WO2013064085A1 - 小麦细胞核雄性不育系的保持方法 - Google Patents

小麦细胞核雄性不育系的保持方法 Download PDF

Info

Publication number
WO2013064085A1
WO2013064085A1 PCT/CN2012/083918 CN2012083918W WO2013064085A1 WO 2013064085 A1 WO2013064085 A1 WO 2013064085A1 CN 2012083918 W CN2012083918 W CN 2012083918W WO 2013064085 A1 WO2013064085 A1 WO 2013064085A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue
grain
line
wheat
male
Prior art date
Application number
PCT/CN2012/083918
Other languages
English (en)
French (fr)
Inventor
周宽基
马力耕
邓兴旺
Original Assignee
未名兴旺系统作物设计前沿实验室(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未名兴旺系统作物设计前沿实验室(北京)有限公司 filed Critical 未名兴旺系统作物设计前沿实验室(北京)有限公司
Priority to CN201280003769.8A priority Critical patent/CN103237441B/zh
Publication of WO2013064085A1 publication Critical patent/WO2013064085A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/026Methods or apparatus for hybridisation; Artificial pollination ; Fertility by treatment with chemicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • A01H1/021Methods of breeding using interspecific crosses, i.e. interspecies crosses

Definitions

  • the present invention relates to a method for maintaining a nuclear male sterile line and a method for cultivating hybrid wheat, which specifically belongs to the field of plant genetic breeding.
  • the principle of genetic breeding is: in the homozygous male sterile genotype, a peripheral chromosome or an engineered chromosome (Engineered Chromosome), or modified chromosome (Modern Chromosome), which is related to the genus and species
  • the source chromosome is the target material, which is artificially processed (synthesized).
  • This rim or engineered chromosome must have the following special genetic functions: 1. It can be independently transmitted and expressed in the genetic background of common wheat, but not with common wheat. Any part of the homologous chromosome of the ABD genome is paired in the meiosis phase; 2. Carrying dominant homology (partial homology) male fertile gene Ms and dominant marker gene Ma; 3.
  • this monomeric heterologous wheat with homozygous genic male sterility gene m is self-sufficient, and the progeny seed (plant) has two genotype individuals, one is a homozygous gene that does not carry a heterologous chromosome.
  • the euploid of type wheat the plant is completely male sterile, and the other is the monomeric addition line of wheat with homozygous ms s genotype with a heterologous chromosome.
  • the seed or plant of the above euploid male sterile is distinguished from the seed (seed marker trait) or plant (plant marker trait) of the male fertile monomer different addition line by the expression of the dominant marker gene carried by the chromosome.
  • Crossing a normal euploid male sterile line with another common wheat pure line to produce a hybrid F ⁇ scorpion for production; crossing the monomeric additional line by selfing or crossing with a euploid sterile line for propagation The euploid male sterile line and itself.
  • the maintenance of wheat cell male sterility is achieved and applied to the development of hybrid wheat.
  • several successful examples have been publicly reported at home and abroad.
  • the gene Ms and the ear stem have a dominant marker gene of villus, and the 5R chromosome does not match the chromosome of common wheat at the time of meiosis, but is independently inherited.
  • the Z line is used as the parent and the X line to produce the Y line, and then the Z line is used as the parent and the Y line to breed the Z line, and then the Z line and the paternal line are crossed to produce the hybrid for production.
  • the XYZ system has opened up new ways and new methods for the utilization of wheat sterility hybridization.
  • Driscoll (1985) proposed an improved XYZ system, which changed the 5R chromosome in the original system to the 5R isochon chromosome, improved the outer chromosome in the system, and reduced the transmission rate through the male gamete pathway, but still Delivery means that the system is still unable to produce high-purity genic male sterile seed, which limits its production application.
  • Huang Shousong et al. (1991) attached the 4E chromosome of Elymus sibiricus to a recessive nuclear sterile wheat, and obtained the "blue-labeled wheat nuclear male sterility, maintainer line", which is a homozygous genic male sterility gene.
  • the 4E chromosome monomer-added line of wheat which is self-sufficient, can be isolated from the three generations of seeds: one is white grain (normal wheat grain color), about 64%, showing male sterility, Can be used for F1 seed production; the other is light blue grain, about 33%, self-crossing can be strong, the offspring can permanently separate white grain sterile and blue grain fertile seeds; the third is dark blue grain, accounting for 3% Self-sufficiency can be strong, and the offspring are only the dark blue parent.
  • white grain normal wheat grain color
  • 64% showing male sterility
  • the other is light blue grain, about 33%, self-crossing can be strong, the offspring can permanently separate white grain sterile and blue grain fertile seeds
  • the third is dark blue grain, accounting for 3% Self-sufficiency can be strong, and the offspring are only the dark blue parent.
  • the dark blue and light blue grains sometimes have limited color difference, and the grain photoelectric color sorter is between dark blue and light blue.
  • the accuracy of the color selection is not enough, and the dark blue particles cannot be completely removed.
  • the self-crossing progeny of the dark blue particles only produce the deep blue particles themselves, and do not directly separate the offspring of the white sterile lines, and the seeds of the white sterile lines are gradually changed from generation to generation.
  • the additional 4E chromosome makes it be male fertile, self-sufficient, blue-blue and white-separated, and has the dual functions of "self-crossing" breeding of the white-nuclear genic male sterile line and self-reproduction of the light blue-grained maintainer, but The average self-fertility rate of light blue seed plants is only 30-70%, which affects the production efficiency of light blue grain self-propagating white-germ sterile lines and increases the planting cost in production applications.
  • the core technical measure adopted is to construct a special artificial recombination exogenous chromosome (arm) or a transgenic foreign chromosome (arm). These studies have made a useful attempt to achieve the goal of repressing the genetic breeding goal of recombination of foreign chromosomes through the pollen pathway and improving the production and reproduction efficiency of the genic male sterile line.
  • the above-mentioned hybrid wheat production system has certain defects, mainly due to the inability to produce a high-purity male sterile line, or because the marker-based sterile line retention procedure is too complicated, or due to Maintaining the line is genetically unstable, or because the maintenance of the maintainer line and the production of the sterile line are too laborious, resulting in too high a production cost of the hybrid. Therefore, these systems have not been applied on a large scale in production.
  • the wheat nuclear male sterile mutant material involved in the present invention is a spontaneous mutant material found in the hybrid 13 ⁇ 4 generation population of the hybrid combination of spring wheat varieties, and systematic studies have shown that the mutant is a single gene controlled recessive nucleus.
  • the other six mutants at the locus that have been reported by the predecessors (Pugsley's (msla), Probus's (mslb), Cornerstone (mslc), FS2 (msld), FS3 (msle) and FS24 (mslf), etc.) .
  • the 4E chromosome derived from g. ekmgat of E. longissima, except for carrying the homologous part of the mutated fertility gene in the male sterile mutant involved in the present invention
  • the male male fertility gene M5 £ also carries the dominant blue aleurone marker gene ⁇ .
  • the 3 ⁇ 4 ⁇ gene has a significant dose effect, and the inheritance of the blue endosperm gene is stable and independent, and the color of the embryo's pigment genotype and its progeny can be inferred based on the color of the endosperm.
  • the fertilization process of wheat is double fertilization, that is, the two spermatozoa formed by the male gametophyte, one zygote that fuses with the egg to form a diploid, and the other fuses with the two polar nuclei of the central cell to form the triploid endosperm.
  • the aleurone layer belongs to the endosperm tissue, so the blue aleurone layer marker gene i3 ⁇ 4 has the triploid genetic characteristics of the endosperm tissue.
  • the resulting endosperm cells of the wheat seed carry three «genes, the endosperm is dark blue; if only the female gametophyte carries the blue aleurone marker gene 3 ⁇ 4 gene, the resulting endosperm cells of wheat seeds carry two 5 ⁇ genes, and the endosperm is medium-blue; if only male gametophyte carries blue aleurone marker gene, the resulting endosperm cells of wheat seeds With 1 ⁇ 3 ⁇ 4? The gene, the endosperm is light blue.
  • the fourth homologous group of the common wheat of the present invention refers to a homologous group composed of common wheat 4 ⁇ , 4 ⁇ and 4D chromosomes.
  • the wheat nuclear male sterile mutant material mentioned in the present invention is used as a female parent, and the 4 ⁇ additional line blue-grain wheat is used as a male parent to be crossed by a system of 6 generations, and the obtained genotype wheat 4 ⁇ monomer is added.
  • the seed of the line is blue, and its genotype is: (light blue) ( Figure 1).
  • Heterologous line refers to a new plant system that adds one or a pair of homologous chromosomes of heterogeneity or heterogeneity to the genome of a crop by artificial distant hybridization followed by selfing or backcrossing.
  • the 4E additional line blue-grain wheat was obtained by Li Zhensheng and other distant hybridization of common wheat and long-eared buckwheat grass.
  • the additional exogenous 4E chromosome was independently inherited and expressed in the common wheat genetic background.
  • msms genotype wheat 4E monomer-added wheat self-crossing can be normal and firm, the transfer rate of 4E chromosome in both male and female gametes is 20%, and the offspring have four color (genotype) seeds (Fig. 2), four The specific description and related characteristics of the colored seeds are described as follows:
  • the plants that were propagated showed nearly 100% male sterility and male sterile strain rate, which could be used as the female parent.
  • Other normal wheat varieties that are male parents are crossed to produce commercial wheat hybrid seeds.
  • the male sterility according to the present invention refers to the proportion of unsturdy florets occupying all florets when the male sterile lines are selfed. If the male sterile line is not sturdy when the bag is self-crossing, the male sterility is 100%. If the male sterile line is self-crossed, one of the 40 small flowers is sturdy, then the male sterility It is 97.5%.
  • the aleurone layer contains a blue aleurone marker gene 3 ⁇ 4 gene from the male gametophyte.
  • the genotype of wheat 4E monomer-added wheat is about 16% of the seeds harvested by self-breeding.
  • self-crossing can be normal and strong
  • self-crossing offspring can permanently separate 64% white sterile line seeds and 16% light blue seeds (carry a blue paste from male gametophytes) Powder layer marker gene), 16% medium blue (bearing two genes from female gametophyte), 4% dark blue seed (carrying three i3 ⁇ 4 genes, one from male gametophytes, two from female gametophytes), the medium blue Seeds can also be used as a maintainer for breeding sterile lines;
  • the white NURC and other normal common wheat varieties can be used as the parental line to produce commercial F1 seeds; Blue granules are used as maintainer lines for self-propagation of white nucleus sterile lines and shallow and medium blue granules; and blue and white granules mixed by self-propagation of blue granules by photoelectric color sorter
  • the white and blue seeds in the seed population were further identified as dark blue kernels in the blue seed population. In this way, a new method and a new approach based on the breeding of nuclear male sterile wheat are realized.
  • the occurrence of the light blue and dark blue progeny in the self-crossing progeny of the blue-grained maintainer is caused by the genetic transmission ability of the heterozygous male gamete.
  • the heterozygous gametes are not as competitive as the normal gametes (Fig. 2). If artificially created a stressful environment, the genetic transmission function of the heterozygous male gametes that are inferior competitive position can be further weakened.
  • the present invention realizes that the heterozygous male gametes which block the self-crossing of the blue-grained maintainer seedlings can not be genetically transmitted to the offspring.
  • the target does not significantly reduce the self-sufficiency rate of the blue grain retention system.
  • the normal male gamete of the present invention refers to a male gamete carrying 21 common wheat chromosomes; the heterozygous male gamete refers to a male gamete carrying 21 common wheat chromosomes and 1 long-eared buckwheat 4E chromosome.
  • the invention Compared with the prior art, the invention has the following advantages: 1) The mutant of the nuclear male sterility material used in the invention is caused by a single recessive nuclear gene mutation, and the sterility is genetically stable, Influenced by external light and warm environmental factors; 2) The self-crossing rate of the medium blue granules provided by the present invention is high, almost close to the seed setting rate of normal wheat varieties (85% or more), and the blue label reported by Huang Shousong et al.
  • the seed setting rate of the type of wheat male male sterility and maintainer line (corresponding to the blue granules of the present invention) is about 40-50%, in contrast, the present invention has a greater advancement in production breeding;
  • the separation ratio of the blue-grained self-crossing blue and white particles of the present invention is different from the "blue-labeled wheat nuclear male sterility and maintainer", and the white particles separated from the self-crossing progeny of the blue-grained system of the present invention are not
  • the seed of the breeding line can reach about 80%, and the seed of the white-germ sterile line isolated from the self-crossing progeny of the "blue-standard wheat nuclear male sterility and maintainer line" is only about 64%, so that more white grains can be propagated. Breeding lines are used for cross breeding. DRAWINGS
  • Figure 1 is a graphical representation of the breeding of the blue grain retention line.
  • the nuclear male sterile mutant was used as the female parent, and the 4E additional line blue-grain wheat was used as the male parent, and the seed was light blue; the F 2 generation eliminated all white seeds, and only the blue seeds were on-demand; The individual plants are divided into blue and white granules and planted in pairs. In the F 3 generation and later, there are pairs of white granules with 100% sterile lines and self-crossing corresponding blue granules.
  • the genic male sterility gene of the family has been homozygous, and the corresponding fertile blue granules are further self-crossed for 3 generations until a stable blue granule maintainer is formed (see Figure 1).
  • the self-crossing rate of the chemical hybridization agent SQ-1 was compared to calculate the ratio of the self-sufficiency rate (the self-crossing rate of the control group - the self-sufficiency rate of the bagging of the treatment group) / the self-sufficiency rate of the control group X 100%);
  • the seedlings of the treated group were self-bred and seeded, and the incidence of the dark blue seeds was investigated (the seeds of the seeds of the deep blue seed seeds were all blue, and no blue-white separation occurred).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Husbandry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种小麦细胞核雄性不育系的保持方法,获得的msms基因型小麦4E单体异附加系的种子为蓝粒,自交可正常结实,后代可分离出约64%的白粒核不育系和16%浅蓝粒、16%中蓝粒和4%深蓝粒可育系。本发明使用适当浓度的化学杂交剂SQ-1处理苗期的蓝粒保持系,可使异型雄配子的遗传传递率下降到0.2%,同时蓝粒保持系的自交结实率仅平均下降3.2-10.7%。

Description

说 明 书 一种小麦细胞核雄性不育系的保持方法 技术领域
本发明涉及一种细胞核雄性不育系的保持方法和杂交小麦的培育方法, 具体属于植物遗 传育种领域。
背景技术
与作物细胞质雄性不育 "三系"杂交优势利用技术相比较, 作物细胞核雄性不育性不存 在特殊的恢复、 保持关系, 因此, 核不育作物杂交优势利用的最大优点, 是可用于选育优良 不育系、 保持系和父本系的亲本材料极为丰富, 有利于选育强优势杂交组合。 但是, 用常规 方法难以实现核不育性的有效保持, 即难以生产大量纯合不育系种子。 用小麦细胞遗传学的 理论, 通过小麦染色体工程技术, 设计某种特殊细胞遗传机制, 可实现核不育系的保持。 其 遗传育种原理是: 在纯合雄性不育基因型中, 附加一条外缘染色体或一条工程化染色体 (Engineered Chromosome) , 或称修饰染色体 ( Modified Chromosome ) , 它是用有关属、 种的 部分同源染色体为目标材料, 人工加工培育 (合成) 而成, 这条外缘或工程化染色体必需具 备以下特殊遗传功能: 一、 可以在普通小麦遗传背景中独立遗传传递、 表达, 而不与普通小 麦 ABD基因组的任何部分同源染色体在减数分裂期发生配对; 二、携带显性同源(部分同源) 雄性可育基因 Ms和显性标记基因 Ma ; 三、 不能够通过雄配子途径传递, 而仅以雌配子途径 传递。 因此, 这个带有纯合核不育基因 m画 的单体异附加系小麦, 自交可结实, 后代种 子(植株)有两种基因型个体,一是不携带异源染色体的具有纯合 基因型小麦的整倍体, 植株表现完全雄性不育, 二是带有一条异源染色体的具有纯合 ms s基因型小麦的单体异附加 系自身。 通过附加染色体携带的显性标记基因的表达, 将上述整倍体雄性不育的种子或植株 与雄性可育单体异附加系的种子 (种子标记性状) 或植株 (植株标记性状) 相区分。 将正常 整倍体雄性不育系和另一个普通小麦纯系杂交, 生产杂交 F^†子用于生产; 将单体异附加系 通过自交或与整倍体不育系杂交, 用于繁殖整倍体雄性不育系和其自身。 由此实现了小麦细 胞核雄性不育性的保持, 并将其应用于杂交小麦开发上。 根据上述细胞遗传理论设计原理, 国内外公开报道了数例成功实例 (包括本发明公开的内容)。
Driscoll等( 1972 )将黑麦的 5R染色体导入小麦细胞核雄性不育突变体 Cornerstone (mslc) 上, 获得了 XYZ杂交小麦生产体系: X系、 Y系和 Z系分别是 msms基因型小麦 5R二体异 附加系 (2n=42W(msms)+5R" =44)、 5R单体异附加系 (2n=42W(msms)+5R =43 )禾卩 msms 基因型小麦整倍体 (2n=42W(mSmS)=42)。 5R染色体上携带有部分同源等位的显性雄性可育 说 明 书
基因 Ms和穗茎有绒毛显性标记基因, 5R染色体在减数分裂时不与普通小麦的染色体发生配 对, 而是独立遗传的。 用 Z系做母本与 X系杂交生产 Y系, 再由 Z系做母本和 Y系杂交繁 殖 Z系, 再由 Z系和父本系杂交生产杂交种用于生产。 XYZ体系开创了小麦核不育杂交优势 利用的新途径、 新方法。 但是, 由于 5R染色体在 Y系中能以一定的传递率通过花粉传递, 同时, X系中两个 5R染色体间常常发生不配对的现象。 为此, 后来 Driscoll ( 1985 ) 提出了 改良 XYZ体系, 其将原系统中 5R染色体改换为 5R等臂染色体, 改良系统中的外缘染色体, 通过雄配子途径的传递率有所减少, 但仍然能传递, 意味着系统仍然不能够生产纯合度高的 核不育系种子, 由此限制了它的生产应用。 另外, 区分可育与不育, 是根据植株穗茎有绒毛 (可育株 Y系)和无绒毛(不育株 Z系) 实现的, 这需要等到抽穗后进行, 由此增加了不育 系繁殖成本。
黄寿松等(1991 )将长穗偃麦草的 4E染色体附加到一份隐性核不育小麦上,获得的 "蓝 标型小麦核雄性不育、 保持系", 是带有纯合核不育基因的小麦的 4E染色体单体异附加系, 它自交可结实, 后代可分离出三种粒色的种子: 一种为白粒(正常小麦粒色), 约占 64%, 表 现雄性不育, 可用于 F1制种; 另一种为浅蓝粒, 约占 33%, 自交可结实, 后代可永久分离出 白粒不育和蓝粒可育种子;第三种为深蓝粒, 占 3%, 自交可结实,后代仅为深蓝粒亲本自身。
但是, 要将上述蓝标型小麦雄性不育、保持系应用于生产, 还有一些问题, 一是深蓝粒 和浅蓝粒有时粒色色差有限, 谷物光电色选机对深蓝和浅蓝粒间的的色选精度不够, 无法将 深蓝粒完全剔除, 而深蓝粒自交后代只产生其深蓝粒自身,而不直接分离出白粒不育系后代, 加之白粒不育系种子逐年逐代的被分出用于 制种, 在浅蓝粒自交繁殖群体中将发生深蓝粒 的累加, 从而造成浅蓝粒系自交繁育白粒核不育系的效率降低; 二是虽然浅蓝粒中附加的 4E 染色体使其表现为雄性可育, 自交结实, 粒色蓝、 白分离, 同时具备白粒核不育系的 "自交" 繁育和浅蓝粒保持系自身繁殖的双重功能, 但浅蓝粒种子植株的平均自交结实率只有 30-70% , 影响浅蓝粒自交繁殖白粒不育系种子的生产效率, 增加了生产应用中的种植成本。
此外, 1993年, 由澳大利亚 Smart等发明的 PCT/AU93/00017 (W093/13649)国际专利 ( Genetically modified wheat plants and progeny and method for production of hybrid wheat) , 日 本 T.R. Endo提出的将杀配子基因 Gel与雄性不育基因 mS连锁的方法, 1998年和 2003年由 以色列著名的小麦学者 Moshe Feldman教授等发明的 PCT/IL98/00220(WO98/51142, Methods for production of hybrid wheat) , PCT/US02/41852 (WO03/057848A2, A method to maintain a genie male- sterile parental line of wheat through selfing of the maintainer line)两项国际专禾 ίΙ等都 是对杂交小麦生产体系进行的改良。 这些发明的核心目的是实现细胞核不育性的高效保持, 说 明 书
采取的核心技术措施是构建一条功能较为齐全、 完美的特殊人工重组外源染色体 (臂) 或转 基因外源染色体(臂)。这些研究为实现阻遏重组外源染色体通过花粉途径传递的遗传育种目 标及提高核不育系的生产繁殖效率做出了有益的尝试。 但是, 针对高效保持亲本系的要求, 上述杂交小麦生产体系都存在一定的缺陷, 主要是由于不能产生高纯度的雄性不育系、 或由 于基于标记基因的不育系保持程序太复杂、或由于保持系在遗传上尚不稳定、 或由于保持系 的繁殖和用其生产不育系太费力、 导致杂交种的生产成本太高。 因此, 这些体系并没有在生 产上得到大规模应用。
发明内容
本发明中涉及的小麦细胞核雄性不育突变体材料是在春小麦品种间杂交组合的杂种1¾ 代群体中发现的自发突变体材料, 系统的研究表明, 该突变体是一个单基因控制的隐性核雄 性不育突变体, 不育性遗传稳定, 不受外界光、 温环境因子的影响, 其不育性受位于 4B染色 体短臂上一对等位纯合隐性不育基因控制, 基因位点与前人已经报道的 位点上的其它六 个突变体 ( Pugsley's (msla) , Probus's (mslb) , Cornerstone (mslc) , FS2 (msld), FS3 (msle) 禾口 FS24 (mslf), ) 等位。
作为普通小麦第 4同源群的部分同源染色体, 来自长穗偃麦草 g.ekmgat 的 4E染 色体, 除携带与本发明所涉及的雄性不育突变体中突变的育性基因部分同源的显性雄性育性 可育基因 M5£外, 还携带显性蓝色糊粉层标记基因 α。 ¾ί基因具有明显的剂量效应, 蓝色胚 乳基因的遗传是稳定而独立的, 可以根据胚乳的颜色推断胚的色素基因型及其后代籽粒颜色 的变化。 小麦的受精过程是双受精 (double fertilization) , 即雄配子体形成的两个精子, 一个 与卵融合形成二倍体的合子, 另一个与中央细胞的两个极核融合形成三倍体的胚乳。 糊粉层 属于胚乳组织, 故蓝色糊粉层标记基因 i¾具有胚乳组织的三倍体遗传特征。 如果雌雄配子体 都带有蓝色糊粉层标记基因 基因, 所形成的小麦种子的胚乳细胞中就带有 3个 «基因, 胚 乳呈深蓝色; 如果只有雌配子体带有蓝色糊粉层标记基因¾基因, 所形成的小麦种子的胚乳 细胞中就带有 2个5^基因, 胚乳呈中蓝色; 如果只有雄配子体带有蓝色糊粉层标记基因 基 因, 所形成的小麦种子的胚乳细胞中就带有 1个^¾?基因, 胚乳呈浅蓝色。
本发明所述普通小麦第 4同源群指普通小麦 4Α、 4Β和 4D染色体所组成的同源群。 以本发明所提到的小麦细胞核雄性不育突变体材料为母本, 以 4Ε附加系蓝粒小麦为父本 杂交, 经 6个世代的系统鉴定选择, 获得的 基因型小麦 4Ε单体异附加系的种子为蓝粒, 其基因型为:
Figure imgf000004_0001
(浅 蓝粒) (图 1 )。 说 明 书
异附加系, 指通过人工远缘杂交, 然后自交或回交, 使作物的染色体组添加了异种或异 属的一条或一对同源染色体的植物新系统。 4E附加系蓝粒小麦是李振声等用普通小麦与长穗 偃麦草远缘杂交获得的, 附加的外源 4E染色体在普通小麦遗传背景中是独立遗传和表达的。
上述 msms基因型小麦 4E单体异附加系小麦自交可正常结实, 4E染色体在雌雄配子中 的传递率均为 20%, 后代有四种粒色(基因型)种子 (图 2), 四种粒色种子的具体描述和相 关特征描述如下:
1、 白粒种子 (实际与正常小麦的白粒或红粒颜色相似, 为了和蓝粒种子区分, 统称为白粒 种子), 在 基因型小麦 4E单体异附加系小麦的自交繁殖所收获的种子中占 64%左右, 基因型为: 2n=42 ( msms ) =42, 所繁殖出的植株表现为近 100%的雄性不育度和雄性不育 株率, 可将其作为母本和其它作为父本的正常普通小麦品种杂交, 生产商用的小麦 杂交 种子。 本发明所述雄性不育度指在雄性不育系套袋自交时未结实小花占所有小花的比例。 如果雄性不育系套袋自交时所有小花均未结实, 则雄性不育度为 100% ; 如果雄性不育系 套袋自交时 40朵小花中有 1个小花结实, 则雄性不育度为 97.5%。
2、 浅蓝粒种子, 糊粉层中带有一个来自于雄配子体的蓝色糊粉层标记基因¾基因, 在
基因型小麦 4E单体异附加系小麦的自交繁殖所收获的种子中占 16%左右, 基因型为: 2n=42 ( msms) +4E ( BaMSE =43 , 自交可结实, 自交后代可永久分离出 64%白粒不育系 种子和 16%浅蓝粒种子 (携带一个来自雄配子体的蓝色糊粉层标记基因 基因)、 16%中 蓝粒种子(携带两个来自雌配子体的 α基因)、 4%深蓝粒种子(携带三个 2¾基因, 一个来 自雄配子体, 两个来自雌配子体), 该浅蓝粒种子可作为繁殖不育系的保持系使用;
3、 中蓝粒种子, 糊粉层中带有两个来自雌配子体的蓝色糊粉层标记基因 基因, 在《^ ^基 因型小麦 4Ε单体异附加系小麦的自交繁殖所收获的种子中占 16%左右,基因型为: 2η=42
( msms ) +4E ( BaBaMSE) =43, 自交可正常结实, 自交后代可永久分离出 64%白粒不育 系种子和 16%浅蓝粒种子 (携带一个来自雄配子体的蓝色糊粉层标记基因 基因)、 16% 中蓝粒(携带两个来自雌配子体的 基因)、 4%深蓝粒种子(携带三个 i¾基因, 一个来自 雄配子体, 两个来自雌配子体), 该中蓝粒种子也可作为繁殖不育系的保持系使用;
4、 深蓝粒种子, 携带三个 基因, 一个来自雄配子体, 两个来自雌配子体, 在 msms基因型 小麦 4E单体异附加系小麦的自交繁殖所收获的种子中占 4%左右, 2n=42 ( msms ) +4E"
(BaBaBaMSEMSE) -44 , 自交可正常结实, 自交后代 100%是深蓝粒自身, 对繁殖白粒核 不育系无直接利用价值, 需要剔除。 说 明 书
在 m 基因型小麦 4E单体异附加系小麦自交繁殖得到的株系中, 其中可以用白粒核不 育系与其它正常普通小麦品种作为父本系杂交生产商用 F1种子;用浅、中蓝粒系作为保持系, 用于自交繁殖白粒核不育系和浅、 中蓝粒保持系种子; 用光电色选机分拣蓝粒保持系自交繁 殖生产的蓝、 白粒色混合种子群体中的白粒种子和蓝粒种子, 再在蓝粒种子群体中分检出深 蓝粒剔除。 这样, 实现了一种基于细胞核雄性不育杂交小麦培育的新方法、 新途径的建立。
但是, 由于在某些小麦栽培环境下, 在某种小麦品种遗传背景(种皮厚薄及其基质不同) 下, 个别浅蓝粒种子的蓝色糊粉层标记性状表现不充分, 难以和白粒不育系相区分; 同时, 在某种遗传和环境下, 中蓝粒和深蓝粒之间的粒色色差有限, 难以相互区分。 用光电色选机 等物理方法, 由于难以实现浅蓝粒与白粒之间 100%的分拣, 将影响白粒核不育系的纯度; 用 光电色选机等物理方法, 由于难以实现深蓝粒与中蓝粒之间的 100%的分拣,将影响蓝粒保持 系繁殖白粒不育系和蓝粒保持系自身的生产效率。
浅蓝或中蓝粒保持系的遗传本质是 m 基因型小麦 4E单体异附加系 (2n=42+4E=43), 其自交后可产生两种基因型的配子: 一种是正常配子 n=21, 另一种是异型配子 n=21+4E=22。 蓝粒保持系自交后代中浅蓝粒和深蓝粒后代的发生, 是由于异型雄配子具有遗传传递能力所 引起的。 如何使蓝粒保持系自交过程中, 产生的异型雄配子 n=21+4E=22不能够传递, 由此 实现蓝粒保持系自交后代中无浅蓝粒和深蓝粒发生, 后代中永久为中蓝粒和白粒两种基因型 后代, 是实现这一蓝粒标记细胞核雄性不育杂交小麦培育方法的遗传育种改良的理想目标。 由于中蓝粒自交过程中可形成两种基因型雄配子, 一种是正常配子 n=21 , 另一种是异型配子 n=21+4E=22, 在雄配子 (花粉) 的发生、 发育及授粉等系列生命过程中, 异型配子的竞争力 不如正常配子(图 2), 如果人为创造胁迫环境, 可进一步削弱本来处于劣势竞争地位的异型 雄配子的遗传传递功能。 根据这种两种基因型雄配子竞争力的天然差异, 本发明通过对蓝粒 保持系幼苗, 实施化学胁迫的途径, 实现了阻滞其自交产生的异型雄配子基本不能遗传传递 到后代的目标, 同时又不明显降低蓝粒保持系自交结实率。经过大量筛选和试验发现, 用 0.4 公斤 /公顷剂量的小麦化学杂交剂 SQ- 1 (西北农林科技大学生产并拥有知识产权, 目前在生产 上大量利用), 在蓝粒保持系的苗期喷施后, 可以使异型雄配子的遗传传递率下降到 0.2%, 即, 使蓝粒保持系自交后代中浅蓝粒和深蓝粒的发生率下降到 0.16%和 0.04% , 同时, 蓝粒 保持系的自交结实率没有明显降低 (图 3)。 由此实现了基于细胞核雄性不育杂交小麦培育新 方法的建立。
本发明所述正常雄配子指携带 21条普通小麦染色体的雄配子; 异型雄配子指携带 21条 普通小麦染色体和 1条长穗偃麦草 4E染色体的雄配子。 说 明 书
本发明与已有的现有技术相比, 其进步之处在于: 1 )本发明所采用的细胞核雄性不育材 料突变体是一单隐性核基因突变而致,不育性遗传稳定,不受外界光、温环境因子的影响; 2) 本发明所提供的中蓝粒系的自交结实率高, 几乎接近正常小麦品种的结实率(85%以上), 而 黄寿松等报道的 "蓝标型小麦核雄性不育、 保持系"(相当于本发明的蓝粒系) 的结实率约为 40-50% , 相比之下, 本发明在生产育种上有了更大的进歩; 3 ) 本发明涉及的蓝粒系自交后 代蓝、 白粒的分离比率与 "蓝标型小麦核雄性不育、 保持系"不同, 本发明的蓝粒系中自交 后代分离出的白粒不育系种子可以达到 80%左右, 而 "蓝标型小麦核雄性不育、 保持系" 自 交后代分离出的白粒不育系种子只有 64%左右, 从而使得可以繁殖更多的白粒不育系以用于 杂交育种。 附图说明
图 1是蓝粒保持系的选育图解。
图 2是蓝粒保持系 2n=42W(m«ra)+4E(fia¾ ? )=43自交后代遗传分离原理图。
图 3是不同浓度化学杂交剂 SQ-1处理蓝粒保持系 2n=42W m +4Ε(βββίϊ ?£)=43对异 型雄配子的化杀效果。
图 4是蓝粒保持系 2n=42W( «ra)+4E( afia S£)=43被 SQ-1 (0.4 kg/hm2)处理后自交后代 遗传分离结果图。
具体实施方式
实施例 1、 蓝粒保持系的选育
以细胞核雄性不育突变体为母本, 以 4E附加系蓝粒小麦为父本杂交, 代种子为浅蓝粒; F2代淘汰所有白粒种子, 仅将蓝粒种子点播; 将 F3代种子分单株分蓝、 白粒后成对行种植, F3代及其以后时代, 出现不育株率为 100%的白粒行和自交结实的相应蓝粒行的成对家系, 说 明该家系的核不育基因已纯合, 再将其相应的可育蓝粒株继续自交选育 3代, 直至形成稳定 的蓝粒保持系 (见图 1示)。
实施例 2、 蓝粒保持系最佳化学杂交剂 SQ-1处理浓度和处理时期的筛选试验
按小区种植稳定的蓝粒保持系 2η=42λν(«¾«¾)+4Ε(¾ιββ ?£)=43, 在所有植株处于 Feeks 8.0-9.0 (旗叶抽出至平展) 时, 设置 0.1、 0.2、 0.4、 0.7和 1.0公斤 /公顷的若干 SQ-1喷施浓 度, 用自动喷雾器对小麦进行一次叶面喷施处理。 喷药处理后, 每小区内随机套袋 20穗, 其 中 10穗扬花后作为父本给普通小麦授粉,收获的种子中蓝粒种子占所有种子的比例即为异型 雄配子 (n=21W(m^ra)+4E( ?£)=22) 的传递率; 另外 10穗套袋自交结实, 与对照组 (未 说 明 书
经化学杂交剂 SQ-1 处理) 的自交结实率进行比较, 计算自交结实率下降比例 ((对照组自交 结实率 -处理组套袋自交结实率) /对照组自交结实率 X 100%) ; 将处理组套袋自交结实的种子 种下, 调查其深蓝粒种子的发生率 (深蓝粒种子种子种出的植株所结种子全部为蓝粒, 不发 生蓝白分离)。
结果如图 3所示, SQ-1处理剂量为 0. 4 kg/hm2时, 异型雄配子的传递率下降至 0. 2%, 深 蓝粒发生率下降至 0. 04%, 自交结实率仅下降 10. 7%; 当 SQ-1处理剂量低于 0. 4 kg/hm2时, 异型雄配子仍有较高的传递率,相应的深蓝粒发生率也较高;当 SQ-1处理剂量高于 0. 4 kg/hm2 时, 异型雄配子的传递率为 0, 但自交结实率下降比例较大,不适合生产应用; 因此, 最佳的 SQ-1处理剂量为 0. 4 kg/hm2
实施例 3、 蓝粒保持系的繁殖和白粒不育系的分离
设置隔离区, 种植蓝粒保持系 2n=42W(m ww)+4ECSaBflM )=43, 在所有植株处于 Feeks 8.0-9.0 (旗叶抽出至平展)时,用最佳的化学杂交剂 SQ-1的使用浓度 0.4kg/hm2,进行喷施; 其自交后代遗传分离如图 4所示。 对收获的种子进行光电籽粒色选机色选, 选出白粒不育 系和蓝粒可育系。
实施例 4、 白粒不育系在杂交育种中的应用
2010年春季甘肃武威制种, 面积 2.0亩。 父本为陇春 8139, 母本为白粒不育系; 父本和 母本 3月 10日同时播种, 父母本行比 3:6; 父本 6月 5日抽穗, 母本 6月 3日抽穗。 母本开 花第一天即取花粉镜检, 经 I2-KI染色, 花粉 100%为典型败育; 套袋自交结实率为 0。 母本开 花早, 花时较集中, 父母本花时相遇良好; 收获杂交种子 330公斤; 2010年冬季云南元谋鉴 定纯度为 98.0%。

Claims

权 利 要 求 书
1.一种纯合细胞核雄性不育系的方法, 以小麦隐性细胞核雄性不育材料为母本, 以 4E 附加 系蓝粒小麦为父本杂交, 后经数个世代的鉴定选择, 选育出稳定遗传的 ms基因型小麦 4E 单体异附加系, 即蓝粒保持系, 其特征是: 用适当浓度的化学杀雄剂处理蓝粒保持系的幼 苗, 在保持其自交结实率不明显下降的同时, 使其携带外源染色体 4E 的异型雄配子 n=21+4E=22的遗传传递率大幅下降, 相应异型雌配子的遗传传递率保持不变。
2. 权利要求 1 所述的方法, 其中所述的蓝粒保持系经化学杂交剂处理后, 其自交产生的白 粒核不育系占 79.84%, 浅蓝粒保持系占 0.16%, 中蓝粒保持系占 19.96%, 深蓝粒系占 0.04%,其中, 白粒核不育系可用于 F1 制种, 中、 浅蓝粒系用作保持系繁殖白粒不育系和蓝 粒保持系自身。
3.权利要求 1 或 2所述的方法, 其中所述的经化学杂交剂处理获得的白粒和中、 浅蓝粒系 在育种中的应用。
4. 权利要求 1 所述的方法, 其中所述的化学杂交剂使用时期为旗叶露尖期至旗叶完全展开 期之间的任何时期。
5. 权利要求 1 所述的方法, 其中所述的化学杂交剂为 SQ-1 , 其使用浓度是 0.1-1 公斤 /公 顷, 优选为 0.4公斤 /公顷。
6.权利要求 1所述的方法, 其中所述的化学杂交剂为除 SQ-1以外的其它商用小麦化学杀雄 剂, 用于蓝粒保持系的化学改良。
7. 权利要求 1 所述的方法,其中所述的小麦隐性细胞核雄性不育材料,其特征是: 其不育性 受位于 4B 染色体短臂上的一对等位纯合隐性不育基因控制, 基因位点与前人已经报道的 msl 位点上的其它六个突变体 ( Pugsley ' s (ms7a),Probus (msl b) ,Comerstone (mslc),FS2 (msld), FS3 (msle) 禾 P FS24 (mslf) 等位。
8. 权利要求 1-7中所述的蓝粒保持系、 白粒核不育系、 中蓝和浅蓝粒系在育种中的应用。
9.权利要求 1-7所述的蓝粒保持系、 白粒核不育系、 中蓝和浅蓝粒系在分子育种中的应用。
10. 一种获得细胞核雄性不育保持系的方法, 其特征是: 以小麦隐性细胞核雄性不育材料为 母本, 以 4E 附加系蓝粒小麦为父本杂交, 经系统鉴定选择后获得稳定的白粒不育系、 浅蓝 粒保持系、 中蓝粒保持系和深蓝粒可育系。
11. 权利要求 10 中所获得的白粒不育系、 浅蓝粒保持系、 中蓝粒保持系和深蓝粒可育系在 育种中的应用。
12. 权利要求 10 中所获得的白粒不育系、 浅蓝粒保持系、 中蓝粒保持系和深蓝粒可育系在 分子育种中的应用。
PCT/CN2012/083918 2011-11-02 2012-11-01 小麦细胞核雄性不育系的保持方法 WO2013064085A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280003769.8A CN103237441B (zh) 2011-11-02 2012-11-01 一种小麦细胞核雄性不育系的保持方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110340802.3 2011-11-02
CN201110340802 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013064085A1 true WO2013064085A1 (zh) 2013-05-10

Family

ID=48191350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083918 WO2013064085A1 (zh) 2011-11-02 2012-11-01 小麦细胞核雄性不育系的保持方法

Country Status (2)

Country Link
CN (1) CN103237441B (zh)
WO (1) WO2013064085A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107304428A (zh) * 2016-07-25 2017-10-31 未名兴旺系统作物设计前沿实验室(北京)有限公司 小麦育性恢复基因及其应用
CN107637514A (zh) * 2017-10-11 2018-01-30 云南省农业科学院粮食作物研究所 一种杂交小麦机械化高效制种播种方法
CN108207611A (zh) * 2017-11-28 2018-06-29 袁隆平农业高科技股份有限公司 一种农作物杂交新品种的选育方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA123765C2 (uk) * 2014-09-26 2021-06-02 Піонір Хай-Бред Інтернешнл, Інк. ПОЛІПЕПТИД Ms1 ПШЕНИЦІ, ЩО МОДУЛЮЄ ЧОЛОВІЧУ ФЕРТИЛЬНІСТЬ, ТА СПОСІБ ЙОГО ЗАСТОСУВАННЯ
CN105493919B (zh) * 2015-12-17 2018-09-18 河南科技学院 利用兰索拉唑提高bns小麦雄性不育系花粉败育率的方法
CN109750060B (zh) * 2017-11-01 2020-08-28 未名兴旺系统作物设计前沿实验室(北京)有限公司 一种提高小麦ms1雄性不育系纯度的方法
CN110656164B (zh) * 2019-09-24 2021-12-21 西南大学 基于转录组测序分析确定特定染色体上物种特异性基因的方法
CN110714022B (zh) * 2019-11-25 2023-01-24 中国农业大学 对花粉竞争力基因stk1;2的表达调控及在提高扩繁植物核雄性不育系效率中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101243770A (zh) * 2007-02-14 2008-08-20 甘肃省农业科学院 一种细胞核雄性不育杂交小麦的培育方法
CN100420368C (zh) * 2006-04-06 2008-09-24 西北农林科技大学 一种以蓝粒为标记性状的两系法杂交小麦的选育方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8524024D0 (en) * 1985-09-30 1985-11-06 Shell Int Research Preparation of azetidine-3-carboxylic acid
CN1075925C (zh) * 1996-10-24 2001-12-12 四川省农业科学院作物研究所 化杀杂种小麦的制种方法
CN101595836B (zh) * 2009-07-02 2011-11-09 西北农林科技大学 一种化学杀雄杂交植物去杂保纯的方法
CN102210261A (zh) * 2011-04-06 2011-10-12 四川省农业科学院作物研究所 杂种小麦川麦59制种方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420368C (zh) * 2006-04-06 2008-09-24 西北农林科技大学 一种以蓝粒为标记性状的两系法杂交小麦的选育方法
CN101243770A (zh) * 2007-02-14 2008-08-20 甘肃省农业科学院 一种细胞核雄性不育杂交小麦的培育方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG, S. ET AL.: "The breading development of a blue marked nucleus male sterile line and its maintainer of wheat", ACTA AGRONOMICA SINICA, vol. 17, no. 2, 31 March 1991 (1991-03-31), pages 81 - 87 *
LIU, H. ET AL.: "Research on effect of male sterility on different wheat genotype induced by SQ -1", JOURNAL OF NORTHWEST A & F UNIVERSITY, vol. 31, no. 4, 31 August 2003 (2003-08-31), pages 15 - 18 *
WANG, P. ET AL.: "The application of blue marked nucleus male sterile line of wheat in recurrent selection", TRITICEAE CROPS, vol. 18, no. 5, 30 September 1998 (1998-09-30), pages 11 - 14 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107304428A (zh) * 2016-07-25 2017-10-31 未名兴旺系统作物设计前沿实验室(北京)有限公司 小麦育性恢复基因及其应用
CN107304428B (zh) * 2016-07-25 2021-04-02 未名兴旺系统作物设计前沿实验室(北京)有限公司 小麦育性恢复基因及其应用
US11130967B2 (en) 2016-07-25 2021-09-28 Beijing Next Generation Hybrid Wheat Biotechnology Co., Ltd Fertility restoration gene in wheat and uses thereof
CN107637514A (zh) * 2017-10-11 2018-01-30 云南省农业科学院粮食作物研究所 一种杂交小麦机械化高效制种播种方法
CN107637514B (zh) * 2017-10-11 2020-03-17 云南省农业科学院粮食作物研究所 一种杂交小麦机械化高效制种播种方法
CN108207611A (zh) * 2017-11-28 2018-06-29 袁隆平农业高科技股份有限公司 一种农作物杂交新品种的选育方法

Also Published As

Publication number Publication date
CN103237441A (zh) 2013-08-07
CN103237441B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2013064085A1 (zh) 小麦细胞核雄性不育系的保持方法
US10941411B2 (en) Modified gene resulting in parthenocarpic fruit set
EP0160692A1 (en) Method for the transfer of exogenous genes in plants using pollen as a vector
Kalloo et al. Distant hybridization of crop plants
CN102876711A (zh) 水稻工程保持系的培育方法及其在水稻普通核不育系繁殖中的应用
Hodges et al. Regeneration of maize
CN103081797B (zh) 一种诱导玉米单倍体的方法
Lim et al. Occurrence of SDR 2N-gametes in Lilium hybrids
WO2021104220A1 (zh) 对花粉竞争力基因stk1;2的表达调控及在提高扩繁植物核雄性不育系效率中的应用
WO2023005883A1 (zh) 一种蓝标型两系法杂交小麦系统的选育方法及应用
CN109456979B (zh) 利用SlPIF3基因创建可调控的番茄核雄性不育系及其创建方法及应用
Zhang et al. Production of pollenless triploid lily hybrids from Lilium pumilum DC.בBrunello’
Zhang et al. Characteristics of a novel male–female sterile watermelon (Citrullus lanatus) mutant
Kaushal et al. Morphological, cytological and reproductive characterization of tri-species hybrids (GOS) between Pennisetum glaucum, P. orientale and P. squamulatum
Rabakoarihanta et al. Meiosis and fertility of interspecific hybrids between Phaseolus vulgaris L. and P. acutifolius A. Gray
WO2014131342A1 (zh) 一种小麦新型育性调控构建体及其应用
Marcińska et al. Obtaining of winter rye (Secale cereale L. ssp. cereale) haploid embryos through hybridization with maize (Zea mays L.)
CN101268756A (zh) 普通荞麦两系杂交种生产技术
JP3949637B2 (ja) レタス雄性不稔性系統、およびレタスf1種子の生産方法
Kovalchuk et al. Alloplasmic lines of beets with new cytoplasm from the wild genus Beta patula.
Gill et al. Effect of humidity on intergeneric pollinations of iap (Inhibition of Alien Pollen) sorghum [Sorghum bicolor (L.) Moench]
CN108575732B (zh) 一种快速创制无融合生殖亚麻种子的方法
Jauhar et al. Genetic improvement of pearl millet for grain and forage production: cytogenetic manipulation and heterosis breeding
Yang et al. Cytological study on haploid male fertility in maize
Cardoso et al. Breeding of Orchids Using Conventional and Biotechnological Methods: Advances and Future Prospects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846238

Country of ref document: EP

Kind code of ref document: A1