WO2013061769A1 - Gas engine, and gas heat pump device and cogeneration device that use gas engine - Google Patents

Gas engine, and gas heat pump device and cogeneration device that use gas engine Download PDF

Info

Publication number
WO2013061769A1
WO2013061769A1 PCT/JP2012/076121 JP2012076121W WO2013061769A1 WO 2013061769 A1 WO2013061769 A1 WO 2013061769A1 JP 2012076121 W JP2012076121 W JP 2012076121W WO 2013061769 A1 WO2013061769 A1 WO 2013061769A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas engine
switching
stoichiometric
valve
lean
Prior art date
Application number
PCT/JP2012/076121
Other languages
French (fr)
Japanese (ja)
Inventor
中園 徹
大坪 弘幸
宏年 鬼原
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2013061769A1 publication Critical patent/WO2013061769A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the present invention relates to a gas engine and a gas heat pump device and a cogeneration device using the gas engine.
  • Gas engines are known as driving sources for gas heat pump devices and cogeneration devices.
  • the present invention provides a gas engine capable of smoothly switching between stoichiometric operation and lean operation, and a gas heat pump device and a cogeneration device using the gas engine.
  • the gas engine of the present invention for solving the above problems is a gas engine that performs stoichiometric operation when the engine is high load and lean operation when the engine is low and medium, and supplies a mixture of air and fuel gas to the gas engine
  • the valve has a certain opening area that realizes the excess air ratio in stoichiometric operation, and when switching from stoichiometric operation to lean operation, the opening area is uniform over time until the switching operation ends.
  • the excess air ratio decreases and the excess air ratio of lean operation increases, a certain opening area is secured to realize the lean air excess ratio, and when switching from lean operation to stoichiometric operation, time elapses until the switching operation ends At the same time, the opening area is controlled so that the opening area increases uniformly and the excess air ratio decreases.
  • the valve is composed of one proportional control valve in which three different proportional control regions in which the valve opening and the valve opening area are proportional to each other at a constant value.
  • a large stoichiometric operation region, a lean operation region with a small opening degree, and an intermediate switching operation region may be used.
  • the operating time of the switching operation can be set so that the engine speed fluctuation range is not more than a predetermined threshold. Also good.
  • a gas heat pump device of the present invention for solving the above-described problems has the above gas engine.
  • the cogeneration apparatus of the present invention for solving the above-described problems has the gas engine.
  • a gas engine control method for solving the above-mentioned problems is a gas engine that performs stoichiometric operation when the engine is high load and lean operation when the engine is low and medium load, and is a mixture of air and fuel gas in the gas engine.
  • the valve that secures a certain opening area that realizes the excess air ratio of the stoichiometric operation, and when switching from the stoichiometric operation to the lean operation, the switching operation is completed.
  • the opening area is reduced uniformly to increase the excess air ratio, and during lean operation, a certain opening area is ensured to achieve the excess air ratio of the lean operation.
  • the switching operation until the switching operation ends, increase the opening area uniformly over time and decrease the excess air ratio. And it performs mouth area control.
  • stoichiometric operation can be performed when high load is required, and lean operation can be performed at medium and low load, so the range of load that can be handled is expanded, so various equipment devices such as gas heat pump devices and cogeneration devices When this gas engine is used, it is possible to use an optimal gas engine even with a small displacement, thereby reducing costs and saving energy.
  • the engine can be designed compactly.
  • the gas heat pump device using such a gas engine can improve the energy consumption efficiency (APF) throughout the year, and the overall energy efficiency of the cogeneration device can also be improved.
  • APF energy consumption efficiency
  • 4 is a graph showing a relationship between a valve opening and a valve opening area and a relationship between a valve opening and an excess air ratio when the gas engine according to the present invention shifts from lean operation to stoichiometric operation. It is a graph which shows the relationship between the control time at the time of shifting to the stoichiometric operation from the lean operation of the gas engine which concerns on this invention, and a valve opening degree. It is a graph which shows the relationship between the transition time at the time of shifting to the stoichiometric operation from the lean operation of the gas engine which concerns on this invention, and rotation speed fluctuation
  • FIG. 1 is a block diagram showing an outline of the overall configuration of the gas engine 1
  • FIG. 2 shows a proportional control valve 21 of the gas engine 1
  • FIG. 3 shows between the lean operation and the stoichiometric operation by the gas engine 1.
  • 4 shows the relationship between the valve opening area and the valve opening when switching, and FIG. 4 shows the relationship between the valve opening and time when switching between lean operation and stoichiometric operation by the gas engine 1.
  • This gas engine 1 is a gas engine 1 that performs stoichiometric operation at high loads and leans at medium and low loads, and has three proportional control areas with different stoichiometric operation areas a, lean operation areas b, and switching operation areas c.
  • One valve 21 is provided.
  • the valve 21 is connected between the regulator 22 and the mixer 23 to constitute the fuel supply device 2.
  • each proportional control region includes a stoichiometric operation region a having a large opening, a lean operation region b having a small opening, and a switching operation region c in the middle.
  • the control motor 20 controls the valve opening. It is configured.
  • the lean operation region b is within the range of the opening 0-30 of the opening 0-100% of the valve 21, more preferably within the range of the opening 0-40.
  • a region in which the opening area of the valve 21 is proportional to a constant value is formed in accordance with the opening degree of the valve 21.
  • the opening area through which the fuel gas passes can be adjusted according to the opening degree of the valve 21. That is, as shown in FIG. 3, the switching operation region c is a range of the opening 70 to 30 between the stoichiometric operation region a and the lean operation region b out of the opening 0-100% of the valve 21.
  • an area in which the opening area of the valve 21 is proportional to the opening degree of the valve 21 is formed in a range of opening degrees 60 to 40 in accordance with the opening degree of the valve 21.
  • the range of air excess ratio at which lean combustion is performed
  • the regulator 22 controls the pressure of the fuel gas so that the fuel gas can be always supplied at a constant pressure.
  • the mixer 23 is configured by a Venturi tube that mixes fuel gas and air.
  • the mixer 23 is configured to mix fuel gas and air by the venturi effect of the air sucked according to the opening degree of the throttle valve 24 provided on the downstream side.
  • the fuel supply device 2 configured as described above is connected to the intake port 11 of the cylinder head 10 of the gas engine 1.
  • the gas engine 1 is provided with a sensor (not shown) for measuring the oxygen concentration in the exhaust gas in the exhaust passage or the like, and measures the excess air ratio based on the measurement detection result. .
  • the gas engine 1 can smoothly switch between the stoichiometric operation and the lean operation by controlling the fuel supply device 2 and the like by the control unit 3 based on the measurement detection result by the sensor and the like. Further, in the stoichiometric operation, although concentration of NO X in the exhaust gas becomes high, is the reduction treatment by providing a three-way catalyst in an exhaust passage.
  • stoichiometric operation is performed in an operating environment that requires high output.
  • the opening of the valve 21 is increased, the opening area is increased and the fuel gas concentration is increased. That is, the excess air ratio is decreased.
  • the opening is decreased, the opening area is decreased and the fuel gas concentration is decreased. The rate goes up.
  • the switching operation region c of the valve 21 is formed with a region in which the opening area of the valve 21 is proportional to the opening of the valve 21 so as to be suitable for the switching operation.
  • lean operation is performed.
  • the opening of the valve 21 is lowered, the opening area is reduced and the fuel gas concentration is decreased, that is, the excess air ratio is increased, and when the opening is increased, the opening area is increased and the fuel gas concentration is increased, that is, the air is excessive. The rate goes down.
  • valve opening The relationship between the valve opening and the control time is as shown in FIG. That is, in the stoichiometric operation region a and the lean operation region b, control is performed so as to maintain a predetermined excess air ratio by a predetermined valve opening, so the control time ta and the lean operation region b in the stoichiometric operation region a are controlled.
  • the valve opening does not change much with respect to the control time tb at
  • the control time tc in the switching operation region c changes from the stoichiometric operation to the lean operation by greatly changing the valve opening over a time period equal to or less than the above threshold A. Change to driving or vice versa.
  • the control is performed using the stoichiometric operation region a formed in the valve 21 to perform lean combustion.
  • the valve 21 makes it possible to achieve both lean operation, stoichiometric operation, and switching operation between them.
  • the gas engine 1 thus configured can be suitably used as a drive source for a gas heat pump device (not shown).
  • the gas heat pump device is required to have a high load in winter and summer, but can sufficiently cope with a medium and low load in the spring and autumn seasons.
  • the gas engine 1 drives a plurality of compressors when a high load is required, and conversely, when the load is low, it is normal to drive a single compressor. Therefore, the gas heat pump device using the gas engine 1 can perform lean operation when the load is medium and low, and can switch to the stoichiometric operation when high load is required. The cost can be reduced by using the gas engine 1 having the displacement.
  • the stoichiometric operation reduces the thermal efficiency, but driving multiple compressors increases the mechanical efficiency, so the thermal efficiency is equivalent to the lean operation at medium and low loads.
  • the thermal efficiency at the time of medium and low loads is excellent because the lean operation is performed. Therefore, it is possible to increase the efficiency of year-round energy consumption efficiency (APF).
  • the fuel supply device 2 that performs the stoichiometric operation to the lean operation can be configured by the single valve 21, not only the gas engine 1 itself can be reduced but also the entire gas engine 1 can be reduced in size. it can.
  • the gas engine 1 can also be suitably used as a drive source for a cogeneration device (not shown). That is, the cogeneration apparatus can achieve energy saving by performing a stoichiometric operation when performing a lean operation during normal operation and switching to a heat main operation with a high load.
  • the gas engine according to the present invention is used as a drive source for various energy saving facilities.

Abstract

Provided are: a gas engine a gas engine that is capable of smoothly switching between a stoichiometric operation and a lean operation; a gas heat pump device and a cogeneration device that use the gas engine; and a method for controlling the gas engine. The gas engine (1) carries out the stoichiometric operation during high loads, and the lean operation during low to medium loads, and a valve (21), which supplies a mixture of air and fuel gas to the engine (1), has a stoichiometric operating area (a) with a small opening, a lean operating area (b) with a large opening, and a switching operating area (c) therebetween, which are formed on a single proportional control valve, in such a manner as to enable the stoichiometric operation, switching from the stoichiometric operation to the lean operation, the lean operation, and switching from the lean operation to the stoichiometric operation.

Description

ガスエンジンならびにガスエンジンを利用したガスヒートポンプ装置およびコージェネレーション装置Gas engine and gas heat pump device and cogeneration device using gas engine
 本発明は、ガスエンジンと、それを利用したガスヒートポンプ装置およびコージェネレーション装置に関するものである。 The present invention relates to a gas engine and a gas heat pump device and a cogeneration device using the gas engine.
 ガスヒートポンプ装置およびコージェネレーション装置の駆動源として、ガスエンジンが知られている。 Gas engines are known as driving sources for gas heat pump devices and cogeneration devices.
 従来より、このようなガスエンジンとしては、ストイキ運転とリーン運転とを切り替えるようになされたものが開示されている(例えば、特許文献1参照)。 Conventionally, as such a gas engine, one that switches between stoichiometric operation and lean operation has been disclosed (for example, see Patent Document 1).
特開2000-24465号公報Japanese Patent Laid-Open No. 2000-24465
 しかし、上記従来のガスエンジンのように、ストイキ運転とリーン運転とを切り替える場合、ストイキ運転において制御すべき理論空燃比の空気過剰率(λ=1)に対して、リーン運転において制御すべき空気過剰率(λ=1.4~1.6)は、制御領域に幅があり、両者の制御精度が大きく異なるため、リーン運転用の空燃比制御バルブでは、リーン運転からストイキ運転まで移行できたとしても、ストイキ運転において、理論空燃比の空気過剰率(λ=1)を制御することができなかった。 However, when switching between stoichiometric operation and lean operation as in the conventional gas engine, the air to be controlled in lean operation with respect to the excess air ratio (λ = 1) of the theoretical air-fuel ratio to be controlled in stoichiometric operation. The excess ratio (λ = 1.4 to 1.6) has a wide control range, and the control accuracy of the two is greatly different, so the air-fuel ratio control valve for lean operation was able to shift from lean operation to stoichiometric operation. Even in the stoichiometric operation, the excess air ratio (λ = 1) of the stoichiometric air-fuel ratio cannot be controlled.
 そのため、ストイキ運転用に設定した空燃比制御バルブを用いることが考えられるが、この場合は、ストイキ運転用に制御精度を設定しているので、リーン運転の領域まで空気過剰率を上げることはできなかった。 For this reason, it is conceivable to use an air-fuel ratio control valve set for stoichiometric operation, but in this case, since the control accuracy is set for stoichiometric operation, the excess air ratio cannot be increased to the region of lean operation. There wasn't.
 また、ストイキ運転用の空燃比制御バルブとリーン運転用の空燃比制御バルブとの間の切り替えによって両運転をカバーすることが考えられるが、両バルブの制御精度が大きく異なるため、切り替え過程において、スムーズな移行ができない。特にガスエンジンの場合、ストイキ運転からリーン運転に移行する途中に、排気ガス中のNOの発生量が多くなる空気過剰率の領域(λ=1~1.3)があるため、ストイキ運転とリーン運転との間のスムーズな移行ができなければ、一時的に排気ガス中のNOが高くなったり、ガスエンジンの回転数の変動が高くなったりするといった不都合を生じることとなる。 In addition, it is conceivable to cover both operations by switching between an air-fuel ratio control valve for stoichiometric operation and an air-fuel ratio control valve for lean operation, but the control accuracy of both valves is greatly different, so in the switching process, Smooth transition is not possible. Especially in the case of the gas engine, in the course of transition to lean operation from stoichiometric operation, because of the region of the excess air ratio generation amount increases of the NO X in the exhaust gas (λ = 1 ~ 1.3), and stoichiometric operation if it is a smooth transition between the lean operation temporarily or NO X in the exhaust gas becomes high, and thus cause inconvenience rotational speed of the fluctuation of the gas engine or higher.
 本発明は、ストイキ運転とリーン運転との切り替えをスムーズに行うことができるガスエンジンと、それを利用したガスヒートポンプ装置およびコージェネレーション装置を提供する。 The present invention provides a gas engine capable of smoothly switching between stoichiometric operation and lean operation, and a gas heat pump device and a cogeneration device using the gas engine.
 上記課題を解決するための本発明のガスエンジンは、エンジンの高負荷時にはストイキ運転し、中低負荷時にはリーン運転するガスエンジンであって、ガスエンジンに空気と燃料ガスとの混合気を供給するバルブは、ストイキ運転の空気過剰率を実現する一定の開口面積が確保され、ストイキ運転からリーン運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに一様に開口面積が減少して空気過剰率が上昇し、リーン運転の空気過剰率を実現する一定の開口面積が確保され、リーン運転からストイキ運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに開口面積が一様に増加して空気過剰率が減少する、ように開口面積制御が行われるものである。 The gas engine of the present invention for solving the above problems is a gas engine that performs stoichiometric operation when the engine is high load and lean operation when the engine is low and medium, and supplies a mixture of air and fuel gas to the gas engine The valve has a certain opening area that realizes the excess air ratio in stoichiometric operation, and when switching from stoichiometric operation to lean operation, the opening area is uniform over time until the switching operation ends. The excess air ratio decreases and the excess air ratio of lean operation increases, a certain opening area is secured to realize the lean air excess ratio, and when switching from lean operation to stoichiometric operation, time elapses until the switching operation ends At the same time, the opening area is controlled so that the opening area increases uniformly and the excess air ratio decreases.
 上記ガスエンジンにおいて、バルブは、バルブ開度とバルブ開口面積とが一定値で比例する異なった3つの比例制御領域が形成された一つの比例制御弁からなり、各比例制御領域は、開度が大きいストイキ運転領域と、開度が小さいリーン運転領域と、その中間の切替運転領域となされたものであってもよい。 In the gas engine, the valve is composed of one proportional control valve in which three different proportional control regions in which the valve opening and the valve opening area are proportional to each other at a constant value. A large stoichiometric operation region, a lean operation region with a small opening degree, and an intermediate switching operation region may be used.
 切替運転の運転時間と、それに伴うエンジンの回転変動幅との関係から、エンジンの回転変動幅が、所定の閾値以下となるように切替運転の運転時間を設定できるようになされたものであってもよい。 Based on the relationship between the operating time of the switching operation and the accompanying engine speed fluctuation range, the operating time of the switching operation can be set so that the engine speed fluctuation range is not more than a predetermined threshold. Also good.
 また、上記課題を解決するための本発明のガスヒートポンプ装置は、上記のガスエンジンを有するものである。 Further, a gas heat pump device of the present invention for solving the above-described problems has the above gas engine.
 さらに、上記課題を解決するための本発明のコージェネレーション装置は、上記ガスエンジンを有するものである。 Furthermore, the cogeneration apparatus of the present invention for solving the above-described problems has the gas engine.
 さらに、上記課題を解決するための本発明のガスエンジンの制御方法は、エンジンの高負荷時にはストイキ運転し、中低負荷時にはリーン運転するガスエンジンにおいて、ガスエンジンに空気と燃料ガスとの混合気を供給するバルブは、ストイキ運転の際には、当該ストイキ運転の空気過剰率を実現する一定の開口面積を確保し、ストイキ運転からリーン運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに一様に開口面積を減少させて空気過剰率を上昇させ、リーン運転の際には、当該リーン運転の空気過剰率を実現する一定の開口面積を確保し、リーン運転からストイキ運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに開口面積を一様に増加させて空気過剰率を減少させる、ように開口面積制御を行うものである。 Furthermore, a gas engine control method according to the present invention for solving the above-mentioned problems is a gas engine that performs stoichiometric operation when the engine is high load and lean operation when the engine is low and medium load, and is a mixture of air and fuel gas in the gas engine. When the stoichiometric operation is performed, the valve that secures a certain opening area that realizes the excess air ratio of the stoichiometric operation, and when switching from the stoichiometric operation to the lean operation, the switching operation is completed. As the time passes, the opening area is reduced uniformly to increase the excess air ratio, and during lean operation, a certain opening area is ensured to achieve the excess air ratio of the lean operation. When switching to operation, until the switching operation ends, increase the opening area uniformly over time and decrease the excess air ratio. And it performs mouth area control.
 以上述べたように、本発明によると、一時的に排気ガス中のNOが高くなったり、ガスエンジンの回転数の変動が高くなったりすることを防止することができる。 Above As mentioned, according to the present invention, temporarily or NO X in the exhaust gas becomes high, it is possible to prevent or higher rotational speed fluctuation of the gas engine.
 また、高負荷が必要な場合にはストイキ運転を行い、中低負荷時はリーン運転を行うことができ、対応可能な負荷の範囲が広がるので、ガスヒートポンプ装置やコージェネレーション装置などの各種設備装置にこのガスエンジンを使用する場合、小排気量であっても最適なガスエンジンを使用することが可能となり、コストの低減および省エネルギーを図ることができる。 In addition, stoichiometric operation can be performed when high load is required, and lean operation can be performed at medium and low load, so the range of load that can be handled is expanded, so various equipment devices such as gas heat pump devices and cogeneration devices When this gas engine is used, it is possible to use an optimal gas engine even with a small displacement, thereby reducing costs and saving energy.
 さらに、複数のバルブを使用することなく、1つのバルブによってストイキ運転、リーン運転、切替運転を行うことができるので、エンジンをコンパクトに設計することができる。 Furthermore, since the stoichiometric operation, lean operation, and switching operation can be performed with one valve without using a plurality of valves, the engine can be designed compactly.
 したがって、このようなガスエンジンを使用したガスヒートポンプ装置は通年エネルギー消費効率(APF)の向上を図ることができるとともに、コージェネレーション装置についても総合的なエネルギー効率の向上を図ることができる。 Therefore, the gas heat pump device using such a gas engine can improve the energy consumption efficiency (APF) throughout the year, and the overall energy efficiency of the cogeneration device can also be improved.
本発明に係るガスエンジンの全体構成の概略を示すブロック図である。It is a block diagram which shows the outline of the whole structure of the gas engine which concerns on this invention. 本発明に係るガスエンジンに設けたバルブを示す概略図である。It is the schematic which shows the valve | bulb provided in the gas engine which concerns on this invention. 本発明に係るガスエンジンのリーン運転からストイキ運転へと移行する際のバルブ開度とバルブ開口面積との関係およびバルブ開度と空気過剰率との関係をそれぞれ示すグラフである。4 is a graph showing a relationship between a valve opening and a valve opening area and a relationship between a valve opening and an excess air ratio when the gas engine according to the present invention shifts from lean operation to stoichiometric operation. 本発明に係るガスエンジンのリーン運転からストイキ運転へと移行する際の制御時間とバルブ開度との関係を示すグラフである。It is a graph which shows the relationship between the control time at the time of shifting to the stoichiometric operation from the lean operation of the gas engine which concerns on this invention, and a valve opening degree. 本発明に係るガスエンジンのリーン運転からストイキ運転へと移行する際の移行時間と回転数変動との関係を示すグラフである。It is a graph which shows the relationship between the transition time at the time of shifting to the stoichiometric operation from the lean operation of the gas engine which concerns on this invention, and rotation speed fluctuation | variation.
 以下、本発明の実施の形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1はガスエンジン1の全体構成の概略を示すブロック図を示し、図2は同ガスエンジン1の比例制御バルブ21を示し、図3は同ガスエンジン1によりリーン運転とストイキ運転との間を切り替える際のバルブ開口面積とバルブ開度との関係を示し、図4は同ガスエンジン1によりリーン運転とストイキ運転との間を切り替える際のバルブ開度と時間との関係を示している。 FIG. 1 is a block diagram showing an outline of the overall configuration of the gas engine 1, FIG. 2 shows a proportional control valve 21 of the gas engine 1, and FIG. 3 shows between the lean operation and the stoichiometric operation by the gas engine 1. 4 shows the relationship between the valve opening area and the valve opening when switching, and FIG. 4 shows the relationship between the valve opening and time when switching between lean operation and stoichiometric operation by the gas engine 1.
 このガスエンジン1は、高負荷時にはストイキ運転し、中低負荷時にはリーン運転するガスエンジン1であって、ストイキ運転領域a、リーン運転領域b、切替運転領域cの異なった3つの比例制御領域を有する一つのバルブ21を有している。 This gas engine 1 is a gas engine 1 that performs stoichiometric operation at high loads and leans at medium and low loads, and has three proportional control areas with different stoichiometric operation areas a, lean operation areas b, and switching operation areas c. One valve 21 is provided.
 このバルブ21は、レギュレータ22とミキサー23との間に接続されて燃料供給装置2を構成している。 The valve 21 is connected between the regulator 22 and the mixer 23 to constitute the fuel supply device 2.
 バルブ21は、バルブ開度とバルブ開口面積とが一定値で比例する異なった3つの比例制御領域が一つの比例制御弁に形成されている。各比例制御領域は、開度が大きいストイキ運転領域aと、開度が小さいリーン運転領域bと、その中間の切替運転領域cとからなり、制御モータ20によってバルブ開度の制御を行うように構成されている。 In the valve 21, three different proportional control areas in which the valve opening and the valve opening area are proportional to each other at a constant value are formed as one proportional control valve. Each proportional control region includes a stoichiometric operation region a having a large opening, a lean operation region b having a small opening, and a switching operation region c in the middle. The control motor 20 controls the valve opening. It is configured.
 ストイキ運転領域aは、理論空燃比となる空気過剰率(λ=1)をピンポイントで制御するために、バルブ開度に合わせて燃料ガスが通過する開口面積を調整できるように設計されている。すなわち、このストイキ運転領域aは、図3に示すように、バルブ21の開度0-100%のうちの開度80~100の範囲、さらに好ましくは開度70~100の範囲に、当該バルブ21の開度に合わせてバルブ21の開口面積が一定値で比例する領域を形成して構成されている。ストイキ運転領域aは、上記したバルブ開度の範囲で、理論空燃比となる空気過剰率(λ=1)を制御することができる流量特性のものであれば特に限定されるものでは無いが、ガスエンジン1を使用する環境雰囲気温度やガスエンジン1の使用回転数域の変化に対応する必要があるため、これらの変化に追従して理論空燃比となる空気過剰率(λ=1)を制御可能な流量特性を有するように比例制御領域を形成したものが使用される。 The stoichiometric operation region a is designed so that the opening area through which the fuel gas passes can be adjusted in accordance with the valve opening in order to control the excess air ratio (λ = 1) at which the stoichiometric air-fuel ratio is achieved, in a pinpoint manner. . That is, as shown in FIG. 3, the stoichiometric operation region a is within the range of the opening 80-100 of the opening 0-100% of the valve 21, more preferably within the range of 70-100. A region in which the opening area of the valve 21 is proportional to a constant value is formed in accordance with the opening degree of the valve 21. The stoichiometric operation region a is not particularly limited as long as it has a flow rate characteristic capable of controlling the excess air ratio (λ = 1) that becomes the stoichiometric air-fuel ratio within the above-described valve opening range. Since it is necessary to cope with changes in the ambient temperature of the gas engine 1 and the operating speed range of the gas engine 1, the excess air ratio (λ = 1) that controls the theoretical air-fuel ratio is controlled following these changes. What formed the proportional control area | region so that it may have the flow characteristic which can be used is used.
 リーン運転領域bは、リーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)を制御するために、バルブ21の開度に合わせて燃料ガスが通過する開口面積を調整できるように設計されている。すなわち、このリーン運転領域bは、図3に示すように、バルブ21の開度0-100%のうちの開度0~30の範囲、さらに好ましくは開度0~40の範囲に、当該バルブ21の開度に合わせてバルブ21の開口面積が一定値で比例する領域を形成して構成されている。リーン運転領域bは、上記したバルブ開度の範囲で、リーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)を制御できる流量特性のものであれば特に限定されるものでは無いが、ガスエンジン1を使用する環境雰囲気温度やガスエンジン1の使用回転数域の変化に対応する必要があるため、これらの変化に追従してリーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)を制御可能な流量特性を有するように比例制御領域を形成したものが使用される。 In the lean operation region b, the opening area through which the fuel gas passes can be adjusted in accordance with the opening degree of the valve 21 in order to control the range (λ = 1.4 to 1.6) of the excess air ratio that causes lean combustion. Designed to be That is, as shown in FIG. 3, the lean operation region b is within the range of the opening 0-30 of the opening 0-100% of the valve 21, more preferably within the range of the opening 0-40. A region in which the opening area of the valve 21 is proportional to a constant value is formed in accordance with the opening degree of the valve 21. The lean operation region b is particularly limited as long as it has a flow rate characteristic capable of controlling the range of excess air ratio (λ = 1.4 to 1.6) that causes lean combustion within the above-described valve opening range. However, since it is necessary to cope with changes in the environmental atmospheric temperature in which the gas engine 1 is used and the operating rotational speed range of the gas engine 1, the range of the excess air ratio (λ = 1.4 to 1.6) in which a proportional control region is formed so as to have a flow characteristic that can be controlled.
 切替運転領域cは、上記した理論空燃比となる空気過剰率(λ=1)から、リーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)への切替を制御するために、バルブ21の開度に合わせて燃料ガスが通過する開口面積を調整できるように設計されている。すなわち、この切替運転領域cは、図3に示すように、バルブ21の開度0-100%のうち、上記ストイキ運転領域aとリーン運転領域bとの間の開度70~30の範囲、好ましくは開度60~40の範囲に、当該バルブ21の開度に合わせてバルブ21の開口面積が一定値で比例する領域を形成して構成されている。切替運転領域cは、上記したバルブ開度の範囲で、理論空燃比となる空気過剰率(λ=1)から、リーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)への切替を制御できる流量特性のものであれば特に限定されるものでは無いが、ガスエンジン1を使用する環境雰囲気温度やガスエンジン1の使用回転数域の変化に対応する必要があるため、これらの変化に追従して理論空燃比となる空気過剰率(λ=1)から、リーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)への切替を制御可能な流量特性を有するように比例制御領域を形成したものが使用される。 The switching operation region c is for controlling switching from the excess air ratio (λ = 1) at the stoichiometric air-fuel ratio to the range of excess air ratio at the lean combustion (λ = 1.4 to 1.6). In addition, the opening area through which the fuel gas passes can be adjusted according to the opening degree of the valve 21. That is, as shown in FIG. 3, the switching operation region c is a range of the opening 70 to 30 between the stoichiometric operation region a and the lean operation region b out of the opening 0-100% of the valve 21. Preferably, an area in which the opening area of the valve 21 is proportional to the opening degree of the valve 21 is formed in a range of opening degrees 60 to 40 in accordance with the opening degree of the valve 21. The switching operation region c is a range of the air excess ratio (λ = 1) at which the stoichiometric air-fuel ratio is achieved, and the range of air excess ratio at which lean combustion is performed (λ = 1.4 to 1.6) within the above-described valve opening range. Although it is not particularly limited as long as it has a flow characteristic that can control switching to, it is necessary to cope with changes in the environmental atmosphere temperature in which the gas engine 1 is used and the rotation speed range in which the gas engine 1 is used. Following these changes, the flow rate that can control switching from the excess air ratio (λ = 1) at the stoichiometric air-fuel ratio to the range of excess air ratio (λ = 1.4 to 1.6) at which lean combustion occurs What formed the proportional control area | region so that it may have a characteristic is used.
 レギュレータ22は、常に一定の圧力で燃料ガスを供給できるように、燃料ガスの圧力を制御するようになされている。 The regulator 22 controls the pressure of the fuel gas so that the fuel gas can be always supplied at a constant pressure.
 ミキサー23は、燃料ガスと空気とを混合するベンチュリ管によって構成されている。このミキサー23は、下流側に設けられたスロットル弁24の開度に応じて吸入される空気のベンチュリ効果で燃料ガスと空気とを混合するようになされている。 The mixer 23 is configured by a Venturi tube that mixes fuel gas and air. The mixer 23 is configured to mix fuel gas and air by the venturi effect of the air sucked according to the opening degree of the throttle valve 24 provided on the downstream side.
 上記構成の燃料供給装置2は、ガスエンジン1のシリッダヘッド10の吸気口11に接続される。このガスエンジン1には、排ガス中の酸素濃度などを測定するセンサ(図示省略)が、排気経路などに設けられており、この測定検出結果に基づいて空気過剰率を測定するようになされている。ガスエンジン1は、制御部3により、このセンサ等による測定検出結果に基づいて燃料供給装置2等の制御を行うことで、ストイキ運転とリーン運転とをスムーズに切り替えることができる。また、ストイキ運転では、排気ガス中のNO濃度が高くなるが、排気経路に三元触媒を設けて還元処理される。 The fuel supply device 2 configured as described above is connected to the intake port 11 of the cylinder head 10 of the gas engine 1. The gas engine 1 is provided with a sensor (not shown) for measuring the oxygen concentration in the exhaust gas in the exhaust passage or the like, and measures the excess air ratio based on the measurement detection result. . The gas engine 1 can smoothly switch between the stoichiometric operation and the lean operation by controlling the fuel supply device 2 and the like by the control unit 3 based on the measurement detection result by the sensor and the like. Further, in the stoichiometric operation, although concentration of NO X in the exhaust gas becomes high, is the reduction treatment by providing a three-way catalyst in an exhaust passage.
 次に、制御部3によるこのガスエンジン1の制御について説明する。 Next, control of the gas engine 1 by the control unit 3 will be described.
 まず、高出力を必要とする運転環境の場合、ストイキ運転が行われる。このストイキ運転は、理論空燃比の空気過剰率(λ=1)となるように、バルブ21の開度をストイキ運転領域aで制御して行われる。バルブ21は、開度を上げれば開口面積が増えて燃料ガス濃度が濃くなる、すなわち、空気過剰率が下がり、開度を下げれば開口面積が減って燃料ガス濃度が薄くなる、すなわち、空気過剰率が上がる。この際、バルブ21のストイキ運転領域aは、理論空燃比の空気過剰率(λ=1)を制御し易いように、バルブ21の開度に合わせてバルブ21の開口面積が一定値で比例する領域を形成しているので、理論空燃比の空気過剰率(λ=1)を容易に制御することができる。 First, stoichiometric operation is performed in an operating environment that requires high output. This stoichiometric operation is performed by controlling the opening degree of the valve 21 in the stoichiometric operation region a so that the excess air ratio (λ = 1) of the stoichiometric air-fuel ratio is obtained. When the opening of the valve 21 is increased, the opening area is increased and the fuel gas concentration is increased. That is, the excess air ratio is decreased. When the opening is decreased, the opening area is decreased and the fuel gas concentration is decreased. The rate goes up. At this time, in the stoichiometric operation region a of the valve 21, the opening area of the valve 21 is proportional to the opening degree of the valve 21 so as to easily control the excess air ratio (λ = 1) of the theoretical air-fuel ratio. Since the region is formed, the excess air ratio (λ = 1) of the stoichiometric air-fuel ratio can be easily controlled.
 上記ストイキ運転から、高出力の必要が無い中低負荷の運転環境になった場合は、ストイキ運転から空気過剰率λ=1.4~1.6のリーン運転へと切り替える。 ∙ If the above-mentioned stoichiometric operation results in a medium to low load operating environment that does not require high output, switch from stoichiometric operation to lean operation with an excess air ratio of λ = 1.4 to 1.6.
 この切り替えを行うには、バルブ21の開度を切替運転領域cで制御して行われる。この際、バルブ21は、開度を下げれば開口面積が減って燃料ガス濃度が薄くなる、すなわち、空気過剰率が上がり、ストイキ運転となる理論空燃比の空気過剰率(λ=1)から、リーン燃焼となる空気過剰率の範囲(λ=1.4~1.6)へと移行する。 This switching is performed by controlling the opening degree of the valve 21 in the switching operation region c. At this time, if the opening of the valve 21 is lowered, the opening area is reduced and the fuel gas concentration is decreased, that is, the excess air ratio is increased, and the stoichiometric operation excess air ratio (λ = 1) is obtained. It shifts to the range of excess air ratio (λ = 1.4 to 1.6) that causes lean combustion.
 なお、この切替運転の際、排気ガス中のNOの発生量が多くなる空気過剰率領域(λ=1~1.3)をできるだけ早く通過したい。しかし、早く通過すると、図5に示すように、回転数変動を生じてガスエンジン1とその被駆動物を傷めてしまうこととなる。本願発明の場合は、この移行時間については、切替運転領域cにおいてバルブ21の開度の制御時間を自由に設定できるので、ガスエンジン1等を傷めることの無いように、ガスエンジン1の回転変動が所定の閾値A以下となる切替時間をかけて行うことができる。しかも、バルブ21の切替運転領域cには、切替運転に適するように、バルブ21の開度に合わせてバルブ21の開口面積が一定値で比例する領域を形成しているので、このバルブ21の開度を制御することによって排気ガス中のNOの発生量が多くなる空気過剰率領域(λ=1~1.3)をスムーズに通過して運転切替を行うことができることとなり、排気ガス中のNOの発生量を最低限に抑えることができる。 In this switching operation, it is desired to pass through the excess air ratio region (λ = 1 to 1.3) where the amount of NO X generated in the exhaust gas increases as soon as possible. However, if it passes quickly, as shown in FIG. 5, a rotational speed fluctuation | variation will be produced and the gas engine 1 and its to-be-driven object will be damaged. In the case of the present invention, for this transition time, since the control time of the opening degree of the valve 21 can be freely set in the switching operation region c, the rotational fluctuation of the gas engine 1 is prevented so as not to damage the gas engine 1 and the like. Can be performed over a switching time when the value becomes equal to or less than a predetermined threshold A. Moreover, the switching operation region c of the valve 21 is formed with a region in which the opening area of the valve 21 is proportional to the opening of the valve 21 so as to be suitable for the switching operation. By controlling the opening, it is possible to smoothly switch the operation by passing through the excess air ratio region (λ = 1 to 1.3) where the amount of NO X generation in the exhaust gas increases. it is possible to suppress the generation amount of of the NO X to a minimum.
 このようにしてリーン運転に切り替わった後は、リーン運転が行われる。このリーン運転は、リーン燃焼の空気過剰率の範囲(λ=1.4~1.6)となるように、バルブ21の開度をリーン運転領域bで制御して行われる。バルブ21は、開度を下げれば開口面積が減って燃料ガス濃度が薄くなる、すなわち、空気過剰率が上がり、開度を上げれば開口面積が増えて燃料ガス濃度が濃くなる、すなわち、空気過剰率が下がる。この際、バルブ21のリーン運転領域bは、リーン燃焼の空気過剰率の範囲(λ=1.4~1.6)を制御し易いように、バルブ21の開度に合わせてバルブ21の開口面積が一定値で比例する領域を形成しているので、リーン燃焼の空気過剰率の範囲(λ=1.4~1.6)を容易に制御することができる。 】 After switching to lean operation in this way, lean operation is performed. This lean operation is performed by controlling the opening degree of the valve 21 in the lean operation region b so that the excess air ratio of lean combustion is in the range (λ = 1.4 to 1.6). When the opening of the valve 21 is lowered, the opening area is reduced and the fuel gas concentration is decreased, that is, the excess air ratio is increased, and when the opening is increased, the opening area is increased and the fuel gas concentration is increased, that is, the air is excessive. The rate goes down. At this time, in the lean operation region b of the valve 21, the opening of the valve 21 is adjusted in accordance with the opening of the valve 21 so that the range of the excess air ratio (λ = 1.4 to 1.6) of lean combustion can be easily controlled. Since the area in which the area is proportional to the constant value is formed, the range of the excess air ratio of lean combustion (λ = 1.4 to 1.6) can be easily controlled.
 上記リーン運転から、高出力が必要な運転環境になった場合は、空気過剰率λ=1.4~1.6のリーン運転から、再度、バルブ21の切替運転領域cを利用して理論空燃比となる空気過剰率(λ=1)のストイキ運転へと切り替える。 When an operating environment requiring a high output is obtained after the lean operation, the lean operation with the excess air ratio λ = 1.4 to 1.6 is performed again using the switching operation region c of the valve 21 and the theoretical sky. The operation is switched to the stoichiometric operation with the excess air ratio (λ = 1) that becomes the fuel ratio.
 この切り替えを行うには、切替運転領域cにおいて、上記とは逆にバルブ開度を上げる方向に制御して理論空燃比となる空気過剰率(λ=1)まで、すなわち、ストイキ運転領域aまでバルブ21の開度を上げることによって行われる。 In order to perform this switching, in the switching operation region c, the valve opening degree is controlled in the direction opposite to the above, and the excess air ratio (λ = 1) at which the stoichiometric air-fuel ratio is reached, that is, the stoichiometric operation region a. This is done by increasing the opening of the valve 21.
 なお、バルブ開度と制御時間との関係は、図4に示すようになる。すなわち、ストイキ運転領域aとリーン運転領域bとでは、所定のバルブ開度によって所定の空気過剰率を維持するように制御しているので、ストイキ運転領域aにける制御時間taおよびリーン運転領域bにおける制御時間tbに対して、バルブ開度の変化はあまり無いが、切替運転領域cにおける制御時間tcは、上記した閾値A以下となる時間にわたり、バルブ開度を大きく変化させてストイキ運転からリーン運転またはその逆へと変化させる。 The relationship between the valve opening and the control time is as shown in FIG. That is, in the stoichiometric operation region a and the lean operation region b, control is performed so as to maintain a predetermined excess air ratio by a predetermined valve opening, so the control time ta and the lean operation region b in the stoichiometric operation region a are controlled. Although the valve opening does not change much with respect to the control time tb at, the control time tc in the switching operation region c changes from the stoichiometric operation to the lean operation by greatly changing the valve opening over a time period equal to or less than the above threshold A. Change to driving or vice versa.
 このようにして構成されるガスエンジン1は、リーン運転からストイキ運転に切り替える場合、あるいはその逆の場合、バルブ21に形成した切替運転領域cを利用して、排気ガス中のNOの発生量が多くなる空気過剰率領域(λ=1~1.3)をスムーズに通過することができる。したがって、運転切り替えによる排気ガス中のNOの発生量を最低限に抑えることができるとともに、回転数の変動によるガスエンジン1の損傷を防止することができる。 When the gas engine 1 configured as described above is switched from the lean operation to the stoichiometric operation or vice versa, the switching operation region c formed in the valve 21 is used to generate the NO X generation amount in the exhaust gas. Can pass smoothly through the excess air ratio region (λ = 1 to 1.3). Therefore, it is possible to suppress the generation amount of the NO X in the exhaust gas by the driver switches to a minimum, it is possible to prevent damage to the gas engine 1 due to the fluctuation of the rotational speed.
 また、理論空燃比となる空気過剰率(λ=1)でのピンポイントの制御精度が要求されるストイキ運転では、バルブ21に形成したストイキ運転領域aを利用して制御を行い、リーン燃焼の空気過剰率の範囲(λ=1.4~1.6)での制御が要求されるリーン運転では、バルブ21に形成したリーン運転領域bを利用して制御を行うことができるので、一つのバルブ21により、リーン運転とストイキ運転と、両者間の切替運転とを両立させることができる。 Further, in the stoichiometric operation in which pinpoint control accuracy is required at an excess air ratio (λ = 1) that is the stoichiometric air-fuel ratio, the control is performed using the stoichiometric operation region a formed in the valve 21 to perform lean combustion. In the lean operation in which the control in the range of the excess air ratio (λ = 1.4 to 1.6) is required, the control can be performed using the lean operation region b formed in the valve 21. The valve 21 makes it possible to achieve both lean operation, stoichiometric operation, and switching operation between them.
 このようにして構成されるガスエンジン1は、ガスヒートポンプ装置(図示省略)の駆動源として好適に使用することができる。すなわち、ガスヒートポンプ装置は、冬場や夏場は高負荷が必要とされるが、春や秋の季節には中低負荷で十分対応できる。しかも、ガスエンジン1は、高負荷が必要とされる場合は、複数台のコンプレッサーを駆動しており、逆に低負荷の場合は、一台のコンプレッサーを駆動しているのか通常である。したがって、このガスエンジン1を使用したガスヒートポンプ装置は、中低負荷の場合には、リーン運転を行い、高負荷が必要となった場合にはストイキ運転に切り替えて対応することができるので、小排気量のガスエンジン1を使用してコストの低減を図ることができる。 The gas engine 1 thus configured can be suitably used as a drive source for a gas heat pump device (not shown). In other words, the gas heat pump device is required to have a high load in winter and summer, but can sufficiently cope with a medium and low load in the spring and autumn seasons. Moreover, the gas engine 1 drives a plurality of compressors when a high load is required, and conversely, when the load is low, it is normal to drive a single compressor. Therefore, the gas heat pump device using the gas engine 1 can perform lean operation when the load is medium and low, and can switch to the stoichiometric operation when high load is required. The cost can be reduced by using the gas engine 1 having the displacement.
 また、高負荷時には、ストイキ運転するため熱効率は低下するが、複数台のコンプレッサーを駆動したりすることで機械効率が高くなるので、熱効率は、中低負荷時のリーン運転と同等となる。当然、この中低負荷時の熱効率は、リーン運転するため優れている。したがって、通年エネルギー消費効率(APF)の高効率化を図ることができることとなる。さらに、一つのバルブ21により、ストイキ運転からリーン運転までを行う燃料供給装置2を構成することができるので、ガスエンジン1自体の小排気量化だけでなく、ガスエンジン1全体を小型化することができる。 In addition, at high loads, the stoichiometric operation reduces the thermal efficiency, but driving multiple compressors increases the mechanical efficiency, so the thermal efficiency is equivalent to the lean operation at medium and low loads. Naturally, the thermal efficiency at the time of medium and low loads is excellent because the lean operation is performed. Therefore, it is possible to increase the efficiency of year-round energy consumption efficiency (APF). Furthermore, since the fuel supply device 2 that performs the stoichiometric operation to the lean operation can be configured by the single valve 21, not only the gas engine 1 itself can be reduced but also the entire gas engine 1 can be reduced in size. it can.
 また、このガスエンジン1は、コージェネレーション装置(図示省略)の駆動源としても好適に使用することができる。すなわち、コージェネレーション装置は、通常運転時はリーン運転を行い、高負荷となる熱主運転に切り替える際に、ストイキ運転を行うことで、省エネルギー化を図ることができる。 The gas engine 1 can also be suitably used as a drive source for a cogeneration device (not shown). That is, the cogeneration apparatus can achieve energy saving by performing a stoichiometric operation when performing a lean operation during normal operation and switching to a heat main operation with a high load.
 なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 Note that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 本発明に係るガスエンジンは、各種省エネルギー設備の駆動源に用いられる。 The gas engine according to the present invention is used as a drive source for various energy saving facilities.
1 ガスエンジン
2 燃料供給装置
21 バルブ
a ストイキ運転領域
b リーン運転領域
c 切替運転領域
λ 空気過剰率
DESCRIPTION OF SYMBOLS 1 Gas engine 2 Fuel supply device 21 Valve a Stoke operation area b Lean operation area c Switching operation area λ Excess air ratio

Claims (6)

  1.  エンジンの高負荷時にはストイキ運転し、中低負荷時にはリーン運転するガスエンジンであって、
     ガスエンジンに空気と燃料ガスとの混合気を供給するバルブは、
     ストイキ運転の空気過剰率を実現する一定の開口面積が確保され、
     ストイキ運転からリーン運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに一様に開口面積が減少して空気過剰率が上昇し、
     リーン運転の空気過剰率を実現する一定の開口面積が確保され、
     リーン運転からストイキ運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに開口面積が一様に増加して空気過剰率が減少する、
     ように開口面積制御が行われることを特徴とするガスエンジン。
    A gas engine that performs stoichiometric operation when the engine is under high load, and lean operation when the engine is under low or medium load,
    A valve that supplies a mixture of air and fuel gas to a gas engine
    A certain opening area to ensure the excess air ratio of stoichi operation is secured.
    When switching from stoichiometric operation to lean operation, the opening area decreases uniformly over time until the switching operation ends, and the excess air ratio increases.
    A certain opening area that realizes the excess air ratio of lean operation is secured,
    When switching from lean operation to stoichiometric operation, the opening area increases uniformly over time and the excess air ratio decreases until the switching operation ends.
    Thus, the opening area control is performed as described above.
  2.  バルブは、バルブ開度とバルブ開口面積とが一定値で比例する異なった3つの比例制御領域が形成された一つの比例制御弁からなり、各比例制御領域は、開度が小さいストイキ運転領域と、開度が大きいリーン運転領域と、その中間の切替運転領域となされた請求項1記載のガスエンジン。 The valve is composed of one proportional control valve formed with three different proportional control areas in which the valve opening degree and the valve opening area are proportional to each other at a constant value. Each proportional control area includes a stoichiometric operation area with a small opening degree. The gas engine according to claim 1, wherein a lean operation region having a large opening and a switching operation region intermediate between them are used.
  3.  切替運転の運転時間と、それに伴うエンジンの回転変動幅との関係から、エンジンの回転変動幅が、所定の閾値以下となるように切替運転の運転時間を設定できるようになされた請求項2記載のガスエンジン。 3. The operation time of the switching operation can be set so that the engine rotation fluctuation range is equal to or less than a predetermined threshold based on the relationship between the operation time of the switching operation and the accompanying engine rotation fluctuation range. Gas engine.
  4.  請求項1ないし3の何れか一記載のガスエンジンを有するガスヒートポンプ装置。 A gas heat pump apparatus comprising the gas engine according to any one of claims 1 to 3.
  5.  請求項1ないし3の何れか一記載のガスエンジンを有するコージェネレーション装置。 A cogeneration apparatus having the gas engine according to any one of claims 1 to 3.
  6. エンジンの高負荷時にはストイキ運転し、中低負荷時にはリーン運転するガスエンジンにおいて、
     ガスエンジンに空気と燃料ガスとの混合気を供給するバルブは、
     ストイキ運転の際には、当該ストイキ運転の空気過剰率を実現する一定の開口面積を確保し、
     ストイキ運転からリーン運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに一様に開口面積を減少させて空気過剰率を上昇させ、
     リーン運転の際には、当該リーン運転の空気過剰率を実現する一定の開口面積を確保し、
     リーン運転からストイキ運転に切り替える際には、切替運転を終了するまでの間、時間の経過とともに開口面積を一様に増加させて空気過剰率を減少させる、
     ように開口面積制御を行うことを特徴とするガスエンジンの制御方法。
    In a gas engine that performs stoichiometric operation at high engine load and lean operation at medium to low load,
    A valve that supplies a mixture of air and fuel gas to a gas engine
    During stoichiometric operation, secure a certain opening area to realize the excess air ratio of the stoichiometric operation,
    When switching from stoichiometric operation to lean operation, the opening area is reduced uniformly over time until the switching operation ends, and the excess air ratio is increased.
    During lean operation, ensure a certain opening area to realize the excess air ratio of the lean operation,
    When switching from lean operation to stoichiometric operation, until the switching operation is completed, the opening area is uniformly increased over time to reduce the excess air ratio,
    A control method of a gas engine, wherein the opening area is controlled as described above.
PCT/JP2012/076121 2011-10-25 2012-10-09 Gas engine, and gas heat pump device and cogeneration device that use gas engine WO2013061769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-233852 2011-10-25
JP2011233852A JP2013092083A (en) 2011-10-25 2011-10-25 Gas engine, gas heat pump device and cogeneration device using gas engine, and gas engine control method

Publications (1)

Publication Number Publication Date
WO2013061769A1 true WO2013061769A1 (en) 2013-05-02

Family

ID=48167603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076121 WO2013061769A1 (en) 2011-10-25 2012-10-09 Gas engine, and gas heat pump device and cogeneration device that use gas engine

Country Status (2)

Country Link
JP (1) JP2013092083A (en)
WO (1) WO2013061769A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779721A (en) * 2016-03-23 2018-11-09 斯堪尼亚商用车有限公司 A kind of method and system for determining the specific gas constant and stoichiometric air-fuel ratio of the fuel gas for gas engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106959A (en) * 1984-10-30 1986-05-24 Aisan Ind Co Ltd Air-fuel ratio control device of mixture for engine
JP2011122484A (en) * 2009-12-09 2011-06-23 Ygk:Kk Engine fuel supply device and engine generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106959A (en) * 1984-10-30 1986-05-24 Aisan Ind Co Ltd Air-fuel ratio control device of mixture for engine
JP2011122484A (en) * 2009-12-09 2011-06-23 Ygk:Kk Engine fuel supply device and engine generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779721A (en) * 2016-03-23 2018-11-09 斯堪尼亚商用车有限公司 A kind of method and system for determining the specific gas constant and stoichiometric air-fuel ratio of the fuel gas for gas engine

Also Published As

Publication number Publication date
JP2013092083A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
RU2014115844A (en) EXHAUST GAS RECIRCULATION SYSTEM WITH FIXED CONTENT
US20180163616A1 (en) Engine system
JP2012127205A (en) Exhaust gas recirculation system
WO2006077708A1 (en) Egr device
WO2013061768A1 (en) Gas engine, gas heat pump device and cogeneration device that use gas engine, and method for controlling gas engine
EP3098431A1 (en) Gas engine
WO2013061769A1 (en) Gas engine, and gas heat pump device and cogeneration device that use gas engine
WO2014045881A1 (en) Internal combustion engine
GB2377973A (en) Gas bleed system for a gas turbine
CN202125375U (en) Engine for gas generating unit capable of realizing lean burning
EP2580453A2 (en) Method to reduce emissions of nitrogen oxides from combustion engines and/or to increase the performance of combustion engines while keeping the emissions of nitrogen oxides from combustion engines at the same level and/or to increase the overall performance of an engine, and a device to perform this method
JP4552590B2 (en) Control device for internal combustion engine
JP6073772B2 (en) engine
US10767602B2 (en) Engine system
JP6016666B2 (en) Gas engine system
JP6023616B2 (en) GAS ENGINE, GAS HEAT PUMP DEVICE AND COGENERATION DEVICE USING GAS ENGINE, AND GAS ENGINE CONTROL METHOD
JP2007291990A (en) Intake control valve opening estimating device
KR20160021678A (en) Exhaust gas recirculation of engine, and method thereof
KR20190138460A (en) Engine system and method using the same
JP2007146854A5 (en)
CN203441605U (en) Oxygen enrichment air inlet type plateau engine
JP2014199031A (en) Mixer
WO2020122107A1 (en) Internal combustion engine system, vehicle, and fuel supply method
JP2014199030A (en) Engine system
JP2006037788A (en) Exhaust emission control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842859

Country of ref document: EP

Kind code of ref document: A1