WO2013061789A1 - キャパシタ - Google Patents

キャパシタ Download PDF

Info

Publication number
WO2013061789A1
WO2013061789A1 PCT/JP2012/076309 JP2012076309W WO2013061789A1 WO 2013061789 A1 WO2013061789 A1 WO 2013061789A1 JP 2012076309 W JP2012076309 W JP 2012076309W WO 2013061789 A1 WO2013061789 A1 WO 2013061789A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
negative electrode
capacitor
capacity
Prior art date
Application number
PCT/JP2012/076309
Other languages
English (en)
French (fr)
Inventor
奥野 一樹
健吾 後藤
弘太郎 木村
肇 太田
西村 淳一
細江 晃久
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2013061789A1 publication Critical patent/WO2013061789A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a capacitor that has a positive electrode and negative electrode with a better capacity balance than conventional lithium ion capacitors, has a high capacity, is lightweight, and can be manufactured by a simpler process.
  • a lithium ion capacitor As such an electricity storage device, in recent years, a lithium ion capacitor (LIC) has attracted attention as an electricity storage device having a large capacity and a high output.
  • LIC lithium ion capacitor
  • the positive electrode, the negative electrode, and the separator of this cell are alternately laminated and inserted into the outer packaging material, and after pouring the electrolytic solution, lithium ions are pre-doped from the outside into the negative electrode, thereby producing the LIC.
  • the electrode is made thicker in order to increase the capacity, the distance between the current collector and the activated carbon becomes longer, and the electrical resistance increases at a distance from the current collector. As a result, the utilization rate of the activated carbon is lowered and the positive electrode capacity is not increased. Further, when an attempt is made to reduce the electrical resistance by adding a conductive aid, the amount of activated carbon is reduced, so that the positive electrode capacity does not increase.
  • the present invention provides a capacitor that can be manufactured in a simple process without the need for pre-doping by improving the capacity of the positive electrode to achieve an appropriate balance between the positive electrode capacity and the negative electrode capacity.
  • the issue is to provide.
  • the inventor has made a positive electrode active mainly composed of a Li-containing compound such as lithium cobaltate (LiCoO 2 ) on the positive electrode side in order to eliminate the need for external Li pre-doping. It has been found that a material can be used, and this can increase the capacity of the positive electrode.
  • a Li-containing compound such as lithium cobaltate (LiCoO 2 )
  • the structure of the current collector was examined.
  • an Al porous body having a three-dimensional structure is used as the current collector, the active material filled in the pores of the Al porous body is firmly held. Even if the layer is thick, the active material and Al are close to each other, so that sufficient current collection is performed.
  • the ratio of the binder and the conductive auxiliary agent can be reduced and the film thickness can be increased, and the current collecting property of the positive electrode active material is improved in the positive electrode.
  • the capacity of the negative electrode can be improved to improve the balance of the capacity of the positive and negative electrodes. As a result, the capacity of the entire capacitor can be improved.
  • the three-dimensional structure means that, in the case of a constituent material, for example, Al, rod-like or fibrous Al is three-dimensionally connected to each other, or a network is formed by a foaming structure.
  • the present invention further has the following characteristics.
  • the present inventor has studied a preferred embodiment of the Al porous body described above, and as a result, the basis weight (Al weight when the manufacturing thickness is 1 mm) is 80 to 1000 g / m 2 , and In the case of an Al porous body having a pore diameter (cell diameter) of 50 to 1000 ⁇ m and having a three-dimensional structure, the packing density of the active material can be sufficiently increased and sufficient mechanical strength can be obtained. Therefore, it turned out to be preferable. When the pore diameter is less than 50 ⁇ m, the active material that is the main component of the battery reaction cannot be filled smoothly.
  • a method for producing such an Al porous body conventionally, a method of forming an Al porous body by sintering Al powder, and a method of removing the nonwoven fabric by performing heat treatment after applying Al plating to the nonwoven fabric to form an Al porous body.
  • Many methods have been proposed, such as a method of removing the resin by subjecting the resin foam to Al plating and then heat-treating to make an Al porous body.
  • resin foams or nonwoven fabrics are also proposed.
  • a method of removing the resin foam and the nonwoven fabric by heat treatment after applying Al plating to the Al porous body is preferable.
  • the porous body is a porous body having a basis weight of 80 to 1000 g / m 2 and a pore diameter (cell diameter) of 50 to 1000 ⁇ m.
  • non-aqueous electrolyte a non-aqueous electrolyte composed of the following lithium salt and an organic solvent is preferably used. That is, the present invention further has the following characteristics.
  • the capacitor according to any one of (1) to (3) above The lithium salt is at least one selected from LiClO 4 , LiBF 4 , and LiPF 6 ;
  • the solvent of the non-aqueous electrolyte is one or more selected from ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • the present invention by increasing the capacity of the positive electrode, an appropriate balance is achieved between the positive electrode capacity and the negative electrode capacity, the capacity is increased, and the weight is light, and further, a simple process without requiring pre-doping.
  • a capacitor that can be manufactured can be provided.
  • an Al foil is used as the positive electrode current collector
  • an Al porous body is used as the negative electrode current collector (see FIG. 1).
  • the positive electrode of the capacitor according to the present embodiment is formed by applying a positive electrode active material paste containing a positive electrode active material containing Li on an Al foil by a doctor blade method or the like to provide a positive electrode active material layer It is produced by this.
  • the electrode may be provided with a lead terminal.
  • the lead terminal may be attached by welding or applying an adhesive.
  • Positive electrode current collector As the positive electrode current collector, an Al foil having a thickness of about 5 to 80 ⁇ m, more preferably about 10 to 40 ⁇ m is used.
  • Positive electrode active material paste is prepared by mixing a positive electrode active material containing Li, a conductive additive, and a binder in a predetermined ratio, and adding a predetermined amount of N-methyl-2 to the resulting mixture (mixture). -Prepared by adding a solvent such as pyrrolidone (NMP) and kneading. The mixing ratio of these materials is appropriately determined in consideration of the electrode capacity, conductivity, paste viscosity, and the like.
  • NMP pyrrolidone
  • the coating amount is not particularly limited and may be appropriately determined according to the electrode capacity and the like. For example, it may be about 8 to 50 mg / cm 2 , preferably about 15 to 30 mg / cm 2 per side. As needed, you may pressurize with a roller press etc. after drying.
  • Positive electrode active material As the positive electrode active material, an active material powder containing Li such as LiCoO 2 , LiNiMnO 2 , LiAlMnO 2 is used.
  • Conductive aid There is no restriction
  • the content of the conductive additive is not limited, but is preferably about 0.1 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material containing Li. If it exceeds 10 parts by mass, the capacitance may decrease.
  • Binder The type of the binder is not particularly limited, and known or commercially available binders can be used. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl pyrrolidone, polyvinyl chloride, polyolefin, styrene butadiene rubber, polyvinyl alcohol, carboxymethyl cellulose and the like.
  • the content of the binder is not particularly limited, but is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material containing Li. By setting this range, the binding strength can be improved while suppressing an increase in electrical resistance and a decrease in capacitance.
  • the negative electrode of the capacitor according to the present embodiment is produced by filling an Al porous body with a negative electrode active material mainly composed of activated carbon.
  • a negative electrode active material mainly composed of activated carbon By using lighter Al instead of conventional copper as the negative electrode current collector, the weight of the capacitor can be reduced.
  • “mainly composed of activated carbon” indicates that activated carbon is contained in an amount of more than 50% by weight.
  • the filling amount (content) when the negative electrode active material is filled in the Al porous body that is the current collector is not particularly limited, and may be appropriately determined according to the thickness of the current collector, the shape of the capacitor, etc. , the amount of filler is preferably about 3 ⁇ 50mg / cm 2, more preferably a 16 ⁇ 32mg / cm 2 approximately.
  • a method for filling the negative electrode active material for example, a known method such as making activated carbon or the like into a paste and press-fitting the activated carbon negative electrode paste may be used.
  • Other methods include, for example, a method of immersing the current collector in an activated carbon negative electrode paste and reducing the pressure as necessary, a method of spraying and filling the activated carbon positive electrode paste from one side of the current collector with a pump or the like. Can be mentioned.
  • the solvent in the paste may be removed by filling the negative electrode with an activated carbon paste and then performing a drying treatment as necessary. Further, if necessary, after being filled with activated carbon paste, it may be compression-molded by pressurizing with a roller press or the like.
  • the activated carbon paste can be filled more densely, and the negative electrode can be adjusted to a desired thickness (thickness adjustment).
  • the thickness before and after compression is usually about 300 to 5000 ⁇ m before compression, usually about 150 to 3000 ⁇ m after compression molding, more preferably about 400 to 1500 ⁇ m before compression, and more preferably about 200 to 800 ⁇ m after compression molding.
  • the electrode may be provided with a lead terminal.
  • the lead terminal may be attached by welding or applying a conductive adhesive.
  • Negative electrode current collector As the negative electrode current collector, an Al porous body having a basis weight of 80 to 1000 g / m 2 and a pore diameter of 50 to 1000 ⁇ m is preferably used.
  • Such an Al porous body can be obtained by forming the Al coating layer on the surface of the foamed resin and then removing the resin as the base material.
  • the Al porous body is produced by the following method.
  • FIG. 2A to 2C are a series of schematic diagrams for explaining an example of a method for producing an Al porous body.
  • FIG. 2A is an enlarged schematic view showing a part of a cross section of a foamed resin having continuous air holes, and shows a state in which pores are formed using the foamed resin 1 as a skeleton.
  • a foamed resin 1 having continuous air holes is prepared, and an Al layer 2 is formed on the surface to obtain an Al-coated foamed resin (FIG. 2B).
  • the foamed resin 1 is not particularly limited as long as it is porous, and foamed urethane, foamed styrene, or the like can be used, and it has a porosity of 80 to 98% and a continuous ventilation hole with a cell diameter of 50 to 1000 ⁇ m. Is preferably used. Of these, urethane foam having a high porosity (80 to 98%), high cell diameter uniformity, and excellent thermal decomposability is particularly preferable.
  • an arbitrary method such as vapor deposition, sputtering, plasma CVD, or other vapor phase method, application of aluminum paste, or molten salt electroplating method can be used.
  • the Al-coated foamed resin is immersed in the molten salt, and a negative potential is applied to the Al layer 2. Thereby, the oxidation of the Al layer 2 can be suppressed.
  • the foamed resin 1 is decomposed and only the Al layer 2 remains to obtain the Al porous body 3 Yes (FIG. 2C).
  • molten salt a salt of an alkali metal or alkaline earth metal halide can be used so that the electrode potential of the Al layer becomes base.
  • the Al porous body is used as the negative electrode current collector has been described above, but an Al foil can also be used.
  • the Al porous body can be used instead of the Al foil.
  • Activated carbon (negative electrode active material) paste Activated carbon paste is obtained, for example, by stirring activated carbon powder in a solvent with a mixer.
  • the activated carbon paste should just contain activated carbon and a solvent, and the mixture ratio is not limited.
  • the solvent include N-methyl-2-pyrrolidone and water.
  • N-methyl-2-pyrrolidone may be used as a solvent.
  • polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, or the like is used as a binder, water is used as a solvent. Good.
  • additives such as a conductive support agent and a binder, may be included as needed.
  • activated carbon As activated carbon, what is generally marketed for electric double layer capacitors can be used similarly.
  • the raw material for the activated carbon include wood, coconut shell, pulp waste liquid, coal, heavy petroleum oil, coal / petroleum pitch obtained by pyrolyzing them, and resins such as phenol resins.
  • the activation method includes a gas activation method and a chemical activation method.
  • the gas activation method is a method in which activated carbon is obtained by contact reaction with water vapor, carbon dioxide gas, oxygen or the like at a high temperature.
  • the chemical activation method is a method in which activated carbon is obtained by impregnating the above-mentioned raw material with a known activation chemical and heating it in an inert gas atmosphere to cause dehydration and oxidation reaction of the activation chemical.
  • Examples of the activation chemical include zinc chloride and sodium hydroxide.
  • Conductive auxiliary agent There is no restriction
  • the content of the conductive assistant is not limited, but is preferably about 0.1 to 10 parts by mass with respect to 100 parts by mass of the activated carbon. If it exceeds 10 parts by mass, the capacitance may decrease.
  • Binder The type of the binder is not particularly limited, and known or commercially available binders can be used. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl pyrrolidone, polyvinyl chloride, polyolefin, styrene butadiene rubber, polyvinyl alcohol, carboxymethyl cellulose and the like.
  • the content of the binder is not particularly limited, but is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the activated carbon. By setting this range, the binding strength can be improved while suppressing an increase in electrical resistance and a decrease in capacitance.
  • Nonaqueous Electrolyte (1) Outline Since the capacitor according to the present embodiment has lithium, it is necessary to use a nonaqueous electrolyte as the electrolyte.
  • a nonaqueous electrolytic solution for example, a solution obtained by dissolving a lithium salt necessary for charging and discharging in an organic solvent can be used.
  • the lithium salt lithium salt from the viewpoint of solubility in a solvent, for example, can be preferably used LiClO 4, LiBF 4, LiPF 6 or the like. These may be used alone or in combination of any one or more.
  • the solvent for dissolving the lithium salt is preferably at least one selected from ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate from the viewpoint of ionic conductivity. Can be used.
  • Separator A known or commercially available separator can be used.
  • an insulating film made of polyolefin, polyethylene terephthalate, polyamide, polyimide, cellulose, glass fiber or the like is preferable.
  • the average pore diameter of the separator is not particularly limited, and is usually about 0.01 to 5 ⁇ m, and the average thickness is usually about 10 to 100 ⁇ m.
  • the capacitor according to the present embodiment can be manufactured by using the positive electrode and the negative electrode as a pair, placing a separator between these electrodes, and impregnating a non-aqueous electrolyte containing a lithium salt.
  • Such a capacitor is provided with an active material layer containing a positive electrode active material containing Li to improve the capacity of the positive electrode, thereby providing an appropriate balance between the positive electrode capacity and the negative electrode capacity.
  • the capacity can be increased. Further, the capacity of the capacitor can be increased without pre-doping with lithium. And since not only the positive electrode current collector but also the Al current collector is used for the negative electrode current collector, the weight of the capacitor can be reduced. When an Al porous body is used as the Al current collector, Furthermore, the weight of the capacitor can be reduced.
  • Example 1 the positive electrode current collector and the negative electrode current collector are both Al foil capacitors.
  • Example 2 is a capacitor in which the positive electrode current collector is an Al foil and the negative electrode current collector is an Al porous body having a three-dimensional structure.
  • Example 3 the positive electrode current collector and the negative electrode current collector are both capacitors of an Al porous body having a three-dimensional structure.
  • the positive electrode active material paste was applied to an Al foil having a thickness of 20 ⁇ m at an application amount of 20 mg / cm 2 , dried at 100 ° C. for 1 hour with a dryer to remove the solvent, and then the diameter 500
  • the positive electrode was obtained by pressurizing with a millimeter roller press (slit: 100 ⁇ m). The thickness after pressing was 105 ⁇ m.
  • the obtained positive electrode had a capacity of 3 mAh / cm 2 .
  • negative electrode active material 100 parts by weight of activated carbon powder (specific surface area 2500 m 2 / g, average particle size of about 5 ⁇ m), 2 parts by weight of ketjen black (KB) as a conductive additive, and polyfluorination as a binder
  • An activated carbon paste was prepared by adding 4 parts by weight of vinylidene powder and 15 parts by weight of N-methylpyrrolidone (NMP) as a solvent and stirring with a mixer.
  • NMP N-methylpyrrolidone
  • Capacitor The obtained positive electrode and negative electrode were further dried at 200 ° C. for 8 hours in a reduced pressure environment. These were transferred into a dry room (dew point -65 ° C.), and the positive electrode and the negative electrode were punched out to a diameter of 14 mm.
  • a single-cell element is formed by sandwiching a polypropylene separator between both electrodes and stored in an R2032-size coin cell case using a stainless steel spacer, and ethylene carbonate (EC) and diethyl carbonate (DEC) are in a volume ratio.
  • An electrolyte solution in which 1 mol / L LiPF 6 was dissolved in an organic solvent mixed at 1: 1 was injected to impregnate the electrode and the separator. Further, the case lid was tightened and sealed through an insulating gasket made of propylene to produce a coin-type capacitor of Example 1.
  • Example 2 Production of positive electrode A positive electrode was produced in the same manner as in Example 1.
  • a negative electrode active material paste (activated carbon paste) was prepared in the same manner as in Example 1.
  • the activated carbon paste was filled in an Al porous body so that the activated carbon content was 20 mg / cm 2 .
  • the actual filling amount was 21 mg / cm 2 .
  • the thickness after pressing was 520 ⁇ m.
  • the obtained negative electrode had a capacity of 0.8 F / cm 2 .
  • Capacitor A coin-shaped capacitor was produced in the same manner as in Example 1 using the obtained positive electrode and negative electrode.
  • Example 3 Production of Positive Electrode A porous Al body was produced in the same manner as in Example 2, and a positive electrode active material paste was produced in the same manner as in Example 1. The positive electrode active material paste was filled into an Al porous body, dried and pressed to obtain a positive electrode having a thickness of 0.5 mm. The capacity of the obtained positive electrode was 9 mAh / cm 2 .
  • Capacitor A coin-shaped capacitor was produced in the same manner as in Example 1 using the obtained positive electrode and negative electrode.
  • negative electrode 100 parts by weight of natural graphite powder capable of occluding and desorbing lithium, 2 parts by weight of ketjen black (KB) as a conductive additive, 4 parts by weight of polyvinylidene fluoride powder as a binder, N-methylpyrrolidone (NMP) as a solvent 15 parts by weight was added and stirred with a mixer to prepare a graphite-based negative electrode paste.
  • KB ketjen black
  • NMP N-methylpyrrolidone
  • This graphite-based negative electrode paste was applied onto a copper foil having a thickness of 20 ⁇ m using a doctor blade (gap 400 ⁇ m). The actual coating amount was 10 mg / cm 2 .
  • a doctor blade gap 400 ⁇ m.
  • the actual coating amount was 10 mg / cm 2 .
  • it pressurized with the roller press machine slit: 200 micrometers of diameter 500mm.
  • the thickness after pressing was 220 ⁇ m.
  • a lithium metal foil having a thickness of 50 ⁇ m was pressure bonded for pre-doping to obtain a negative electrode.
  • the obtained negative electrode had a capacity of 3.7 mAh / cm 2 .
  • a coin-shaped capacitor (LIC) was produced in the same manner as in Example 1, and then left in a constant temperature bath at 60 ° C. for 24 hours. As a result, Li + was pre-doped on the negative electrode.
  • Examples 2 and 3 using an Al porous body as a current collector are higher in capacity and lighter than Example 1 using only an Al foil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

正極の容量を向上させることにより正極容量と負極容量との間に適切なバランスが取れて高容量化され、また軽量であって、さらにプレドープを必要とせず簡素な工程で作製することができるキャパシタを提供する。 少なくとも、アルミニウムからなる集電体に、リチウムを含有する正極活物質を含む活物質層が設けられた正極と、アルミニウムからなる集電体に、活性炭を主体とする負極活物質を含む活物質層が設けられた負極と、リチウム塩を含む非水電解液とを備えたキャパシタ。

Description

キャパシタ
 本発明は、従来のリチウムイオンキャパシタに比べて正極と負極の容量バランスが良くて高容量であり、また軽量で、さらに簡素な工程で作製することができるキャパシタに関する。
 環境問題がクローズアップされる中、太陽光、風力発電等によるクリーンエネルギーの蓄電システム、コンピュータ等のバックアップ電源、ハイブリッド車や電気自動車等の電源として、蓄電デバイスの開発が盛んに行われている。
 このような蓄電デバイスとして、近年、リチウムイオンキャパシタ(LIC)が、大容量、高出力の蓄電デバイスとして注目されている。
 LICは、通常、アルミニウム(Al)集電体上に活性炭を正極活物質として含む層を形成した正極、銅(Cu)集電体上に黒鉛等を負極活物質として含む層を形成した負極、及びLiPF等のリチウム塩とエチレンカーボネート(EC)やジエチルカーボネート(DEC)等の有機溶媒からなる非水電解液を用いてセルが構成されている(図3参照)(例えば、特許文献1)。
 そして、このセルの正極、負極とセパレーターとを交互に積層して外装材に挿入し、電解液を注液した後、リチウムイオンを外部より負極にプレドープすることにより、LICが作製される。
 しかしながら、容量を高めようとして電極を厚くすると、集電体と活性炭との距離が長くなり、集電体から離れたところでは電気抵抗が高くなる。この結果、活性炭の利用率が低下して、正極容量が上がらない。また、導電助剤を添加して電気抵抗の低減を図ろうとすると、活性炭の量が少なくなるため、やはり正極容量が上がらない。
 そして、従来のLICの製造においては、負極にリチウムをプレドープする工程は重要な工程であるため省くことができず、また、外部よりプレドープするため電池構成が複雑となり、多くの手間を必要とする。
特開2006-286919号公報
 そこで本発明は、正極の容量を向上させることにより正極容量と負極容量との間に適切なバランスが取れて高容量化され、さらにプレドープを必要とせず簡素な工程で作製することができるキャパシタを提供することを課題とする。
 本発明者は、上記課題の解決につき、鋭意検討の結果、外部からのLiプレドープを不要とするためには、正極側にコバルト酸リチウム(LiCoO)などのLi含有化合物を主体とする正極活物質を用いればよく、これによって、正極の高容量化が図れることを見出した。
 この場合、負極でLiプレドープを行う必要がなくなるため、従来のLICのように、負極活物質に黒鉛を使用する環境下ではLiと合金化してしまうため使用することができなかったAlを負極集電体として使用することができる。そして、Alを負極集電体とし、活性炭を主体とする負極活物質を用いることにより、正極容量と負極容量との間に適切なバランスを取ることができて、高容量化されたキャパシタの提供が可能となることが分かった。
 また、以上のように正極、負極の集電体としてAlを使用することが可能となったことにより、キャパシタの軽量化も図ることができる。
 本発明は上記の知見に基づいてなされたものであり、本発明に係るキャパシタは以下の特徴を有する。
(1)本発明に係るキャパシタは、
 少なくとも、
 アルミニウムからなる集電体に、リチウムを含有する正極活物質を含む活物質層が設けられた正極と、
 アルミニウムからなる集電体に、活性炭を主体とする負極活物質を含む活物質層が設けられた負極と、
 リチウム塩を含む非水電解液と
を備えたことを特徴とする。
 次に、集電体の構造について検討した。この結果、集電体に三次元構造のAl多孔体を用いた場合、Al多孔体の気孔内に充填されている活物質は強固に保持される。また、層の厚みが厚くても活物質とAlとの距離が近いため、充分に集電が行われる。このように、保持機能および集電機能に優れたAl多孔体を用いることにより、バインダーや導電助剤の比率の低減および厚膜化が可能となり、正極において正極活物質の集電性を向上させると共に、負極の容量を向上させて正負極の容量のバランスをより良くすることができる。この結果、キャパシタ全体の容量を向上させることができる。また、箔に比べてより軽量の多孔体で、同じ量の活物質を保持することができるため、より軽量化を図ることができることが分かった。なお、ここで、三次元構造とは、構成している材質、例えばAlの場合には、棒状もしくは繊維状のAlが相互に三次元的につながり合い、あるいは発泡的な組織により、ネットワークを形成している構造を指す。
 上記知見に基づき、本発明は、さらに以下の特徴を有する。
(2)上記(1)に記載のキャパシタであって、
 前記集電体の少なくとも一方が、三次元構造の多孔体であることを特徴とする。
 次に、本発明者は、前記したAl多孔体の好ましい態様について検討を行い、その結果、目付量(製造時の厚みを1mmとしたときのAl重量)が80~1000g/mで、かつ気孔径(セル径)が50~1000μmであり、三次元構造を有しているAl多孔体の場合、活物質の充填密度を充分に高めることができると共に、充分な機械的強度を有しているため、好ましいことが分かった。気孔径が50μm未満であると電池反応の主体である活物質の充填がスムーズに行えない。一方、気孔径が1000μmより大きいと活物質を多孔体の構造内に保持する効果が小さく、出力や寿命が低下する。なお、ここで気孔径(セル径)は、多孔体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりの気孔数をセル数として計数し、平均セル径=25.4mm/セル数として平均的な値を求める。
 このようなAl多孔体の製造方法としては、従来、Al粉末の焼結によりAl多孔体とする方法、不織布にAlめっきを施した後熱処理することにより不織布を除却してAl多孔体とする方法、樹脂発泡体にAlめっきを施した後熱処理することにより樹脂を除去してAl多孔体とする方法等、多くの方法が提案されているが、これらの方法の内でも、樹脂発泡体または不織布にAlめっきを施した後、熱処理することにより樹脂発泡体や不織布を除去してAl多孔体とする方法が好ましい。
 上記知見に基づき、本発明は、さらに以下の特徴を有する。
(3)上記(2)に記載のキャパシタであって、
 前記多孔体が、目付量が80~1000g/mで、気孔径(セル径)が50~1000μmの多孔体であることを特徴とする。
 また、前記非水電解液には、下記のリチウム塩と有機溶媒とからなる非水電解液が好ましく用いられる。即ち、本発明は、さらに以下の特徴を有する。
(4)上記(1)~(3)のいずれか一に記載のキャパシタであって、
 前記リチウム塩が、LiClO、LiBF、LiPFから選ばれる1種以上であり、
 前記非水電解液の溶媒が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートから選ばれる1種以上であることを特徴とする。
 本発明によれば、正極の容量を向上させることにより正極容量と負極容量との間に適切なバランスが取れて高容量化され、また軽量であって、さらにプレドープを必要とせず簡素な工程で作製することができるキャパシタを提供することができる。
本発明の一実施の形態に係るキャパシタのセルの構成を説明する図である。 アルミニウム多孔体の製造方法の一例を説明する一連の図の一つで、連通気孔を有する発泡樹脂の断面の一部を示す拡大模式図ある。 上記一連の図の一つで、発泡樹脂の表面にAl層を形成して得られるAl被覆発泡樹脂の断面の一部を示す拡大模式図ある。 上記一連の図の一つで、発泡樹脂を分解して、Al層のみが残って得られるAl多孔体の断面の一部を示す拡大模式図ある。 リチウムイオンキャパシタのセルの構成を説明する図である。
 以下、本発明を実施の形態に基づき具体的に説明する。なお、以下の実施の形態においては、正極集電体としてAl箔を、また負極集電体としてAl多孔体を用いている(図1参照)。
1.正極
(1)概要
 本実施の形態に係るキャパシタの正極は、Al箔上に、Liを含有する正極活物質を含む正極活物質ペーストをドクターブレード法等により塗布して、正極活物質層を設けることにより作製される。
 また、電極には、リード端子が具備されていてもよい。リード端子は、溶接を行ったり、接着剤を塗布したりすることにより、取り付ければよい。
(2)正極集電体
 正極集電体としては、厚み5~80μm程度、より好ましくは10~40μm程度のAl箔が用いられる。
(3)正極活物質ペースト
 正極活物質ペーストは、Liを含む正極活物質、導電助剤、バインダーを所定の比率で混合し、得られた混合物(合剤)に所定量のN-メチル-2-ピロリドン(NMP)等の溶媒を加えて混練することにより作製される。なお、これらの材料の配合比率は、電極の容量、導電性、ペーストの粘度等を考慮して適宜決定される。
 そして、塗布量は特に制限されず、電極の容量等に応じて適宜決定すればよいが、例えば片面当たり、8~50mg/cm程度、好ましくは15~30mg/cm程度とすればよい。必要に応じて、乾燥後、ローラープレス機等により加圧してもよい。
(a)正極活物質
 正極活物質としては、LiCoO、LiNiMnO、LiAlMnO等のLiを含む活物質粉末が用いられる。
(b)導電助剤
 導電助剤としては、特に制限はなく、公知又は市販のものが使用できる。例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、天然黒鉛(鱗片状黒鉛、土状黒鉛等)、人造黒鉛、酸化ルテニウム等が挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラック、炭素繊維等が好ましい。これにより、キャパシタの導電性を向上させることができる。導電助剤の含有量は限定的でないが、Liを含む正極活物質100質量部に対して0.1~10質量部程度が好ましい。10質量部を超えると静電容量が低下するおそれがある。
(c)バインダー
 バインダーの種類には特に制限はなく、公知又は市販のものが使用できる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリビニルクロリド、ポリオレフィン、スチレンブタジエンゴム、ポリビニルアルコール、カルボキシメチルセルロース等が挙げられる。
 バインダーの含有量についても特に制限はないが、Liを含む正極活物質100質量部に対して好ましくは0.5~5質量部である。この範囲とすることにより、電気抵抗の増加及び静電容量の低下を抑制しながら、結着強度を向上させることができる。
2.負極
(1)概要
 本実施の形態に係るキャパシタの負極は、Al多孔体に活性炭を主体とした負極活物質を充填することにより作製される。負極集電体として、従来の銅に替えて、より軽量のAlを用いることにより、キャパシタの軽量化を図ることができる。なお、「活性炭を主体とした」とは、活性炭が50重量%超含有されていることを示す。
 集電体であるAl多孔体に負極活物質を充填する場合の充填量(含有量)は特に制限されず、集電体の厚み、キャパシタの形状等に応じて適宜決定すればよいが、例えば、充填量は、3~50mg/cm程度が好ましく、16~32mg/cm程度であるとより好ましい。
 負極活物質を充填する方法としては、例えば、活性炭等をペースト状にし、該活性炭負極ペーストを圧入するなどの公知の方法を使用すればよい。他には、例えば、活性炭負極ペースト中に集電体を浸漬し、必要に応じて減圧する方法、活性炭正極ペーストを集電体の一方面からポンプ等で加圧しながら吹き付けて充填する方法等が挙げられる。
 負極は、活性炭ペーストを充填した後、必要に応じて乾燥処理を施すことにより、ペースト中の溶媒が除去されてもよい。更に必要に応じて、活性炭ペーストを充填した後、ローラープレス機等により加圧することにより、圧縮成形されていてもよい。
 圧縮成形することにより、活性炭ペーストをより高密度に充填することができ、また負極を所望の厚みに調整することができる(調厚)。圧縮前後の厚みとしては、圧縮前は通常300~5000μm程度、圧縮成形後は通常150~3000μm程度が好ましく、圧縮前が400~1500μm程度、圧縮成形後が200~800μm程度であるとより好ましい。
 また、電極には、リード端子が具備されていてもよい。リード端子は、溶接を行ったり、導電性接着剤を塗布したりすることにより、取り付ければよい。
(2)負極集電体
 負極集電体としては、目付量80~1000g/mで気孔径が50~1000μmのAl多孔体が好ましく用いられる。
 このようなAl多孔体は、内部に導電性が高く耐電圧性に優れたAl骨格が連続して存在するため、集電機能に優れている。そして、多孔体中の空隙に活性炭(活物質)が包まれる構造であるため、バインダーや導電助剤等の含有比率を少なくすることができ、活性炭(活物質)の充填密度を高くすることができる。その結果、内部抵抗を小さくすることができると共に、高容量化が可能になる。一方、箔に比べてより軽量の多孔体で、同じ量の活物質を保持することができるため、より軽量化を図ることができる。負極集電体として好ましい厚みは、通常、平均厚みとして150~3000μm程度であり、200~800μm程度であるとより好ましい。
 このようなAl多孔体は、発泡樹脂の表面にAl被覆層を形成したのち、基材である樹脂を除去することにより得ることができ、例えば、以下に示す方法により作製される。
 図2A~図2Cは、Al多孔体の製造方法の一例を説明する一連の模式図である。図2Aは連通気孔を有する発泡樹脂の断面の一部を示す拡大模式図であり、発泡樹脂1を骨格として気孔が形成されている様子を示している。
 まず、連通気孔を有する発泡樹脂1を準備し、その表面にAl層2を形成してAl被覆発泡樹脂を得る(図2B)。
 発泡樹脂1としては、多孔性のものであれば特に限定されず、発泡ウレタン、発泡スチレン等を使用することができ、気孔率80~98%で、セル径50~1000μmの連通気孔を持つものが好ましく用いられる。これらの中でも、気孔率が高く(80~98%)、セル径の均一性が高く、また熱分解性にも優れた発泡ウレタンが特に好ましい。
 発泡樹脂1の表面にAl層2を形成する方法としては、蒸着、スパッタ、プラズマCVD等の気相法、アルミニウムペーストの塗布、溶融塩電解めっき法等任意の方法で行うことができる。
 これらの方法の内でも、溶融塩電解めっきが好ましい。溶融塩電解めっきは、例えば、AlCl-XCl(X:アルカリ金属)の2成分系あるいは多成分系の塩を使用し、溶融塩中に発泡樹脂1を浸漬し、電位を印加して電解めっきを行ないAl層2を形成する。この際、予め、Al等の蒸着やスパッタ、あるいはカーボン等を含有した導電性塗料の塗布等の方法を用いて、発泡樹脂1の表面に、導電化処理を施しておく。
 なお、Al層2の形成に際しては、Ni、Fe、Cu、Si等の不純物が含まれないようにする。これらの不純物が含まれた正極を用いた場合、充電中にこれらの不純物が溶け出して負極に析出し、短絡が生じる原因となる。
 次に、Al被覆発泡樹脂を溶融塩に浸漬し、Al層2に負電位を印加する。これにより、Al層2の酸化を抑制することができる。この状態で発泡樹脂1の分解温度以上で、Alの融点(660℃)以下の温度で加熱することにより、発泡樹脂1が分解して、Al層2のみが残りAl多孔体3を得ることができる(図2C)。
 加熱温度としては、500~650℃が好ましい。
 溶融塩としては、Al層の電極電位が卑となるように、アルカリ金属またはアルカリ土類金属のハロゲン化物の塩を使用することができる。具体的には、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)からなる群より選択される1種以上を含むことが好ましく、上記の2種以上を混合して融点を下げた共晶溶融塩がより好ましい。
 以上、Al多孔体を負極集電体として用いる場合を説明したが、Al箔を用いることもできる。一方、正極集電体として、Al箔に替えて上記のAl多孔体を用いることもできる。
(3)活性炭(負極活物質)ペースト
 活性炭ペーストは、例えば、活性炭粉末を溶媒に混合機で攪拌することにより得られる。活性炭ペーストは、活性炭及び溶媒を含有していればよく、その配合割合は限定的ではない。溶媒としては、例えば、N-メチル-2-ピロリドン、水等が挙げられる。
 特に、バインダーとしてポリフッ化ビニリデンを用いる場合は、溶媒としてN-メチル-2-ピロリドンを用いればよく、バインダーとしてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロース等を用いる場合は、溶媒として水を用いればよい。また、必要に応じて導電助剤、バインダー等の添加剤を含んでいてもよい。
(a)活性炭
 活性炭としては、電気二重層キャパシタ用に一般的に市販されているものを、同様に使用することができる。活性炭の原料としては、例えば、木材、ヤシ殻、パルプ廃液、石炭、石油重質油、又はそれらを熱分解した石炭・石油系ピッチのほか、フェノール樹脂などの樹脂などが挙げられる。
 炭化後に賦活するのが一般的であり、賦活法は、ガス賦活法及び薬品賦活法が挙げられる。ガス賦活法は、高温下で水蒸気、炭酸ガス、酸素等と接触反応させることにより活性炭を得る方法である。薬品賦活法は、上記原料に公知の賦活薬品を含浸させ、不活性ガス雰囲気中で加熱することにより、賦活薬品の脱水及び酸化反応を生じさせて活性炭を得る方法である。賦活薬品としては、例えば、塩化亜鉛、水酸化ナトリウム等が挙げられる。
 活性炭の粒径は限定的でないが、20μm以下であることが好ましい。比表面積も限定的でなく、800~3000m/g程度が好ましい。この範囲とすることにより、キャパシタの静電容量を大きくすることができ、また、内部抵抗を小さくすることできる。
(b)導電助剤
 導電助剤の種類には特に制限はなく、公知又は市販のものが使用できる。例えば、アセチレンブラック、ケッチェンブラック、炭素繊維、天然黒鉛(鱗片状黒鉛、土状黒鉛等)、人造黒鉛、酸化ルテニウム等が挙げられる。これらの中でも、アセチレンブラック、ケッチェンブラック、炭素繊維等が好ましい。これにより、キャパシタの導電性を向上させることができる。導電助剤の含量は限定的でないが、活性炭100質量部に対して0.1~10質量部程度が好ましい。10質量部を超えると静電容量が低下するおそれがある。
(c)バインダー
 バインダーの種類には特に制限はなく、公知又は市販のものが使用できる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルピロリドン、ポリビニルクロリド、ポリオレフィン、スチレンブタジエンゴム、ポリビニルアルコール、カルボキシメチルセルロース等が挙げられる。
 バインダーの含有量についても特に制限はないが、活性炭100質量部に対して好ましくは0.5~10質量部である。この範囲とすることにより、電気抵抗の増加及び静電容量の低下を抑制しながら、結着強度を向上させることができる。
3.非水電解液
(1)概要
 本実施の形態に係るキャパシタはリチウムを有するため、電解液としては、非水電解液を用いる必要がある。かかる非水電解液は、例えば、充放電に必要なリチウム塩を有機溶媒に溶かしたものを使用することができる。
(2)リチウム塩
 リチウム塩としては、溶媒への溶解性の観点から、例えば、LiClO、LiBF、LiPF等を好ましく用いることができる。これらは、単独で用いてもよく、いずれか1種以上を混合して用いてもよい。
(3)溶媒
 上記リチウム塩を溶かす溶媒としては、イオン伝導度の観点から、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートから選ばれるいずれか1種以上を好ましく用いることができる。
4.セパレーター
 セパレーターとしては、公知又は市販のものを使用できる。例えば、ポリオレフィン、ポリエチレンテレフタラート、ポリアミド、ポリイミド、セルロース、ガラス繊維等からなる絶縁性膜が好ましい。セパレーターの平均孔径は特に限定されず、通常0.01~5μm程度であり、平均厚みは通常10~100μm程度である。
5.キャパシタの組立
 本実施の形態に係るキャパシタは、上記の正極、負極を対とし、これらの電極間にセパレーターを配置し、リチウム塩を含む非水電解液を含浸することにより作製することができる。
 このようなキャパシタは、Liを含有する正極活物質を含む活物質層が設けられて正極の容量を向上させることにより、正極容量と負極容量との間に適切なバランスを取っているため、キャパシタの高容量化を図ることができる。また、リチウムをプレドープすることなく、キャパシタの高容量化を図ることができる。そして、正極集電体のみならず、負極集電体にもAl集電体を採用しているため、キャパシタの軽量化を図ることができ、Al集電体としてAl多孔体を用いた場合、さらにキャパシタの軽量化を図ることができる。
 以下、実施例1~3に基づき、本発明をより具体的に説明する。各実施例の概要は以下の通りである。
[1]実施例1は、正極集電体および負極集電体が、共にAl箔のキャパシタである。
[2]実施例2は、正極集電体がAl箔、負極集電体が三次元構造のAl多孔体のキャパシタである。
[3]実施例3は、正極集電体および負極集電体が、共に三次元構造のAl多孔体のキャパシタである
 なお、実施例1~3は、共に正極活物質はコバルト酸リチウム(LiCoO)であり、負極活物質は活性炭である。
 以下、各実施例のキャパシタの作製について説明した後、比較例のキャパシタの作製について説明する。そして、最後にこれらの実施例および比較例で作製されたキャパシタをまとめて評価する。
<1>実施例
[1]実施例1
1.正極の作製
(1)正極活物質ペーストの作製
 活物質として、コバルト酸リチウム(LiCoO)88重量部に、導電助剤としてアセチレンブラック6重量部、バインダーとしてPVDF6重量部を添加し、NMP溶媒95重量部を用いてペースト化した。
(2)正極の作製
 上記の正極活物質ペーストを、20mg/cmの塗布量で厚み20μmのAl箔に塗布し、乾燥機で100℃、1時間乾燥させて溶媒を除去した後、直径500ミリのローラープレス機(スリット:100μm)で加圧して正極を得た。加圧後の厚みは105μmであった。得られた正極の容量は3mAh/cmであった。
2.負極の作製
(1)負極活物質の作製
 活性炭粉末(比表面積2500m/g、平均粒径約5μm)100重量部に、導電助剤としてケッチェンブラック(KB)2重量部、バインダーとしてポリフッ化ビニリデン粉末4重量部、溶媒としてN-メチルピロリドン(NMP)15重量部を添加し、混合機で攪拌することにより、活性炭ペーストを調整した。
(2)負極の作製
 上記の負極活物質ペースト(活性炭ペースト)を5mg/cmの塗布量で厚み20μmのAl箔に塗布し、乾燥機で100℃、1時間乾燥させて溶媒を除去した後、直径500ミリのローラープレス機(スリット:100μm)で加圧して負極を得た。加圧後の厚みは140μmであった。得られた負極の容量は0.2F/cmであった。
3.キャパシタ
 得られた正極及び負極をさらに200℃で8時間、減圧環境で乾燥した。これらをドライルーム中(露点-65℃)に移し、正極及び負極を直径14mmに打ち抜いた。両電極の間にポリプロピレン製のセパレーターを挟んで対向させて単セル素子とし、ステンレススチール製スペーサを用いてR2032サイズのコインセルケースに収納し、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を体積比1:1で混合した有機溶媒に1mol/LのLiPFを溶かした電解液を注入して電極及びセパレーターに含浸させた。さらに、プロピレン製の絶縁ガスケットを介してケース蓋を締めて封口して、実施例1のコイン形キャパシタを作製した。
[2]実施例2
1.正極の作製
 実施例1と同様にして正極を作製した。
2.負極の作製
(1)Al多孔体(負極集電体)の作製
 厚み1.0mm、気孔率97%、セル径450μmの発泡ウレタンを用い、上記の実施の形態の項目で記載した方法により、厚み1.0mm、気孔率95%、セル径450μm、目付量140g/mのAl多孔体を作製した。具体的には、以下の通りである。
(a)使用基材
 ポリウレタンフォームの表面にスパッタ法で目付量10g/mのAl膜を形成して導電化処理した。
(b)溶融塩めっき浴組成
 AlCl:EMIC(塩化アルミニウム-1-エチル-3-メチルイミダゾリウムクロライド)=2:1浴(モル比)を使用した。
(c)前処理
 めっき前に活性化処理として、基材をアノード側として電解処理を行った(2A/dmで1分)。
(d)めっき条件
 表面に導電層を形成したウレタンフォームをワークとして、給電機能を有する治具にセットした後、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内に入れ、温度40℃の溶融塩めっき浴に浸漬した。ワークをセットした治具を整流器の陰極側に接続し、対極のAl板(純度99.99%)を陽極側に接続して、2A/dmの電流条件にて電気めっきを行って、ウレタンフォームの表面にAl膜が形成されたAl構造体を得た。
(e)ウレタンの分解除去
 前記Al構造体を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を5分間印加した。溶融塩中にポリウレタンの分解反応による気泡が発生した。その後大気中で室温まで冷却した後、水洗して溶融塩を除去し、樹脂が除去されたAl多孔体を得た。
(2)負極活物質の作製
 実施例1と同様にして負極活物質ペースト(活性炭ペースト)を調整した。
(3)負極の作製
 この活性炭ペーストをAl多孔体に、活性炭の含量が20mg/cmとなるように充填した。実際の充填量は21mg/cmであった。次に、乾燥機で100℃、1時間乾燥させて溶媒を除去した後、直径500ミリのローラープレス機(スリット:500μm)で加圧して負極を得た。加圧後の厚みは520μmであった。得られた負極の容量は0.8F/cmであった。
3.キャパシタ
 得られた正極及び負極を用いて、実施例1と同様にして、コイン形のキャパシタを作製した。
[3]実施例3
1.正極の作製
 実施例2と同様にしてAl多孔体を作製し、また、実施例1と同様にして正極活物質ペーストを作製した。そして、正極活物質ペーストをAl多孔体に充填して乾燥、プレスすることにより、厚み0.5mmの正極を得た。得られた正極の容量は9mAh/cmであった。
2.負極の作製
 実施例2と同様にして三次元構造のAl多孔体を用いた負極を作製した。
3.キャパシタ
 得られた正極及び負極を用いて、実施例1と同様にして、コイン形のキャパシタを作製した。
<2>比較例
1.正極の作製
 実施例1と同様にして活性炭ペーストを作製し、この活性炭ペーストを5mg/cmの塗布量で厚み20μmのAl箔上に塗布し、乾燥機で100℃、1時間乾燥させて溶媒を除去した後、直径500ミリのローラープレス機(スリット:100μm)で加圧して正極を得た。加圧後の厚みは140μmであった。得られた正極の容量は0.2F/cmであった。
2.負極の作製
 リチウムを吸蔵脱離できる天然黒鉛粉末100重量部に、導電助剤としてケッチェンブラック(KB)2重量部、バインダーとしてポリフッ化ビニリデン粉末4重量部、溶媒としてN-メチルピロリドン(NMP)15重量部を添加し、混合機で攪拌することにより、黒鉛系負極ペーストを調製した。
 この黒鉛系負極ペーストを厚み20μmの銅箔上に、ドクターブレード(ギャップ400μm)を用いて塗布した。実際の塗布量は10mg/cmであった。次に、乾燥機で100℃、1時間乾燥させて溶媒を除去した後、直径500mmのローラープレス機(スリット:200μm)で加圧した。加圧後の厚みは220μmであった。その後、厚み50μmのリチウム金属箔をプレドープ用として圧着して負極を得た。得られた負極の容量は3.7mAh/cmであった。
3.セルの作製
 正極及び負極を用いて、実施例1と同様にして、コイン形のキャパシタ(LIC)を作製し、その後、60℃の恒温槽中で24時間放置した。これにより、負極にLiがプレドープされた。
<3>静電容量、重さの評価
 実施例1~3および比較例と同様のキャパシタをそれぞれ10個作製し、充電を2mA/cmで2時間、放電を1mA/cmで行い、初期静電電流容量(セル容量)、容量密度を調べた。容量密度の基準とする体積は、セル内の電極積層体の体積とし、
    (正極の厚み+セパレーターの厚み+負極の厚み)×電極面積
によって求めた。それらの平均値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1のキャパシタは比較例のキャパシタに比べて、正極容量と負極容量との間に適切なバランスを取ることができ、高容量化されていることが分かる。
 そして、集電体としてAl多孔体を用いた実施例2、3は、Al箔のみの実施例1よりも高容量化され、軽量化されていることが分かる。
 また、実施例について、活物質として、LiCoOに代えてLiNiMnO、LiAlMnOそれぞれを用いても上記と同じ傾向の結果が得られた。
 
 以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。
1      発泡樹脂
2      Al層
3      Al多孔体

Claims (4)

  1.  少なくとも、
     アルミニウムからなる集電体に、リチウムを含有する正極活物質を含む活物質層が設けられた正極と、
     アルミニウムからなる集電体に、活性炭を主体とする負極活物質を含む活物質層が設けられた負極と、
     リチウム塩を含む非水電解液と
    を備えたことを特徴とするキャパシタ。
  2.  前記集電体の少なくとも一方が、三次元構造の多孔体であることを特徴とする請求項1に記載のキャパシタ。
  3.  前記多孔体が、目付量が80~1000g/mで、気孔径が50~1000μmの多孔体であることを特徴とする請求項2に記載のキャパシタ。
  4.  前記リチウム塩が、LiClO、LiBF、LiPFから選ばれる1種以上であり、
     前記非水電解液の溶媒が、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートから選ばれる1種以上であることを特徴とする請求項1~3のいずれか1項に記載のキャパシタ。
PCT/JP2012/076309 2011-10-27 2012-10-11 キャパシタ WO2013061789A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011235992A JP2015008166A (ja) 2011-10-27 2011-10-27 キャパシタ
JP2011-235992 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013061789A1 true WO2013061789A1 (ja) 2013-05-02

Family

ID=48167622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076309 WO2013061789A1 (ja) 2011-10-27 2012-10-11 キャパシタ

Country Status (2)

Country Link
JP (1) JP2015008166A (ja)
WO (1) WO2013061789A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087591A1 (ja) * 2013-12-09 2015-06-18 住友電気工業株式会社 キャパシタおよびその充放電方法
RU2580510C2 (ru) * 2014-04-29 2016-04-10 Открытое акционерное общество "Научно-исследовательский институт вычислительных комплексов им. М.А. Карцева" Линейный модуль накопления и хранения энергии для автономного электропитания электротехнических устройств и оборудования
CN108878970A (zh) * 2018-06-29 2018-11-23 华中科技大学 一种复合聚合物固体电解质、固态锂电池及其制备方法
CN110498413A (zh) * 2019-08-27 2019-11-26 中南大学 一种定向调控多孔活性炭材料孔径和石墨化的方法及其在锂离子电容器中的应用
CN114597073A (zh) * 2022-02-28 2022-06-07 齐齐哈尔大学 一种MOF衍生ZnS@CoS@NiV-LDH/NF复合材料的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955342A (ja) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2011023430A (ja) * 2009-07-13 2011-02-03 Mitsubishi Materials Corp 電気二重層型キャパシタ用電極およびその製造方法
WO2011118460A1 (ja) * 2010-03-26 2011-09-29 住友電気工業株式会社 金属多孔体の製造方法及びアルミニウム多孔体、並びに金属多孔体又はアルミニウム多孔体を用いた電池用電極材料、電気二重層コンデンサ用電極材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955342A (ja) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd 電気二重層キャパシタ
JP2011023430A (ja) * 2009-07-13 2011-02-03 Mitsubishi Materials Corp 電気二重層型キャパシタ用電極およびその製造方法
WO2011118460A1 (ja) * 2010-03-26 2011-09-29 住友電気工業株式会社 金属多孔体の製造方法及びアルミニウム多孔体、並びに金属多孔体又はアルミニウム多孔体を用いた電池用電極材料、電気二重層コンデンサ用電極材料

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087591A1 (ja) * 2013-12-09 2015-06-18 住友電気工業株式会社 キャパシタおよびその充放電方法
JP2015115336A (ja) * 2013-12-09 2015-06-22 住友電気工業株式会社 キャパシタおよびその充放電方法
RU2580510C2 (ru) * 2014-04-29 2016-04-10 Открытое акционерное общество "Научно-исследовательский институт вычислительных комплексов им. М.А. Карцева" Линейный модуль накопления и хранения энергии для автономного электропитания электротехнических устройств и оборудования
CN108878970A (zh) * 2018-06-29 2018-11-23 华中科技大学 一种复合聚合物固体电解质、固态锂电池及其制备方法
CN108878970B (zh) * 2018-06-29 2021-05-18 华中科技大学 一种复合聚合物固体电解质、固态锂电池及其制备方法
CN110498413A (zh) * 2019-08-27 2019-11-26 中南大学 一种定向调控多孔活性炭材料孔径和石墨化的方法及其在锂离子电容器中的应用
CN110498413B (zh) * 2019-08-27 2021-04-27 中南大学 一种定向调控多孔活性炭材料孔径和石墨化的方法及其在锂离子电容器中的应用
CN114597073A (zh) * 2022-02-28 2022-06-07 齐齐哈尔大学 一种MOF衍生ZnS@CoS@NiV-LDH/NF复合材料的制备方法及应用
CN114597073B (zh) * 2022-02-28 2024-04-02 齐齐哈尔大学 一种MOF衍生ZnS@CoS@NiV-LDH/NF复合材料的制备方法及应用

Also Published As

Publication number Publication date
JP2015008166A (ja) 2015-01-15

Similar Documents

Publication Publication Date Title
US9337492B2 (en) Electrochemical element
US20150155107A1 (en) Lithium ion capacitor
WO2013054710A1 (ja) リチウムイオンキャパシタ、および蓄電デバイス、蓄電システム
WO2012111613A1 (ja) 電気化学デバイス用電極およびその製造方法
WO2011152304A1 (ja) キャパシタとその製造方法
US9184435B2 (en) Electrode for electrochemical element and method for producing the same
US9553300B2 (en) Electrode material; and battery, nonaqueous-electrolyte battery, and capacitor all incorporating the material
JP2012004491A (ja) 蓄電デバイス
WO2013061789A1 (ja) キャパシタ
JP2012186145A (ja) 電気化学素子用電極の製造方法
JP4973892B2 (ja) キャパシタ
WO2013146464A1 (ja) 電極材料、及びこの電極材料を用いたキャパシタ、二次電池
WO2015114984A1 (ja) 導電化樹脂成形体、構造体、アルミニウム多孔体、アルミニウム多孔体の製造方法、集電体、電極、非水系電気二重層キャパシタ及びリチウムイオンキャパシタ
JP2013143422A (ja) リチウムイオンキャパシタ
JP2011254031A (ja) 金属多孔体を用いたキャパシタ
JP2014187383A (ja) 金属多孔体を用いたキャパシタ
JP5565112B2 (ja) 金属多孔体を用いたキャパシタ
US20130004854A1 (en) Electrode for electrochemical element
CN114843500A (zh) 一种锂离子电池富锂锰基正极材料稳定界面的构筑方法及应用
JP2011009609A (ja) ニッケルアルミニウム多孔集電体およびそれを用いた電極、キャパシタ
JP2013115179A (ja) リチウムイオンキャパシタ
JP2011181972A (ja) キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP