WO2013064864A1 - Sistema modular móvil para el aprovechamiento energético de residuos forestales - Google Patents
Sistema modular móvil para el aprovechamiento energético de residuos forestales Download PDFInfo
- Publication number
- WO2013064864A1 WO2013064864A1 PCT/IB2011/054909 IB2011054909W WO2013064864A1 WO 2013064864 A1 WO2013064864 A1 WO 2013064864A1 IB 2011054909 W IB2011054909 W IB 2011054909W WO 2013064864 A1 WO2013064864 A1 WO 2013064864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- mobile modular
- biomass
- fuel
- modular system
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/02—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B49/00—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
- C10B49/02—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
- C10B49/04—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
- C10B49/08—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form
- C10B49/10—Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated in dispersed form according to the "fluidised bed" technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10C—WORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
- C10C5/00—Production of pyroligneous acid distillation of wood, dry distillation of organic waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/16—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with non-aqueous liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to the forestry industry, the management and utilization of forest residues and the generation of alternative fuels.
- the present invention consists of a mobile system for the energetic utilization of forest residues through the generation of liquid biofuel.
- biomass A commonly accepted definition of biomass corresponds to "all renewable organic matter of animal or vegetable origin, or from the natural or artificial transformation of these, which can be converted into energy”. Includes forest, agricultural, industrial, urban (household and sewage sludge) and energy crops.
- the liquid bio-fuel can be considered as a lignocellulosic biomass concentrate that has an important potential as a raw material for the production of cellulosic ethanol, since with current technologies the bio-fuel can be converted into ethanol, easily transported. and manipulation. Therefore, the liquid produced can be stored and transported to biorefineries where it can be efficiently converted into chemicals and fuels.
- the pyrolysis technique could solve some of the obstacles related to the logistical and processing aspects of ethanol from a different origin, representing an alternative to the enzymatic or biochemical production of cellulosic ethanol, a complex and expensive process to date.
- Pyrolysis is a thermochemical process in which organic material, in this case forest waste (biomass), is heated in the absence of oxygen.
- organic material in this case forest waste (biomass)
- rapid pyrolysis which has the characteristic of using a biomass of reduced size , close to 1 mm. in diameter, large production, process time of only a few seconds and feeding with various sources of biomass such as coal, wood, bagasse, municipal waste, plastic and tires.
- the branches, the tip of the tree and the logs without pulpable aptitude are source of energy for many thermal plants in the world. Recently, technologies have been implemented that make it possible to take advantage of stumps and roots, which considerably increases the availability of biomass.
- the transport distance of wood for fuel in Finland should be less than 100 to 150 km, due to its low energy density and high transport costs.
- Chile it is estimated at distances between 30 and 85 km. Therefore, the availability of forest fuels for a particular plant is limited, and large plants must use splinters mixed with other solid fuels in order to operate.
- the amount of waste used in the power generation plants or biorefineries will be determined by the costs of supply, thus determining the location of said plant.
- a solution to the problem set forth is disclosed in document CN 1803982, which describes a mobile biomass liquefaction system, comprising a biomass gasification furnace, a fuel decontamination plant, a fuel generating set, a pyrolysis furnace of biomass with heat from the combustion of gasified fuel and incondensable gas, a cooling tower, and a pre-processing device.
- the system performs a complete energy self-sustaining, and can convert biomass into bio-fuel locally for more centralized treatment.
- Said liquefaction system further comprises: a cutting machine, a dryer, a sprayer, a feeder, a pyrolysis unit, a first and a second separating cyclone, a tar pyrolysis oven, a cooling tower, an oil tank and a gas generation set, all mounted on the truck.
- Japanese Patent Application No. 2003-055669 refers to a mobile fuel recovery apparatus comprising an upper structure located in a supporting mobile structure, which corresponds to a frame of iron with wheels for its movement.
- the upper structure includes a reactor R1 for converting plastic and oil waste, means of combustion F1 for supplying a heat source to the reactor, a separating means T1 for separating by fractional distillation, a gas mixture provided by the reactor as oil of diesel and gasoline, two storage means T-2 and T-3 for respectively condensing and storing diesel oil and gasoline distilled by fractionation by means of separation and control means to control each of the aforementioned means .
- Japanese application No. 2003-055669 corresponds to an extremely complex system, which is placed on a platform, where considering the complexity and dimensions of the system, it does not have the capacity to be transported by difficult roads, such as roads of land where the forest exploitation lands are located. This is due to the fact that the material to be treated in this system corresponds to plastics and oils of waste, which are urban waste and therefore are not necessarily found in areas of difficult access.
- a mobile modular system for the energetic use of forest waste in its place of origin, through the generation of liquid bio-fuel, which includes: a biomass preparation unit, a drying unit , a pyrolysis unit, a condensing unit, a bio-fuel storage unit, a non-condensable gas storage unit, a circulation and recycling system that communicates each unit and its components, and abatement means Mechanical of the main components, which allow the system to selectively dispose of a transport configuration and an operation configuration. Said system, and each of its constituent parts, are mounted on at least one land vehicle.
- the described system allows to recover the residual wood abandoned in the forest and without commercial value, which represents an alternative to supply the demand of cogeneration fuel.
- size reduction takes place in the modular system. Thus, they can be transported by traditional loading, handling and transport systems.
- the modular system is based on the use of forest residues through pyrolysis, generating bio-fuel, which can substitute industrial oil (for example fuel 6).
- bio-fuel obtained by the pyrolysis of wood does not generate unwanted byproducts, such as glycerol in the case of biodiesel.
- Bio-fuel production technologies are low cost and suitable for small-scale applications.
- the design of the modular system allows the movement in the forest itself, thus neutralizing one of the aspects of greatest impact on the cost of the product, such as the transport of raw materials. That is why this system must meet a series of requirements, such as the size limited by the medium where it must move, the separation of the system into modules, a transformation or operation center, and a connection system between them.
- the invention disclosed here differs in the fact that the main components that make up the equipment, have as a characteristic, the mobility of their components on the same platform or moving platforms , that is, the change of position from a vertical in operation to another horizontal movement, thus allowing an important ease of movement, stability and safety, given the height of the components.
- the type of biomass dryer proposed does not appear as technology in the previous documents, forming part of the plant.
- it is a continuous flow dryer (drying of the particulate biomass in suspension) that takes advantage of the heat captured for the cooling of the air (up to around 600 QC ), the same heat captured for the cooling of the air.
- biogas from the reactor because it corresponds to the same cooling air of said biogas during the production process of the plant, during the condensation of the same.
- the cooling air flow interacts countercurrently to the process of condensing biogas into liquid bio-fuel, providing hot air to the dryer and optimizing the thermal efficiency of the system.
- bio-fuel oil has numerous competitive advantages over fuels from the oil industry, such as:
- the liquid biofuel can be stored, pumped and transported in a similar way to oil fuels.
- a dry biomass requirement of 7.1 tons per eight-hour shift is estimated, generating 5.0 tons of bio-fuel, 1.1 tons of coal and 1.1 tons of non-combustible gas. condensable.
- This distribution of the products generated is based on the mass balance considered by the following conversion ratio: 1 .000 kg of biomass, generate 70% of bio-fuel, 15% of coal and 15% of non-condensable gas. According to the bibliography, the calorific value of these products is approximately 4,500 cal / gr., 7,000 cal / gr. and 2,300 cal / gr. respectively.
- Figure 1 shows a diagram of the mobile modular system in its operating configuration, mounted on a plurality of land vehicles.
- Figures 2a and 2b show different views of an embodiment of the mobile modular system in its operating configuration, where it is mounted on a land vehicle.
- Figure 3 shows a diagram of the embodiment of the mobile modular system of Figure 2, in its transport configuration.
- Figure 4 shows an operation diagram of the mobile modular system with each of its parts.
- the present invention consists of a mobile modular system for the energetic use of forest waste, in its place of origin, through the generation of liquid biofuel, which comprises: a drying unit (100) that prepares biomass with desired humidity levels; a pyrolysis unit (200) that generates biogas from biomass; a condensing unit (300) that condenses the biogas into liquid biofuel; a bio-fuel storage unit (403) that stores the bio-fuel from the condensing unit (300), and a non-condensable gas storage unit (401); a fluidized bed gas preparation unit (500) that supplies non-condensable gas to the pyrolysis unit (200); an air preparation unit for the drying unit (600) that supplies hot air to the drying unit (100); a circulation and recycling system that operatively communicates to each of the units of the mobile modular system; and mechanical abatement means that allow the system to selectively dispose of a transport configuration and an operation configuration; wherein: said system and each of its constituent parts are mounted on a drying unit (100) that
- the mobile modular system additionally comprises a biomass preparation unit (700), in which the raw material is prepared in order to provide an average dimension thereof between 1 and 2 mm in diameter.
- said biomass preparation unit (700) preferably uses a chipper, conveyor belts, a discharge chute, a windlass and a screen.
- the biomass is transferred to the drying unit (100), operatively connected through the circulation and recycling system, where it is conditioned with the aim of obtaining a biomass with the desired humidity levels.
- the biomass at the outlet of the drying unit (100) has an average moisture content of 10 to 12%.
- the wet biomass accumulates in an accumulation hopper (101), which is operatively connected at its lower output to a first material transport means (102), which provides biomass to a dryer (103).
- a centrifugal fan (302) On the lower dryer inlet (103) hot air is injected using a centrifugal fan (302), at a temperature of 600 Q C, which is mixed into the dryer (103) with the fine particulate wet wood .
- the dryer has been designed to adapt to the surface limitations of the transport platform.
- a first separating cyclone (104) is operatively connected, in such a way that a mixture of dry biomass with moist air leaves the dryer (103) by its exit above, to enter said first cyclone, where both components are separated.
- the humid air is discharged into the atmosphere and the dry biomass is received in a feed hopper (201).
- the pyrolysis unit (200) is operatively connected, so that by the lower discharge of the first separating cyclone (104) the dry biomass is discharged to the second feed hopper ( 201), which stores the biomass and feeds a fluidized bed pyrolysis reactor (204) through a metering screw (202), operatively connected to the hopper outlet, and a quick screw (203) operatively connected to the output of the dosing screw (202), wherein said quick screw (203) is high speed and feeds biomass to the fast fluidized bed pyrolysis reactor (204).
- the reactor (204) is powered by its lower region, with noncondensable product from the same pyrolysis gas at a temperature of about 500 Q C, in the absence of oxygen.
- This gas is introduced to the reactor by means of a centrifugal fan (304), calculated according to the needs of flow and static pressure that allow a uniform distribution inside the reactor, through a flat grill (not shown in the figures) designed according to the needs.
- the biomass is mixed with the hot non-condensable gas and sand in suspension (selected in type and granulometry), thus generating in a very short time (close to 2 sec.)
- the solid carbon in suspension is separated from the vapors through a second cyclone (206) which retains the largest carbon particles, and a third cyclone (207), which is operatively connected to the outlet of the second cyclone (206), for the purpose of separating the smaller carbon particles from the organic vapors.
- the fast pyrolysis reactor (204) is of the circulating fluidized bed type, which has advantages in relation to other types of reactors (in terms of ease of construction, simple operation and manufacturing cost). minor), however, in other configurations of the invention, the reactor used in the system could be any of the following: bubbling fluidized bed, rotating cone reactor, ablative reactor, vacuum pyrolysis reactor, booster reactor.
- the difference of a circulating fluidized bed reactor with respect to a bubbling one is essentially that the first is characterized in that the gas returns to the reactor within a closed circuit, leaving part of the gas as it circulates. On the other hand, a bubbling bed reactor does not return the gas, leaving it definitively.
- the products of the pyrolysis continue their course towards the second and third cyclones (206, 207) where the carbon particles are separated from the gas stream. Both the distribution and the size of the coal particle are directly related to the distribution and size of the particles of the raw material.
- the process operates at very low pressures, in the order of 30 kPa in the upper part of the reactor, whereby the gas must be compressed in order to counteract the total load losses of the process plus the differential pressure given by the fluidized bed, which is in the order of 40 kPa.
- a centrifugal fan (205) is used, connected to the output of the fast pyrolysis reactor (204).
- the pyrolysis unit (200) is operatively connected to the condensing unit (300), in such a way that the gases coming from the cyclone separator (207) enter a first heat exchanger (301) where the temperature of the gases is lowered from about 500 ° C, at the upper entrance of the exchanger (301), to about 150 ° C, at the lower output thereof.
- a flow of air at low temperature enters the exchanger (301) driven by the first fan (302), in such a way that said air flow interacts in countercurrent with the gas flow, allowing the decrease in the temperature of the latter. In the discharge of said air flow, it is at a temperature close to approximately 400 ° C, where it will be used as part of the energy needed to heat the air supply to the dryer.
- the products of the pyrolysis remain under the reaction conditions for a minimum time not exceeding six seconds. This minimum residence time is necessary to avoid a secondary cracking reaction of the combustible bio-oil towards the production of non-condensable gases.
- condensation Another reaction that is taken into consideration in the condensation system is the coking of fuel bio-fuel vapors. This coking takes place whenever the condensation and cooling of the current coming from the reactor is gradual and slow. To avoid such a reaction, condensation must be carried out quickly, which is achieved in the present invention by means of direct contact between the gas stream with a cold stream of the liquid fuel bio-oil.
- a system consisting of the spraying of the "cold liquid biofuel” is used by means of nozzles, using for the condensation and cooling of the gases, a scrubber condensing equipment (303) (called in English Venturi Sc / x />> e), which can also be used to minimize the production of bio-fuel fuel sprays, which are dragged by the gaseous stream, making subsequent processes difficult.
- a scrubber condensing equipment (303) (called in English Venturi Sc / x />> e)
- the separation of the aerosols takes place in the scrubber condenser (303), where a small stream of bio-oil liquid fuel comes into contact with the aerosols present in the gas stream, producing the coalescence of the small droplets that make up the aerosol sprays.
- the non-condensed gases can be sent to a second coalescence stage given by an electrostatic precipitator (not shown in the figures).
- the gas flow from the first heat exchanger (301) enters the scrubber condenser (303) where it comes into contact with liquid bio-fuel particles, sprayed from the top of the scrubber condenser (303), in such a way that the gas flow ascends from a middle section of the scrubber condenser (303) to its upper part, where the gas discharge occurs, said gas flow having to pass through the flow of liquid particles that descend, product of gravity, from the top of the scrubber condenser (303) to a lower part, where the discharge occurs.
- a first pump (306) that drives the liquid bio-fuel towards a bio-fuel storage unit (403).
- said scrubber condenser (303) allows to reduce the temperature of the gas of about 150 Q C to 50 - 55 Q C.
- the presence of an exchanger inside is considered of the scrubber as a way to regulate at will within certain ranges the final temperature of the biofuel, having as a coolant fluid air at room temperature (800).
- the hot air generated as a product of heat transfer is used to heat the air that feeds the dryer.
- the non-condensable gas storage unit (401) comprises a stainless steel tank, preferably cylindrical, of sufficient capacity to contain a 2-hour working gas-hour, the estimated time of normalization of the plant.
- the system additionally comprises a propane tank (402) used for the initial start of the plant.
- Said second heat exchanger (501) allows the interaction between the non-condensable gas (which receives the heat) and a first flue gas fluid, which corresponds to the product of the combustion of a part of the non-condensable gas itself (which delivers the heat), through gas burners (502) specially designed for the case and arranged laterally in the heat exchanger itself.
- the gas coming from the condensing unit (300) is distributed in two, a part that feeds the gas burners (502) and another that is used as a gas to generate the fluidized bed.
- the discharge of the combustion gas fluid directly to the environment takes place.
- a duct was designed that connects the combustion gas outlet (504) with the dryer inlet (103), thus reducing the coal consumption of this exchanger.
- a third fan (503) provides the first flow of combustion air to said burners (502).
- the heating is carried out by means of propane gas, then having an external system composed of a propane gas tank (402) and corresponding connections attached to the burner (502).
- a by-pass allows passing from propane gas to non-condensable gas at some time, estimated approximately within two to three hours of waiting.
- the air preparation unit for the drying unit (600) comprises a third heat exchanger (601), used for heating the air feeding the dryer (103), where said third exchanger (601) is located. operatively connected to the exchanger (301), where the latter provides hot air that is at an approximate temperature between 400 to 450 QC .
- it is required to raise the air temperature by approximately 200 Q C to enter the dryer with the design temperature (600 Q C), which is achieved using the combustion energy of the coal generated in the pyrolysis process, coming from the third feed hopper (208).
- a charcoal burner (602) was designed, which uses a second flow of combustion air provided by the third fan (503), and carbon particles coming from a dispenser (209) operatively connected to the output of the third feed hopper (208), providing a second flow of combustion gas to the third heat exchanger (601). At the outlet (603) of the third heat exchanger (601) the discharge of the second flow of combustion air into the environment takes place.
- the high temperature air flow coming from the outlet of the third heat exchanger (601) is used in the drying unit, entering the dryer (103), in order to come into direct contact with the biomass wet and deliver to the reactor (204) biomass with the desired humidity conditions.
- the system additionally comprises a control system, which is used for the control of variables, such as, for example, the pressure, and the variation of the gas flow, in order to control the temperature of the reactor.
- a control system which is used for the control of variables, such as, for example, the pressure, and the variation of the gas flow, in order to control the temperature of the reactor.
- the system includes an electronic control board for different units, such as pumps and fans.
- these reactors can also be fed by other types of waste or a combination of them, such as agricultural waste, different kinds of grass, bagasse and others.
- the mobile modular system includes in its transport configuration an adaptation mode for the equipment, especially the reactor, which, due to its height, prevents its transfer in a safe manner.
- the system comprises mechanical abatement means that allow the system to dispose selectively between the transport configuration and the operation configuration. Said means of abatement allow turning around an axis to the elements of the system that it is necessary to lower to provide a safer transport in routes of difficult access, allowing to have said elements in a horizontal position.
- the reactor or any of the elements that must be folded down during transport are placed vertically and are connected through flanges to the circulation and recycling system, while during the transport configuration, said elements they are down and operationally disconnected from the circulation and recycling system.
- the abatement means preferably consist of a metal structure, constructed on the basis of steel profiles and open on its four sides, inside which the components rest on a base also metal.
- the rotary movement of the assembly is achieved by means of an endless screw system, operated manually through a ratchet and bar system.
- the bio-combustion storage unit (403) comprises two tanks, made of stainless steel, with a storage capacity sufficient to store the amount of bio-fuel generated in a 24-hour day, where one is used to store the daily production and the other to move it to the place of consumption. It should be noted that these ponds are structurally designed to be hoisted by self-loading trucks. The pond in operation is powered by the bio-fuel pump (306).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
La presente invención consiste en un sistema modular móvil de aprovechamiento energético de residuos forestales, en su lugar de origen, a través de la generación de bio-combustible líquido, el cual comprende: una unidad de secado (100); una unidad de pirólisis (200); una unidad de condensación (300); una unidad de almacenamiento de bio-combustible (403) y una unidad de almacenamiento de gas no condensable (401); una unidad de preparación de gas de lecho fluidizado (500); una unidad de preparación de aire para la unidad de secado (600); un sistema de circulación y reciclaje que comunica operativamente cada una de las unidades; medios de abatimiento mecánico que permiten al sistema disponer selectivamente de una configuración de transporte y una configuración de operación; en donde dicho sistema y cada una de sus partes constituyentes se encuentran montados en al menos un vehículo terrestre; y en donde además en la configuración de transporte los elementos constituyentes se encuentran dispuestos en posición de transporte; y en la configuración de operación los elementos constituyentes se encuentran operativamente conectados a través de medios de unión con el sistema de circulación y reciclaje, y todos los elementos se encuentran en posición de operación.
Description
SISTEMA MODULAR MÓVIL PARA EL APROVECHAMIENTO ENERGÉTICO DE
RESIDUOS FORESTALES
La presente invención se relaciona con la industria forestal, el manejo y utilización de residuos forestales y la generación de combustibles alternativos. En particular, la presente invención consiste en un sistema móvil para el aprovechamiento energético de residuos forestales mediante la generación de bio- combustible líquido.
ANTECEDENTES
La fuerte dependencia de combustibles fósiles, de los países considerados forestales, sumado a los incentivos generados por el protocolo de Kioto ha generado, en los últimos años, un incremento considerable del aprovechamiento de estos recursos. Las nuevas tecnologías han permitido además, reducir fuertemente los costos de producción de estos combustibles. Finlandia y USA son líderes hoy en aprovechamiento de la biomasa forestal y sus tecnologías han traspasado las fronteras.
Una definición comúnmente aceptada de biomasa corresponde a "toda materia orgánica renovable de origen animal o vegetal, o procedente de la transformación natural o artificial de éstas, que puede ser convertida en energía". Incluye residuos forestales, agropecuarios, industriales orgánicos, urbanos (domiciliarios y lodos cloacales) y cultivos energéticos.
El uso eficiente de la biomasa puede contribuir significativamente al desarrollo sustentable así como a la conservación local y global del ambiente. Esto es particularmente aplicable en países donde existe abundante disponibilidad de recursos de biomasa y al desarrollo en gran escala de la industria forestal.
De esta manera, el bio-combustible líquido se puede considerar como un concentrado de biomasa lignocelulósica que tiene un importante potencial como materia prima para la producción de etanol celulósico, ya que con tecnologías actuales el bio-combustible puede convertirse en etanol, de fácil transporte y manipulación. Por lo tanto, el líquido producido puede ser almacenado y transportado hacia las biorrefinerías donde puede ser eficientemente convertido en
químicos y combustibles. Además, la técnica de pirólisis podría resolver algunos de los obstáculos relacionados con los aspectos logísticos y de procesamiento del etanol de un origen diferente, representando una alternativa a la producción enzimática o bioquímica de etanol celulósico, proceso complejo y costoso a la fecha.
La pirólisis es un proceso termoquímico en el cual material orgánico, en este caso desechos forestales (biomasa), son calentados en ausencia de oxígeno. En contraste a la tecnología tradicional empleada en la pirólisis, caracterizada por largos tiempos de reacción del proceso (horas) y dimensiones del material biomasa relativamente grande, existe la tecnología denominada pirólisis rápida, la cual tiene como característica el uso de una biomasa de tamaño reducido, cercano a 1 mm. de diámetro, gran producción, tiempo del proceso sólo de algunos segundos y alimentación con varios orígenes de biomasa como el carbón, madera, bagazo, desechos municipales, plástico y neumáticos.
Por otro lado, los residuos madereros asociados a las plantaciones forestales poseen un gran potencial y barreras para su aprovechamiento. Los trabajos silvícolas preventivos y de mejora (aclareos, podas, vías de saca) y del aprovechamiento madereros, como las cortas finales (partes de la copa con diámetro inferior al de utilidad comercial, extracción de tocones) son el origen de los residuos forestales. El aprovechamiento de la biomasa de los residuos forestales está limitado por las características de la masa forestal y el costo económico asociado a la recogida de la misma. Por otro lado, es necesario que se realicen el aprovechamiento maderero para que se generen los residuos y tener viabilidad económica. Además, el crecimiento de las especies forestales es lento y las superficies forestales permanecen constantes a corto plazo.
Las ramas, la punta del árbol y los rollizos sin aptitud pulpable son fuente de energía para muchas plantas térmicas en el mundo. Recientemente se han implementado tecnologías que permiten aprovechar los tocones y raíces, lo que aumenta considerablemente la disponibilidad de biomasa.
Sin embargo, la densidad de la biomasa y su distribución, es baja en comparación con las fuentes de combustibles fósiles existentes, por lo cual el valor económico por unidad de peso de los materiales es también bajo y, como resultado, el valor agregado es bajo. En consecuencia, el desarrollo de las nuevas tecnologías
debe orientarse a modelos compactos y móviles, que permitan su aplicación local a pequeña escala en sectores rurales.
Considerando lo anterior, el mayor problema de la madera como combustible es su alto costo de producción. Las fuentes de biomasa forestal están ampliamente distribuidas, y las distancias de transporte tienden a ser largas. La única excepción es el procesamiento de los residuos forestales, que comprende el costo de manipulación y, si no se utiliza en el mismo lugar, el costo de traslado a la planta de combustión. La cosecha de árboles de menor talla y residuos post-cosecha es más cara que la cosecha convencional de árboles más grandes.
Puesto que una gran parte de los costos de abastecimiento de madera como combustible, provienen actualmente del transporte dentro y fuera de los caminos, desde el bosque a la planta, la competitividad se ve fuertemente afectada por la infraestructura vial existente. Mientras más grande sea la demanda de madera para combustible en una industria, mayor será el área geográfica donde se recolectará esa biomasa.
Aunque el costo de cosecha permanezca constante, el costo de transporte por concepto de volumen aumentará con la demanda. En consecuencia, tarde o temprano la economía de escala se tornara negativa, al aumentar el uso de la madera como combustible en cualquier planta.
Por ejemplo, la distancia de transporte de la madera para combustible en Finlandia, para que sea económicamente viable, debe ser menor que 100 a 150 km., debido a su baja densidad energética y los altos costos de transporte. En Chile se estima en distancias de entre 30 y 85 Km. Por ende la disponibilidad de combustibles forestales para una planta en particular es limitada, y las grandes plantas deberán usar astillas mezcladas con otros combustibles sólidos para poder operar. La cantidad de residuos utilizados en las plantas de generación eléctrica o biorefinerías estará determinada por los costos de abastecimiento, determinando así la ubicación de dicha planta.
Es uno de los objetivos de la presente invención abordar la concentración de la biomasa forestal residual con el fin de obtener un concentrado energético: bio- combustible líquido. La Pirólisis rápida de la madera, basada en la utilización de
calor como fuente de transformación, permite obtener un combustible líquido, de segunda generación.
Una solución al problema planteado se expone en el documento CN 1803982, el cual describe un sistema de liquefacción de biomasa móvil, que comprende un horno de gasificación de biomasa, una planta de descontaminación de combustible, una conjunto generador de combustible, un horno de pirólisis de biomasa con calor de la combustión del combustible gasificado y de gas incondensable, una torre de refrigeración, y un dispositivo de pre-procesamiento. El sistema realiza una completa auto-sustentación energética, y puede convertir biomasa en bio-combustible localmente para un mayor tratamiento centralizado. Dicho sistema de liquefacción comprende adicionalmente: una máquina cortadora, un secador, un pulverizador, un alimentador, una unidad de pirólisis, un primer y segundo ciclón separador, un horno de pirólisis de alquitrán, una torre de refrigeración, un estanque de aceite y un conjunto de generación de gas, todos montados sobre el camión.
Además, otra solución similar se describe en la solicitud de patente japonesa N ° 2003-055669, la cual se refiere a un aparato de recuperación de combustible móvil que comprende una estructura superior ubicada en una estructura móvil soportante, la cual corresponde a un marco de fierro con ruedas para su desplazamiento. La estructura superior incluye un reactor R1 para convertir desperdicios de plásticos y de aceite, medios de combustión F1 para proveer una fuente de calor al reactor, un medio de separación T1 para separar mediante destilación fraccional, una mezcla de gas provista por el reactor como aceite de diesel y de gasolina, dos medios de almacenamiento T-2 y T-3 para respectivamente condensar y almacenar el aceite de diesel y de gasolina destilado por fraccionamiento por los medios de separación y medios de control para controlar cada uno de los medios antes citados.
Sin embargo, la solicitud japonesa N ° 2003-055669 corresponde un sistema extremadamente complejo, que se sitúa sobre una plataforma, en donde considerando la complejidad y dimensiones del sistema, este no posee la capacidad de ser transportado por caminos difíciles, como por ejemplo caminos de tierra en donde se encuentran los terrenos de explotación forestal. Lo anterior se debe a que el material que se desea tratar en este sistema corresponde a plásticos y aceites de
desecho, los cuales son residuos urbanos y por lo tanto no se encuentran necesariamente en terrenos de difícil acceso.
Por otro lado, con respecto al documento CN 1803982, este muestra un sistema móvil, en donde la totalidad del sistema puede ser montado dentro un camión de mediano tamaño, tal como se puede apreciar en la figura 9 de dicho documento. En este sentido, y como consecuencia de lo anterior, todos los equipos son igualmente de mediano tamaño, y seleccionados considerando una capacidad de producción relativamente pequeña. Además, debido a su configuración dentro del medio de transporte, se hace complicado para este sistema acceder a lugares de difícil acceso, ya que habitualmente los caminos pueden estar en mal estado, y por lo tanto el diseño de cada una de las partes y el montaje sobre el vehículo deben ser capaces de aguantar movimientos bruscos, considerando la inercia que poseen equipos de semejante tamaño.
Por lo tanto, existe en el estado de la técnica la necesidad de proveer un sistema móvil para el aprovechamiento energético de residuos forestales, en su lugar de origen, capaz de eliminar los residuos forestales en terreno de manera rentable y ambientalmente sustentable, mediante el aprovechamiento de la energía procedente de dichos residuos, en donde el sistema tenga la capacidad de acceder a terrenos de difícil acceso y posea una alta capacidad de producción.
Para subsanar las deficiencias mencionadas se presenta un sistema modular móvil para el aprovechamiento energético de residuos forestales en su lugar de origen, a través de la generación de bio-combustible líquido, el cual comprende: una unidad de preparación de Biomasa, una unidad de secado, una unidad de pirólisis, una unidad de condensación, una unidad de almacenamiento de bio-combustible, una unidad de almacenamiento del gas no condensable, un sistema de circulación y reciclaje que comunica cada una de las unidades y sus componentes, y medios de abatimiento mecánico de los componentes principales, que permiten al sistema disponer selectivamente de una configuración de transporte y una configuración de operación. Dicho sistema, y cada una de sus partes constituyentes, se encuentran montados en al menos un vehículo terrestre.
El sistema descrito permite recuperar la madera residual abandonada en el bosque y sin valor comercial, lo cual representa una alternativa para suplir la demanda de combustible de cogeneración. Además, en lugar de reducir los residuos a astillas en el rodal o a orillas de camino, la reducción de tamaño se lleva a cabo en el sistema modular. Así, pueden ser transportados por sistemas tradicionales de carga, manipulación y transporte.
El sistema modular se basa en el uso de residuos forestales mediante pirólisis generando bio-combustible, el que puede sustituir al petróleo industrial (por ejemplo el fuel n ° 6). Además, el bio-combustible obtenido por la pirólisis de la madera no genera subproductos indeseados, como el glicerol en el caso de biodiesel. Las tecnologías de producción de bio-combustibles son de bajo costo y adecuados para aplicaciones a pequeña escala.
Además, el diseño del sistema modular permite el desplazamiento en el propio bosque, neutralizando así uno de los aspectos de mayor incidencia en el costo del producto, como es el transporte de la materia prima. Es por ello que dicho sistema debe cumplir una serie de requisitos, como el tamaño limitado por el medio donde debe moverse, la separación del sistema en módulos, un centro de transformación u operación, y un sistema de conexión entre ellos.
Con respecto al arte previo citado anteriormente, se puede apreciar claramente que la invención aquí expuesta se diferencia en el hecho de que los componentes principales que conforman el equipo, tienen como característica, la movilidad de sus componentes en la misma plataforma o plataformas móvil de traslado, esto es, el cambio de posición desde una vertical en operación a otra horizontal de traslado, permitiendo de esta manera una importante facilidad de traslado, estabilidad y seguridad, dada la altura de los componentes.
Por otra parte, el tipo de secador de la biomasa propuesto, no figura como tecnología en los documentos anteriores, formando parte de la planta. En este caso, se trata de un secador de flujo continuo (secado de la biomasa particulada en suspensión) que aprovecha como parte de la energía para el calentamiento del aire (hasta alrededor de 600 QC), el mismo calor captado para el enfriamiento del biogás procedente del reactor, debido a que corresponde al mismo aire de enfriamiento de dicho biogás durante el proceso de producción de la planta, durante la condensación
del mismo. Así, el flujo de aire de enfriamiento interactúa en contracorriente al proceso de condensación de biogás en bio-combustible líquido, proveyendo de aire caliente al secador y optimizando la eficiencia térmica del sistema.
Por último, como combustible limpio, el bioaceite combustible tiene numerosas ventajas competitivas sobre los combustibles provenientes de la industria petrolera, como por ejemplo:
■ Emisiones nulas de SOx.
■ Bajas emisiones de NOx, generando un 50% menos de emisiones de NOx que un fuel oil liviano en turbinas de gas y motores Diesel convencional.
■ Balance nulo de C02, debido a que el C02 es un combustible proveniente de desperdicios orgánicos y es considerado como balance nulo de C02.
■ Comparado con otros combustibles provenientes de biomasa, el bio- combustible líquido puede ser almacenado, bombeado y transportado en una manera similar a los combustibles petroleros.
En una configuración preferida de la invención, se estima una necesidad de biomasa seca de 7,1 toneladas por turno de ocho horas, generando 5,0 toneladas de bio-combustible, 1 ,1 toneladas de carbón y 1 ,1 toneladas de gas no condensable. Esta distribución de los productos generados, se basa en el balance de masa que considera la siguiente relación de conversión: 1 .000 kg de biomasa, generan un 70% de bio-combustible, 15% de carbón y 15% de gas no condensable. De acuerdo a la bibliografía, el poder calorífico de dichos productos es aproximadamente de 4.500 cal/gr., 7.000 cal/gr. y 2.300 cal/gr. respectivamente.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra un esquema del sistema modular móvil en su configuración de operación, montado en una pluralidad de vehículos terrestres.
Las figuras 2a y 2b muestran diferentes vistas de una realización del sistema modular móvil en su configuración de operación, en donde este se encuentra montado en un vehículo terrestre.
La figura 3 muestra un esquema de la realización del sistema modular móvil de la figura 2, en su configuración de transporte.
La figura 4 muestra un diagrama de operación del sistema modular móvil con cada una de sus partes.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Tal como se puede apreciar en las figuras 1 a 4, la presente invención consiste en un sistema modular móvil para el aprovechamiento energético de residuos forestales, en su lugar de origen, a través de la generación de bio- combustible líquido, el cual comprende: una unidad de secado (100) que prepara biomasa con niveles de humedad deseados; una unidad de pirólisis (200) que genera biogás a partir de la biomasa; una unidad de condensación (300) que condensa el biogás en bio- combustible líquido; una unidad de almacenamiento de bio-combustible (403) que almacena el bio-combustible proveniente de la unidad de condensación (300), y una unidad de almacenamiento de gas no condensable (401 ); una unidad de preparación de gas de lecho fluidizado (500) que provee gas no condensable a la unidad de pirólisis (200); una unidad de preparación de aire para la unidad de secado (600) que provee aire caliente a la unidad de secado (100); un sistema de circulación y reciclaje que comunica operativamente a cada una de las unidades del sistema modular móvil; y medios de abatimiento mecánico que permiten al sistema disponer selectivamente de una configuración de transporte y una configuración de operación; en donde: dicho sistema y cada una de sus partes constituyentes se encuentran montados en al menos un vehículo terrestre; y en donde además:
en la configuración de transporte los elementos del sistema se encuentran dispuestos en posición de transporte; y en la configuración de operación los elementos del sistema se encuentran operativamente conectados a través de medios de unión con el sistema de circulación y reciclaje, y todos los elementos se encuentran en posición de operación.
En una configuración de la invención, el sistema modular móvil comprende adicionalmente una unidad de preparación de biomasa (700), en donde se prepara la materia prima con el objetivo de proveer una dimensión promedio de la misma entre 1 y 2 mm de diámetro. Para esto, dicha unidad de preparación de biomasa (700) utiliza preferentemente una máquina chipeadora, correas transportadoras, una tolva de descarga, un molinete y un harnero.
Unidad de secado
Tras la salida de la unidad de preparación de biomasa (700), la biomasa se traslada a la unidad de secado (100), operativamente conectados a través del sistema de circulación y reciclaje, en donde esta se acondiciona con el objetivo de obtener una biomasa con los niveles de humedad deseados. Preferentemente, la biomasa a la salida de la unidad de secado (100) posee un contenido de humedad promedio de un 10 a un 12%.
De esta manera, y tal como se muestra en la figura 4, en la entrada de la unidad de secado (100) la biomasa húmeda se acumula en una tolva de acumulación (101 ), la cual está operativamente conectada en su salida inferior a un primer medio de transporte de material (102), el cual provee de biomasa a un secador (103). Por la entrada inferior del secador (103) se inyecta aire caliente, empleando un ventilador centrífugo (302), a una temperatura aproximada de 600QC, el cual se mezcla en el interior del secador (103) con el particulado fino de madera húmeda. El secador se ha diseñado para adaptarse a las limitaciones de superficie de la plataforma de transporte. En la salida superior del secador (103) se encuentra operativamente conectado un primer ciclón separador (104), de tal manera que una mezcla de biomasa seca con aire húmedo sale del secador (103) por su salida
superior, para entrar a dicho primer ciclón, en donde se separan ambos componentes. El aire húmedo es descargado a la atmósfera y la biomasa seca es recibida en una tolva de alimentación (201 ).
Unidad de pirólisis
A la salida de la unidad de secado (100) se encuentra operativamente conectada la unidad de pirólisis (200), de tal manera que por la descarga inferior del primer ciclón separador (104) se descarga la biomasa seca a la segunda tolva de alimentación (201 ), la cual almacena la biomasa y alimenta a un reactor de pirólisis de lecho fluidizado (204) a través de un tornillo dosificador (202), conectado operativamente a la salida de la tolva, y un tornillo rápido (203) operativamente conectado a la salida del tornillo dosificador (202), en donde dicho tornillo rápido (203) es de alta velocidad y alimenta de biomasa al reactor de pirólisis rápida de lecho fluidizado (204).
Por otra parte, el reactor (204) es alimentado por su zona inferior, con gas no condensable producto de la misma pirólisis, a una temperatura aproximada de 500 QC, en ausencia de oxígeno. Este gas es introducido al reactor mediante un ventilador centrífugo (304), calculado de acuerdo a las necesidades de flujo y presión estática que permitan una distribución uniforme dentro del reactor, a través de una parrilla plana (no mostrada en las figuras) diseñada conforme a las necesidades.
En el reactor (204) la biomasa se mezcla con el gas no condensable caliente y arena en suspensión (seleccionada en tipo y granulometría), generándose así en un lapso muy breve (cercano a 2 seg.) la descomposición de ella en vapores complejos orgánicos y carbón sólido.
A la salida del reactor de pirólisis rápida (204), el carbón sólido en suspensión es separado de los vapores a través de un segundo ciclón (206) el cual retiene las partículas de carbón de mayor tamaño, y un tercer ciclón (207), que se encuentra conectado operativamente a la salida del segundo ciclón (206), con el propósito de separar las partículas de carbón de menor tamaño de los vapores orgánicos.
Dicho carbón sólido en suspensión proveniente de las salidas de ambos ciclones (206 y 207), el cual corresponde a biomasa en estado sólido parcialmente quemada, es almacenado temporalmente en una tercera tolva de alimentación (208), para ser empleado como combustible en el calentamiento del aire que irá a la unidad de secado (100), y eventualmente al reactor.
Además, en una configuración preferida de la invención, el reactor de pirólisis rápida (204) es del tipo de lecho fluidizado circulante, que presenta ventajas en relación a otros tipos de reactores (en cuanto a facilidad de construcción, operación simple y costo de fabricación menor), sin embargo, en otras configuraciones de la invención, el reactor utilizado en el sistema podría ser alguno de los siguientes: lecho fluidizado burbujeante, Reactor de cono rotativo, Reactor ablativo, Reactor para pirólisis por vacío, Reactor Auge.
La diferencia de un reactor de lecho fluidizado circulante con respecto a uno burbujeante, es esencialmente que el primero se caracteriza por el hecho que el gas retorna al reactor dentro de un circuito cerrado, abandonando parte del gas en la medida que circula. En cambio, un reactor de lecho burbujeante el gas no retorna al mismo, abandonándolo definitivamente.
Tal como se mencionó, para la separación del material sólido del gas, los productos de la pirólisis siguen su curso hacia el segundo y tercer ciclón (206, 207) donde las partículas de carbón son separadas de la corriente gaseosa. Tanto la distribución como el tamaño de la partícula de carbón están directamente relacionados con la distribución y tamaño de las partículas de la materia prima.
El proceso opera a muy bajas presiones, del orden de los 30 kPa en la parte superior del reactor, por lo cual el gas debe comprimirse a fin de contrarrestar las pérdidas de carga totales del proceso más el diferencial de presión dado por el lecho fluidizado, que se encuentra en el orden de los 40 kPa. Para la compresión y conducción de dichos gases se utiliza un ventilador centrífugo (205), conectado a la salida del reactor de pirólisis rápida (204).
Unidad de condensación
La unidad de pirólisis (200) se encuentra operativamente conectada a la unidad de condensación (300), de tal manera que los gases provenientes del ciclón
separador (207) ingresan a un primer intercambiador de calor (301 ) en donde se disminuye la temperatura de los gases desde aproximadamente unos 500 °C, en la entrada superior del intercambiador (301 ), hasta alrededor de unos 150 °C, en la salida inferior del mismo. Un flujo de aire a baja temperatura ingresa al intercambiador (301 ) impulsado por el primer ventilador (302), de tal manera que dicho flujo de aire interactúa en contracorriente con el flujo de gas, permitiendo la disminución de la temperatura de este último. En la descarga de dicho flujo de aire este se encuentra a una temperatura cercana a aproximadamente 400 °C, en donde será aprovechado como parte de la energía necesaria para calentar el aire de alimentación del secador.
En la etapa de condensación del bio-combustible líquido, con el fin de maximizar la producción del mismo, los productos de la pirólisis permanecen bajo las condiciones de reacción durante un tiempo mínimo no mayor a seis segundos. Este mínimo tiempo de residencia es necesario para evitar una reacción secundaria de craqueo del bioaceite combustible hacia la producción de gases no condensables.
Otra reacción que se toma en consideración en el sistema de condensación es la coquización de los vapores de bioaceite combustible. Esta coquización tiene lugar siempre que la condensación y enfriamiento de la corriente proveniente del reactor sea gradual y lenta. Para evitar dicha reacción, la condensación debe ser realizada rápidamente, lo cual se logra en la presente invención por medio del contacto directo entre la corriente de gases con una corriente fría del bioaceite combustible líquido.
Para lograr lo anterior se utiliza un sistema que consiste en el rociado del "bio- combustible líquido frío" por medio de toberas, utilizando para el condensado y enfriamiento de los gases, un equipo condensador scrubber (303) (denominado en inglés Venturi Sc/x/¿>¿>e ), el cual también puede ser utilizado para minimizar la producción de aerosoles de Bioaceite combustible, que son arrastrados por la corriente gaseosa dificultando los procesos posteriores.
Como se mencionó, la separación de los aerosoles se realiza en el condensador scrubber (303), en donde una pequeña corriente de bioaceite combustible líquido entra en contacto con los aerosoles presentes en la corriente de gas, produciendo la coalescencia de las pequeñas gotas que conforman los
aerosoles. A continuación, y de manera opcional, los gases no condensados pueden ser enviados a una segunda etapa de coalescencia dada por un precipitador electrostático (no mostrado en las figuras).
De esta manera, el flujo de gas proveniente del primer intercambiador de calor (301 ) ingresa en el condensador scrubber (303) en donde entra en contacto con partículas líquidas de bio-combustible, rociados desde la parte superior del condensador scrubber (303), de tal manera que el flujo de gas asciende desde una sección media del condensador scrubber (303) hasta su parte superior, en donde se produce la descarga de gas, teniendo que pasar dicho flujo de gas a través del flujo de partículas líquidas que descienden, producto de la gravedad, desde la parte superior del condensador scrubber (303) hasta una parte inferior, en donde se produce la descarga del mismo. A la salida del condensador scrubber (303) se encuentra una primera bomba (306) que impulsa el bio-combustible líquido hacia una unidad de almacenamiento de bio-combustible (403). El diseño de dicho condensador scrubber (303), permite reducir la temperatura del gas de unos 150 QC a 50 - 55 QC. Como una forma de reforzar y lograr la temperatura final citada, se considera la presencia de un intercambiador en el interior del scrubber como una forma de regular a voluntad dentro de ciertos rangos la temperatura final del bio- combustible, teniendo como fluido enfriador aire a temperatura ambiente (800). El aire caliente generado como producto de la transferencia de calor, es aprovechado en el calentamiento del aire que alimenta al secador.
Además, en el condensador scrubber (303) una parte del bio-combustible líquido recircula en forma rápida, utilizándose para esto una segunda bomba de bio- combustible (305). Esta recirculación tiene como objetivo, el enfriamiento del gas producto de la pirólisis. Como es la idea de funcionamiento del scrubber, el bioaceite desciende por caída libre desde la parte superior a modo de neblina por aspersores especiales y en contracorriente el gas de pirólisis asciende desde la parte inferior lateral, generándose entonces la condensación del gas en forma rápida.
Por la parte superior del condensador scrubber (303) se realiza la descarga del gas no condensable, el cual preferentemente es luego comprimido mediante un segundo ventilador (304), conduciéndolo hacia un segundo intercambiador (501 ) y posteriormente al reactor como gas fluidizante.
La unidad de almacenamiento de gas no condensable (401 ), comprende un estanque de acero inoxidable, preferentemente cilindricos, de capacidad suficiente para contener una jornada de 2 horas de gas de trabajo, tiempo estimado de normalización de la planta. El sistema comprende adicionalmente un estanque de gas propano (402) utilizado para la partida inicial de la planta.
Unidad de preparación de gas de lecho fluidizado
La unidad de preparación de gas de lecho fluidizado (500), correspondiente al gas no condensable, se encuentra operativamente conectada a la unidad de condensación (300) y a la unidad de pirólisis (200) a través del sistema de circulación y reciclaje. El gas proveniente de la salida del condensador Scrubber (303) ingresa a un segundo intercambiador de calor (501 ), a una temperatura aproximada de 120°C, y sale de este a una temperatura cercana a los 500 °C. Dicho segundo intercambiador de calor (501 ) permite la interacción entre el gas no condensable (que recibe el calor) y un primer fluido de gas de combustión, que corresponde al producto de la combustión de una parte del propio gas no condensable (que entrega el calor), a través de quemadores de gas (502) especialmente diseñados para el caso y dispuestos lateralmente en el propio intercambiador de calor. En otras palabras, el gas proveniente de la unidad de condensación (300) se distribuye en dos, una parte que alimenta los quemadores de gas (502) y otra que es utilizada como gas para generar el lecho fluidizado.
En una configuración preferida de la invención, en la salida (504) segundo intercambiador de calor (501 ) se realiza la descarga del fluido de gas de combustión directamente al medio ambiente. Sin embargo, como parte importante de la invención, que incrementa la eficiencia térmica del equipo, se ha establecido una configuración opcional que permite aprovechar los gases producto de la combustión generada en el intercambiador (501 ). Para estos efectos se diseño un ducto que une la salida de gas de combustión (504) con la entrada del secador (103), reduciendo así, el consumo de carbón de este intercambiador. Un tercer ventilador (503) provee el primer flujo de aire de combustión a dichos quemadores (502).
Por otra parte, al inicio de la operación del sistema no se dispone del gas no condensable fluidizante en el reactor para generar el proceso de pirólisis ni la disponibilidad de carbón para su calentamiento. Dada esta situación limitante, el calentamiento, inicialmente, se realiza por intermedio de gas propano, contándose entonces con un sistema externo compuesto de un estanque de gas propano (402) y conexiones correspondientes unidas al quemador (502). Un by-pass permite pasar del gas propano al gas no condensable en algún momento, estimado aproximadamente dentro de dos a tres horas de espera. Como consecuencia también de lo anterior, la generación de gas de pirólisis es lenta en un principio, pero a medida que se incrementa, se incrementará la disponibilidad de gas no condensable.
Una vez logrado el volumen de gas que requiere el reactor, comienza el almacenamiento en un estanque provisto en la unidad de almacenamiento de gas no condensable (401 ), y una vez alcanzado el volumen que satisface las necesidades de mantención estable de la planta, se reemplaza el gas propano, como fuente energética temporal, por la combustión del gas acumulado en dicha unidad de almacenamiento (401 ). En forma alternativa, se dispone de la utilización de un quemador de carbón (no mostrado en las figuras) para absorber las posibles deficiencias de gas en esta etapa del proceso. Se ha considerado como una configuración alternativa la utilización de los gases generados en el proceso de combustión del carbón como agente fluidizante, lo cual presenta ventajas apreciables como es el encontrarse a una temperatura elevada, sobre los 400 QC, ser generado a partir de un combustible de mucha pureza y encontrarse disponible en cantidades superior a las necesidades del reactor. Como consecuencia, se eliminan tiempos de espera en la puesta en marcha de cada operación diaria de la planta, incrementándose por lo tanto la producción y reduciendo costos de operación.
Unidad de preparación de aire caliente para la alimentación de la unidad de secado
La unidad de preparación de aire para la unidad de secado (600) comprende un tercer intercambiador de calor (601 ), utilizado para el calentamiento del aire que alimenta el secador (103), donde dicho tercer intercambiador (601 ) se encuentra
conectado operativamente con el intercambiador (301 ), donde este último provee de aire caliente que se encuentra a una temperatura aproximada entre 400 a 450QC. De acuerdo al diseño de la invención, se requiere elevar la temperatura del aire en aproximadamente 200QC para ingresar al secador con la temperatura de diseño (600QC), lo cual se logra utilizando la energía de combustión del carbón generado en el proceso de pirólisis, proveniente de la tercera tolva de alimentación (208). Para este efecto, se diseñó un quemador de carbón (602), el cual utiliza un segundo flujo de aire de combustión proporcionado por el tercer ventilador (503), y partículas de carbón provenientes de un dosificador (209) operativamente conectado a la salida de la tercera tolva de alimentación (208), proveyendo de un segundo flujo de gas combustión al tercer intercambiador de calor (601 ). En la salida (603) del tercer intercambiador de calor (601 ) se realiza la descarga del segundo flujo de aire de combustión al ambiente.
De esta manera, el flujo de aire a alta temperatura proveniente de la salida del tercer intercambiador de calor (601 ) se utiliza en la unidad de secado, ingresando en el secador (103), con el objetivo de entrar en contacto directo con la biomasa húmeda y entregar al reactor (204) biomasa con las condiciones de humedad deseadas.
El sistema comprende adicionalmente un sistema de control, que se utiliza para el control de variables, como por ejemplo, la presión, y la variación del flujo de gas, de manera de controlar la temperatura del reactor. Además, el sistema comprende un tablero electrónico de control para diferentes unidades, como las bombas y los ventiladores.
Además, si bien aquí se trata de desechos de madera, estos reactores pueden ser también alimentados por otros tipos de desechos o combinación de ellos, como son los desechos agrícolas, diferentes clases de pastos, bagazo y otros.
Sistema abatible dentro del sistema móvil
El sistema modular móvil incluye en su configuración de transporte una modalidad de adaptación de los equipos, en especial del reactor, el cual debido a su altura impide realizar su traslado en forma segura. Para este efecto, el sistema comprende medios de abatimiento mecánico que permiten al sistema disponer
selectivamente entre la configuración de transporte y la configuración de operación. Dichos medios de abatimiento permiten girar en torno a un eje a los elementos del sistema que sea necesario abatir para proveer de un transporte más seguro en rutas de difícil acceso, permitiendo disponer de dichos elementos en posición horizontal.
En la configuración de operación, el reactor o cualquiera de los elementos que se deban abatir durante el transporte, se sitúan en forma vertical y se conectan a través de bridas al sistema de circulación y reciclaje, mientras que durante la configuración de transporte, dichos elementos se encuentran abatidos y operativamente desconectados del sistema de circulación y reciclaje.
En una configuración preferida de la invención, en la configuración de transporte, solo el reactor de pirólisis rápida (204) se encuentra abatido y operativamente desconectado del sistema de circulación y reciclaje, mientras el resto de los elementos del sistema se encuentran en posición de operación.
Los medios de abatimiento consisten preferentemente en una estructura metálica, construida en base a perfiles de acero y abierta por sus cuatro costados, en cuyo interior se apoyan los componentes sobre una base también metálica. El movimiento rotatorio del conjunto se logra por medio de un sistema tornillo sin fin, actuado manualmente a través de un sistema de trinquete y barrote (chicharra).
Sistema de almacenaje de bio-combustible
La unidad de almacenamiento de bio-combustión (403) comprende dos estanques, hechos en acero inoxidable, con una capacidad de almacenaje suficiente para almacenar la cantidad de bio-combustible generado en una jornada de 24 horas, en donde uno es utilizado para almacenar la producción diaria y el otro para trasladarla al lugar de consumo. Cabe destacar que estos estanques se diseñan estructuralmente para ser izados por camiones auto-cargantes. El estanque en funcionamiento es alimentado por la bomba de bio-combustible (306).
Claims
REIVINDICACIONES Un sistema modular móvil de aprovechamiento energético de residuos forestales, en su lugar de origen, a través de la generación de bio-combustible líquido, CARACTERIZADO porque comprende:
una unidad de secado (100) que prepara biomasa con niveles de humedad deseados;
una unidad de pirólisis (200) que genera biogás a partir de la biomasa; una unidad de condensación (300) que condensa el biogás en bio- combustible líquido;
una unidad de almacenamiento de bio-combustible (403) que almacena el bio-combustible líquido proveniente de la unidad de condensación (300), y una unidad de almacenamiento de gas no condensable (401 );
una unidad de preparación de gas de lecho fluidizado (500) que provee gas no condensable a la unidad de pirólisis (200);
una unidad de preparación de aire para la unidad de secado (600) que provee aire caliente a la unidad de secado (100);
un sistema de circulación y reciclaje que comunica operativamente a cada una de las unidades del sistema modular móvil; y
medios de abatimiento mecánico que permiten al sistema disponer selectivamente de una configuración de transporte y una configuración de operación; en donde
dicho sistema se encuentra montado en al menos un vehículo terrestre; y en donde además
en la configuración de transporte los elementos del sistema se encuentran dispuestos en posición de transporte; y
en la configuración de operación los elementos del sistema se encuentran operativamente conectados a través de medios de unión con el sistema de circulación y reciclaje, y todos los elementos se encuentran en posición de operación.
2. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 1 , CARACTERIZADO porque incluye una unidad de preparación de biomasa (700) que comprende una máquina chipeadora, correas transportadoras, una tolva de descarga, un molinete y un harnero, proveyendo de biomasa acondicionada a la unidad de secado (100).
3. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 1 , CARACTERIZADO porque en la configuración de operación la unidad de secado (100) comprende una tolva de acumulación (101 ) que alimenta con biomasa húmeda un primer medio de transporte de material (102), conectado a un secador (103), en donde la biomasa se mezcla con un flujo de aire caliente, y donde en la salida de dicho secador (103) se conecta un primer ciclón separador (104) de aire húmedo.
4. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 3, CARACTERIZADO porque el primer medio de transporte de material (102) corresponde a un tornillo transportador.
5. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 3, CARACTERIZADO porque en la configuración de operación la unidad de pirólisis (200) comprende:
un reactor de pirólisis rápida (204), que combustiona en forma parcial la biomasa proveniente de la unidad de secado (100) produciendo biogás; una segunda tolva de alimentación (201 ), que almacena la biomasa proveniente del primer ciclón separador (104);
un tornillo dosificador (202), conectado operativamente a dicha segunda tolva (201 ) y a un tornillo rápido (203), donde este último alimenta de biomasa al hogar de combustión del reactor de pirólisis rápida (204);
un ventilador (205) conectado a la salida del reactor de pirólisis rápida (204), que alimenta de biogás a un segundo ciclón separador (206), y a un tercer ciclón separador (207), en donde dichos segundo y tercer ciclón separador (206, 207) separan el biogás de material sólido en suspensión; y una tercera tolva de alimentación (208), que acumula el material sólido en suspensión proveniente del segundo y tercer ciclón separador (206, 207).
Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 5, CARACTERIZADO porque el reactor de pirólisis rápida (204) se selecciona entre un grupo que comprende los siguientes: reactor de lecho fluidizado circulante, lecho fluidizado burbujeante, reactor de cono rotativo, reactor ablativo, reactor para pirólisis por vacío, y reactor Auge.
Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 5, CARACTERIZADO porque en la configuración de operación la unidad de condensación (300) comprende:
un primer intercambiador de calor (301 ), que recibe el flujo de biogás proveniente del tercer ciclón separador (207) y un flujo de aire a baja temperatura;
un condensador scrubber (303), conectado a la salida del primer intercambiador de calor (301 ), que recibe el flujo de biogás y lo enfría a través del contacto directo con un flujo de bio-combustible líquido a baja temperatura, el cual es rociado por medio de toberas;
una primera bomba (306), conectada a la salida del condensador scrubber (303), que impulsa el bio-combustible líquido hacia la unidad de almacenamiento de bio-combustible (403); y una segunda bomba (305) de bio-combustible, que recircula sucesivamente una parte del bio-combustible hacia las toberas, para el enfriamiento del biogás; y
un segundo ventilador (304) conectado por la parte superior del condensador scrubber (303) que comprime y conduce el gas no condensable hacia un segundo intercambiador (501 ).
Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 7, CARACTERIZADO porque el condensador scrubber (303) provee, por su parte superior, gas no condensable hacia un precipitador electrostático de partículas.
Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 1 , CARACTERIZADO porque la unidad de almacenamiento de bio-combustible (403) comprende dos estanques, en donde un estanque se utiliza para el traslado del bioaceite a su lugar de destino, y el otro se alterna para recibir el combustible del proceso.
10. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 7, CARACTERIZADO porque en la configuración de operación la unidad de preparación de gas de lecho fluidizado (500) comprende:
el segundo intercambiador (501 ), que se encuentra conectado al reactor de pirólisis rápida (204), y que provee de gas no condensable al hogar de combustión del reactor de pirólisis rápida (204); y
un tercer ventilador (503), que provee de un primer flujo de aire de combustión a unos quemadores (502), que calientan dicho aire de combustión con el gas no condensable proveniente de la unidad de almacenamiento de gas no condensable (401 ), y proveyendo de un primer flujo de gas de combustión al segundo intercambiador (501 ).
1 1 . Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 10, CARACTERIZADO porque comprende un estanque de gas propano (402), conectado al quemador (502), que provee de combustible durante la partida inicial de la operación del sistema.
12. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 10, CARACTERIZADO porque una salida de gas de combustión (504) se encuentra operativamente conectada con la entrada del secador (103).
13. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 10, CARACTERIZADO porque en la configuración de operación la unidad de preparación de aire para la unidad de secado (600) comprende: un tercer intercambiador de calor (601 ) que se conecta operativamente con la salida de aire del segundo intercambiador de calor (301 ) y provee de aire caliente al secador (103); y
un quemador de carbón (602), que combustiona un segundo flujo de aire de combustión impulsado por el tercer ventilador (503), con partículas de carbón provenientes de un dosificador (209) operativamente conectado a la salida de la tercera tolva de alimentación (208); proveyendo de un segundo flujo de gas combustión al tercer intercambiador de calor (601 ).
14. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 1 , CARACTERIZADO porque en la configuración de transporte al menos un elemento del sistema se dispone en posición horizontal y se encuentra operativamente desconectado del sistema de circulación y reciclaje.
15. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 14, CARACTERIZADO porque solo el reactor de pirólisis rápida (204) se encuentra abatido y operativamente desconectado del sistema de circulación y reciclaje.
16. Un sistema modular móvil de aprovechamiento energético de acuerdo con la reivindicación 1 , CARACTERIZADO porque los medios de abatimiento mecánico corresponden a una estructura metálica, en cuyo interior se apoyan los componentes sobre una base, en donde el movimiento rotatorio de los elementos se realiza por medio de un sistema tornillo sin fin actuado manualmente.
17. Un sistema modular móvil de aprovechamiento energético de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque comprende adicionalmente un sistema de control, que controla variables de flujo de gas, presión y temperatura.
18. Un sistema modular móvil de aprovechamiento energético de acuerdo con cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque la biomasa utilizada como materia prima se selecciona de un grupo entre: desechos de madera, desechos agrícolas, diferentes clases de pastos, y bagazos.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2011/054909 WO2013064864A1 (es) | 2011-11-03 | 2011-11-03 | Sistema modular móvil para el aprovechamiento energético de residuos forestales |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2011/054909 WO2013064864A1 (es) | 2011-11-03 | 2011-11-03 | Sistema modular móvil para el aprovechamiento energético de residuos forestales |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013064864A1 true WO2013064864A1 (es) | 2013-05-10 |
Family
ID=48191438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/054909 WO2013064864A1 (es) | 2011-11-03 | 2011-11-03 | Sistema modular móvil para el aprovechamiento energético de residuos forestales |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013064864A1 (es) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104357069A (zh) * | 2014-10-23 | 2015-02-18 | 余小如 | 垃圾的炭气联产处理方法及其生产线 |
CN104858216A (zh) * | 2015-06-01 | 2015-08-26 | 临沂市盛源动物无害化处理有限公司 | 一种基于病害动物集中无害化处理的生态循环系统 |
CN105295968A (zh) * | 2015-11-30 | 2016-02-03 | 西北大学 | 一种提高低阶煤热解焦油产率的装置及方法 |
CN105505418A (zh) * | 2015-11-30 | 2016-04-20 | 陕西省能源化工研究院 | 一种热解试验装置 |
CN105694925A (zh) * | 2016-03-02 | 2016-06-22 | 北京神雾环境能源科技集团股份有限公司 | 有机垃圾热解系统及其应用 |
CN110157457A (zh) * | 2019-03-20 | 2019-08-23 | 华南农业大学 | 一种自供热生物质连续热解制生物炭的装置及其应用 |
CN110862835A (zh) * | 2019-12-03 | 2020-03-06 | 嘉禾聚能(天津)科技有限公司 | 一种生产燃料气的系统 |
CN111019681A (zh) * | 2019-12-28 | 2020-04-17 | 无锡亿恩科技股份有限公司 | 一种低阶煤双解干熄直立炉 |
US20210139801A1 (en) * | 2019-11-13 | 2021-05-13 | EcoGensus LLC | Mobile solid fuel production system |
CN113025354A (zh) * | 2021-03-09 | 2021-06-25 | 山东理工大学 | 自加热式垂直轴流滚筒烧蚀热解反应装置 |
CN114395427A (zh) * | 2022-01-20 | 2022-04-26 | 陕西凯德利能源科技有限公司 | 一种煤气化热解耦合的直立热解炉热解和干燥系统及方法 |
CN114811591A (zh) * | 2021-01-29 | 2022-07-29 | 上海市机电设计研究院有限公司 | 危废盐热解系统及其热解工艺 |
WO2023283744A1 (en) * | 2021-07-16 | 2023-01-19 | Thermotech Combustion F.D.C Inc. | Biochar pyrolysis system and method for operating a biochar pyrolysis system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3562115A (en) * | 1969-01-30 | 1971-02-09 | Creative Enterprises Internati | Fluidized bed retort surrounded by a fluidized sand heat exchanger |
WO2002083816A1 (en) * | 2001-04-12 | 2002-10-24 | Fortum Oyj | Processing of carbonaceous material |
WO2006130977A1 (en) * | 2005-06-08 | 2006-12-14 | The University Of Western Ontario | Apparatus and process for the pyrolysis of agricultural biomass |
-
2011
- 2011-11-03 WO PCT/IB2011/054909 patent/WO2013064864A1/es active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3562115A (en) * | 1969-01-30 | 1971-02-09 | Creative Enterprises Internati | Fluidized bed retort surrounded by a fluidized sand heat exchanger |
WO2002083816A1 (en) * | 2001-04-12 | 2002-10-24 | Fortum Oyj | Processing of carbonaceous material |
WO2006130977A1 (en) * | 2005-06-08 | 2006-12-14 | The University Of Western Ontario | Apparatus and process for the pyrolysis of agricultural biomass |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104357069B (zh) * | 2014-10-23 | 2016-10-05 | 余小如 | 一种垃圾的炭气联产处理方法及其生产线设备 |
CN104357069A (zh) * | 2014-10-23 | 2015-02-18 | 余小如 | 垃圾的炭气联产处理方法及其生产线 |
CN104858216A (zh) * | 2015-06-01 | 2015-08-26 | 临沂市盛源动物无害化处理有限公司 | 一种基于病害动物集中无害化处理的生态循环系统 |
CN105295968A (zh) * | 2015-11-30 | 2016-02-03 | 西北大学 | 一种提高低阶煤热解焦油产率的装置及方法 |
CN105505418A (zh) * | 2015-11-30 | 2016-04-20 | 陕西省能源化工研究院 | 一种热解试验装置 |
CN105295968B (zh) * | 2015-11-30 | 2017-11-03 | 西北大学 | 一种提高低阶煤热解焦油产率的装置及方法 |
CN105694925A (zh) * | 2016-03-02 | 2016-06-22 | 北京神雾环境能源科技集团股份有限公司 | 有机垃圾热解系统及其应用 |
CN110157457A (zh) * | 2019-03-20 | 2019-08-23 | 华南农业大学 | 一种自供热生物质连续热解制生物炭的装置及其应用 |
US20210139801A1 (en) * | 2019-11-13 | 2021-05-13 | EcoGensus LLC | Mobile solid fuel production system |
US11518952B2 (en) * | 2019-11-13 | 2022-12-06 | EcoGensus LLC | Mobile solid fuel production system |
CN110862835A (zh) * | 2019-12-03 | 2020-03-06 | 嘉禾聚能(天津)科技有限公司 | 一种生产燃料气的系统 |
CN111019681A (zh) * | 2019-12-28 | 2020-04-17 | 无锡亿恩科技股份有限公司 | 一种低阶煤双解干熄直立炉 |
CN114811591A (zh) * | 2021-01-29 | 2022-07-29 | 上海市机电设计研究院有限公司 | 危废盐热解系统及其热解工艺 |
CN113025354A (zh) * | 2021-03-09 | 2021-06-25 | 山东理工大学 | 自加热式垂直轴流滚筒烧蚀热解反应装置 |
CN113025354B (zh) * | 2021-03-09 | 2022-08-09 | 山东理工大学 | 自加热式垂直轴流滚筒烧蚀热解反应装置 |
WO2023283744A1 (en) * | 2021-07-16 | 2023-01-19 | Thermotech Combustion F.D.C Inc. | Biochar pyrolysis system and method for operating a biochar pyrolysis system |
CN114395427A (zh) * | 2022-01-20 | 2022-04-26 | 陕西凯德利能源科技有限公司 | 一种煤气化热解耦合的直立热解炉热解和干燥系统及方法 |
CN114395427B (zh) * | 2022-01-20 | 2023-09-19 | 陕西凯德利能源科技有限公司 | 一种煤气化热解耦合的直立热解炉热解和干燥系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013064864A1 (es) | Sistema modular móvil para el aprovechamiento energético de residuos forestales | |
US7942942B2 (en) | Method and apparatus for biomass torrefaction, manufacturing a storable fuel from biomass and producing offsets for the combustion products of fossil fuels and a combustible article of manufacture | |
CN102134497B (zh) | 农作物秸秆制炭方法及装置 | |
CN201077830Y (zh) | 生物质热解气除尘—洗涤—分馏—脱焦净化—贮存装置 | |
JP2008516182A (ja) | 粒状物質の熱処理装置 | |
Garcia-Perez et al. | Methods for producing biochar and advanced biofuels in Washington State | |
CN200999238Y (zh) | 生物质热解气除尘-洗涤-分馏-脱焦净化-贮存装置 | |
CN108826303A (zh) | 一种预防控制烟气污染物的方法及生活垃圾焚烧系统 | |
CN104226088A (zh) | 一种火电厂烟气超低温超净排放系统及方法 | |
CN103732727A (zh) | 与燃煤发电厂中燃煤混合燃烧的具有低二氧化碳排放量的燃料 | |
CN201801505U (zh) | 一种流化床生物质燃气工业锅炉系统 | |
CN105841140A (zh) | 一种生物质气化产物与煤共燃烧的系统及方法 | |
CN110906346A (zh) | 一种利用余热烘干的垃圾螺旋输送集成系统 | |
US8206471B1 (en) | Systems, apparatus and methods for optimizing the production of energy products from biomass, such as sawmill waste | |
CN110407437A (zh) | 一种水雾收集装置 | |
US8201408B1 (en) | Biomass (woodfuel) cogeneration powerplant | |
CN107927346A (zh) | 一种垃圾填埋气二氧化碳捕集耦合微藻固碳工艺 | |
US4706645A (en) | Method and system to provide thermal power for a power plant | |
CN110407429A (zh) | 一种低能耗湿物料快速干化系统及方法 | |
CN204147740U (zh) | 一种火电厂烟气超低温超净排放系统 | |
CN202688269U (zh) | 一种炭化燃气发生炉 | |
CN210945310U (zh) | 一种水雾收集装置 | |
ES2339320B1 (es) | Metodo de carbonizacion hidrotermal con reactor de flujo invertido,eninstalacion. | |
US11125432B2 (en) | Solid particle fuel burner | |
CN208687737U (zh) | 一种预防控制烟气污染物的生活垃圾焚烧系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874897 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11874897 Country of ref document: EP Kind code of ref document: A1 |