WO2013062040A1 - 軸シール装置及びこれを備える回転機械 - Google Patents

軸シール装置及びこれを備える回転機械 Download PDF

Info

Publication number
WO2013062040A1
WO2013062040A1 PCT/JP2012/077584 JP2012077584W WO2013062040A1 WO 2013062040 A1 WO2013062040 A1 WO 2013062040A1 JP 2012077584 W JP2012077584 W JP 2012077584W WO 2013062040 A1 WO2013062040 A1 WO 2013062040A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure side
plate
seal
rotor
side plate
Prior art date
Application number
PCT/JP2012/077584
Other languages
English (en)
French (fr)
Inventor
上原 秀和
篠原 種宏
橋本 幸弘
西本 慎
中野 隆
勝人 荒木
啓太 ▲高▼村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280047231.7A priority Critical patent/CN103842695B/zh
Priority to US14/347,457 priority patent/US9103223B2/en
Priority to KR1020147007425A priority patent/KR101560110B1/ko
Priority to EP12844359.5A priority patent/EP2749795B1/en
Priority to IN2276CHN2014 priority patent/IN2014CN02276A/en
Publication of WO2013062040A1 publication Critical patent/WO2013062040A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • F16J15/3292Lamellar structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/57Leaf seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/59Lamellar seals

Definitions

  • the present invention relates to a shaft seal device that seals an annular space between a rotor and a stator and divides the annular space into a low-pressure side region and a high-pressure side region, and a rotary machine including the same.
  • a shaft seal device is provided around a rotor in a rotary machine such as a gas turbine or a steam turbine in order to reduce the leakage amount of the working fluid flowing from the high pressure side to the low pressure side.
  • a shaft sealing device described in Patent Document 1 below is known.
  • the shaft seal device includes a housing provided on the stator and a seal body made up of a large number of thin plate seal pieces.
  • a large number of thin plate seal pieces are laminated with their respective thickness directions in the circumferential direction of the rotor, with a minute gap therebetween.
  • Each thin plate seal piece is arranged so as to be inclined such that its radially inner end (front end) is located on the front side in the rotational direction of the rotor with respect to its radially outer end (rear end). And the tip is a free end.
  • one end in the axial direction on the fluid low pressure region side of the seal body is covered with the low pressure side seal plate, and the other axial end on the fluid high pressure region side of the seal body is covered with the high pressure side seal plate. ing.
  • the low-pressure side plate and the high-pressure side plate regulate the flow of the working fluid into the minute gaps of the thin seal pieces.
  • the low-pressure side plate and the high-pressure side plate are usually divided into a plurality of portions in the circumferential direction, and are arranged with a gap between them.
  • a swirling flow may be generated in the rotating direction.
  • the high pressure side plate is caused by the swirling flow on the fluid high pressure region side and the uneven flow in the vicinity of the divided portion of the high pressure side plate and the low pressure side plate. Pressure fluctuation may occur, and fluttering may occur on the high-pressure side plate. In this case, for example, there is a possibility that the high-pressure side plate has a problem at a location including the vicinity of the divided portion of the high-pressure side plate.
  • the present invention has been made in consideration of such circumstances, and provides a shaft seal device capable of preventing fluttering and a rotary machine equipped with the shaft seal device.
  • the shaft seal device is provided in an annular space between the rotor and the stator surrounding the outer periphery of the rotor, and the annular space is connected to the low pressure side region and the high pressure side in the axial direction of the rotor.
  • a shaft seal device divided into side regions the seal body having a plurality of thin seal pieces extending from the stator toward the radially inner side of the rotor and stacked in the circumferential direction of the rotor, and the seal body A high-pressure side plate extending inward in the radial direction from the stator so as to be along the high-pressure side and divided into a plurality of portions in the circumferential direction, and a portion of the surface of the high-pressure side plate facing the high-pressure side region And a rigidity imparting means for imparting rigidity in the axial direction.
  • the rigidity imparting means is provided on the high-pressure side plate, the rigidity in the thickness direction of the high-pressure side plate can be enhanced. As a result, the strength against vibration is increased and fluttering can be prevented. Further, since the rigidity imparting means is only provided on a part of the high-pressure side plate, the rigidity of the high-pressure side plate is not excessively strengthened. Therefore, although the rigidity of the high-pressure side plate is enhanced, it remains flexible enough to cope with the shape change of the seal body, so that the high-pressure side plate contacts and follows the side surface of the seal body. be able to.
  • the rigidity imparting means extends from the stator toward the radially inner side so as to be laminated on a surface facing the high pressure side region of the high pressure side plate, and the extension The length is shorter than the high-pressure side plate.
  • the rigidity of the high-pressure side plate can be reliably reinforced by the support plate portion.
  • the support plate portion is not provided in the radially inner portion of the high-pressure side plate, the flexibility of the radially inner portion of the high-pressure side plate can be secured and the portion can be made to follow the seal body reliably. it can.
  • the support plate portion is composed of a plurality of plate pieces stacked in the axial direction, and the extension length is set shorter as the plurality of plate pieces are arranged in the high-pressure side region. It is preferable that
  • the rigidity can be strengthened stepwise from the radially inner side toward the radially outer side, and the followability to the sealing body can be secured stepwise from the radially outer side toward the radially inner side.
  • the rigidity imparting means may be a plurality of ribs provided on the surface facing the high pressure side region of the high pressure side plate at intervals in the circumferential direction.
  • the high-pressure side plate is reinforced by the ribs, and the rigidity can be reliably reinforced. Moreover, since the flexibility can be ensured at a place where the rib is not provided, the seal body can be surely followed.
  • the thin plate seal piece extends toward the front side in the rotational direction of the rotor as it goes inward in the radial direction, and the rib rotates as it goes inward in the radial direction. It is preferable to extend toward the front side in the direction.
  • the rigidity imparting means may be an elastic member that presses a part of the high-pressure side plate from the high-pressure side region side toward the low-pressure side region side.
  • the elastic member presses the high-pressure side plate toward the seal body, thereby providing rigidity to the high-pressure side plate and suppressing vibration of the high-pressure side plate when the rotor rotates. can do.
  • the shaft seal device according to the present invention is provided with a plurality of fluids extending in the radial direction and spaced apart in the circumferential direction on the high-pressure side region side of the rigidity imparting means, and flowing in the circumferential direction, respectively. You may provide the fin which suppresses.
  • the fin can reduce the swirling flow in the high-pressure side region and can suppress the non-uniform flow, so that fluttering of the high-pressure side plate can be reliably prevented.
  • the rotating machine according to the second aspect of the present invention is characterized by including the shaft seal device according to any one of the above.
  • the high-pressure side plate can follow the seal body, and the rigidity of the high-pressure side plate can be enhanced to prevent fluttering.
  • the followability of the high-pressure side plate to the sealing body can be ensured while the rigidity of the high-pressure side plate is enhanced by the rigidity imparting means. Fluttering can be prevented.
  • FIG. 1 is a schematic overall configuration diagram of a gas turbine (rotary machine) according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line S1-S1 in FIG.
  • FIG. 3 is a cross-sectional view of the shaft seal device according to the first embodiment of the present invention taken along line S2-S2 in FIG. It is the schematic which looked at the axial-seal apparatus which concerns on 1st embodiment of this invention from the axial direction one side to the other side. It is the schematic which looked at the high voltage
  • FIG. 5 is a cross-sectional view of the shaft seal device according to the second embodiment of the present invention taken along line S2-S2 in FIG. It is the schematic which looked at the high voltage
  • FIG. 9 is a cross-sectional view of the shaft seal device according to the third embodiment of the present invention taken along line S2-S2 in FIG.
  • FIG. 9 is a cross-sectional view of the shaft seal device according to the fourth embodiment of the present invention taken along line S2-S2 in FIG.
  • FIG. 1 is a schematic overall configuration diagram of a gas turbine (rotary machine) 1 according to an embodiment of the present invention.
  • the gas turbine 1 includes a compressor (rotary machine) 2, a combustor 3, and a turbine (rotary machine) 4.
  • the compressor 2 takes in a large amount of air and compresses the air.
  • the combustor 3 mixes fuel with the compressed air compressed by the compressor 2 and burns it.
  • the turbine 4 converts the thermal energy of the combustion gas introduced from the combustor 3 into rotational energy.
  • the compressor 2 and the turbine 4 include rotors 2A and 4A that are connected so as to rotate together, and stators 2B and 4B that surround the outer peripheral sides of the rotors 2A and 4A.
  • the axis O direction of the rotors 2A and 4A is simply “axis O direction”
  • the circumferential direction of the rotors 2A and 4A is simply “circumferential direction”
  • the radial direction is simply referred to as “radial direction”.
  • the rotors 2A and 4A have rotating shafts 6c and 6 and a plurality of annular blade groups 7c and 7 fixed at intervals in the direction of the axis O.
  • Each of the annular blade groups 7c, 7 is configured to have a plurality of blades fixed on the outer circumference of the rotating shafts 6c, 6 at intervals in the circumferential direction.
  • the stators 2B and 4B include casings 2b and 4b, and a plurality of annular stator blade groups 5c and 5 fixed at intervals in the direction of the axis O in the casings 2b and 4b, respectively.
  • the annular stator blade groups 5c, 5 have a plurality of stator blades fixed to the inner surfaces of the casings 2b, 4b at intervals in the circumferential direction.
  • a hub shroud is formed at the tip of each stationary blade.
  • the hub shroud (stator) is connected in the circumferential direction to form an annular shape as a whole and surrounds the outer periphery of the rotary shafts 6c and 6.
  • the annular stator blade groups 5c and 5 are alternately arranged with the plurality of annular rotor blade groups 7c and 7 in the direction of the axis O, respectively.
  • Shaft seal devices 10c, 10 are provided on the hub shrouds 5c, 5. Moreover, in order to prevent the working fluid g from leaking from the high pressure side to the low pressure side in the bearing portions (stators) 2c and 4c in which the casings 2b and 4b support the rotary shafts 6c and 6 as well, shaft seal devices 10c and 10c are provided. Is provided.
  • the shaft seal device 10 of the turbine 4 will be described.
  • the shaft seal device 10 of the turbine 4 will be described.
  • the shaft seal device 10c of the compressor 2 is basically the same in configuration, and the description thereof will be omitted.
  • FIG. 2 is a cross-sectional view taken along line S1-S1 in FIG. 1
  • FIG. 3 is a cross-sectional view taken along line S2-S2 in FIG.
  • the shaft seal device 10 of the turbine 4 is formed in an arc shape in a housing 9 which is an annular space supported by the hub shroud of the annular stationary blade group 5 and the inner peripheral surface of the bearing portion 4c.
  • a plurality (eight in this embodiment) of extending seal segments 11 are arranged in the circumferential direction.
  • the seal segment 11 is divided so as to go forward in the rotational direction as it goes from the radially outer side to the radially inner side.
  • the housing 9 extends along the outer periphery of the rotating shaft 6 in the entire circumferential direction (see FIG. 3), and an annular housing space 9a is formed.
  • the housing space 9a of the housing 9 has an opening side, that is, a radially inner portion, which is an inner space 9b formed with a small width dimension (dimension in the axis O direction).
  • a space spaced radially outward from the opening of the accommodation space 9a, that is, a space radially outside the inner space 9b is an outer space 9c having a larger width dimension.
  • the inner side space 9b and the outer side space 9c are in communication with each other. And the open part 9d of this inner side space 9b faces the rotating shaft 6 on the radially inner side.
  • the seal segment 11 includes a seal body 12 (see FIG. 4), holding rings 13 and 14, a high-pressure side plate 16 and a low-pressure side plate 17, and a rigidity imparting means 30.
  • the seal body 12 has a large number of thin plate seal pieces 20.
  • the holding rings 13 and 14 have a U-shaped cross section and hold a large number of thin plate seal pieces 20.
  • the high-pressure side plate 16 and the low-pressure side plate 17 are provided so as to sandwich the seal body 12 from the axis O direction.
  • FIG. 4 is a schematic view of the seal segment 11 as viewed from one side to the other side in the axis O direction.
  • the seal body 12 is formed by laminating a large number of thin plate-like seal pieces 20 (see FIG. 2), and ends of the many thin plate seal pieces 20 in the radial direction, that is, thin plate seal pieces.
  • the rear end 20a side of 20 is mutually connected.
  • the large number of thin plate sealing pieces 20 are arranged so as to go forward in the rotational direction from the radially outer side toward the radially inner side.
  • the thin plate seal piece 20 is a member mainly formed of a thin steel plate, and is formed in a T shape when viewed from the circumferential direction of the rotary shaft 6 as shown in FIG. Are arranged in the direction of the axis O. In other words, the thin plate seal piece 20 is arranged with its thickness direction directed toward the circumferential direction of the rotary shaft 6.
  • the thin plate seal piece 20 is located between the head 21, the body 23 having a width and thickness smaller than the head 21, and the head 21 and the body 23. And a neck portion 22 having a smaller width dimension.
  • the thin plate seal piece 20 is formed so as to be continuous in the order of the head portion 21, the neck portion 22, and the trunk portion 23 from the radially outer side of the rotating shaft 6 toward the radially inner side.
  • a large number of thin plate seal pieces 20 are connected to each other with their heads 21 welded together.
  • the body portions 23 of the large number of thin plate seal pieces 20 are elastically deformable, and the end portions on the radially inner side of the body portions 23, that is, the front end 20b of the thin plate seal pieces 20 are free ends. Yes.
  • the tip 20b side of each thin plate sealing piece 20 comes into contact with the rotary shaft 6 with a predetermined preload.
  • a large number of thin plate seal pieces 20 are arranged with a small gap s therebetween in the circumferential direction.
  • the large number of thin plate seal pieces 20 are formed by making the thickness dimension of the head portion 21 larger than the thickness dimensions of the neck portion 22 and the trunk portion 23, so that the two thin plate seal pieces 20 adjacent to each other in the respective thickness directions.
  • a minute gap s is formed between the body portions 23.
  • the sealing body 12 composed of such a large number of thin plate sealing pieces 20 has a high pressure side end portion (the other end portion) 12c in which a large number of side end portions 20c of the body portion 23 of each thin plate sealing piece 20 are gathered into a small mouth shape. Is directed to the fluid high pressure region (on the other side in the axial direction), and the side end portion 20d of the body portion 23 is gathered to form a small opening, and the low pressure side end portion 12d is directed to the fluid low pressure region (one side in the axial direction). ing.
  • the retaining rings 13 and 14 are members extending in the circumferential direction of the rotating shaft 6, and both have a U shape in a cross section including the axis O.
  • the portion of the thin plate seal piece 20 on the high pressure side of the head portion 21 is fitted into the groove portion of the holding ring 13, and the portion of the thin plate seal piece 20 on the low pressure side of the head portion 21 is fitted into the groove portion of the holding ring 14. Yes. Thereby, the heads 21 of the many thin plate seal pieces 20 are held by the holding rings 13 and 14.
  • the high-pressure side plate 16 has an arcuate band shape when viewed from the direction of the axis O of the rotating shaft 6 with the thickness direction directed toward the axis O.
  • the high-pressure side plate 16 is divided into a plurality (eight in the present embodiment) in the circumferential direction so as to go to the front side in the rotational direction from the radially outer side toward the radially inner side.
  • the divided high-pressure side plate pieces 16p are arranged with a gap between each of the adjacent high-pressure side plate pieces 16p.
  • the high-pressure side plate 16 has a base portion 16a at the end portion on the radially outer side and a seal plate portion 16b extending from the base portion 16a toward the radially inner side.
  • the base portion 16a of the high-pressure side plate 16 is held by the holding ring 13 so as not to fall off in the radial direction while entering the high-pressure side recess between the head portion 21 and the body portion 23 of the thin plate seal piece 20. Yes.
  • the base portion 16a has a thickness (axis O direction dimension) thicker than the seal plate portion 16b (axis O direction dimension), and protrudes in the axis O direction with respect to the seal plate portion 16b.
  • the seal plate portion 16b of the high-pressure side plate 16 has its radially outer end aligned with the radially outer end of the base portion 16a and is laminated on the surface of the base portion 16a facing the fluid high-pressure region. Extending radially inward. Further, the end of the seal plate portion 16b, that is, the tip of the seal plate portion 16b extends to the open portion 9d on the radially inner side of the accommodation space 9a. As a result, the tip 20 b of the thin plate seal piece 20 extending radially inward from the accommodating space 9 a extends radially inward from the tip of the high-pressure side plate 16.
  • the rigidity imparting means 30 is disposed so as to be laminated on the surface of the high-pressure side plate 16 facing the fluid high-pressure region, and imparts rigidity in the axis O direction to a part of the high-pressure side plate 16.
  • the rigidity imparting means 30 has a support plate part 30a in this embodiment.
  • the support plate portion 30a includes a first plate piece 16c stacked on the surface of the seal plate portion 16b facing the fluid high pressure region, and a second plate piece 16d stacked on the surface of the first plate piece 16c facing the fluid high pressure region. And have.
  • the first plate piece 16c has its radially outer end aligned with the radially outer end of the seal plate 16b.
  • the first plate piece 16c extends radially inward so as to be laminated on the surface of the seal plate portion 16b facing the fluid high pressure region. Further, the radial dimension (extension length) of the first plate piece 16c is shorter than the radial dimension (extension length) of the seal plate portion 16b. In other words, the end of the first plate piece 16c, that is, the tip of the first plate piece 16c extends radially outward from the tip of the seal plate portion 16b.
  • the second plate piece 16d has its radially outer end aligned with the radially outer end of the first plate piece 16c and is stacked on the surface of the first plate piece 16c facing the fluid high pressure region. Extending radially inward.
  • the radial dimension (extension length) of the second plate piece 16d is shorter than the radial dimension (extension length) of the first plate piece 16c.
  • the end of the second plate piece 16d that is, the tip of the second plate piece 16d extends radially outward from the tip of the first plate piece 16c.
  • the radial dimension (extension length) of each of the seal plate portion 16b, the first plate piece 16c, and the second plate piece 16d is formed to be shorter in this order.
  • the support plate portion 30 a has a shorter radial length than the high-pressure side plate 16.
  • the radial dimension (extension length) of the first plate piece 16c is about 2/3 of the radial dimension (extension length) of the seal plate portion 16b.
  • the base portion 16a, the seal plate portion 16b, the first plate piece 16c, and the second plate piece 16d are fixed, for example, by spot welding or the like on the radially outer side. On the other hand, it is a free end on the radially inner side.
  • the said dimension is an example and is not limited to the said number.
  • the low-pressure side plate 17 has the thickness direction in the direction of the axis O, and the shape seen from the direction of the axis O of the rotary shaft 6 has a circular arc shape. Further, the low-pressure side plate 17 has a base portion 17a at the radially outer end portion and a seal plate portion 17b extending from the base portion 17a toward the radially inner side.
  • the base portion 17 a of the low-pressure side plate 17 is pressed from the low-pressure side by the holding ring 14 in a state of entering the low-pressure side recess between the head portion 21 and the body portion 23 of the thin plate seal piece 20.
  • the base portion 17a has a thickness (dimension in the direction of the axis O) that is greater than the thickness of the seal plate portion 17b, and protrudes in the direction of the axis O with respect to the seal plate portion 17b.
  • the seal plate portion 17b of the low-pressure side plate 17 has its radially outer end aligned with the radially outer end of the base portion 17a. Further, the seal plate portion 17b extends inward in the radial direction so as to be laminated on the surface of the base portion 16a facing the fluid high pressure region. Further, the end of the seal plate portion 17b, that is, the tip of the seal plate portion 17b extends radially inward from the open portion 9d in the radial direction of the accommodation space 9a. Further, the radial dimension of the seal plate portion 17b is shorter than the radial dimension of the seal plate portion 16b. Further, the base portion 17a and the seal plate portion 17b are fixed, for example, by spot welding on the radially outer side.
  • the seal segment 11 is accommodated in the accommodation space 9 a of the housing 9 with play. More specifically, the holding rings 13 and 14 holding the head 21 of the thin plate sealing piece 20 are accommodated in the outer space 9c of the accommodating space 9a, and the high pressure side plate 16 and the low pressure side plate 17 and the thin plate
  • the body 23 of the seal piece 20 is accommodated in the inner space 9b of the accommodation space 9a. And the front-end
  • the retaining rings 13 and 14 interfere with the inner wall surface of the outer space 9 c of the housing 9 to restrict radial displacement, and the high-pressure side plate 16 and the low-pressure side plate 17 are connected to the housing 9.
  • the displacement in the direction of the axis O is limited to a predetermined range by interfering with the inner wall surface of the inner space 9b.
  • the seal segment 11 is urged radially inward by an elastic body (not shown) disposed in the outer space 9c.
  • the seal segment 11 described above is displaced to the fluid low pressure region side by the pressure of the combustion gas g. Accordingly, as shown in FIG. 3, the plate surface 17d of the low-pressure side plate 17 is pressed against the inner wall surface 9e of the housing 9 (inner side space 9b) facing in the direction of the axis O.
  • the combustion gas g presses the seal body 12 and the low pressure side plate 17 as a whole, so that the low pressure side plate 17 The plate surface 17d facing the low pressure side is in close contact with the inner wall surface 9e. In the fluid high pressure region, the combustion gas g presses the high pressure side plate 16 toward the seal body 12 as a whole.
  • the support plate portion 30a is provided on the surface of the seal plate portion 16b facing the fluid high pressure region, the rigidity of the high-pressure side plate 16 can be reliably increased. As a result, when the gas turbine 1 rotates, even if vibration occurs in the high-pressure side plate 16, the strength is strengthened to the extent that it can resist the vibration. Further, since the high-pressure side plate 16 has high rigidity, fluttering can be prevented, and the shaft seal device 10 is not likely to be destroyed. Further, since the radial dimension of the support plate portion 30a is shorter than the radial dimension of the seal plate portion 16b, the rigidity of the high-pressure side plate 16 is not excessively strengthened, and the diameter of the support plate portion 30a is not increased.
  • the inner side in the direction is a free end. Therefore, when the gas turbine 1 rotates, even if the shape of the tip 20b, which is the free end of the thin plate sealing piece 20, changes, the flexibility that can cope with the thin plate sealing piece 20 remains.
  • the high-pressure side plate 16 can be made to follow the thin plate sealing piece 20 with certainty.
  • the radial dimension of the second plate piece 16d of the support plate portion 30a is shorter than the radial dimension of the first plate piece 16c, the high pressure side from the radially inner side toward the radially outer side.
  • the rigidity of the side plate 16 can be reinforced stepwise.
  • the followability to the thin plate seal piece 20 can be ensured stepwise from the radially outer side toward the radially inner side. Thereby, reinforcement
  • the rigidity imparting means 30 includes the support plate portion 30a, whereas in the shaft seal apparatus 10h according to the present embodiment, the rigidity imparting means 30 includes the rib 30b. Have.
  • a plurality of ribs 30b are provided on the surface of the seal plate portion 16b facing the fluid high pressure region with a gap in the circumferential direction.
  • the plurality of ribs 30b are arranged so as to go forward in the rotational direction from the radially outer side to the radially inner side of the seal plate portion 16b. Further, the rib 30b has its radially outer end aligned with the radially outer end of the seal plate portion 16b, and its radially inner end aligned with the radially inner end of the seal plate 16b. Yes.
  • a method of providing the rib 30b on the seal plate portion 16b a method is used in which the surface facing the fluid high-pressure region of the seal plate portion 16b is subjected to surface processing to provide unevenness by etching.
  • the seal plate portion 16b and the rib 30b may be separate members, and the rib 30b may be fixed to the surface of the seal plate portion 16b facing the fluid high pressure region by thermocompression bonding or welding.
  • a plurality of ribs 30b are provided with a gap in the circumferential direction from the radially outer side to the radially inner side of the surface of the seal plate portion 16b facing the fluid high pressure region. Therefore, the rigidity of the high-pressure side plate 16 can be enhanced over the entire area. In addition, since flexibility can be ensured at a location where the rib 30b is not provided, the high-pressure side plate 16 can follow the thin plate seal piece 20 over the entire area.
  • the rib 30b protruding to the fluid high pressure side region side is provided in the direction of the axis O perpendicular to the swirling flow generated in the circumferential direction. Therefore, it is possible to reduce the constituent components of the swirling flow generated when the gas turbine 1 rotates and to suppress the non-uniform flow. Therefore, fluttering of the high-pressure side plate 16 can be reliably prevented.
  • the shape protrudes from the outer side in the radial direction toward the inner side in the radial direction.
  • the rib 30b is disposed so as to go forward in the rotational direction from the radially outer side of the seal plate portion 16b toward the radially inner side. Therefore, since the rib 30b can be provided over the entire region of the high-pressure side plate 16, the rigidity of the high-pressure side plate can be enhanced over the entire region.
  • FIGS. 10 to 12 a rotary machine according to a third embodiment of the present invention will be described with reference to FIGS. 10 to 12.
  • members that are the same as those used in the above-described embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
  • the rigidity imparting means 30 has the support plate portion 30a, whereas in the shaft sealing apparatus 10j according to the present embodiment, the rigidity imparting means 30 is the elastic member 30c. have. Further, the inner wall formed on the fluid high pressure region side of the housing 9 is provided with a recess 9j.
  • the elastic member 30c is a plate-like member that is alternately bent toward one side in the axis O direction and the other side in the axis O direction, and the pressing member 161 between the seal plate portion 16b and the seal plate portion 16b. Is interposed.
  • the elastic member 30c presses a part of the seal plate portion 16b from the fluid high pressure region side toward the fluid low pressure region side.
  • the elastic member 30c has one bent side supported by the inner wall on the fluid high pressure region side of the recess 9j of the housing 9, and the other bent side supported by the pressing member 16l.
  • the elastic member 30c is, for example, a spring, and urges the pressing member 16l from the fluid high pressure region side toward the fluid low pressure region side.
  • the pressing member 16l is an arc-shaped member and is provided on the high-pressure side region side of the seal plate portion 16b. Further, the pressing member 161 is urged by the elastic member 30c, thereby transmitting the urging force of the elastic member 30c to the seal plate portion 16b and pressing the seal plate portion 16b against the thin plate seal piece 20. .
  • the recessed portion 9j of the housing 9 is provided on the inner wall surface 9k of the fluid high-pressure side region facing the inner space 9b of the housing 9 and has a recessed shape formed in the direction of the axis O, and an elastic member 30c is disposed therein. Has been established.
  • the elastic member 30c presses the seal plate portion 16b from the fluid high pressure region side to the fluid low pressure region side with the pressing member 16l interposed. Therefore, even if the thin plate seal piece 20 changes in shape, the high pressure side plate 16 can be made to follow the thin plate seal piece 20 with certainty and vibration of the high pressure side plate 16 can be suppressed. Therefore, fluttering can be reliably prevented. Further, since the urging force of the pressing member 16l can be transmitted over the entire area of the high-pressure side plate 16 by interposing the pressing member 16l, the high-pressure side plate 16 can follow the entire area of the thin plate seal piece 20.
  • the elastic member and the pressing member may be provided integrally. That is, as shown in FIGS. 13 and 14, the rigidity imparting means 30 is constituted by an elastic member 30 d that presses the seal plate portion 16 b from the fluid high pressure region side toward the fluid low pressure region side.
  • the elastic member 30d includes an elastic main body 16s that can be elastically deformed, and a pressing member 16o that is integrated with the elastic main body 16s.
  • the elastic main body 16s is a substantially rectangular member when viewed from the direction of the axis O, one side is fixed to the pressing member 16o, and the opposite side is supported by the inner wall on the high-pressure region side of the recess 9j.
  • the elastic body 16s is pressurized from the inner wall of the concave portion 9j to transmit the force, and biases the pressing member 16o from the fluid high pressure region side toward the fluid low pressure region side.
  • the pressing member 16o is an arc-shaped member provided on the high-pressure side region side of the seal plate portion 16b. Further, the pressing member 16o is urged by the elastic body 16s, thereby transmitting the urging force of the elastic body 16s to the seal plate portion 16b and pressing the seal plate portion 16b against the thin plate seal piece 20. Yes.
  • the elastic body 16s and the pressing member 16o are formed by integral molding, for example, by press work.
  • the elastic main body 16 s is configured integrally with the pressing member 16 o, so that the urging force can be reliably applied to the high-pressure side plate 16, and the followability can be reliably ensured. Can be secured.
  • the elastic member 30d can be easily attached to the seal plate portion 16b, and there is no possibility that the elastic main body 16s is detached from the pressing member 16o due to vibration caused by a rotating machine.
  • FIGS. 15 to 17 a rotary machine according to a fourth embodiment of the present invention will be described with reference to FIGS. 15 to 17.
  • members that are the same as those used in the above-described embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
  • the shaft seal device 10v includes an inner wall surface 9k on the fluid high pressure region side of the housing 9 and a plurality of fins 16w provided on the surface facing the high pressure side plate 16. Yes.
  • the plurality of fins 16w are provided to protrude from the inner wall surface 9k on the fluid high pressure region side of the housing 9 to the fluid low pressure region side, extend in the radial direction, and are provided at intervals in the circumferential direction.
  • the swirl flow that is a fluid flowing in the circumferential direction on the fluid high pressure region side can be reduced, and the non-uniform flow can be suppressed. 16 fluttering can be more reliably prevented.
  • the rigidity imparting means 30 may be provided only in the vicinity of the end portion of the high-pressure side plate piece 16p, that is, in the vicinity of the divided portion in the circumferential direction of the high-pressure side plate 16. In this case, fluttering of the high-pressure side plate 16 can be reliably prevented even when a non-uniform flow is generated by the swirl flow and the flow in the vicinity of the divided portion.
  • the support plate part 30a in 1st embodiment is comprised by 2 components, the 1st plate piece 16c and the 2nd plate piece 16d, the 1st plate piece 16c and the 2nd plate piece 16d are united into 1 component. May be.
  • a configuration in which the second plate piece 16d is not provided, or a configuration in which the seal plate portion 16b and the support plate portion 30a are integrated into one component may be employed. Thereby, the number of parts of the shaft seal device 10 can be suppressed, and parts management is reduced.
  • the support plate portion 30a may be composed of not only two components, the first plate piece 16c and the second plate piece 16d, but also more plate pieces. Thereby, it is possible to respond more flexibly to a position where the rigidity of the high-pressure side plate 16 is enhanced and a position where the followability is improved.
  • the fins 16w are provided in addition to the configuration of the first embodiment, but the fins 16w may be provided in addition to the configuration of the second embodiment or the third embodiment.
  • the fins 16w may be provided so as to be directed rearward in the rotational direction from the radially outer side toward the radially inner side.
  • the fins 16w are provided in a direction intersecting the swirling flow, so that the flow velocity of the swirling flow can be more reliably suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Devices (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

 軸シール装置は、ロータとロータの外周側を囲うステータとの間の環状空間に設けられ、環状空間をロータの軸線方向において低圧側領域と高圧側領域とに分ける軸シール装置であって、ステータからロータの径方向内側に向かって延出する薄板シール片をロータの周方向に複数積層させてなるシール体と、シール体の高圧側に沿うようにステータから径方向内側に向かって延出するとともに周方向に複数分割された高圧側側板とを備え、高圧側側板における高圧側領域を向く面の一部に軸線方向の剛性を付与する剛性付与手段を備える。

Description

軸シール装置及びこれを備える回転機械
 本発明は、ロータとステータとの間の環状空間を封止して、この環状空間を低圧側領域と高圧側領域とに分ける軸シール装置及びこれを備える回転機械に関する。
 本願は、2011年10月26日に出願された特願2011-234825号について優先権を主張し、その内容をここに援用する。
 ガスタービン、蒸気タービン等の回転機械におけるロータの周囲には、高圧側から低圧側に流れる作動流体の漏れ量を少なくするために、軸シール装置が設けられている。この軸シール装置の一例として、例えば、以下の特許文献1に記載された軸シール装置が知られている。
 この軸シール装置は、ステータに設けられたハウジングと、多数の薄板シール片からなるシール体とを備えている。
 シール体は、多数の薄板シール片がそれぞれの厚さ方向をロータの周方向に向け、互いに微小間隙をあけて積層されている。各薄板シール片は、その径方向内側の端部(先端)がその径方向外側の端部(後端)よりもロータの回転方向前方側に位置するよう傾斜して配置され、後端が相互に連結されるとともに、先端が自由端とされている。
 このように概略構成される軸シール装置においては、ロータが静止している際には各薄板シール片の先端がロータと接触している。そして、ロータが回転すると該ロータの回転によって生じる動圧効果により、薄板シール片の先端がロータの外周から浮上してロータと非接触状態となる。このため、この軸シール装置では、各薄板シール片の磨耗が抑制され、シール寿命が長くなる。
 また、上記機構においては、シール体の流体低圧領域側の軸方向一端部を低圧側サイドシール板で覆うと共に、シール体の流体高圧領域側の軸方向他端部を高圧側サイドシール板で覆っている。そして、これら低圧側側板と高圧側側板とにより、薄板シール片の微小隙間への作動流体の流れを規制している。
 ここで、低圧側側板及び高圧側側板は、通常、周方向に複数に分割されるとともに、互いに分割隙間を有して配設されている。
特許第3616016号公報
 ところで、回転機械においては回転方向に旋回流が発生することがある。このような旋回流の速度の速い箇所に、上述した軸シール装置を適用すると、流体高圧領域側の旋回流及び高圧側側板・低圧側側板の分割部分近傍における不均一な流れにより、高圧側側板に圧力変動が生じ、高圧側側板にフラッタリングが生じる場合がある。この場合、例えば高圧側側板の分割部近傍を含む箇所で、高圧側側板が不具合を生じる可能性がある。
 本発明は、このような事情を考慮してなされたものであり、フラッタリングを防止することができる軸シール装置及びこれを備える回転機械を提供するものである。
  すなわち、本発明の第一態様に係る軸シール装置は、ロータと該ロータの外周側を囲うステータとの間の環状空間に設けられ、該環状空間を前記ロータの軸線方向において低圧側領域と高圧側領域とに分ける軸シール装置であって、前記ステータから前記ロータの径方向内側に向かって延出するとともに前記ロータの周方向に複数積層された薄板シール片を有するシール体と、該シール体の高圧側に沿うように前記ステータから前記径方向内側に向かって延出するとともに前記周方向に複数分割された高圧側側板と、該高圧側側板における前記高圧側領域を向く面の一部に前記軸線方向の剛性を付与する剛性付与手段とを備えることを特徴とする。
 このような軸シール装置では、高圧側側板に剛性付与手段が設けられているため、該高圧側側板の厚み方向の剛性を強化することができる。これによって、振動に対する強度が増加し、フラッタリングを防止することができる。
 また、剛性付与手段は、高圧側側板の一部に設けられているだけであるため、高圧側側板の剛性が過度に強化されることはない。よって、高圧側側板は剛性が強化されたとは言えども、シール体の形状変化に対応することができる程度の柔軟性を残しているため、該高圧側側板をシール体の側面に接触、追従させることができる。
 また、上記軸シール装置は、前記剛性付与手段は、前記高圧側側板における前記高圧側領域を向く面に積層されるように前記ステータから前記径方向内側に向かって延出するとともに、該延出長が前記高圧側側板よりも短いことを特徴とする。
 この構成によれば、支持板部により、高圧側側板の剛性を確実に強化することができる。
 また、高圧側側板の径方向内側部分には支持板部が設けられていないため、該高圧側側板の径方向内側部分の柔軟性を確保し、当該部分をシール体に確実に追従させることができる。
 さらに、上記軸シール装置は、前記支持板部は、前記軸線方向に積層された複数の板片からなり、該複数の板片は前記高圧側領域に配置されるほど前記延出長が短く設定されていることが好ましい。
 これにより、径方向内側から径方向外側に向かって段階的に剛性を強化できるとともに、径方向外側から径方向内側に向かって段階的にシール体への追従性を確保することができる。
 また、上記軸シール装置は、前記剛性付与手段は、前記高圧側側板における前記高圧側領域を向く面に、周方向に間隔をあけて複数設けられたリブであってもよい。
 この構成によれば、高圧側側板はリブにより補強され、その剛性を確実に強化することができる。
 また、リブが設けられていない箇所では柔軟性を確保できるため、シール体に確実に追従させることができる。
 さらに、上記軸シール装置は、前記薄板シール片は、前記径方向内側に向かうにしたがって前記ロータの回転方向前方側に向かって延在し、前記リブは、前記径方向内側に向かうにしたがって前記回転方向前方側に向かって延出することが好ましい。
 これにより、高圧側側板の全域にわたってリブを設けることができるため、該高圧側側板の剛性を全域にわたって強化することができる。
 また、上記軸シール装置は、前記剛性付与手段は、前記高圧側側板の一部を前記高圧側領域側から低圧側領域側に向かって押圧する弾性部材であってもよい。
 この構成によれば、弾性部材が高圧側側板をシール体の方に向かって押圧することにより、高圧側側板に剛性を付与することができ、ロータが回転した場合における高圧側側板の振動を抑制することができる。
 さらに、本発明に係る軸シール装置は、前記剛性付与手段の前記高圧側領域側に、前記径方向に延びるとともに周方向に間隔をあけて複数が設けられて、それぞれ前記周方向に流通する流体を抑制するフィンを備えていてもよい。
 この構成によれば、フィンにより、高圧側領域における旋回流を低減することができるとともに、不均一な流れを抑制できるため、高圧側側板のフラッタリングを確実に防止することができる。
 また、本発明の第二の態様に係る回転機械は、上記のうちのいずれか一に記載の軸シール装置を備えることを特徴とする。
 この構成によれば、上記のうちのいずれか一に記載の軸シール装置を備えるため、高圧側側板をシール体に追従させるとともに、該高圧側側板の剛性を強化し、フラッタリングを防止可能な回転機械にすることができる。
 本発明に係る軸シール装置及びこれを備える回転機械によれば、剛性付与手段によって高圧側側板の剛性を強化しつつも該高圧側側板のシール体への追従性を確保することができるため、フラッタリングを防止することが可能となる。
本発明の実施形態に係るガスタービン(回転機械)の概略全体構成図である。 図1におけるS1-S1線断面図である。 本発明の第一実施形態に係る軸シール装置を、図2におけるS2-S2線断面図である。 本発明の第一実施形態に係る軸シール装置を軸方向一方側から他方側に見た概略図である。 本発明の第一実施形態に係る軸シール装置の高圧側側板を軸方向一方側から他方側に見た概略図である。 本発明の第一実施形態に係る軸シール装置の径方向内側から径方向外側に見た概略図である。 本発明の第二実施形態に係る軸シール装置を、図2におけるS2-S2線断面図である。 本発明の第二実施形態に係る軸シール装置の高圧側側板を軸方向一方側から他方側に見た概略図である。 本発明の第二実施形態に係る軸シール装置の径方向内側から径方向外側に見た概略図である。 本発明の第三実施形態に係る軸シール装置を、図2におけるS2-S2線断面図である。 本発明の第三実施形態に係る軸シール装置の高圧側側板を軸方向一方側から他方側に見た概略図である。 本発明の第三実施形態に係る軸シール装置の径方向内側から径方向外側に見た概略図である。 本発明の第三実施形態の変形例に係る軸シール装置の高圧側側板を軸方向一方側から他方側に見た概略図である。 本発明の第四実施形態に係る軸シール装置の径方向内側から径方向外側に見た概略図である。 本発明の第四実施形態に係る軸シール装置を、図2におけるS2-S2線断面図である。 本発明の第四実施形態に係る軸シール装置の高圧側側板を軸方向一方側から他方側に見た概略図である。 本発明の第四実施形態に係る軸シール装置の径方向内側から径方向外側に見た概略図である。
(第一実施形態)
 以下、図面を参照し、本発明の第一実施形態に係る回転機械について説明する。
 図1は本発明の実施形態に係るガスタービン(回転機械)1の概略全体構成図である。
 ガスタービン1は、図1に示すように、圧縮機(回転機械)2と、燃焼器3と、タービン(回転機械)4とを備えている。
 圧縮機2は、多量の空気を内部に取り入れて該空気を圧縮する。燃焼器3は、圧縮機2にて圧縮された圧縮空気に燃料を混合して燃焼させる。タービン4は、燃焼器3から導入された燃焼ガスの熱エネルギーを回転エネルギーに変換する。
 圧縮機2及びタービン4は、それぞれ一体に回転するように連結されたロータ2A,4Aと、ロータ2A,4Aの外周側を囲うステータ2B,4Bとを備えている。なお、以下の説明においては、特に言及しない限り、ロータ2A,4Aの軸線O方向を単に「軸線O方向」と、ロータ2A,4Aの周方向を単に「周方向」と、ロータ2A,4Aの径方向を単に「径方向」という。
 ロータ2A,4Aは、回転軸6c,6と、軸線O方向に間隔を空けて固定されている複数の環状動翼群7c,7と、を有している。各環状動翼群7c,7は、回転軸6c,6の外周に、周方向に互いの間隔を空けて固定されている複数の動翼を有して構成されている。
 ステータ2B,4Bは、それぞれケーシング2b,4bと、ケーシング2b,4b内において軸線O方向に間隔をあけて固定された複数の環状静翼群5c,5とを備えている。
 環状静翼群5c,5は、各ケーシング2b,4b内面に、周方向に互いの間隔をあけて固定されている複数の静翼を有している。各静翼の先端には、ハブシュラウドが形成されている。ハブシュラウド(ステータ)は、周方向に連結されて全体として円環状になって回転軸6c,6の外周を囲んでいる。
 この環状静翼群5c,5は、それぞれ、複数の環状動翼群7c,7と、軸線O方向に交互に配置されている。
 圧縮機2及びタービン4には、高圧側から低圧側に作動流体(圧縮空気又は燃焼ガス)gが軸線O方向に漏出するのを防止するため、図1に示すように、各環状静翼群5c,5のハブシュラウドに軸シール装置10c,10が設けられている。また、ケーシング2b,4bが回転軸6c,6を支持する軸受け部(ステータ)2c,4cにおいても、作動流体gが高圧側から低圧側に漏出するのを防止するため、軸シール装置10c,10が設けられている。
 以下、タービン4の軸シール装置10の実施形態について説明する。なお、以下では、タービン4の軸シール装置10について説明するが、圧縮機2の軸シール装置10cも、基本的に同様の構成なので、この説明を省略する。
 図2は図1におけるS1-S1線断面図であり、図3は図2におけるS2-S2線断面図である。
 図2に示すように、タービン4の軸シール装置10は、環状静翼群5のハブシュラウドと軸受け部4cの内周面とにそれぞれ支持された環状空間であるハウジング9内に、円弧状に延びるシールセグメント11が、周方向に複数(本実施形態では8つ)配置されている。シールセグメント11は、径方向外側から径方向内側に向かうにしたがって、回転方向前方側に向かうように分割されている。
 ハウジング9は、回転軸6の外周に沿って周方向全周に延びており(図3参照)、円環状の収容空間9aが形成されている。図3に示すように、ハウジング9の収容空間9aは、その開口側、すなわち径方向内側の部分が、幅寸法(軸線O方向の寸法)が小さく形成された内方側空間9bとされている。また、収容空間9aの開口から径方向外側に離間した空間、すなわち内方側空間9bよりも径方向外側の空間が、幅寸法が大きく形成された外方側空間9cとされている。これら内方側空間9bと外方側空間9cとは互いに連通状態とされている。そして、この内方側空間9bの開放部9dが径方向内側の回転軸6に向いている。
 シールセグメント11は、図3に示すように、シール体12(図4参照)と、保持リング13,14と、高圧側側板16及び低圧側側板17と、剛性付与手段30とを備えている。
 シール体12は、多数の薄板シール片20を有している。保持リング13,14は、断面U字状をなして多数の薄板シール片20を保持している。高圧側側板16及び低圧側側板17は、シール体12を軸線O方向から挟むように設けられている。
 図4は、シールセグメント11を軸線O方向一方側から他方側に見た概略図である。
 シール体12は、図4に示すように、薄板状の薄板シール片20が多数積層されてなり(図2参照)、これら多数の薄板シール片20の径方向外側の端部、すなわち薄板シール片20の後端20a側が互いに連結されている。図2に示すように、多数の薄板シール片20は、径方向外側から径方向内側に向かうにしたがって、回転方向前方に向かうようにして配設されている。
 また、薄板シール片20は、主に薄い鋼板によって形成された部材であり、図3に示すように、回転軸6の周方向から見てT字状に形成され、その幅方向を回転軸6の軸線O方向に向けて配置されている。換言すれば、薄板シール片20は、その厚さ方向を回転軸6の周方向に向けて配置されている。
 薄板シール片20は、頭部21と、該頭部21よりも幅寸法及び厚さ寸法が小さく形成されている胴部23と、頭部21と胴部23との間に位置して、これらよりも幅寸法が小さく形成されている首部22とを有している。該薄板シール片20は、回転軸6の径方向外側から径方向内側に向かって、頭部21、首部22、胴部23の順に連続するように形成されている。
 多数の薄板シール片20は、それぞれの頭部21が互いに溶接されて、相互に連結されている。また、多数の薄板シール片20の胴部23は、弾性変形可能とされており、それぞれの胴部23の径方向内側の端部、つまり当該薄板シール片20の先端20bが自由端とされている。そして、回転軸6の停止時においては、各薄板シール片20の先端20b側が回転軸6に所定の予圧で接触するようになっている。
 多数の薄板シール片20は、図4に示すように、互いに周方向に微小間隙sを空けて配列されている。多数の薄板シール片20は、頭部21の厚さ寸法を首部22及び胴部23の厚さ寸法よりも大きくすることにより、それぞれの厚さ方向で相互に隣接する二つの薄板シール片20の胴部23間に微小間隙sを形成する。
 このような多数の薄板シール片20からなるシール体12は、各薄板シール片20の胴部23の側端部20cが多数集合して小口状となった高圧側端部(他端部)12cが流体高圧領域(軸方向他方側)に向けられ、胴部23の側端部20dが多数集合して小口状となった低圧側端部12dが流体低圧領域(軸方向一方側)に向けられている。
 保持リング13,14は、回転軸6の周方向に延びる部材であって、いずれも軸線Oを含む断面においてU字状をなしている。薄板シール片20の頭部21の高圧側の部分は、保持リング13の溝部内に嵌入され、薄板シール片20の頭部21の低圧側の部分は、保持リング14の溝部内に嵌入されている。これにより、多数の薄板シール片20の頭部21は、保持リング13,14により保持されている。
 高圧側側板16は、図2に示すように、厚さ方向を軸線O方向に向けて、回転軸6の軸線O方向から見た形状が円弧帯状をなしている。また、該高圧側側板16は、周方向に複数(本実施形態では、8つ)に、径方向外側から径方向内側に向かうにしたがって、回転方向前方側に向かうように分割されている。また、分割された高圧側側板片16pは、それぞれ隣接する高圧側側板片16pとの間に間隙を有して配設されている。
 また、図3に示すように、高圧側側板16は、径方向外側の端部のベース部16aと、該ベース部16aから径方向内側に向かって延びるシール板部16bとを有している。
 高圧側側板16のベース部16aは、薄板シール片20の頭部21と胴部23との間の高圧側の凹みに入り込んだ状態で、保持リング13によって径方向へ脱落しないように保持されている。また、ベース部16aは、その厚さ(軸線O方向寸法)がシール板部16bの厚さ(軸線O方向寸法)よりも厚く、シール板部16bを基準にして軸線O方向に突出している。
 高圧側側板16のシール板部16bは、その径方向外側の端部をベース部16aの径方向外側の端部と揃えるとともに、該ベース部16aの流体高圧領域を向く面に積層されるようにして、径方向内側に向って延在している。また、シール板部16bの端部、すなわちシール板部16bの先端は、収容空間9aの径方向内側の開放部9dまで延在している。これによって、収容空間9aから径方向内側に向かって延出する薄板シール片20の先端20bは、高圧側側板16の先端よりも径方向内側に延出している。
 剛性付与手段30は、高圧側側板16における流体高圧領域を向く面に積層されてように配置されており、高圧側側板16の一部に軸線O方向の剛性を付与する。剛性付与手段30は、本実施形態では支持板部30aを有している。支持板部30aは、シール板部16bの流体高圧領域を向く面に積層された第一板片16cと、該第一板片16cの流体高圧領域を向く面に積層された第二板片16dとを有している。
 図3、図5及び図6に示すように、第一板片16cは、その径方向外側の端部をシール板部16bの径方向外側の端部と揃えている。第一板片16cは、該シール板部16bの流体高圧領域を向く面に積層されるようにして、径方向内側に向って延在している。また、第一板片16cの径方向寸法(延出長)は、シール板部16bの径方向寸法(延出長)よりも短くなっている。換言すると、第一板片16cの端部、すなわち第一板片16cの先端は、シール板部16bの先端よりも径方向外側に延出している。
 第二板片16dは、その径方向外側の端部を第一板片16cの径方向外側の端部と揃えるとともに、該第一板片16cの流体高圧領域を向く面に積層されるようにして、径方向内側に向って延在している。また、第二板片16dの径方向寸法(延出長)は、第一板片16cの径方向寸法(延出長)よりも短くなっている。換言すると、第二板片16dの端部、すなわち第二板片16dの先端は、第一板片16cの先端よりも径方向外側に延出している。
 このように、シール板部16b、第一板片16c、第二板片16dのそれぞれの径方向寸法(延出長)は、この順に短くなるように形成されている。換言すると、支持板部30aは、高圧側側板16よりも径方向長さを短くしている。
 また、第一板片16cの径方向寸法(延出長)は、シール板部16bの径方向寸法(延出長)の約2/3で形成されている。
 また、ベース部16a、シール板部16b、第一板片16c及び第二板片16dは、径方向外側において例えばスポット溶接等により固定されている。一方、径方向内側においては自由端とされている。
 なお、上記寸法は一例であり、当該数字に限定されるものではない。
 一方、低圧側側板17は、厚さ方向を軸線O方向に向け、回転軸6の軸線O方向から見た形状が円弧帯状をなしている。また、低圧側側板17は、径方向外側の端部のベース部17aと、該ベース部17aから径方向内側に向かって延びるシール板部17bとを有している。
 低圧側側板17のベース部17aは、薄板シール片20の頭部21と胴部23との間の低圧側の凹みに入り込んだ状態で、保持リング14によって低圧側から押圧されている。
 また、ベース部17aは、その厚さ(軸線O方向寸法)がシール板部17bの厚さよりも厚く、シール板部17bを基準にして軸線O方向に突出している。
 低圧側側板17のシール板部17bは、その径方向外側の端部をベース部17aの径方向外側の端部と揃えている。また、シール板部17bは、該ベース部16aの流体高圧領域を向く面に積層されるようにして、径方向内側に向って延在している。また、シール板部17bの端部、すなわちシール板部17bの先端は、収容空間9aの径方向内側の開放部9dよりも径方向内側まで延在している。また、シール板部17bの径方向寸法は、シール板部16bの径方向寸法よりも短い。
 また、ベース部17a及びシール板部17bは、径方向外側において例えばスポット溶接等により固定されている。
 このシールセグメント11は、図3に示すように、ハウジング9の収容空間9aに遊びをもって収容されている。
 より具体的には、薄板シール片20の頭部21を保持した保持リング13,14が収容空間9aの外方側空間9cに収容されており、高圧側側板16及び低圧側側板17と、薄板シール片20の胴部23とが収容空間9aの内方側空間9bに収容されている。そして、収容空間9aの開口から回転軸6に向けて胴部23の先端、すなわち薄板シール片20の先端20bが突出している。
 このシールセグメント11は、保持リング13,14がハウジング9の外方側空間9cの内壁面に干渉して径方向の変位が制限されているとともに、高圧側側板16及び低圧側側板17がハウジング9の内方側空間9bの内壁面に干渉して軸線O方向の変位が所定の範囲に制限されている。なお、このシールセグメント11は、外方側空間9cに配設された弾性体(不図示)によって径方向内側に付勢されている。
 上述したシールセグメント11は、ガスタービン1を稼働させると、燃焼ガスgの圧力によって流体低圧領域側に変位する。これによって、図3に示すように、低圧側側板17の板面17dが軸線O方向に対向するハウジング9(内方側空間9b)の内壁面9eに押し付けられる。
 次に、このように構成された軸シール装置10における、燃焼ガスgの流れ及び作用について説明する。
 ガスタービン1が停止状態から起動されると、低圧側領域と高圧側領域との圧力差が大きくなっていき、これに比例してシールセグメント11が低圧側領域に向けて燃焼ガスgによって押圧される。この際、高圧側領域から低圧側領域に流れる燃焼ガスgは、シール体12の薄板シール片20の微小間隙sを通過する。
 そして、流体低圧側領域と流体高圧側領域との圧力差が所定値以上に大きくなると、燃焼ガスgがシール体12及び低圧側側板17を全体的に押圧することで、該低圧側側板17の低圧側を向く板面17dが内壁面9eに対して密着する。
 また、流体高圧領域では、燃焼ガスgが高圧側側板16をシール体12に向かって全体的に押圧する。
 このように構成された軸シール装置10では、支持板部30aがシール板部16bにおける流体高圧領域を向く面に設けられているため、高圧側側板16の剛性を確実に強化することができる。これによって、ガスタービン1が回転した場合に、高圧側側板16に振動が生じても、該振動に抗することができる程に強度が強化される。また、高圧側側板16は剛性が高いためフラッタリングが防止することができ、軸シール装置10は破壊される虞がない。
 また、支持板部30aの径方向寸法は、シール板部16bの径方向寸法よりも短くなっているため、高圧側側板16の剛性は過度に強化されることはなく、支持板部30aの径方向内側は自由端とされている。よって、ガスタービン1が回転した場合に、薄板シール片20の自由端側である先端20bが形状変化しても、該薄板シール片20に対応することができる程度の柔軟性は残しているため、高圧側側板16を薄板シール片20に確実に追従させることができる。
 さらに、支持板部30aの第二板片16dの径方向寸法の方が、第一板片16cの径方向寸法よりも短くなっているため、径方向内側から径方向外側に向かって、高圧側側板16の剛性を段階的に強化することができる。さらに、径方向外側から径方向内側に向かって、薄板シール片20への追従性を段階的に確保することができる。これにより、剛性の強化及び追従性の確保を、より柔軟に実現することができる。
 また、支持板部30aを高圧側側板16に取り付けるだけの簡易な構成であるため、容易に製造することができる。
(第二実施形態)
 以下、本発明の第二実施形態に係る回転機械について、図7から図9を用いて説明する。
 この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
 第一実施形態における軸シール装置10では、剛性付与手段30は、支持板部30aを有するものであるのに対して、本実施形態の軸シール装置10hでは、剛性付与手段30は、リブ30bを有している。
 リブ30bは、シール板部16bの流体高圧領域を向く面に、周方向に間隙をあけて複数設けられている。
 複数のリブ30bは、それぞれシール板部16bの径方向外側から径方向内側に向かうにしたがって、回転方向前方に向かうようにして配設されている。また、リブ30bは、その径方向外側の端部をシール板部16bの径方向外側の端部と揃え、その径方向内側の端部をシール板部16bの径方向内側の端部と揃えている。
 ここで、シール板部16bにリブ30bを設ける方法としては、エッチングによりシール板部16bの流体高圧領域を向く面に表面加工を施して凹凸を設ける方法が採用される。または、シール板部16bとリブ30bとを別部材として、シール板部16bの流体高圧領域を向く面にリブ30bを熱圧着又は溶接にて固定する方法であってもよい。
 このように構成された軸シール装置10hでは、リブ30bはシール板部16bの流体高圧領域を向く面の径方向外側から径方向内側の全域にわたって、周方向に間隙をあけて複数設けられているため、高圧側側板16の剛性を全域にわたって強化することができる。
 また、リブ30bが設けられていない箇所では柔軟性を確保できるため、高圧側側板16を全域にわたって薄板シール片20に追従させることができる。
 また、流体高圧側領域側に突出しているリブ30bは、周方向に発生する旋回流に直交する軸線O方向に設けられている。したがって、ガスタービン1が回転した場合に生じる旋回流の構成成分を低減し、不均一な流れを抑制することができる。よって、高圧側側板16のフラッタリングを確実に防止することができる。
 また、高圧側側板16の分割部分の回転方向前方側では、径方向外側から径方向内側に向かうにしたがって、回転方向前方へ向かうように突出した形状となっている。ここで、リブ30bは、薄板シール片20と同様に、シール板部16bの径方向外側から径方向内側に向かうにしたがって、回転方向前方に向かうようにして配設されている。よって、高圧側側板16の全域にわたってリブ30bを設けることができるため、該高圧側側板の剛性を全域にわたって強化することができる。
(第三実施形態)
 以下、本発明の第三実施形態に係る回転機械について、図10から図12を用いて説明する。
 この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
 第一実施形態における軸シール装置10では、剛性付与手段30は、支持板部30aを有するものであるのに対して、本実施形態の軸シール装置10jでは、剛性付与手段30は、弾性部材30cを有している。
 また、ハウジング9の流体高圧領域側に形成された内壁には凹部9jが設けられている。
 弾性部材30cは、軸線O方向一方側、軸線O方向他方側に交互に屈曲した板状の部材であり、シール板部16bの流体高圧領域側に該シール板部16bとの間に押さえ部材16lを介在させて配設されている。弾性部材30cは、シール板部16bの一部を流体高圧領域側から流体低圧領域側に向かって押圧している。また、弾性部材30cは、その屈曲した一方側がハウジング9の凹部9jの流体高圧領域側の内壁に支持され、屈曲した他方側が押さえ部材16lに支持されている。ここで、弾性部材30cは、例えばバネであり、押さえ部材16lに対して、流体高圧領域側から流体低圧領域側に向かって付勢している。
 押さえ部材16lは、円弧状の部材であり、シール板部16bの高圧側領域側に設けられている。また、押さえ部材16lは弾性部材30cに付勢されることにより、該弾性部材30cの付勢力をシール板部16bに対して伝達し、該シール板部16bを薄板シール片20に押圧している。
 ハウジング9の凹部9jは、ハウジング9の内方側空間9bに面する流体高圧側領域の内壁面9kに設けられ、軸線O方向に形成された凹形状であり、その内部に弾性部材30cを配設している。
 このように構成された軸シール装置10jでは、弾性部材30cは押さえ部材16lを介在させて、該シール板部16bを流体高圧領域側から流体低圧領域側に押圧している。
よって、薄板シール片20が形状変化しても、高圧側側板16を薄板シール片20に確実に追従させることができるとともに、該高圧側側板16の振動を抑制することができる。
 したがって、フラッタリングを確実に防止することができる。
 また、押さえ部材16lを介在させることで、押さえ部材16lの付勢力を高圧側側板16の全域にわたって伝達することがきるため、高圧側側板16を薄板シール片20の全域にわたって追従させることができる。
(第三実施形態の変形例)
 第三実施形態の変形例として、弾性部材と押さえ部材とを一体として設けてもよい。すなわち、図13及び図14に示すように、剛性付与手段30は、シール板部16bを流体高圧領域側から流体低圧領域側に向かって押圧する弾性部材30dで構成されている。
 弾性部材30dは、弾性変形可能な弾性本体16sと、該弾性本体16sと一体となった押さえ部材16oとを有している。
 弾性本体16sは、軸線O方向からみて略矩形の部材であり、一辺が押さえ部材16oに固着されて、対向する一辺が凹部9jの高圧領域側内壁に支持されている。ここで、弾性本体16sは、凹部9jの高圧領域側内壁から加圧されて力を伝達させて、押さえ部材16oを流体高圧領域側から流体低圧領域側に向かって付勢している。
 押さえ部材16oは、シール板部16bの高圧側領域側に設けられた、円弧状の部材である。また、押さえ部材16oは、弾性本体16sに付勢されることにより、該弾性本体16sの付勢力をシール板部16bに対して伝達し、該シール板部16bを薄板シール片20に押圧している。
 なお、弾性本体16sと押さえ部材16oとは、例えばプレス加工により一体成形で形成されている。
 このように構成された軸シール装置では、弾性本体16sは押さえ部材16oと一体として構成されているため、高圧側側板16に対して付勢力を確実に加えることができため、追従性を確実に確保することができる。
 また、弾性部材30dのシール板部16bへの取り付けが簡易であるとともに、回転機械による振動等により弾性本体16sが押さえ部材16oからはずれてしまう虞がない。
(第四実施形態)
 以下、本発明の第四実施形態に係る回転機械について、図15から図17を用いて説明する。
 この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
 軸シール装置10vは、第一実施形態の構成に加えて、ハウジング9の流体高圧領域側の内壁面9kであって、高圧側側板16と対抗する面に複数設けられたフィン16wを有している。
 複数のフィン16wは、ハウジング9の流体高圧領域側の内壁面9kから流体低圧領域側に突出して設けられ、径方向に延びるとともに、周方向に間隔をあけて設けられている。
 このように構成された軸シール装置10vでは、流体高圧領域側における周方向に流通する流体である旋回流を低減することができるとともに、不均一な流れを抑制することができるため、高圧側側板16のフラッタリングをより一層確実に防止することができる。
 なお、上述した実施の形態において示した組立手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、剛性付与手段30は、高圧側側板片16pの端部近傍、すなわち高圧側側板16の周方向の分割部分近傍にのみ設けられることとしてもよい。この場合は、旋回流と、該分割部分近傍における流れとにより不均一な流れが生じた場合でも、高圧側側板16のフラッタリングを確実に防止することができる。
 また、第一実施形態における支持板部30aは、第一板片16c及び第二板片16dの2部品で構成されているが、第一板片16c及び第二板片16dを一体として1部品してもよい。あるいは、第二板片16dを設けない構成、シール板部16bと支持板部30aとを一体化した1部品とした構成としてもよい。これにより、軸シール装置10の部品点数を抑えることができ、部品管理が低減される。
 一方、支持板部30aを第一板片16c及び第二板片16dの2部品のみならず、さらに多くの板片から構成されるとしてもよい。これにより、高圧側側板16の剛性を強化する位置、追従性を向上させる位置に対して、より柔軟に対応することができる。
 また、第四実施形態では、第一実施形態の構成に加えてフィン16wを備えているが、第二実施形態または第三実施形態の構成に加えてフィン16wを備えるものとしてもよい。
 また、第四実施形態で、フィン16wを径方向外側から径方向内側に向かうにしたがって、回転方向後方に向かうようにして設けてもよい。この構成では、フィン16wが旋回流と交差する方向に設けられることにより、旋回流の流速をより確実に抑制することが可能となる。
1…ガスタービン(回転機械)
4A…ロータ
4B…ステータ
9…環状空間
10、10c、10h、10j、10v…軸シール装置
12…シール体
20…薄板シール片
16…高圧側側板
16c…第一板片(板片)
16d…第二板片(板片)
30…剛性付与手段
30a…支持板部
30b…リブ
30c、30d…弾性部材
16w…フィン

Claims (8)

  1.  ロータと該ロータの外周側を囲うステータとの間の環状空間に設けられ、該環状空間を前記ロータの軸線方向において低圧側領域と高圧側領域とに分ける軸シール装置であって、
     前記ステータから前記ロータの径方向内側に向かって延出するとともに前記ロータの周方向に複数積層された薄板シール片を有するシール体と、
     該シール体の高圧側に沿うように前記ステータから前記径方向内側に向かって延出するとともに前記周方向に複数分割された高圧側側板と、
     該高圧側側板における前記高圧側領域を向く面の一部に前記軸線方向の剛性を付与する剛性付与手段と、を備える軸シール装置。
  2.  前記剛性付与手段は、
     前記高圧側側板における前記高圧側領域を向く面に積層されるように前記ステータから前記径方向内側に向かって延出するとともに、該延出長が前記高圧側側板よりも短く設定された支持板部であることを特徴とする請求項1に記載の軸シール装置。
  3.  前記支持板部は、前記軸線方向に積層された複数の板片を有し、
     該複数の板片は前記高圧側領域に配置されるほど前記延出長が短い請求項2に記載の軸シール装置。
  4.  前記剛性付与手段は、
     前記高圧側側板における前記高圧側領域を向く面に、周方向に間隔をあけて複数設けられたリブである請求項1に記載の軸シール装置。
  5.  前記薄板シール片は、前記径方向内側に向かうにしたがって前記ロータの回転方向前方側に向かって延在し、
     前記リブは、前記径方向内側に向かうにしたがって前記回転方向前方側に向かって延出する請求項4に記載の軸シール装置。
  6.  前記剛性付与手段は、前記高圧側側板の一部を前記高圧側領域側から低圧側領域側に向かって押圧する弾性部材である請求項1に記載の軸シール装置。
  7.  前記剛性付与手段の前記高圧側領域側に、前記径方向に延びるとともに周方向に間隔をあけて複数が設けられて、それぞれ前記周方向に流通する流体を抑制するフィンを備える請求項1から6のいずれか一項に記載の軸シール装置。
  8.  請求項1から7のいずれか一項に記載の軸シール装置を備える回転機械。
PCT/JP2012/077584 2011-10-26 2012-10-25 軸シール装置及びこれを備える回転機械 WO2013062040A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280047231.7A CN103842695B (zh) 2011-10-26 2012-10-25 轴密封装置及具备该轴密封装置的旋转机械
US14/347,457 US9103223B2 (en) 2011-10-26 2012-10-25 Shaft sealing device and rotating machine comprising same
KR1020147007425A KR101560110B1 (ko) 2011-10-26 2012-10-25 축 시일 장치 및 이것을 구비하는 회전 기계
EP12844359.5A EP2749795B1 (en) 2011-10-26 2012-10-25 Shaft sealing device and rotating machine comprising same
IN2276CHN2014 IN2014CN02276A (ja) 2011-10-26 2012-10-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-234825 2011-10-26
JP2011234825A JP5804893B2 (ja) 2011-10-26 2011-10-26 軸シール装置及びこれを備える回転機械

Publications (1)

Publication Number Publication Date
WO2013062040A1 true WO2013062040A1 (ja) 2013-05-02

Family

ID=48167866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077584 WO2013062040A1 (ja) 2011-10-26 2012-10-25 軸シール装置及びこれを備える回転機械

Country Status (7)

Country Link
US (1) US9103223B2 (ja)
EP (1) EP2749795B1 (ja)
JP (1) JP5804893B2 (ja)
KR (1) KR101560110B1 (ja)
CN (1) CN103842695B (ja)
IN (1) IN2014CN02276A (ja)
WO (1) WO2013062040A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258536A1 (en) * 2013-10-18 2016-09-08 Mitsubishi Heavy Industries, Ltd. Shaft sealing device and rotating machine provided therewith
KR20180125017A (ko) 2016-05-09 2018-11-21 미츠비시 히타치 파워 시스템즈 가부시키가이샤 시일 세그먼트 및 회전 기계

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1397706B1 (it) * 2009-12-22 2013-01-24 Nuovo Pignone Spa Tenuta che si puo' abradere con spostamento assiale.
KR101449473B1 (ko) * 2014-05-29 2014-10-13 터보파워텍(주) 터빈용 브러시 실링장치
KR101616619B1 (ko) * 2014-06-17 2016-04-28 두산중공업 주식회사 브러시 실 어셈블리
CN105317470B (zh) * 2014-06-17 2017-06-16 斗山重工业株式会社 刷式密封组件
JP6590522B2 (ja) * 2015-05-19 2019-10-16 三菱日立パワーシステムズ株式会社 シール装置及び回転機械
JP6631837B2 (ja) 2016-05-09 2020-01-15 三菱日立パワーシステムズ株式会社 シールセグメント及び回転機械
JP6678062B2 (ja) * 2016-05-09 2020-04-08 三菱日立パワーシステムズ株式会社 シールセグメント及び回転機械
JP6876012B2 (ja) * 2018-02-19 2021-05-26 三菱パワー株式会社 シールセグメント及び回転機械
JP7064071B2 (ja) * 2018-03-29 2022-05-10 三菱重工業株式会社 軸シール装置及びこの軸シール装置を備える回転機械
US12000289B2 (en) 2022-03-10 2024-06-04 General Electric Company Seal assemblies for turbine engines and related methods
US12006829B1 (en) 2023-02-16 2024-06-11 General Electric Company Seal member support system for a gas turbine engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755445A (en) * 1996-08-23 1998-05-26 Alliedsignal Inc. Noncontacting finger seal with hydrodynamic foot portion
JP3616016B2 (ja) 2000-04-28 2005-02-02 三菱重工業株式会社 軸シール機構及びガスタービン
JP2006112491A (ja) * 2004-10-13 2006-04-27 Mitsubishi Heavy Ind Ltd 軸シール機構
JP2008275157A (ja) * 2007-04-30 2008-11-13 General Electric Co <Ge> 回転機械におけるシールを促進する方法及び装置
JP2009243685A (ja) * 2008-03-28 2009-10-22 Alstom Technology Ltd ターボ機械用のリーフシール

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650048B1 (fr) * 1989-07-21 1992-05-07 Alsthom Gec Garniture d'etancheite pour arbre rotatif
DE4403605C2 (de) 1994-02-05 1995-11-09 Mtu Muenchen Gmbh Spaltdichtung zwischen zwei gegeneinander beweglichen Bauteilen
GB9801864D0 (en) 1998-01-30 1998-03-25 Rolls Royce Plc A seal arrangement
JP3692300B2 (ja) 1998-07-13 2005-09-07 三菱重工業株式会社 軸シールおよびそれを用いたタービン
GB9821927D0 (en) * 1998-10-08 1998-12-02 Rolls Royce Plc Improved brush seal
DE19962316C2 (de) * 1999-12-23 2002-07-18 Mtu Aero Engines Gmbh Bürstendichtung
JP3593082B2 (ja) 2001-10-09 2004-11-24 三菱重工業株式会社 軸シール機構及びタービン
US6644668B1 (en) * 2002-06-13 2003-11-11 General Electric Company Brush seal support
JP4031699B2 (ja) 2002-11-12 2008-01-09 三菱重工業株式会社 軸シール機構及びタービン
DE10331601B4 (de) 2003-07-12 2019-06-06 MTU Aero Engines AG Dichtungsanordnung und Verfahren zur Herstellung derselben
US7413194B2 (en) * 2004-10-28 2008-08-19 Rolls-Royce Plc Pressure balanced annular seal
US20080048398A1 (en) * 2006-08-24 2008-02-28 United Technologies Corporation Gap sealing arrangement
JP4625438B2 (ja) 2006-11-16 2011-02-02 三菱重工業株式会社 回転機械の軸シール装置
GB2452967A (en) 2007-09-21 2009-03-25 Rolls Royce Plc A seal and rotor arrangement including a rotor section and a circumferential movable seal around the rotor section
JP5118552B2 (ja) * 2008-05-20 2013-01-16 三菱重工業株式会社 回転機械の軸シール装置
GB2461506B (en) * 2008-06-30 2010-08-25 Rolls Royce Plc A seal arrangement
US8317464B2 (en) 2010-02-16 2012-11-27 General Electric Company Reverse flow tolerant spring activated brush seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755445A (en) * 1996-08-23 1998-05-26 Alliedsignal Inc. Noncontacting finger seal with hydrodynamic foot portion
JP3616016B2 (ja) 2000-04-28 2005-02-02 三菱重工業株式会社 軸シール機構及びガスタービン
JP2006112491A (ja) * 2004-10-13 2006-04-27 Mitsubishi Heavy Ind Ltd 軸シール機構
JP2008275157A (ja) * 2007-04-30 2008-11-13 General Electric Co <Ge> 回転機械におけるシールを促進する方法及び装置
JP2009243685A (ja) * 2008-03-28 2009-10-22 Alstom Technology Ltd ターボ機械用のリーフシール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160258536A1 (en) * 2013-10-18 2016-09-08 Mitsubishi Heavy Industries, Ltd. Shaft sealing device and rotating machine provided therewith
EP3045785A4 (en) * 2013-10-18 2016-11-09 Mitsubishi Heavy Ind Ltd TREE SEALING DEVICE AND ROTATING MACHINE WHILE EQUIPPED
US9644744B2 (en) * 2013-10-18 2017-05-09 Mitsubishi Heavy Industries, Ltd. Shaft sealing device and rotating machine provided therewith
KR20180125017A (ko) 2016-05-09 2018-11-21 미츠비시 히타치 파워 시스템즈 가부시키가이샤 시일 세그먼트 및 회전 기계
US10927765B2 (en) 2016-05-09 2021-02-23 Mitsubishi Power, Ltd. Seal segment and rotary machine

Also Published As

Publication number Publication date
EP2749795A1 (en) 2014-07-02
KR20140049607A (ko) 2014-04-25
CN103842695A (zh) 2014-06-04
US20140241877A1 (en) 2014-08-28
EP2749795A4 (en) 2015-09-30
JP5804893B2 (ja) 2015-11-04
US9103223B2 (en) 2015-08-11
IN2014CN02276A (ja) 2015-06-19
EP2749795B1 (en) 2019-05-22
CN103842695B (zh) 2016-01-13
JP2013092205A (ja) 2013-05-16
KR101560110B1 (ko) 2015-10-13

Similar Documents

Publication Publication Date Title
WO2013062040A1 (ja) 軸シール装置及びこれを備える回転機械
KR101617983B1 (ko) 축씰 장치 및 이를 구비하는 회전 기계
JP6012505B2 (ja) 軸シール装置及び回転機械
WO2010146805A1 (ja) 軸シール及びこれを備えた回転機械
JP5595259B2 (ja) 軸シール装置及びこれを備える回転機械
US9841109B2 (en) Shaft seal mechanism and rotary machine provided with same
US10927765B2 (en) Seal segment and rotary machine
WO2019160013A1 (ja) シールセグメント及び回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007425

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347457

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012844359

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE