.
  • the present embodiment relates to disposing the semiconductor backscattered electron detector 19 on the lower surface of the objective lens 7 in the scanning electron microscope having the configuration of the first embodiment.
  • FIG. 4 shows simulation results on the on-axis magnetic field from the semiconductor backscattered electron detector to the sample to be observed and the backscattered electron orbit.
  • the most important point in this embodiment is “finding the on-axis magnetic field strength of the objective lens that does not affect the trajectory of the backscattered electrons generated from the sample”, and “the objective that can generate the on-axis magnetic field strength. “Minimize the spherical aberration coefficient and the chromatic aberration coefficient with the lens shape”.
  • the simulation result shown in FIG. 4 will be described.
  • a default objective lens shape is used, and the on-axis magnetic field strength is plotted while increasing the amount of current supplied to the exciting coil.
  • the method of calculating the backscattered electron trajectories for the respective magnetic field strengths was taken.
  • the acceleration voltage was assumed to be 30 kV in all cases. Therefore, the energy of the primary electron beam and the energy of the reflected electrons generated from the sample also become 30 kV.
  • the specifications of the objective lens are as follows.
  • Shape An on-axis magnetic field which is 700 Gauss or less above the sample and 1,500 Gauss or less at the position of the semiconductor backscattered electron detector, and is a focusable objective lens shape (acceleration voltage: 30 kV).
  • the E x B Wien filter
  • the E x B is mounted in the objective lens and can be used as a main detector at high vacuum and high resolution observation.
  • 3. A configuration in which the semiconductor backscattered electron detector can be placed on the bottom of the objective lens.
  • the objective lens shape is such that the backscattered electrons reach the backscattered electron detector without being affected by the magnetic field and generate the maximum value of the magnetic field (field on the limit axis).
  • the shape of the lens is changed to repeat the simulation of the magnetic field generated by the objective lens and the reflected electron trajectory.
  • the objective lens finally becomes a shape that generates a magnetic field such that the backscattered electrons generated from the sample maintain the same direction and reach the backscattered electron detector as shown in, for example, the shape shown in FIG. .
  • the objective lens thus obtained, it is possible to keep the orbit of the backscattered electron immediately after generation from the sample in the space between the backscattered electron detector provided under the objective lens and the sample. At intensity, a stray magnetic field from the objective can be formed.
  • FIG. 5 and FIG. 6 show possible causes of the difference in the image when the condition is changed (for example, the WD working distance is changed).
  • the image in FIG. 5 is an image captured by a snorkel type objective lens, and a diagram schematically expressing a reflected electron trajectory at that time and a corresponding actual image are shown.
  • the problem is that the image quality changes with the change of WD.
  • the objective lens of the shape determined based on the trajectory of the backscattered electron as described above is used, so an image with a certain image quality can be obtained even if the WD is changed. it can.
  • FIG. 6 also considers the detection element of the detector and the emission angle of the reflected electron.
  • the number of reflected electrons reaching the detection element is often shallow.
  • the backscattered electrons are elastically scattered, but when the backscattered electrons at a shallow angle are taken in by the sample shape, a stereoscopic image is obtained.
  • the reflected electrons in the vicinity of the optical axis reflected electrons generated perpendicularly to the surface of the sample
  • the reflected electrons having three-dimensional information form an image and the composition information is reduced. I think it is
  • the excitation of the objective lens may be weak, and it may be considered that as the WD becomes longer, the reflected electrons near the optical axis also reach the detection element and the composition information increases.
  • the influence of the leaked magnetic field of the objective lens on the trajectory of the reflected electrons is reduced, and the change in image quality due to the change of the working distance of the objective lens is reduced.
  • the snorkel objective lens it is possible to obtain a high-yield, high-resolution image using an E ⁇ B (Wien filter).
  • E ⁇ B Wien filter
  • the lens principal surface position moves closer to the sample than the out-lens type objective lens, it is possible to suppress the aberration of the objective lens.
  • the differential aperture (orifice) at low vacuum can be placed close to the sample, creating an environment that is not affected by the scattering of the primary electron beam, allowing high resolution observation regardless of high vacuum or low vacuum. .
  • the backscattered electron detector 19 or a reflection plate provided to obtain backscattered electron information is provided above the main surface 25 of the objective lens, that is, inside the objective lens. It relates to the method of arranging and acquiring the image.
  • the reflection electron trajectory simulation illustration shown in FIG. 4 is a reflection of various emission angles generated from the sample when the reflection electron detector 19 is disposed on the lower surface of the objective lens 7 5 is a diagram showing that electrons reach the backscattered electron detector 19; Here, focusing on the reflected electron orbit around the optical axis 35, it can be seen that the reflected electrons generated near the optical axis go in the internal direction (upward) of the objective lens 7.
  • the reflected electron detector 19 or a reflector provided to obtain reflected electron information may be arranged in the vicinity of the energy separator (ExB) shown in FIG. In order to take in a large amount of electrons in the vicinity of the optical axis 35, it is also effective to widen the opening of the inner magnetic path.
  • the present embodiment relates to the scanning electron microscope having the configuration of Embodiment 1 being superior to the snorkel type objective lens in the driving power supply and the operating conditions of the objective lens.
  • the snorkel-type objective lens generates an on-axis magnetic field such as the on-axis magnetic field curve 29 of the snorkel-type objective lens in FIG. 2, and the magnetic field strength is also described in Examples 1 to 3. It is stronger than that of the objective lens and the out-lens type objective lens. In this type of lens, a large drive voltage and excitation current are required, and the heat generation of the coil is also increased, so it is necessary to devise a device such as coil cooling. On the other hand, the out-lens type objective lens can operate with a small drive voltage and excitation current, and no device such as coil cooling is required.
  • the generated on-axis magnetic field is intermediate between the snorkel objective lens and the out lens objective lens, it is necessary to study drive voltage, excitation current and coil heating.
  • it may be considered the same as an out-lens type objective lens, it can be operated with a relatively small drive voltage and excitation current, and coil cooling is not necessary. , By simulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

アウトレンズ型対物レンズとシュノーケル型対物レンズはそれぞれ利点、欠点がある。汎用走査電子顕微鏡の高分解能化と目的の像質得るためには、シュノーケル型対物レンズとアウトレンズ型対物レンズの利点の両立を図ることができる対物レンズおよび検出器の構成が必要である。本発明では、対物レンズ(7)の磁場特性をシミュレーションし、対物レンズ(7)からの漏れ磁場による反射電子の軌道(26)から対物レンズ(7)の形状を決定する。これにより、対物レンズの漏れ磁場による反射電子の軌道への影響を低減させるとともに、対物レンズの作動距離の変更による像質変化が少なくなり、シュノーケル型対物レンズと同様、高収率で高解像度の画像を得ることができる

Description

走査電子顕微鏡
 本発明は、電子線やイオン線等の荷電粒子線を用いる荷電粒子線装置に係り、特に試料に照射するビームを結像し、また試料から発生した二次電子、反射電子を取り込み、画像を形成する技術に属する。
 従来技術としては、高真空における二次電子の検出方法として、特開平7-192679号公報などで二次電子を対物レンズ内に巻き上げて、ウィーンの原理に基づくエネルギー分離器(E×B)を使った検出方式が記載されている。これは、シュノーケル型対物レンズのような磁場を試料側に漏れ出すようなタイプの対物レンズに威力を発揮している。シュノーケル型対物レンズの特徴は、焦点距離を短くして観察できることから球面収差係数、色収差係数が非常に小さく高分解能観察が可能であり、漏れ出した磁場によって二次電子は巻き上げられ、上記の検出方式によって二次電子が高効率に検出できる。
 このシュノーケル型対物レンズと高効率な二次電子検出との組合せによって得られる画像は、非常に高分解能で更に情報量に優れた画質が得られるが、評価結果によると、対物レンズからの漏れ磁場の強度が強いほど二次電子の収率は増加するが、一方で強い磁場の影響で検出する電子軌道が大きく変化し、その後像質の変化を招くという現象が確認された。
 一方、アウトレンズ型対物レンズは、極力試料上への漏れ磁場を抑えて設計し、試料近傍に設置した二次電子検出器または半導体反射電子検出器で像観察をする。対物レンズの漏れ磁場は検出する電子の軌道に対して影響を与えないため、上記のような条件変更による像質の変化は発生しない。
 これら対物レンズ形状によって分類される2種類の特徴は、ユーザの観察目的、得られる像の種類、分解能、装置の購入コストなどと合わせて、装置選定のポイントとなっている。
特開平7-192679号公報
 はじめに、シュノーケル型対物レンズとアウトレンズ型対物レンズの利点と欠点について以下にまとめる。
 シュノーケル型対物レンズの利点は、極短焦点となり各収差係数が小さくなるので分解能が向上する点、磁場による二次電子巻き上げられ効果によりほぼ100%の検出効率がある点、リターディングによる効果が期待できる点が挙げられる。一方、欠点としては、励磁電流が増大するとコイル温度上昇し冷却が必須となる点、磁極内磁束が増大するので材質としてはパーメンジュールがよく用いられるがパーメンジュールは加工および組立が困難であり材料自体も高価である点、磁場により反射電子が影響を受けるので像質が変化し、結晶方位分析に大きな誤差要因となる点が挙げられる。
 高分解能/高効率信号検出に関して、シュノーケル型対物レンズは絶大な威力を発揮する。一方で、アプリケーションによってはシュノーケル型対物レンズでは、反射電子像及び分析性能において欠点があり、その構成により価格メリットもなくなってきている。
 これに対して、アウトレンズ型対物レンズの利点は、二次電子は試料室固定の二次電子検出器で効率良く検出され反射電子はこの磁場の影響は受けないので、試料上における磁場による影響は最小となる点、コイル電流が小さく温度上昇も少ないため材料として純鉄または快削純鉄が選択され低価格な設計が可能である点、大きなサンプルの場合にも傾斜させて観察することができ傾斜性能が良い点が挙げられる。一方、欠点としては、シュノーケル型対物レンズに比べて収差が大きいこと、対物レンズ外周で試料室固定の二次電子検出器を使用することになり周囲の接地部品の影響を受けるために二次電子検出の損失が大きい点が挙げられる。
 以上のように、アウトレンズ型対物レンズは汎用性の高いレンズとして一般的なレンズであるが、この収差や二次電子検出効率が原因で、シュノーケル型対物レンズを用いた場合に比べて対物レンズ性能の向上によって期待できる画質、分解能の向上は限られている。
 したがって、対物レンズとして総合的に最適な形態は、シュノーケル型対物レンズとアウトレンズ型対物レンズの利点を両立させ、かつ、双方の欠点を最小にする構成である。
 試料から発生する二次電子を対物レンズで発生する磁場によって対物レンズ内に巻き上げ、二次電子検出器にてその電子を検出し画像を取得する走査電子顕微鏡であって、反射電子が試料からの出射方向を保ったまま反射電子検出器に到達できる強度の磁場が試料と対物レンズとの間の空間に発生するような対物レンズ形状とする。
 さらに、前記対物レンズの主面近傍に差動排気用のオリフィスを配置させて、電子線通路は高真空に、試料が配置される試料室は低真空に区分けできる低真空(環境)型走査電子顕微鏡とする。
 シュノーケル型対物レンズとアウトレンズ型対物レンズの像質的、構造的な利点を有し、結果として両者の性能を両立することで、高分解能で高収率の二次電子像観察だけでなく、条件に依存しない反射電子像観察、低真空の観察が可能となる。
本発明の一実施例における装置の全体構成例である。 対物レンズの種類の違いによる軸上磁場強度の例である。 本発明の一実施例として対物レンズ形状と半導体反射電子検出器の配置例である。 軸上漏れ磁場と反射電子の軌道をシミュレーションした例である。 WDを変更したときの反射電子軌道と半導体反射電子検出器検出素子との位置関係、および得られる像質の関係を示した図である。 反射電子の出射角に依存した像質の違いを示す概念図である。
 以下では、本発明の代表的な実施例について図を用いて説明する。なお、以下では汎用の走査電子顕微鏡について説明するが、本発明はこれに限られず、荷電粒子線の照射によって生成される信号を検出して画像を生成する、その他の荷電粒子線装置にも適用可能である。
 電子光学系全体概略図を図1に、対物レンズ軸上磁場曲線図を図2に示す。
 図1は、本実施例の対物レンズ7を含む電子光学系を基本とした全体構成を示している。観察画面またはモニタ上(ディスプレイ部:15)には、形成した画像を表示するための表示手段や、当該表示手段に表示されるGUIに対して装置の操作に必要な情報を入力する情報入力手段等を備えている。なお、電子光学系の各構成要素、例えば一次電子ビーム18の加速電圧、各電極に印加する電流・電圧などは、自動もしくは、ユーザが観察画面またはモニタ上で所望の値を入力し、観察条件制御部により調整される。
 走査電子顕微鏡に備える電子源1は、一般的には0.3kV~30kVの一次電子ビーム18を照射する。複数段のレンズ(第一コンデンサレンズ:2、第二コンデンサレンズ3)は、観察に適した条件に制御されているものとし、一次電子ビーム18を収束する作用を持つ。本実施例の対物レンズ7も同様に一次電子ビーム18を収束する作用を持ち、観察対象である試料8上に結像され、観察に適した焦点を結ぶ。偏向器4は、試料8上の一次電子ビーム18の照射位置を所望の観察視野範囲に従って走査させる。また偏向器4を制御する偏向信号制御部26によって、走査速度を可変することが可能であるものとする。一次電子ビーム18の照射に伴って試料からは二次電子10や反射電子26が放出される。
 高真空の場合、一般的には焦点を結んだ一次電子ビーム18を試料8上で走査し、試料8から発生した二次電子10は、試料方向に染み出したシュノーケル型対物レンズから発生しているレンズ磁場11によって巻き上げられ、レンズ内に設けられた電極によって数100Vに加速される。その後二次電子はエネルギー分離器(E×B)5で一次電子ビーム18と、試料8からレンズ磁場11によって巻き上げられてきた二次電子10に分離される。二次電子検出器(レンズ固定)6には約10kVに印可された電極20があり、二次電子はこの電極による電界で検出器に取り込まれ、二次電子検出器アンプ14を経てディスプレイ部15で画像形成される。このとき、試料8から発生した二次電子10は、対物レンズ内の高真空用の二次電子検出器で検出される。二次電子検出器(レンズ固定)6は、Everhart Thornley型検出器と呼ばれシンチレータと光電子増倍管からなる検出器で二次電子10を検出し、シンチレータ近傍は、+10kV20が印加されている。この検出器の他に、試料室に取り付けられる二次電子検出器(試料室固定)27も設けられ、二次電子検出器(レンズ固定)6と同様、Everhart Thornley型検出器となる。このとき二次電子10の捕集効率を高めるため、典型的には+300Vを印加した二次電子コレクタ電極28によって試料室23内に電位勾配を供給している。
 電子光学系は以上に説明したものに限られず、例えば、エネルギー分離器(E×B)5には光軸35に近い反射電子を取り込むことを目的として、エネルギー分離器近傍または内部に、反射電子検出器19や反射電子反射板など組み込んだものであってもよい。
 低真空の場合、試料室23の内部の真空度は、該試料室23への大気導入口のニードルバルブ16の閉開によって制御する。本低真空SEMは低真空での観察モードの他に、高真空での観察モードを備えており、高真空での観察時には、ニードルバルブ27を閉じ、試料室23の内部を10-3Pa以下の高真空状態に保つ。
 反射電子26は、対物レンズ7直下に設置する反射電子検出器19によって検出する。反射電子検出器19には、半導体検出器、マイクロチャンネルプレート、YAGなどの検出器を用いる。半導体検出器を用いた場合は、後述する低真空での観察モードでも反射電子検出を行える。以降では、反射電子検出器19が半導体検出器であるとする。
 検出された二次電子、反射電子起因の信号は電気的に増幅された後、制御部でA/D変換され、一次電子ビーム18の走査と同期させて、ディスプレイ部15に表示する。これにより、観察視野範囲のSEM画像が得られる。
 低真空での観察時には、ニードルバルブ16の閉開によって、試料室23内を一定のガス圧力に保つ。また、二次電子コレクタ電極28の電位が接地電位に切り替えられる。典型的な試料室内部のガス圧力は、1~300Paであるが、特別な場合、3000Paまで制御可能である。ただし、低真空観察を実現するには、試料室を低真空(1Pa~約3000Pa)にしながら、電子銃室を10-2~10-4に保つ必要があり、真空差動排気用絞りを用いて鏡筒内と試料室を差圧しなければいけない。試料側に磁場を漏れ出させ、対物レンズ内に二次電子を巻き上げるシュノーケル型対物レンズを採用する場合、絞り(差動排気用絞り)位置によっては二次電子の巻き上げを遮ってしまい、二次電子の検出効率を低下させてしまう恐れがある。
 したがって、真空差動排気用絞りの最適位置は対物レンズの主面位置となる。観察対象である試料に近いほど低真空領域を走行する一次電子ビームの散乱は低減され、より高解像度の画像をえることができる。
 ここで、本実施例の対物レンズの形状について代表的な特徴を説明する。本実施例は主に、対物レンズが発生する軸上磁場に着目し、それが二次電子または反射電子に対する影響を考察することで、シュノーケル型対物レンズとアウトレンズ型対物レンズの性能両立化を図っている。図2に示した軸上磁場曲線は、代表的なものでシュノーケル型対物レンズ軸上磁場曲線29、アウトレンズ型対物レンズ軸上磁場曲線30、本実施例の対物レンズ軸上磁場曲線31のそれぞれを示している。
 ここで、図3を用いて、シュノーケル型、アウトレンズ型、本実施例のレンズそれぞれの形状と発生する軸上磁場の関係を説明する。これらは図3で示すレンズ形状のうち、図示した内磁路と外磁路の位置関係によって区別される。一般的には、内磁路が試料側に突き出している場合、対物レンズ主面25すなわち最も軸上磁場強度が強い位置は、図2のシュノーケル型対物レンズ軸上磁場曲線29のように、Z軸座標0mmよりもプラス側(試料側)に位置する。一方で、内磁路よりも外磁路が試料側に近くなるアウトレンズ型対物レンズでは、対物レンズ主面25(最も軸上磁場が強い位置)がZ軸座標0mmよりもマイナス側(対物レンズ内部側)に位置する。
 シュノーケル型対物レンズの対物レンズ主面25の位置が試料に近づくということは、対物レンズ主面25からの焦点距離が短くなること(短焦点化)で、各収差の低減が図れることから高分解レンズとなる。一方で、アウトレンズ型対物レンズの場合、外磁路の位置よりも上方に試料を置くことができないため、対物レンズ主面25から試料までの距離が制限され短焦点化に限りがあることから、高分解化も限りがある。
 本実施例の対物レンズ形状の特長の一つとして、シュノーケル型対物レンズのレンズ主面位置と、アウトレンズ型対物レンズのレンズ主面位置の間に位置するように、内磁路と外磁路を配置し、形状最適化されていることが挙げられる。ここで重要なポイントは、Z軸座標0mm付近が最大軸上磁場となるように内磁路、外磁路を配置することである。
 その理由は、上記したようにZ軸座標0mmがプラス側(試料側)になるよう内磁路と外磁路を配置すると、高分解レンズであるシュノーケル型対物レンズとなり、分解能観察においては有利であるが、図2のシュノーケル型軸上磁場曲線29のように、強度の強い磁場が試料上に近づき、この強度の強い磁場の影響で、試料から発生する反射電子軌道を変えてしまい、条件(試料からの反射電子出射角)によっては検出不可能な反射電子軌道となってしまう。なお、この場合の反射電子検出器19は、図3に示す位置に配置する。
 したがって、試料上の磁場強度の影響で検出できない反射電子が存在する状況は、本実施例の意図と異なる。
 一方で、Z軸座標0mmがマイナス側(対物レンズ内部側)になるよう内磁路と外磁路を配置すると、上記したアウトレンズ型対物レンズとなる。アウトレンズ型対物レンズは、試料上の磁場強度は小さく、反射電子軌道に影響を与えないため、本実施例の意図に沿っているが、レンズ主面位置から試料までの焦点距離に制限があり高分解能化に限りがある点で、本発明を達成することができない。
 以上の理由により、図2で示す本実施例の対物レンズ軸上磁場曲線31となるように、Z軸座標0mm付近が最大軸上磁場となるように内磁路、外磁路を配置することが重要となる。
 詳細は、実施例2、3、4に記載する。
 理想的な軸上磁場としては、図2に示す本実施例の対物レンズ磁場曲線31となるが、走査電子顕微鏡で使用するに当たっては、観察試料上での磁場強度、二次電子または反射電子の軌道(対物レンズの漏れ磁場強度および引き上げ電極などによる電界強度)、代表的には球面収差、色収差の低減化、低真空観察時の作動絞り配置の4項目が発明の重要ポイントとなっている。原理的にはシュノーケル型対物レンズ軸上磁場曲線29のようにピークのZ軸座標は大きいほうが分解能の点で有利であるが、上述したようにシュノーケル型対物レンズには欠点もあるため、本実施例の対物レンズはシュノーケル型の対物レンズとアウトレンズ型の対物レンズの中間的な磁場特性となるように、対物レンズの形状を設計する。設計には磁場のシミュレーションが用いられる。
 本実施例は、実施例1の構成を有する走査電子顕微鏡において、対物レンズ7下面に半導体反射電子検出器19を配置することに関する。
 対物レンズ形状と半導体反射電子検出器の形状および配置について図3に示す。また、半導体反射電子検出器から観察対象となる試料までの軸上磁場と、反射電子軌道に関するシミュレーション結果について図4に示す。なお、図4の上のグラフは、横軸にZ軸座標(Z軸座標0はWD=0mm、Z軸座標5.0mmはWD=5mmを示している)、縦軸に軸上磁場(Gauss)を示している。また図4下図は、光軸を中心に軸対称片側のみを表示させた、反射電子軌道を示しており、Z軸座標5.0mm(WD=5mm)の試料位置において軸上磁場を可変させたときのシミュレーション結果である。
 本実施例で一番重要なポイントは、“試料から発生した反射電子の軌道に影響を与えない、対物レンズ最大軸上磁場強度を見出すこと”と、“その軸上磁場強度を発生可能な対物レンズ形状で球面収差係数および色収差係数を最小にすること”の2点である。
 ここで図4に示したシミュレーション結果について説明する。条件として、デフォルトの対物レンズ形状とし、励磁コイルに流す電流量を増やしながら軸上磁場強度をプロットする。その後、半導体反射電子検出器(BSED)と試料間の軸上磁場強度を基に、反射電子軌道をそれぞれの磁場強度に対して計算をするという方法を取った。加速電圧はいずれも30kVを想定した。したがって一次電子ビームのエネルギーと試料から発生する反射電子のエネルギーも30kVとなる。この結果から、試料上約700Gauss、さらに半導体反射電子検出器位置で約1,500Gaussの磁場強度の空間内では、反射電子は直進し、磁場の影響を受けずに、反射電子検出素子まで到達することがわかった。
 したがって、対物レンズの仕様は以下となる。
 1.形状:試料上700Gauss以下、半導体反射電子検出器位置で1,500Gauss以下となる軸上磁場を発生し、フォーカス可能な対物レンズ形状(加速電圧30kV)。
 2.E×B(ウィーンフィルタ)を対物レンズ内に搭載し、高真空で高分解能観察時に主検出器として使用が可能な構成。
 3.半導体反射電子検出器を対物レンズ下面に配置可能な構成。
 この実施例では以下の効果が期待される。
 1.対物レンズの漏れ磁場による反射電子の軌道への影響はなく、条件変更(例えばWD作動距離を変更など)による像質変化はない。
 2.従来のシュノーケル型対物レンズと同様、E×B(ウィーンフィルタ)を使用した高収率で高解像度の画像を得ることができる。
 3.レンズ主面位置がアウトレンズ型対物レンズよりも試料側に移動するため、低収差化と、低真空時の差動絞り(オリフィス)を試料に近づけて配置できる。これによって高真空、低真空問わず高解像度の画質改善が見込める。
 上述の反射電子軌道のシミュレーションを踏まえて、反射電子が磁場の影響を受けずに反射電子検出器にたどり着く磁場の最大値(限界軸上磁場)を発生させるような対物レンズ形状になるまで、対物レンズの形状を変化させて、当該対物レンズによる発生磁場および反射電子軌道のシミュレーションが繰り返される。これによって、対物レンズは、最終的に、例えば図3に示す形状のように、試料から発生した反射電子がそのままの方向を保って反射電子検出器まで到達するような磁場を発生させる形状となる。すなわち、このようにして得られた対物レンズを用いることで、対物レンズ下に設けられた反射電子検出器と試料との間の空間に、反射電子が試料からの発生直後の軌道を保てる程度の強度で、対物レンズからの漏れ磁場を形成させることができる。
 ここで、条件変更(例えばWD作動距離を変更)したときの画像の違いを確認した画像と考えられる原因について図5および図6で示す。
 図5の画像はシュノーケル型対物レンズで撮影した画像であり、そのときの反射電子軌道を模式的に表現した図と、それに対応した実画像を示している。これらの特徴は対物レンズの作動距離(WD)を長くしていくと組成像に近づいていくことである。WDが短いとき二次電子像に近く資料の形状情報が顕著となるが、徐々にWDを長くしていくと立体感が少なくなっていき、組成情報が顕著となる。
 実画像からは、対物レンズの磁場の影響が最も強いWDが短い条件と、磁場の影響が小さいWDが長い条件とで、反射電子の軌道が異なることによる像質の違いがよく示されている。
 このようにWDの変化によって像質が変わることが課題である。ここで、上述したように反射電子の軌道に基づいて定められた形状の対物レンズを用いれば、反射電子の軌道が曲がらないので、WDを変化させても一定の像質の画像を得ることができる。
 また図6では検出器の検出素子と反射電子の出射角についても考察した。WDが短いとき、検出素子に到達する反射電子は浅い角度のものが多いことが考えられる。通常、反射電子は弾性散乱するが、サンプル形状により浅い角度の反射電子が取り込まれると立体的な画像になる。特に、光軸付近の反射電子(サンプルの表面に対し垂直に発生した反射電子)は検出素子の穴部を通過するため、立体情報を持った反射電子が画像を形成し、組成情報が少なくなったのではと考える。
 これに対し、長WDの場合は対物レンズの励磁が弱いこともあり、WDが長くなるほど光軸付近の反射電子も検出素子に到達し、組成情報が多くなったことが考えられる。
 以上に示したとおり、本発明によれば、対物レンズの漏れ磁場による反射電子の軌道への影響を低減させるとともに、対物レンズの作動距離の変更による像質変化が少なくなる。また、シュノーケル型対物レンズと同様、E×B(ウィーンフィルタ)を使用した高収率で高解像度の画像を得ることができる。また、レンズ主面位置がアウトレンズ型対物レンズよりも試料側に移動するため、対物レンズの収差を抑えることができる。さらに、低真空時の差動絞り(オリフィス)を試料に近づけて配置でき、一次電子ビームの散乱の影響を受けない環境も作り出せることで高真空、低真空問わず高分解能の観察が可能となる。
 本実施例は、実施例1の構成を有する走査電子顕微鏡において、対物レンズ主面25よりも上方つまり対物レンズ内部にて、反射電子検出器19または、反射電子情報を得るために設けた反射板などを配置し、画像を取得する方法に関する。
 図4(図4:WD5mm漏れ磁場比較図象)に示した反射電子軌道シミュレーション図象は、反射電子検出器19を対物レンズ7下面に配置した場合に、試料から発生した様々な出射角の反射電子が、反射電子検出器19に到達することを示した図象である。ここで、光軸35付近の反射電子軌道に着目すると、光軸近傍で発生した反射電子は、対物レンズ7の内部方向(上方)へ行くことがわかる。これらの反射電子も取り込むために、図1に示すエネルギー分離器(ExB)付近に反射電子検出器19または、反射電子情報を得るために設けた反射板などを配置しても良い。この光軸35近傍の電子を多く取り込むために、内磁路の開口部を広くすることも効果的である。
 本実施例は、実施例1の構成を有する走査電子顕微鏡において、対物レンズの駆動電源および動作条件において、シュノーケル型対物レンズよりも優れていることに関する。
 実施例1で記載したように、シュノーケル型対物レンズは、図2のシュノーケル型対物レンズ軸上磁場曲線29のような軸上磁場を発生し、また磁場強度も、実施例1から3に説明した対物レンズやアウトレンズ型対物レンズのそれよりも強い。このタイプのレンズでは、大きな駆動電圧および励磁電流を必要とし、コイルの発熱も上昇することからコイル冷却などの工夫が必須となる。一方で、アウトレンズ型対物レンズでは、少ない駆動電圧、励磁電流で動作が可能で、コイル冷却などの工夫は必要としない。
 実施例1から3に説明した対物レンズの場合、発生する軸上磁場がシュノーケル型対物レンズとアウトレンズ型対物レンズの中間であるため、駆動電圧、励磁電流、コイル発熱に対して検討が必要であるが、本発明の目的を十分達成可能なレンズ形状においては、アウトレンズ型対物レンズと同様に考えてよく、比較的少ない駆動電圧、励磁電流で動作が可能で、コイル冷却も必要ないことは、シミュレーションによってわかっている。
 したがって、高分解能化(短焦点化)と効率的な反射電子検出に加え、省電源・電流動作の実現が可能である。
1 電子源
2 第一コンデンサレンズ
3 第二コンデンサレンズ
4 偏向コイル
5 エネルギー分離器(E×B)
6、27 二次電子検出器
7 対物レンズ
8 試料台
9 第一差動絞り
10 二次電子および二次電子軌道
11 対物レンズ磁場範囲
12 排気系
13 電子銃排気配管
14 二次電子検出器アンプ
15 ディスプレイ部
16 ニードルバルブ
17 電子銃
18 一次電子ビーム
19 反射電子検出器
20 二次電子検出器電極(+10kV)
21 第一ロータリーポンプ(低真空用)
22 第二ロータリーポンプ(排気系背圧排気用)
23 試料室
24 二次電子検出器のアース電極
25 対物レンズ主面
26 反射電子および反射電子軌道
28 二次電子コレクタ電極
29 シュノーケル型対物レンズ軸上磁場曲線
30 アウトレンズ型対物レンズ軸上磁場曲線
31 本発明の対物レンズ軸上磁場曲線
32 WD作動距離
33 WDが短いときの反射電子画像
34 WDが長いときの反射電子画像
35 光軸

Claims (6)

  1.  荷電粒子源と、
     対物レンズを含み前記荷電粒子源から放出される一次荷電粒子線を集束して試料上で走査する荷電粒子光学系と、
     前記対物レンズで発生する磁場によって対物レンズ内に巻き上げられた、前記試料から発生する二次電子を検出する二次電子検出器と、
     前記一次荷電粒子線の照射によって前記試料から発生する反射電子を検出する反射電子検出器と、
     前記複数のレンズを制御する制御部とを備え、
     前記二次電子検出器および前記反射電子検出器の信号を用いて前記試料の画像を取得する走査電子顕微鏡であって、
     前記対物レンズは、前記反射電子が試料からの出射方向を保ったまま前記反射電子検出器に到達できる強度の磁場を、試料と対物レンズとの間の空間に発生させることを特徴とする走査電子顕微鏡。
  2.  請求項1に記載の走査電子顕微鏡において、
     前記対物レンズの主面近傍に差動排気用のオリフィスが配置され、前記電子線の通路は高真空に、試料が配置される試料室は低真空に、区分けされることを特徴とする走査電子顕微鏡。
  3.  請求項1または2に記載の走査電子顕微鏡において、
     前記反射電子検出器は前記対物レンズの下方に設置されることを特徴とする走査電子顕微鏡。
  4.  請求項1ないし3の走査電子顕微鏡において、
     前記対物レンズ内に設置されたE×B偏向器を有することを特徴とする走査電子顕微鏡。
  5.  請求項1ないし4に記載の走査電子顕微鏡において、
     前記試料から前記対物レンズ下面までの空間における前記対物レンズからの漏れ磁場は、反射電子のエネルギーに応じて可変であって、かつ、前記対物レンズからの漏れ磁場に対し前記試料から発生した反射電子の軌道に影響が無い条件で最適化された対物レンズ形状を有することを特徴とする走査電子顕微鏡。
  6.  請求項1ないし5に記載の走査電子顕微鏡において、前記試料から発生した反射電子は出射された方向のまま反射電子検出器まで到達し、前記対物レンズと前記試料と距離を変化させても一定の像質で観察が可能な走査電子顕微鏡。
PCT/JP2012/072839 2011-10-31 2012-09-07 走査電子顕微鏡 WO2013065399A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541666A JP5953314B2 (ja) 2011-10-31 2012-09-07 走査電子顕微鏡

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238167 2011-10-31
JP2011238167 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065399A1 true WO2013065399A1 (ja) 2013-05-10

Family

ID=48191758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072839 WO2013065399A1 (ja) 2011-10-31 2012-09-07 走査電子顕微鏡

Country Status (2)

Country Link
JP (1) JP5953314B2 (ja)
WO (1) WO2013065399A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053262A1 (ja) * 2013-10-08 2015-04-16 株式会社日立ハイテクノロジーズ 荷電粒子線装置、荷電粒子線装置の制御方法
WO2016121226A1 (ja) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 荷電粒子線装置及び走査電子顕微鏡
JP2018049728A (ja) * 2016-09-21 2018-03-29 日本電子株式会社 対物レンズおよび透過電子顕微鏡
JP2020021733A (ja) * 2018-08-03 2020-02-06 株式会社ニューフレアテクノロジー 電子光学系及びマルチビーム画像取得装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364255A (ja) * 1986-09-04 1988-03-22 Tadao Suganuma 粒子線照射装置
JPH09320504A (ja) * 1996-05-30 1997-12-12 Jeol Ltd 低真空走査電子顕微鏡
JPH11297264A (ja) * 1998-04-08 1999-10-29 Toshiba Corp 形状観察装置
JP2009245678A (ja) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp 走査電子顕微鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364255A (ja) * 1986-09-04 1988-03-22 Tadao Suganuma 粒子線照射装置
JPH09320504A (ja) * 1996-05-30 1997-12-12 Jeol Ltd 低真空走査電子顕微鏡
JPH11297264A (ja) * 1998-04-08 1999-10-29 Toshiba Corp 形状観察装置
JP2009245678A (ja) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp 走査電子顕微鏡

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053262A1 (ja) * 2013-10-08 2015-04-16 株式会社日立ハイテクノロジーズ 荷電粒子線装置、荷電粒子線装置の制御方法
CN105593966A (zh) * 2013-10-08 2016-05-18 株式会社日立高新技术 带电粒子束装置、带电粒子束装置的控制方法
US9881769B2 (en) 2013-10-08 2018-01-30 Hitachi High-Technologies Corporation Charged particle beam device and charged particle beam device control method
WO2016121226A1 (ja) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 荷電粒子線装置及び走査電子顕微鏡
JP2016143514A (ja) * 2015-01-30 2016-08-08 松定プレシジョン株式会社 荷電粒子線装置
TWI680488B (zh) * 2015-01-30 2019-12-21 日商松定精度股份有限公司 荷電粒子線裝置及掃描電子顯微鏡
JP2018049728A (ja) * 2016-09-21 2018-03-29 日本電子株式会社 対物レンズおよび透過電子顕微鏡
JP2020021733A (ja) * 2018-08-03 2020-02-06 株式会社ニューフレアテクノロジー 電子光学系及びマルチビーム画像取得装置

Also Published As

Publication number Publication date
JP5953314B2 (ja) 2016-07-20
JPWO2013065399A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6386679B2 (ja) 荷電粒子線装置及び走査電子顕微鏡
JP7302916B2 (ja) 荷電粒子線装置
JP2021528833A (ja) 低エネルギー走査型電子顕微鏡システム、走査型電子顕微鏡システム及び試料検知方法
JP6177817B2 (ja) 荷電粒子線装置及び走査電子顕微鏡
US6555816B1 (en) Scanning electron microscope and sample observation method using the same
JP2010512628A (ja) 粒子光学装置
JP2010055756A (ja) 荷電粒子線の照射方法及び荷電粒子線装置
WO2013065399A1 (ja) 走査電子顕微鏡
JP5504277B2 (ja) 走査電子顕微鏡
US20180226221A1 (en) Wide field atomospheric scanning electron microscope
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
US9543115B2 (en) Electron microscope
JP5478683B2 (ja) 荷電粒子線の照射方法及び荷電粒子線装置
JP2003151484A (ja) 走査型荷電粒子ビーム装置
JP6204388B2 (ja) 荷電粒子線装置及び走査電子顕微鏡
US20090057558A1 (en) Scanning electron microscope
JP6462729B2 (ja) 荷電粒子線装置及び走査電子顕微鏡
WO2024100828A1 (ja) 荷電粒子線装置、および荷電粒子線装置の制御方法
WO2022064628A1 (ja) 電子顕微鏡
JP3955447B2 (ja) 荷電粒子ビーム制御装置及びそれを用いた荷電粒子ビーム光学装置、ならびに荷電粒子ビーム欠陥検査装置
JPH09190793A (ja) 走査電子顕微鏡
JP2011138648A (ja) 荷電粒子線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845989

Country of ref document: EP

Kind code of ref document: A1