WO2013065351A1 - 漏水探索装置および漏水探索方法 - Google Patents

漏水探索装置および漏水探索方法 Download PDF

Info

Publication number
WO2013065351A1
WO2013065351A1 PCT/JP2012/065909 JP2012065909W WO2013065351A1 WO 2013065351 A1 WO2013065351 A1 WO 2013065351A1 JP 2012065909 W JP2012065909 W JP 2012065909W WO 2013065351 A1 WO2013065351 A1 WO 2013065351A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
conductive
conductive pipe
water leakage
pipe
Prior art date
Application number
PCT/JP2012/065909
Other languages
English (en)
French (fr)
Inventor
研一 渡邊
Original Assignee
株式会社グッドマン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グッドマン filed Critical 株式会社グッドマン
Priority to JP2013541653A priority Critical patent/JP6071894B2/ja
Publication of WO2013065351A1 publication Critical patent/WO2013065351A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/16Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
    • G01M3/18Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/40Investigating fluid-tightness of structures by using electric means, e.g. by observing electric discharges

Definitions

  • the present invention relates to a water leak search device and a water leak search method for searching for a water leak location of an embedded non-conductive pipe.
  • Water supply / drainage pipes may leak due to damage due to natural disasters such as earthquakes or aging due to long-term use.
  • the worker listens to the water leakage sound using a sound stick and estimates the water leakage point from the water leakage sound.
  • the location of the pipeline is confirmed using a metal detector or the like, and then the location of the water leak is investigated.
  • the worker in the method of listening to the leaking sound, the worker must have a skilled skill to recognize the noise that is very similar to the leaking sound, and even if there is that skill, the worker can hear the leaking sound in a work environment where the noise is severe. However, it was a difficult task. Further, when the water supply / drainage pipe is formed of a material other than metal, such as a vinyl chloride pipe (including a form in which a metal cable is wound around the water supply / drainage pipe), the buried position cannot be confirmed.
  • a vinyl chloride pipe including a form in which a metal cable is wound around the water supply / drainage pipe
  • Patent Document 1 As one means for solving such a problem, there is an invention disclosed in Patent Document 1 below.
  • a conductive locating wire is laid along the pipe line, and an electromagnetic wave generated by a high-frequency current flowing in the locating wire is detected on the ground surface to detect the buried position of the water supply / drainage pipe and the water leakage location. Yes.
  • Patent Document 1 In order to carry out the invention disclosed in Patent Document 1 and search for a water leak point in a water supply / drainage pipe, it is essential that a conductive locating wire is laid or can be laid at least along the pipe line. It is. Moreover, since the switching means connected to the locating wire is provided only at a predetermined location, it is possible to detect only water leakage occurring within a predetermined range.
  • An object of the present invention is to provide a water leak search device and a water leak search method capable of easily searching for a water leak location of a non-conductive pipe.
  • the water leakage search apparatus for achieving the above object includes a transmission unit, a reception unit, and a notification unit.
  • the transmitting unit transmits a high-frequency current to a conductive fluid flowing through the non-conductive pipe through a metal body attached to the non-conductive pipe.
  • the receiving unit receives electromagnetic waves generated by high-frequency current from outside the non-conductive pipe.
  • the reporting unit reports the location of water leakage based on the strength of the received electromagnetic waves.
  • the location of the water leak is searched by carrying out the reporting stage of reporting the location of the water leak by the strength of the electromagnetic wave.
  • the leak detection device it is possible to easily detect a leak point without requiring a skilled worker who can distinguish the leak sound and without taking any special measures for the non-conductive pipe.
  • the water leak search method it is not necessary to search for a pipeline in advance, and a leak location can be easily detected while searching for a pipeline.
  • step S300 of the operation flowchart of FIG. It is an image figure of the pipe line search of FIG. It is a subroutine flowchart of step S400 of the operation
  • movement flowchart of FIG. It is an image figure of electromagnetic wave reception in the position A corresponding to the water leak location of FIG.
  • the water leakage search device and the water leakage search method according to the present embodiment flow a high-frequency current through a conductive fluid flowing through a non-conductive pipe and recognize the strength of the magnetic field of the high-frequency current flowing along the conductive fluid from the outside.
  • the strength of the magnetic field that can be recognized from the outside is drastically attenuated at the leak point. For this reason, even when the conductive fluid is not pumped through the non-conductive pipe, the location of water leakage can be easily identified.
  • the non-conductive pipe is assumed to be, for example, a PVC pipe.
  • a PVC pipe it is not limited to a PVC pipe, but includes, for example, pipes that are made conductive by covering the outer periphery of the conductive pipe with a conductive material.
  • the conductive fluid is assumed to be water (tap water, groundwater, etc.). However, it is not limited to water, and for example, if the fluid has a conductivity of 5 ⁇ S / cm or more, the location of water leakage can be specified.
  • FIG. 1 is an external view of a transmission unit of the water leak search apparatus according to the present embodiment.
  • FIG. 2 is an external view of the receiving unit and the reporting unit of the water leak search apparatus according to the present embodiment.
  • FIG. 3 is an image diagram of a water leak search using the water leak search apparatus according to the present embodiment.
  • the water leakage search device 10 includes a transmission unit 11, a reception unit 12, and a notification unit 13.
  • the transmission unit 11 includes a transmission output adjustment unit 111, an impedance adjustment unit 112, a transmission output display unit 113, and a positive terminal connected to the metal body 80 and a negative terminal connected to the ground electrode.
  • the transmission unit 11 transmits the high-frequency current 40 from the + terminal to the conductive fluid 30 flowing through the non-conductive pipe 20 via the metal body 80 attached to the non-conductive pipe 20.
  • the high-frequency current 40 generates an electromagnetic wave 50 around the nonconductive pipe 20.
  • the transmission output adjustment unit 111 adjusts the transmission output intensity of the high-frequency current 40. By adjusting the transmission output intensity according to the pipe length of the non-conductive pipe 20, the attenuation of the electromagnetic wave intensity according to the pipe length is corrected.
  • the impedance adjustment unit 112 adapts the impedance of the conductive fluid 30.
  • the current component of the high-frequency current 40 is recognized by adapting the impedance of the conductive fluid 30 having different impedance characteristics.
  • the transmission output display unit 113 displays the transmission output intensity of the high-frequency current 40 in real time. The operator adjusts the transmission output intensity while confirming the display of the transmission output intensity.
  • the receiving unit 12 includes an antenna 121, a grip 122, and a box 123 as shown in FIG.
  • the box 123 includes a reception sensitivity adjustment unit 124.
  • the box 123 may further include a sound generator 125.
  • the receiving unit 12 receives an electromagnetic wave 50 generated by the high-frequency current 40 from the outside 70.
  • the antenna 121 captures the electromagnetic waves 50 generated by the high-frequency current 40 near the ground of the outside 70 or the wall surface of the building.
  • the shape of the antenna 121 and the way to attach the grip 122 are arbitrary, it is preferable that the antenna 121 is attached to the T-shape. The directionality is clear, and it is easy to follow the diversion part and the bending part of non-conductive pipes by making use of this.
  • the reception sensitivity adjustment unit 124 adjusts the reception sensitivity according to the strength of the captured electromagnetic wave 50.
  • the electromagnetic wave 50 having a relatively low intensity can be detected.
  • the electromagnetic wave input sensitivity is extremely reduced at the water leakage location 60, so that it is necessary to increase the reception sensitivity in order to accurately identify the water leakage location.
  • the reception sensitivity it becomes possible to detect the electromagnetic wave 50 having a relatively strong intensity, and conversely, the electromagnetic wave 50 having a relatively low intensity cannot be detected.
  • the sound generator 125 generates sound having a magnitude corresponding to the input sensitivity of electromagnetic waves.
  • the operator can confirm the embedded position of the non-conductive pipe 20 according to the magnitude of the sound.
  • the reporting unit 13 is installed in the box 123 of the receiving unit 12 as shown in FIG.
  • the reporting unit 13 reports the water leakage location 60 based on the strength of the received electromagnetic wave 50.
  • the receiving unit 12 At the position A of the external 70 corresponding to the water leaking point 60, the receiving unit 12 attenuates more than the intensity of the electromagnetic wave detected at the other part, so that the input sensitivity of the electromagnetic wave is lower than the other part.
  • the reporting unit 13 reports the location of water leakage by displaying the input sensitivity of the electromagnetic wave 50 with respect to the reception sensitivity adjusted by the reception sensitivity adjustment unit 124.
  • the sound generation unit 125 can also report. Detailed operation of the reporting unit 13 will be described later.
  • FIG. 3 is an image diagram of a water leak search using the water leak search apparatus 10 according to the present invention.
  • a non-conductive pipe 20 is buried in the ground or the wall of the building.
  • a metal body 80 connected from the outside 70 is attached to the non-conductive pipe 20.
  • the conductive fluid 30 circulates, and if there is a damaged part in the non-conductive pipe 20, water leakage occurs at the water leak point 60.
  • the water leak search device 10 transmits a high-frequency current 40 from the + end of the transmission unit 11 to the conductive fluid 30 flowing through the nonconductive pipe 20 via the metal body 80.
  • the negative end of the transmitter 11 is connected to the ground electrode.
  • the electromagnetic wave 50 generated by the high-frequency current 40 from the receiving unit 12 is received by the external 70 and advanced in the illustrated search direction.
  • the position A point of the external 70 corresponding to the water leak location 60 is specified by the strength of the electromagnetic wave received from the reporting unit 13.
  • FIG. 4 is a diagram showing the input sensitivity of the electromagnetic wave detected in the X direction of FIG.
  • the vertical axis indicates the input sensitivity of the electromagnetic wave received by the receiving unit 12
  • the horizontal axis indicates the distance X from the metal body 80 in the search direction shown in FIG.
  • the input sensitivity of the electromagnetic wave received by the receiving unit 12 at the position A of the external 70 corresponding to the water leakage location 60 is more extreme than the input sensitivity of the electromagnetic wave received at other locations. It has decayed.
  • the leak detection device 10 according to the present invention searches for a position where the input sensitivity of electromagnetic waves is extremely attenuated.
  • FIG. 5 is a diagram showing the electromagnetic wave intensity in the Y direction of the electromagnetic wave 50 generated around the non-conductive pipe 20 of FIG.
  • the vertical axis indicates the electromagnetic wave intensity generated by the high-frequency current 40
  • the horizontal axis indicates the distance Y from the buried pipe, that is, the non-conductive pipe 20, to the outside 70 shown in FIG.
  • the electromagnetic wave intensity attenuates in inverse proportion to the square of the distance Y as the distance Y increases.
  • FIG. 6 is an operation flowchart of the water leakage search apparatus 10 according to the present invention.
  • movement flowchart shown in FIG. 6 also shows the procedure of the water leak search method which concerns on this embodiment.
  • step S100 is performed by an operator (searcher) of the leak detection device 10, and the operation of step S200 is performed by the transmission unit 11.
  • step S300 is performed by the receiving unit 12, and the operation of steps S400 to S600 is performed by the reporting unit 13.
  • Step S100> The operator of the water leak search device 10 shown in FIG. 3 prepares for electromagnetic wave intensity measurement for the transmitter 11 and the receiver 12 before the water leak search. Specific processing at this stage is shown in the flowchart of FIG. Detailed processing for preparing for electromagnetic wave intensity measurement will be described later.
  • ⁇ Step S200> As shown in FIG. 3, the operator connects the + terminal of the transmitter 11 to the metal body 80 and embeds the ground electrode connected to the ⁇ terminal in the ground. The operator turns on the power of the transmission unit 11. The transmitter 11 continues to transmit the high-frequency current 40 that has been appropriately adjusted to the conductive fluid 30 in the electromagnetic wave intensity measurement preparation stage. The high-frequency current 40 flowing through the conductive fluid 30 generates an electromagnetic wave 50. The intensity of the electromagnetic wave 50 is such that the input sensitivity centered on the non-conductive pipe 20 can be easily searched from the outside 70.
  • Step S300> The operator positions the antenna 121 of the receiving unit 12 on the pipe path of the non-conductive pipe 20 and moves the antenna 121 along the pipe path of the non-conductive pipe 20.
  • the receiving unit 12 receives the electromagnetic wave 50 generated around the non-conductive pipe 20. Detailed processing of electromagnetic wave reception on the pipeline will be described later.
  • Step S400> The operator moves the antenna 121 along the pipe path of the non-conductive pipe 20 and proceeds on the pipe path. As shown in FIG. 3, the intensity of the electromagnetic wave 50 received by the receiving unit 12 is extremely attenuated at the water leak location 60 of the non-conductive pipe 20.
  • the reporting unit 13 outputs a report for specifying the water leakage location 60 when the intensity of the electromagnetic wave 50 is extremely attenuated. Detailed processing of the leak location search will be described later.
  • Step S500> It is determined whether or not the water leak location 60 has been detected. When the water leak location 60 is not detected, it moves to step S300 and searches for the water leak location 60 on the pipe line of the non-conductive pipe 20 ahead by the same method.
  • Step S600> When the water leak location 60 is detected, the operator is notified of water leak detection.
  • the notification of water leakage detection may be performed by outputting a display of “water leakage detection” to the notification unit 13 or by outputting an alarm sound from the sound generation unit 125.
  • FIG. 7 is a subroutine flowchart of step S100 in the operation flowchart of FIG.
  • Step S101> In the state where the positive terminal of the transmission unit 11 and the metal body 80 attached to the non-conductive pipe 20 in which the conductive fluid 30 circulates are connected by a cable, the negative terminal of the transmission unit 11 and the ground electrode are connected. The power supply of the unit 11 is turned on, and the high frequency current 40 is transmitted to the conductive fluid 30.
  • the metal body 80 only needs to be in direct contact with the conductive fluid 30, such as a valve and a joint portion of the nonconductive pipe 20.
  • the high-frequency current 40 flows into the conductive fluid 20 in the non-conductive pipe 20 due to an electrical shielding action between the non-conductive pipe 20 and the ground, and generates an electromagnetic wave 50 centering on the non-conductive pipe 20.
  • the transmission output intensity of the high-frequency current 40 is appropriately adjusted according to the pipe diameter of the non-conductive pipe 20 and the water leak search range.
  • the transmission output intensity is adjusted to be relatively large. It is preferable to adjust while confirming the display of the transmission output display unit 113.
  • the impedance of the conductive fluid 30 is adapted from the impedance adjustment unit 112.
  • Step S103> The power of the receiving unit 12 is turned on, and the electromagnetic wave 50 generated by the high-frequency current 40 is captured near the ground or wall surface of the outside 70 from the antenna 121.
  • the reception sensitivity adjustment unit 124 adjusts the reception sensitivity according to the strength of the captured electromagnetic wave 50. It is preferable to set the sensitivity so that a water leak search described later can be easily performed while confirming the display of the reporting unit 13. At this stage, the transmission output intensity is also adjusted as necessary to complete the preparation for electromagnetic wave intensity measurement.
  • FIG. 8 is a subroutine flowchart of step S300 of the operation flowchart of FIG.
  • Step S301> A determination is made as to whether a search for a pipeline is necessary. When the burying position of the buried non-conductive pipe 20 is known before searching for the water leak location 60, the pipe path can be already identified, and therefore the search for the pipe path is unnecessary.
  • Step S302 When a search for a pipeline is necessary, it is further determined whether or not the search for the pipeline is a pipeline search from a branch position. When it is not the pipe line search from the diversion position, the search direction is also determined by the known pipe line, and the process proceeds directly to step S306.
  • the diversion position may be the position of the joint portion and the valve portion of the two non-conductive pipes 20 exposed to the outside 70 as in the metal body 80 described above, but is not limited thereto, and is not embedded.
  • the position of an arbitrary joint portion of the conductive pipe 20 is also included.
  • a plurality of non-conductive pipes 20 are connected to each other depending on the buried position of the joint, and the conductive fluid 30 is diverted.
  • Step S303> When searching for a pipeline from a branch position, the search direction is not determined, and therefore the electromagnetic wave intensity is measured while receiving the surrounding electromagnetic wave 50 around the branch position.
  • Step S304> In the electromagnetic wave 50 received in the surroundings, it is determined that the nonconductive pipe 20 is embedded at a position where the input sensitivity of the electromagnetic wave 50 is relatively high, and the pipe path is specified.
  • the input sensitivity of electromagnetic waves at the embedded positions of the non-conductive pipes 20 may be different from each other, but the input sensitivity is relatively high within each search range ( Therefore, the pipeline can be specified.
  • Step S305> One of the identified one or a plurality of pipelines is selected, and the direction from the branch position is determined as the search direction.
  • Step S306 The electromagnetic wave 50 is received while moving the receiving unit 12 in the direction crossing the search direction in the search direction, and the electromagnetic wave intensity is measured.
  • Step S307> Among the electromagnetic waves 50 received in the direction crossing the search direction, it is determined that the non-conductive pipe 20 is buried at a position where the input sensitivity of the electromagnetic wave is relatively high, and the pipe path is specified.
  • FIG. 9 is an image of the pipeline search. As shown in FIG. 5, the electromagnetic wave 50 generated by the high-frequency current 40 flowing through the conductive fluid 30 in the nonconductive pipe 20 attenuates the electromagnetic wave intensity in inverse proportion to the square of the distance Y as the distance Y increases. .
  • the electromagnetic wave 50a having a relatively high electromagnetic wave intensity is received at the point B of the outside 70 that is a distance a away from the center of the non-conductive pipe 20, and the input sensitivity of the electromagnetic wave is relatively high.
  • an electromagnetic wave 50b having a relatively low electromagnetic wave intensity is received at positions C and D of the outside 70 that are separated from the center of the non-conductive pipe 20 by a distance b (b> a), and the input sensitivity of the electromagnetic wave is also relatively high. Very low.
  • the non-conductive pipe 20 is embedded at the external 70 position B point where the electromagnetic wave input sensitivity is relatively high, and the pipe path is specified.
  • FIG. 10 is a subroutine flowchart of step S400 in the operation flowchart of FIG.
  • Step S401> Measure the electromagnetic wave intensity on the pipe line of the specified non-conductive pipe 20, confirm the change of input sensitivity of the received electromagnetic wave 50 from the display of the notification unit 13, and whether the input sensitivity suddenly drops (extreme attenuation)? Judge whether or not. If the sudden drop in the input sensitivity of the electromagnetic wave 50 has not occurred, the reporting unit 13 determines that the water leakage location has not been detected.
  • the conductive fluid 30 in the non-conductive pipe 20 is short-circuited with the ground, and instead of receiving the electromagnetic wave 50d having the normal electromagnetic wave intensity, the electromagnetic wave intensity is increased.
  • the electromagnetic wave 50c that is significantly attenuated is received. In this case, even if the receiving sensitivity is increased, it is difficult to obtain the input sensitivity of the electromagnetic wave 50c.
  • the input sensitivity of the electromagnetic wave 50 gradually increases again. This is because the high-frequency current 40 flows through the conductive fluid 30 that has not leaked at the water leakage location 60, so that the strength of the electromagnetic wave 50 is increased again.
  • the input sensitivity of the electromagnetic wave 50 does not change much even if the reception sensitivity changed due to the change in the embedding depth of the non-conductive pipe 20 even if the pipe line ahead is advanced in the search direction.
  • Step S403> It is determined whether or not the input sensitivity of the electromagnetic wave 50 can be obtained again by increasing the reception sensitivity.
  • the reporting unit 13 determines that the water leak location 60 has not been detected.
  • the water leakage search device As described above, according to the water leakage search device according to the present embodiment, it is possible to easily locate a water leakage point without requiring a skilled worker who can distinguish a water leakage sound and without taking special measures for non-conductive piping. Can be detected. Moreover, according to the water leak search method according to the present embodiment, it is not necessary to search for a pipeline in advance, and a leak location can be easily detected while searching for a pipeline.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

【課題】埋設された非導電性配管の漏水箇所を探索する。 【解決手段】埋設された非導電性配管20の漏水箇所60を探索する漏水探索装置10であって、非導電性配管20に取り付けた金属体80を介して、非導電性配管20内を流通する導電性流体30に高周波電流40を送信する送信部11と、高周波電流40が生成する電磁波50を非導電性配管20の外部70から受信する受信部12と、受信された電磁波50の強弱により漏水箇所60を通報する通報部13と、を備える

Description

漏水探索装置および漏水探索方法
 本発明は、埋設された非導電性配管の漏水箇所を探索する漏水探索装置および漏水探索方法に関する。
 給排水管は、地震などの自然災害による破損または長年の使用による老朽化によって漏水を起こすことがある。従来、給排水管の漏水箇所の調査は、作業者が音聴棒を使って漏水音を聴音し、漏水音から漏水箇所を推定している。事前に配管路の正確な埋設位置が分からないときには、金属探知機等を使用して配管路の埋設位置を確認し、その後に漏水個所を調査している。
 しかし、漏水音を聴音する方法では、作業者は漏水音と酷似した雑音を聞き分ける熟達した技量を持たなければならず、その技量があっても、雑音が酷い作業環境下では漏水音を聞き分けることが至難の業であった。また、給排水管が塩ビ配管等のように金属製以外の材料で形成されているとき(給排水管に金属ケーブルが巻き付けられている形態も含む)には、その埋設位置の確認もできない。
 このような問題を解決するための一つの手段として、下記特許文献1に開示されている発明がある。この発明では、配管路に沿って導電性のあるロケーティングワイヤを布設し、ロケーティングワイヤに流れる高周波電流が生成する電磁波を地表で探知することで給排水管の埋設位置および漏水箇所を検出している。
特開平11-270772号公報
 上記特許文献1に開示された発明を実施して給排水管の漏水箇所を探索するためには、少なくとも配管路に沿って導電性のあるロケーティングワイヤが布設されているか布設可能であることが必須である。また、ロケーティングワイヤに接続するスイッチング手段を予め定める箇所にのみ設けているため、定められた範囲で発生する漏水しか検出することができない。
 ところが、実際には、埋設された既設の配管路に沿って導電性のあるロケーティングワイヤを布設できないことが多いし、漏水がスイッチング手段を設けた箇所でのみ発生するとは限らない。
 本発明は、上記事情を鑑みてなされたものであり、既設の非導電性配管路に対し手を加えることなく、非導電性配管内を流通する導電性流体を利用することによって、埋設された非導電性配管の漏水箇所を容易に探索することができる漏水探索装置および漏水探索方法の提供を目的とする。
 上記の目的を達成するための本発明に係る漏水探索装置は、送信部、受信部、通報部を備える。
 送信部は非導電性配管に取り付けた金属体を介して、非導電性配管内を流通する導電性流体に高周波電流を送信する。
 受信部は高周波電流が生成する電磁波を非導電性配管の外部から受信する。
 通報部は受信された電磁波の強弱により漏水箇所を通報する。
 上記の目的を達成するための本発明に係る漏水探索方法は、非導電性配管に取り付けた金属体を介して、非導電性配管内を流通する導電性流体に高周波電流を送信する送信段階と、高周波電流が生成する電磁波を非導電性配管の外部から受信する受信段階と、非導電性配管の埋設位置を特定する非導電性配管路特定段階と、特定した非導電性配管路で受信された電磁波の強弱により漏水箇所を通報する通報段階と、を実施することによって漏水個所を探索する。
 本発明に係る漏水探索装置によれば、漏水音の聞き分けができる熟練作業員を要することなく、かつ非導電性配管に特別な措置を取ることなく、容易に漏水箇所を検出することができる。
 本発明に係る漏水探索方法によれば、事前に配管路の探索をする必要はなく、配管路を探索しながら、容易に漏水箇所を検出することができる。
本実施形態に係る漏水探索装置の送信部の外観図である。 本実施形態に係る漏水探索装置の受信部および通報部の外観図である。 本実施形態に係る漏水探索装置を用いた漏水探索のイメージ図である。 図3のX方向で検出される電磁波の入力感度を示す図である。 図3の非導電性配管を中心に生成する電磁波のY方向における電磁波強度を示す図である。 本実施形態に係る漏水探索装置の動作フローチャートである。 図6の動作フローチャートのステップS100のサブルーチンフローチャートである。 図6の動作フローチャートのステップS300のサブルーチンフローチャートである。 図8の配管路探索のイメージ図である。 図6の動作フローチャートのステップS400のサブルーチンフローチャートである。 図3の漏水箇所に対応する位置Aにおける電磁波受信のイメージ図である。
 以下、添付した図面を参照しながら、本発明の漏水探索装置および漏水探索方法の実施形態を詳細に説明する。
 本実施形態に係る漏水探索装置及び漏水探索方法は、非導電性配管内を流通する導電性流体に高周波電流を流し、導電性流体に沿って流れる高周波電流の磁界の強度を外部から認識することによって、非導電性配管の漏水個所を特定する。漏水個所では外部から認識できる磁界の強度が極端に減衰する。このため、非導電性配管内を導電性流体が圧送されていない場合でも、容易に漏水個所が特定できる。
 なお、本実施形態において、非導電性配管とは、たとえば塩ビ管を想定している。しかし、塩ビ管に限らず、たとえば、導電性配管の外周を被導電性材料で覆って配管としては被導電性としたものも含む。
 また、本実施形態において導電性流体とは、水(水道水、地下水など)を想定している。しかし、水に限らず、たとえば、流体の導電率が5μS/cm以上の流体であれば漏水個所を特定できる。
 (漏水探索装置の構成)
 図1は、本実施形態に係る漏水探索装置の送信部の外観図である。図2は、本実施形態に係る漏水探索装置の受信部および通報部の外観図である。図3は、本実施形態に係る漏水探索装置を用いた漏水探索のイメージ図である。
 漏水探索装置10は、図3に示すように、送信部11、受信部12、通報部13を備える。
 送信部11は、図1に示すように、送信出力調整部111、インピーダンス調整部112、送信出力表示部113、および金属体80と接続する+端子と対地極と接続する-端子を備える。
 送信部11は、非導電性配管20に取付けられる金属体80を介して、非導電性配管20内を流通する導電性流体30に+端子より高周波電流40を送信する。高周波電流40は、非導電性配管20を中心に電磁波50を生成する。
 送信出力調整部111は、高周波電流40の送信出力強度を調整する。非導電性配管20の配管長に応じて送信出力強度を調整することで、配管長に応じた電磁波強度の減衰を補正する。
 インピーダンス調整部112は、導電性流体30のインピーダンスを適合させる。インピーダンス特性の異なる導電性流体30のインピーダンスを適合させることで、高周波電流40の電流成分を認識する。
 送信出力表示部113は、高周波電流40の送信出力強度をリアルタイムに表示する。操作者側は送信出力強度の表示を確認しながら、送信出力強度を調整する。
 受信部12は、図2に示すように、アンテナ121、グリップ122、ボックス123を備える。ボックス123には、受信感度調整部124を備える。ボックス123に音響発生部125をさらに備えることもできる。受信部12は、高周波電流40が生成する電磁波50を外部70から受信する。
 アンテナ121は、外部70の地面または建造物の壁面の近いところで高周波電流40が生成する電磁波50を捕捉する。アンテナ121の形状およびグリップ122との取付け方は任意であるが、グリップ122とT字型に取付けることが好ましい。方向性が明確で、これを活かして非導電性配管の分流部や曲げ部にも追従しやすい。
 受信感度調整部124は、捕捉した電磁波50の強弱に応じて受信感度を調整する。受信感度をアップすることで、相対的に強度の弱い電磁波50が検出できるようになる。漏水箇所60では、図3に示すように電磁波の入力感度が極端に低下するので、さらに漏水箇所を正確に特定するためには受信感度をアップすることが必要になる。一方、受信感度をダウンすることで、相対的に強度の強い電磁波50が検出できるようになり、逆に、相対的に強度の弱い電磁波50は検出できなくなる。
 音響発生部125は、電磁波の入力感度に応じた大きさの音響を発生する。操作者は音響の大きさにより、非導電性配管20の埋設位置を確認できる。
 通報部13は、図2に示すように、受信部12のボックス123内に取付ける。通報部13は、受信された電磁波50の強弱により漏水箇所60を通報する。漏水箇所60に対応する外部70の位置A点においては、受信部12が他の箇所で検出する電磁波の強さよりも減衰するため、電磁波の入力感度は他の箇所よりも低い。通報部13は、受信感度調整部124により調整された受信感度に対する電磁波50の入力感度を表示することにより漏水箇所を通報する。なお、音響発生部125により通報することもできる。通報部13の詳細な動作については後述する。
 図3は、本発明に係る漏水探索装置10を用いた漏水探索のイメージ図である。
 図3に示すように、地中または建造物の壁内には非導電性配管20が埋設されている。非導電性配管20には、外部70から繋げられる金属体80が取付けられる。非導電性配管20内には、導電性流体30が流通し、非導電性配管20に破損個所があれば、漏水箇所60で漏水が発生する。
 本発明に係る漏水探索装置10は、送信部11の+端より金属体80を介して非導電性配管20内を流通する導電性流体30に高周波電流40を送信する。送信部11の-端は対地極に接続する。受信部12より高周波電流40が生成する電磁波50を外部70で受信しながら、図示する探索方向に前進する。通報部13より受信された電磁波の強弱により漏水箇所60に対応する外部70の位置A点を特定する。
 図4は、図3のX方向で検出される電磁波の入力感度を示す図である。この図において、縦軸は受信部12で受信される電磁波の入力感度を示し、横軸は、金属体80から図1に示した探索方向に向かう距離Xを示す。
 図を見れば明らかなように、受信部12で受信される、漏水箇所60に対応する外部70の位置A点における電磁波の入力感度は、他の箇所で受信される電磁波の入力感度よりも極端に減衰している。本発明に係る漏水探索装置10は、電磁波の入力感度が極端に減衰している位置を探索する。
 図5は、図3の非導電性配管20を中心に生成する電磁波50のY方向における電磁波強度を示す図である。この図において、縦軸は高周波電流40が生成する電磁波強度を示し、横軸は、埋設管、すなわち非導電性配管20から図3に示した外部70に向かう距離Yを示す。
 図を見れば明らかなように、電磁波強度は距離Yの増加に伴って距離Yの二乗に反比例しながら減衰する。
 (漏水探索装置の動作)
 次に、本実施形態に係る漏水探索装置10の動作を説明する。図6は、本発明に係る漏水探索装置10の動作フローチャートである。なお、図6に示した動作フローチャートは、本実施形態に係る漏水探索方法の手順を示すものでもある。
 図6の動作フローチャートにおいて、段階S100の動作は漏水探索装置10の操作者(探索者)が行い、段階S200の動作は送信部11が行う。段階S300の動作は受信部12が行い、段階S400からS600の動作は通報部13が行う。
 <段階S100>
 図3に示した漏水探索装置10の操作者が、漏水探索前に送信部11および受信部12に対して電磁波強度測定準備を実施する。この段階の具体的な処理は、図7のフローチャートに示す。電磁波強度測定準備の詳細な処理は後述する。
 <段階S200>
 操作者は、図3に示すように、送信部11の+端子を金属体80に接続し、-端子に接続される対地極を地中に埋設する。操作者は送信部11の電源をオンさせる。送信部11は、電磁波強度測定準備段階で適宜調整後の高周波電流40を導電性流体30に送信し続ける。導電性流体30を流れる高周波電流40は電磁波50を生成する。電磁波50の強度は、非導電性配管20を中心とする入力感度が外部70から探索しやすい程度である。
 <段階S300>
 操作者は、受信部12のアンテナ121を非導電性配管20の配管路上に位置させ、アンテナ121を非導電性配管20の配管路に沿って移動させる。受信部12は、非導電性配管20を中心に生成されている電磁波50を受信する。配管路上電磁波受信の詳細な処理は後述する。
 <段階S400>
 操作者は、アンテナ121を非導電性配管20の配管路に沿って移動させ、配管路上を進む。図3に示すように、非導電性配管20の漏水箇所60では、受信部12が受信する電磁波50の強度が極端に減衰する。通報部13は、電磁波50の強度が極端に減衰したときに漏水箇所60を特定するための通報を出力する。漏水個所探索の詳細な処理は後述する。
 <段階S500>
 漏水箇所60が検出されたか否かについて判断する。漏水箇所60が検出されなかったときには、段階S300に移行して、その先の非導電性配管20の配管路上の漏水箇所60を同じ方法で探索する。
 <段階S600>
 漏水箇所60が検出されたときには、操作者に漏水の検出を通報する。漏水の検出の通報は、通報部13に「漏水検出」という表示を出力することにより行っても良いし、音響発生部125から警報音を出力することにより行っても良い。
 次に、段階S100、段階S300、段階S400の詳細な処理を示すサブルーチンフローチャートについて説明する。
 図7は、図6の動作フローチャートのステップS100のサブルーチンフローチャートである。
 <段階S101>
 送信部11の+端子と内部に導電性流体30が流通する非導電性配管20に取付けた金属体80をケーブルで接続し、送信部11の-端子と接地極とを接続した状態で、送信部11の電源をONにして、導電性流体30に高周波電流40を送信する。金属体80は、非導電性配管20のバルブおよび継ぎ手部分等、導電性があって直接導電性流体30と接触していればよい。
 高周波電流40は非導電性配管20と対地間の電気的遮蔽作用により非導電配管20内の導電性流体20に流れ、非導電性配管20を中心とする電磁波50を生成する。
 <段階S102>
 送信出力調整部111より、非導電性配管20の管径および漏水探索範囲に合せて高周波電流40の送信出力強度を適宜調整する。管径が太いまたは漏水探索範囲が広いときには、比較的大きな送信出力強度に調整する。送信出力表示部113の表示を確認しながら、調整することが好ましい。
 インピーダンス調整部112より、導電性流体30のインピーダンスを適合させる。
 <段階S103>
 受信部12の電源をONにして、アンテナ121より外部70の地面または壁面の近いところで高周波電流40が生成する電磁波50を捕捉する。
 <段階S104>
 受信感度調整部124より、捕捉した電磁波50の強弱に応じて受信感度を調整する。通報部13の表示を確認しながら、後述する漏水探索がしやすい感度に設定することが好ましい。この段階において、必要に応じて送信出力強度も合わせて適宜調整し、電磁波強度測定準備を完了する。
 図8は、図6の動作フローチャートのステップS300のサブルーチンフローチャートである。
 <段階S301>
 配管路の探索が必要か否かについて判断される。漏水箇所60を探索する前に、埋設された非導電性配管20の埋設位置がわかるときには、配管路が既に特定できるため、配管路の探索は不要である。
 <段階S302>
 配管路の探索が必要であるときには、さらに当該配管路の探索は分流位置からの配管路探索か否かについて判断される。分流位置からの配管路探索ではないときには、既知の配管路によりその探索方向も決めているため、直接段階S306へ移行する。
 分流位置とは上記の金属体80のように、外部70に露出される単なる二つの非導電性配管20の継ぎ部およびバルブ部の位置であってよいが、これに限らず、埋設された非導電性配管20の任意の継ぎ部の位置も含む。継ぎ部の埋設位置によっては複数の非導電性配管20が互いに接続し、導電性流体30を分流する。
 <段階S303>
 分流位置からの配管路探索であるときには、探索方向が決まっていないため、分流位置を中心に周囲の電磁波50を受信しながら、電磁波強度測定を行う。
 <段階S304>
 周囲で受信される電磁波50において、相対的に電磁波50の入力感度が高い位置には、非導電性配管20が埋設されていると判断され、配管路を特定する。
 複数の非導電性配管20が埋設されているときには、各非導電性配管20の埋設位置における電磁波の入力感度は互いに異なることもあるが、それぞれの探索範囲内で相対的に入力感度が高い(後述する)ため、配管路を特定することができる。
 <段階S305>
 特定した一または複数の配管路のうち、一つを選択して、分流位置からの方向を探索方向と決める。
 <段階S306>
 探索方向を前進し、探索方向と交差する方向に受信部12を移動しながら電磁波50を受信し、電磁波強度測定を行う。
 <段階S307>
 探索方向と交差する方向に受信される電磁波50のうち、相対的に電磁波の入力感度が高い位置には、非導電性配管20が埋設されていると判断され、配管路を特定する。
 図9は、配管路探索イメージ図である。非導電性配管20内の導電性流体30に流れる高周波電流40が生成する電磁波50は、図5で示したように電磁波強度は距離Yの増加に伴って距離Yの二乗に反比例しながら減衰する。
 非導電性配管20中心から距離aを離れた外部70の位置B点においては、電磁波強度が相対的に高い電磁波50aが受信され、電磁波の入力感度も相対的に高い。一方、非導電性配管20中心から距離b(b>a)を離れた外部70の位置C、D点においては、電磁波強度が相対的に低い電磁波50bが受信され、電磁波の入力感度も相対的に低い。
 したがって、相対的に電磁波の入力感度の高い外部70位置B点に、非導電性配管20が埋設されていると判断され、配管路を特定する。
 図10は、図6の動作フローチャートのステップS400のサブルーチンフローチャートである。
 <段階S401>
 特定した非導電性配管20の配管路上の電磁波強度測定を行い、受信される電磁波50の入力感度の変化を通報部13の表示より確認し、入力感度の急降下(極端な減衰)が発生するか否かについて判断する。電磁波50の入力感度の急降下が発生していなければ、通報部13は漏水箇所不検出と判断する。
 <段階S402>
 電磁波50の入力感度の急降下が発生していれば、受信感度調整部124により、受信感度をアップする。
 非導電性配管20の埋設深度が深くなったときにも、電磁波50の入力感度の急降下が発生するが、受信感度をアップすることで、相対的に強度の弱い電磁波も検出できる。
 一方、漏水箇所60においては、図11で示すように、非導電性配管20内の導電性流体30が対地間と短絡状態になり、通常電磁波強度の電磁波50dを受信する代わりに、電磁波強度が著しく減衰した電磁波50cを受信する。この場合、受信感度をアップしても、電磁波50cの入力感度が得られにくい。
 さらに、漏水箇所60を通って先の配管路を探索方向に前進すると、再び電磁波50の入力感度が徐々に上昇する。漏水箇所60で漏れなかった導電性流体30に高周波電流40が流れるため、再び電磁波50の強度が強くなるからである。
 一方、非導電性配管20の埋設深度の変化により変化した受信感度は、その先の配管路を探索方向に前進しても、電磁波50の入力感度はあまり変化しない。
 したがって、通報部13は漏水箇所60を検出したと判断できる。
 <段階S403>
 受信感度をアップすることで、電磁波50の入力感度が再度得られるか否かについて判断する。電磁波50の入力感度が再度得られるときには、通報部13は漏水箇所60が検出されなかったと判断する。
 <段階S404>
 受信感度をアップしても、電磁波50の入力感度が得られないときには、通報部13は漏水箇所60が検出されたと判断する。
 以上のように、本実施形態に係る漏水探索装置によれば、漏水音の聞き分けができる熟練作業員を要することなく、かつ非導電性配管に特別な措置を取ることなく、容易に漏水箇所を検出することができる。また、本実施形態に係る漏水探索方法によれば、事前に配管路の探索をする必要はなく、配管路を探索しながら、容易に漏水箇所を検出することができる。
 以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
10 漏水探索装置、
11 送信部、
12 受信部、
13 通報部、
20 非導電性配管、
30 導電性流体、
40 高周波電流、
50 電磁波、
60 漏水箇所、
70 外部、
80 金属体、
111 送信出力調整部、
112 インピーダンス調整部、
113 送信出力表示部、
121 アンテナ、
122 グリップ、
123 ボックス、
124 受信感度調整部、
125 音響発生部。

Claims (8)

  1.  埋設された非導電性配管の漏水箇所を探索する漏水探索装置であって、
     前記非導電性配管に取り付けた金属体を介して、前記非導電性配管内を流通する導電性流体に高周波電流を送信する送信部と、
     前記高周波電流が生成する電磁波を前記非導電性配管の外部から受信する受信部と、
     前記受信された電磁波の強弱により漏水箇所を通報する通報部と、
     を備えることを特徴とする漏水探索装置。
  2.  前記通報部は、前記漏水箇所においては、前記受信部が他の箇所で検出する電磁波の強さよりも減衰する特性を利用して漏水箇所を通報することを特徴とする請求項1に記載の漏水探索装置。
  3.  前記送信部は、
     前記高周波電流の送信出力強度を調整するための送信出力調整部と、
     前記導電性流体のインピーダンスを適合させるためのインピーダンス調整部と、
     前記高周波電流の送信出力強度を表示するための送信出力表示部と、
     を備えることを特徴とする請求項1または2に記載の漏水探索装置。
  4.  前記受信部は、
     前記電磁波を捕捉するためのアンテナと、
     捕捉した電磁波の強弱に応じて受信感度を調整する受信感度調整部と、
     を備えることを特徴とする請求項1~3のいずれか一項に記載の漏水探索装置。
  5.  前記入力感度に応じた大きさの音響を発生する音響発生部をさらに備えることを特徴とする請求項1~4のいずれか一項に記載の漏水探索装置。
  6.  埋設された非導電性配管の漏水箇所を探索する漏水探索方法であって、
     前記非導電性配管に取り付けた金属体を介して、前記非導電性配管内を流通する導電性流体に高周波電流を送信する送信段階と、
     前記高周波電流が生成する電磁波を前記非導電性配管の外部から受信する受信段階と、
     前記非導電性配管の埋設位置を特定する非導電性配管路特定段階と、
     前記特定した非導電性配管路で受信された前記電磁波の強弱により漏水箇所を通報する通報段階と、
     を備えることを特徴とする漏水探索方法。
  7.  前記非導電性配管路特定段階において、
     前記非導電性配管の埋設位置で検出する前記電磁波が前記非導電性配管路と交差する方向の前記埋設位置の周囲で検出する前記電磁波の強さよりも減衰する特性を利用して、非導電性配管の埋設位置を特定することを特徴とする請求項6に記載の漏水探索方法。
  8.  前記漏水箇所を通報する通報段階において、
     前記漏水箇所が他の箇所で検出する電磁波の強さよりも減衰する特性を利用して漏水箇所を通報することを特徴とする請求項6または7に記載の漏水探索方法。
PCT/JP2012/065909 2011-11-02 2012-06-21 漏水探索装置および漏水探索方法 WO2013065351A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541653A JP6071894B2 (ja) 2011-11-02 2012-06-21 漏水探索方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-253237 2011-11-02
JP2011253237 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013065351A1 true WO2013065351A1 (ja) 2013-05-10

Family

ID=48191716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065909 WO2013065351A1 (ja) 2011-11-02 2012-06-21 漏水探索装置および漏水探索方法

Country Status (2)

Country Link
JP (1) JP6071894B2 (ja)
WO (1) WO2013065351A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107707A1 (ja) * 2014-01-15 2015-07-23 株式会社グッドマン 漏水探索装置および漏水探索方法
GB2578494A (en) * 2018-10-26 2020-05-13 Leak Seeker Ltd Leak detection
CN113390575A (zh) * 2020-03-13 2021-09-14 宁波方太厨具有限公司 漏水检测方法、漏水检测装置及净水设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501767A (ja) * 1986-11-25 1990-06-14 サウスウエスト リサーチ インスチチュート 多層式地面被覆膜における漏れ位置検出方法ならびにその装置
JP2000258280A (ja) * 1999-03-09 2000-09-22 Fuji Electric Co Ltd 水道管の漏水検知方法および装置
JP2001228046A (ja) * 2000-02-15 2001-08-24 Tlv Co Ltd 超音波漏洩検出装置
JP2002257944A (ja) * 2001-03-01 2002-09-11 Osaka Gas Co Ltd 埋設物標識具検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501767A (ja) * 1986-11-25 1990-06-14 サウスウエスト リサーチ インスチチュート 多層式地面被覆膜における漏れ位置検出方法ならびにその装置
JP2000258280A (ja) * 1999-03-09 2000-09-22 Fuji Electric Co Ltd 水道管の漏水検知方法および装置
JP2001228046A (ja) * 2000-02-15 2001-08-24 Tlv Co Ltd 超音波漏洩検出装置
JP2002257944A (ja) * 2001-03-01 2002-09-11 Osaka Gas Co Ltd 埋設物標識具検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107707A1 (ja) * 2014-01-15 2015-07-23 株式会社グッドマン 漏水探索装置および漏水探索方法
JPWO2015107707A1 (ja) * 2014-01-15 2017-03-23 株式会社グッドマン 漏水探索装置および漏水探索方法
GB2578494A (en) * 2018-10-26 2020-05-13 Leak Seeker Ltd Leak detection
GB2578494B (en) * 2018-10-26 2023-04-12 Leak Seeker Ltd Leak detection
CN113390575A (zh) * 2020-03-13 2021-09-14 宁波方太厨具有限公司 漏水检测方法、漏水检测装置及净水设备

Also Published As

Publication number Publication date
JP6071894B2 (ja) 2017-02-01
JPWO2013065351A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
EP0745841B1 (en) A method and apparatus for inspecting a pipe using electromagnetic radiation
CA2941016C (en) Detection method and detection device of buried metal
US20130003501A1 (en) Methods and apparatus for locating hidden or buried non-conductive pipes and leaks therefrom
KR101173592B1 (ko) 매설관의 파손방지와 파손된 위치를 확인하는 시스템 및 그 운용방법
US6215314B1 (en) Wire break locator and method of use
JP6071894B2 (ja) 漏水探索方法
US6734674B1 (en) Method for locating and inspecting underground or other non-visible non-electrically conductive pipes
US20230417937A1 (en) System and Method for Acoustically Detecting Cross Bores
AU2016240434A1 (en) Method and device for detecting buried metal using synchronous detection method
CN208044084U (zh) 一种带有距离检测的金属探测器
EP3483634A1 (en) Systems and methods for detecting buried non-conductive pipes
US20110012600A1 (en) Electromagnetic antenna and method of use for detecting objects
JP2013024849A (ja) 高電位漏水探索装置
JP6437866B2 (ja) 埋設金属の探知用の送信信号の設定方法及びこの設定方法を用いた探知装置
CN210221902U (zh) 一种磁场聚焦的瞬变电磁管道缺陷扫查装置
KR102275063B1 (ko) 누수 여부 탐지 시스템
KR20210103436A (ko) 전파를 이용한 지중선 및 매설배관 탐지 장치 및 방법
CN104090304A (zh) 直接对非金属管线远距离探测的方法及系统
CN205751108U (zh) 一种安防监控系统
CN112540411B (zh) 一种接地网拓扑定位装置及方法
KR200232369Y1 (ko) 지하 시설물 탐색 및 보호망
CN218938521U (zh) 一种地下电性源金属管线探测装置
Davronovna et al. USE OF PIPE FINDERS IN SEARCHING OF UNDERGROUND PIPELINES IN GEODETIC MEASUREMENTS
JP6338874B2 (ja) マーカー探査装置
SE542098C2 (en) System method and a detecting device related to robotic working tools for detecting a break in a robotic work tool system boundary wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846551

Country of ref document: EP

Kind code of ref document: A1