WO2014045881A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2014045881A1
WO2014045881A1 PCT/JP2013/073913 JP2013073913W WO2014045881A1 WO 2014045881 A1 WO2014045881 A1 WO 2014045881A1 JP 2013073913 W JP2013073913 W JP 2013073913W WO 2014045881 A1 WO2014045881 A1 WO 2014045881A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
catalyst
temperature
temperature difference
Prior art date
Application number
PCT/JP2013/073913
Other languages
French (fr)
Japanese (ja)
Inventor
中園 徹
ライハン・カンドカー・アブ
寛行 岡田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2014045881A1 publication Critical patent/WO2014045881A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine capable of detecting a deterioration state of a catalyst in an internal combustion engine provided with an exhaust purification catalyst having oxidation ability.
  • an oxygen storage catalyst or a three-way catalyst is known as an exhaust purification catalyst having oxidation ability.
  • an exhaust purification catalyst having oxidation ability.
  • Such a catalyst releases oxygen stored in the gas phase when the air-fuel ratio deviates from stoichiometric to the rich side, and takes in oxygen in the gas phase when it deviates to the lean side.
  • Exhaust gas purification capacity is demonstrated by occlusion.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an internal combustion engine that can easily detect a deterioration state of a catalyst by a temperature sensor.
  • an internal combustion engine is an internal combustion engine provided with an exhaust purification catalyst having oxidation ability, and temperature sensors are provided upstream and downstream of the catalyst, and the temperature is measured by these upstream temperature sensors.
  • a controller for detecting deterioration of the catalyst based on whether or not the temperature difference between the upstream temperature and the downstream temperature measured by the downstream temperature sensor is equal to or less than a predetermined value is provided.
  • control unit measures the above-described measurement on a control map indicating a correlation between the temperature difference between the upstream temperature and the downstream temperature at the initial use of the catalyst and the rotational speed, load, excess air ratio, and ignition timing in the internal combustion engine. It is also possible to detect whether or not a predetermined value or less by applying a temperature difference.
  • control unit may include the temperature on the control map in at least one of a situation where the internal combustion engine is at a high speed, a high load, or an excess air ratio is richer than the stoichiometric. You may apply a difference.
  • control unit may have a reporting means for reporting the catalyst degradation when the catalyst degradation is detected.
  • the exhaust purification performance can be maintained.
  • FIG. 1 is a schematic diagram showing an outline of the overall configuration of an internal combustion engine according to the present invention. It is the schematic which shows the structure of the three-way catalyst vicinity of the internal combustion engine shown in FIG. It is a graph which shows the relationship between the torque of the internal combustion engine in a certain driving
  • FIG. 1 shows an outline of the overall configuration of a gas engine 1 according to the present invention
  • FIG. 2 shows a configuration in the vicinity of the three-way catalyst 2 of the gas engine 1
  • FIG. 3 shows torque and upstream temperature sensor 21 in a certain operating situation
  • 4 shows the relationship between upstream temperature T1 and downstream temperature T2 measured by downstream temperature sensor 22
  • FIG. 4 shows the relationship between torque and exhaust gas concentration in the situation shown in FIG. 3
  • FIG. 5 shows FIG. The relationship between the torque in the situation and the temperature difference ⁇ T between the upstream temperature T1 and the downstream temperature T2 is shown.
  • temperature sensors 21 and 22 are respectively provided upstream and downstream of the three-way catalyst 2, and an upstream temperature T 1 measured by the upstream temperature sensor 21 and a downstream temperature measured by the downstream temperature sensor 22.
  • a control unit 10 is provided that detects catalyst deterioration based on a temperature difference ⁇ T with respect to the temperature T2.
  • the gas engine 1 is provided with a compressor 12a of a turbocharger 12 in an intake passage 11a, and fuel gas mixed with air by a mixer 14 via an A / F valve 13 is supercharged by the compressor 12a and is supplied to an intercooler. 15. It is introduced into the intake port 17a of the cylinder head 17 through the throttle valve 16. The exhaust gas discharged from the exhaust port 17b of the cylinder head 17 to the exhaust path 11b passes through the three-way catalyst 2 through the turbine 12b of the turbocharger 12 and is exhausted.
  • the three-way catalyst 2 is provided so as to be carried in the purification device 20 provided in the exhaust passage 11b.
  • a temperature sensor 21 is provided on the upstream side of the three-way catalyst 2
  • a temperature sensor 22 is provided on the downstream side. From the upstream temperature T1 and the downstream temperature T2 of the exhaust gas before and after passing through the three-way catalyst 2, The temperature difference ⁇ T can be measured.
  • This temperature difference ⁇ T is input to the control unit 10, and the control unit 10 determines whether the three-way catalyst 2 is functioning effectively based on the information on the temperature difference ⁇ T, or is not functioning due to deterioration. Thus, the deterioration of the three-way catalyst 2 can be detected.
  • the exhaust gas passing through the three-way catalyst 2 from the exhaust port 17b through the exhaust passage 11b is decomposed by releasing the oxygen stored in the three-way catalyst 2.
  • heat is generated. Therefore, if the three-way catalyst 2 functions effectively, the temperature measured by the temperature sensor 21 provided on the upstream side of the three-way catalyst 2.
  • the temperature T2 measured by the temperature sensor 22 provided on the downstream side is higher than T1, and a temperature difference ⁇ T is generated. Further, since this temperature difference ⁇ T is caused by the oxidation reaction of the exhaust gas, there is a correlation with the exhaust gas in each operation situation.
  • the operating state changes, for example, the total amount of exhaust gas (CO, NOx, THC) at the time of torque fluctuation as shown in FIG.
  • the temperature difference ⁇ Tr has a proportional relationship. Therefore, the control unit 10 measures the upstream temperature T1 and the downstream temperature T2 at the current torque, and determines whether or not the temperature difference ⁇ T is the temperature difference ⁇ Tr at the beginning of use assumed from the exhaust gas amount.
  • the deterioration of the three-way catalyst 2 can be detected by applying it to a control map as shown in FIG. That is, when the torque actually measured at the time of determination is applied to the torque of the control map as shown in FIG. 5, the temperature difference ⁇ T actually measured at the torque is more predetermined than the temperature difference ⁇ Tr of the control map. When the value is smaller than the value, the oxidation reaction is not sufficiently performed, and the three-way catalyst 2 is deteriorated.
  • the detection of the deterioration of the three-way catalyst 2 by the control unit 10 is notified via the reporting means 3.
  • This notification may be performed by blinking a lamp, may be performed by generation of an alarm sound, or may be performed by using these in combination.
  • the control unit 10 determines that the three-way catalyst 2 has reached the end of its life when the actually measured temperature difference ⁇ T is smaller than the temperature difference ⁇ Tr of the control map by a predetermined value or more. Will be reported again.
  • This notification may be performed by blinking a lamp, may be performed by generation of an alarm sound, may be performed by stopping the gas engine 1, or of these Some may be used in combination for notification.
  • the setting of the predetermined value that is, how much the actually measured temperature difference ⁇ T is smaller than the temperature difference ⁇ Tr in the control map, the life of the three-way catalyst 2 is determined. Since it varies depending on the environment and driving conditions, determine these factors.
  • This predetermined value can be set to be degraded if it is detected several degrees lower than the temperature difference ⁇ Tr of the control map input to the control unit 10, or can be detected several percent lower than the temperature difference ⁇ Tr of the control map. If so, it can also be set as deterioration.
  • This setting can be easily performed by simply setting a numerical value.
  • the actually measured temperature difference ⁇ T does not become larger than the temperature difference ⁇ Tr in the control map. If something grows, it will be another problem. Therefore, it may be set so that an abnormality is detected even when the actually measured temperature difference ⁇ T is larger than the temperature difference ⁇ Tr of the control map by a certain predetermined value or more.
  • control map of the temperature difference ⁇ Tr in torque fluctuation is shown, but this control map may be a control map of the temperature difference ⁇ Tr in rotation speed fluctuation.
  • the gas engine 1 needs to be in a state in which the three-way catalyst 2 sufficiently stores oxygen by lean operation or perturbation operation.
  • the determination of the deterioration of the three-way catalyst 2 is preferably carried out in time after the oxygen is sufficiently occluded.
  • the gas engine 1 of the present invention configured as described above is simple enough to measure the upstream temperature T1 and the downstream temperature T2 of the exhaust gas before and after passing through the three-way catalyst 2 by the upstream temperature sensor 21 and the downstream temperature sensor 22. With this configuration, the control unit 10 can detect whether or not the three-way catalyst 2 has deteriorated.
  • a predetermined value is set as to how much the actually measured temperature difference ⁇ T is smaller than the temperature difference ⁇ Tr in the control map, it is possible to know the replacement time of the three-way catalyst 2 due to deterioration.
  • the deterioration of the three-way catalyst 2 can be known, it is possible to prevent the exhaust gas purification function from being deteriorated due to the deterioration of the three-way catalyst 2 without knowledge.
  • the gas engine 1 As an application of the gas engine 1, as shown in FIG. 6, it can be suitably used as a drive source of the gas heat pump device 4. At this time, the gas heat pump device 4 is required to have a high load in winter and summer, but can sufficiently cope with a medium and low load in the spring and autumn seasons. Moreover, the gas engine 1 drives a plurality of compressors 41 (two in FIG. 6) when a high load is required, and conversely drives a single compressor 41 when the load is low. It is normal to do. Therefore, when the gas heat pump device 4 is configured by using the gas engine 1, a lean operation is performed when the load is medium or low, and a stoichiometric operation is switched when a high load is required. It is more preferable that it has been made possible.
  • the thermal efficiency decreases because the stoichiometric operation is performed at a high load, but the mechanical efficiency is increased by driving a plurality of compressors 41, so the thermal efficiency is equivalent to the lean operation at a medium / low load. .
  • the thermal efficiency at the time of medium and low loads is excellent because the lean operation is performed. Therefore, it is possible to increase the efficiency of year-round energy consumption efficiency (APF).
  • the gas heat pump device 4 has two compressors 41 connected to the gas engine 1, but the compressor 41 may be one unit or three or more units.
  • the gas heat pump device 4 has two indoor units 43 connected to one outdoor unit 42, but the indoor unit 43 may be one unit or three or more units. There may be.
  • the gas engine 1 can also be suitably used as a drive source for the cogeneration apparatus 5 as shown in FIG. That is, the cogeneration apparatus 5 can perform energy saving by performing a lean operation during a normal operation and performing a stoichiometric operation when switching to a heat main operation with a high load.
  • the specific configuration of the gas engine 1 is not particularly limited to that shown in FIG. 1, for example, the gas engine 1 without the turbocharger 12 or the intercooler 15. Also good.
  • the configuration of the A / F valve 13 may also be the gas engine 1 having a plurality of valves for lean operation and stoichiometric operation.
  • the gas engine 1 is described.
  • an exhaust purification catalyst having an oxidation capability for example, an oxygen storage catalyst, a three-way catalyst
  • the engine is not limited to the gas engine 1, and may be, for example, a diesel engine or other various engines.

Abstract

Provided is an internal combustion engine that can easily detect the deterioration state of a catalyst using temperature sensors. An upstream temperature sensor (21) and a downstream temperature sensor (22) are provided upstream and downstream from a three-way catalyst (2) in a gas engine (1) comprising said three-way catalyst (2), and said gas engine (1) is equipped with a control unit (10) that detects deterioration of the three-way catalyst (2) on the basis of whether the temperature difference (ΔT) between the upstream temperature sensor (21) and the downstream temperature sensor (22) is equal to or less than a predetermined value. The control unit (10) detects deterioration of the catalyst by applying a control map indicating the correlation between the predetermined value and the rotational speed, load, excess air ratio, and ignition timing occurring in the gas engine (1) to a measured temperature difference in order to determine whether said measured temperature difference is equal to or lower than the predetermined value.

Description

内燃機関Internal combustion engine
 本発明は、酸化能力を有する排気浄化触媒を備えた内燃機関において、触媒の劣化状態を検出することができる内燃機関に関するものである。 The present invention relates to an internal combustion engine capable of detecting a deterioration state of a catalyst in an internal combustion engine provided with an exhaust purification catalyst having oxidation ability.
 一般に、酸化能力を有する排気浄化触媒として、例えば酸素吸蔵触媒や三元触媒が知られている。このような触媒は、空燃比がストイキからリッチ側にずれた場合には、自身が吸蔵している酸素を気相に放出し、リーン側にずれた場合には、気相中の酸素を取り込んで吸蔵することで、排気ガスの浄化能力を発揮する。 Generally, for example, an oxygen storage catalyst or a three-way catalyst is known as an exhaust purification catalyst having oxidation ability. Such a catalyst releases oxygen stored in the gas phase when the air-fuel ratio deviates from stoichiometric to the rich side, and takes in oxygen in the gas phase when it deviates to the lean side. Exhaust gas purification capacity is demonstrated by occlusion.
 したがって、触媒が劣化してしまうと、酸素の吸蔵や放出が行われなくなり、排気ガスの浄化能力が無くなってしまうこととなる。 Therefore, if the catalyst deteriorates, oxygen is not stored or released, and the exhaust gas purification ability is lost.
 そこで、従来より、触媒の劣化状態を判定するために、触媒の前後に酸素センサを設け、これらの酸素センサから得られる情報を算定式に当てはめて触媒の劣化状態を算出するようになされた触媒の劣化状態の判定方法が知られている(例えば、特許文献1参照)。 Therefore, conventionally, in order to determine the deterioration state of the catalyst, an oxygen sensor is provided before and after the catalyst, and the catalyst deterioration state is calculated by applying information obtained from these oxygen sensors to the calculation formula. There is known a method for determining the deterioration state (see, for example, Patent Document 1).
特許第3564064号公報Japanese Patent No. 3564064
 しかし、上記従来の技術では、酸素センサを用いて触媒の劣化を判定するために、複雑な算定式で計算して触媒の劣化を判定しなければならない。 However, in the above conventional technique, in order to determine the catalyst deterioration using the oxygen sensor, it is necessary to determine the catalyst deterioration by calculating with a complicated calculation formula.
 本発明は、係る実情に鑑みてなされたものであって、温度センサによって簡易に触媒の劣化状況を検出することができる内燃機関を提供することを目的としている。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an internal combustion engine that can easily detect a deterioration state of a catalyst by a temperature sensor.
 上記課題を解決するための本発明に係る内燃機関は、酸化能力を有する排気浄化触媒を備えた内燃機関において、触媒の上流と下流とに温度センサが設けられ、これら上流温度センサによって測定される上流温度と下流温度センサによって測定される下流温度との温度差が所定値以下になるか否かに基づいて触媒の劣化を検出する制御部を具備するものである。 In order to solve the above problems, an internal combustion engine according to the present invention is an internal combustion engine provided with an exhaust purification catalyst having oxidation ability, and temperature sensors are provided upstream and downstream of the catalyst, and the temperature is measured by these upstream temperature sensors. A controller for detecting deterioration of the catalyst based on whether or not the temperature difference between the upstream temperature and the downstream temperature measured by the downstream temperature sensor is equal to or less than a predetermined value is provided.
 上記内燃機関において、制御部は、触媒使用当初の上流温度および下流温度の温度差と、内燃機関における回転数、負荷、空気過剰率および点火時期との相関関係を示す制御マップに、前記測定される温度差を当てはめて所定値以下になるか否かを検出するものであってもよい。 In the internal combustion engine, the control unit measures the above-described measurement on a control map indicating a correlation between the temperature difference between the upstream temperature and the downstream temperature at the initial use of the catalyst and the rotational speed, load, excess air ratio, and ignition timing in the internal combustion engine. It is also possible to detect whether or not a predetermined value or less by applying a temperature difference.
 上記内燃機関において、制御部は、内燃機関が、高回転の場合、高負荷の場合、空気過剰率がストイキよりリッチ側にある場合のうち、少なくともいずれか一つの状況で、制御マップに前記温度差を当てはめるものであってもよい。 In the internal combustion engine, the control unit may include the temperature on the control map in at least one of a situation where the internal combustion engine is at a high speed, a high load, or an excess air ratio is richer than the stoichiometric. You may apply a difference.
 上記内燃機関において、制御部は、触媒の劣化を検出した場合に触媒劣化を通報する通報手段を有するものであってもよい。 In the internal combustion engine, the control unit may have a reporting means for reporting the catalyst degradation when the catalyst degradation is detected.
 本発明によると、触媒の劣化状態が検出できるので、排気の浄化性能が維持できる。 According to the present invention, since the deterioration state of the catalyst can be detected, the exhaust purification performance can be maintained.
本発明に係る内燃機関の全体の構成の概略を示す概略図である。1 is a schematic diagram showing an outline of the overall configuration of an internal combustion engine according to the present invention. 図1に示す内燃機関の三元触媒付近の構成を示す概略図である。It is the schematic which shows the structure of the three-way catalyst vicinity of the internal combustion engine shown in FIG. ある運転状況における内燃機関のトルクと、温度センサによって測定される温度との関係を示すグラフである。It is a graph which shows the relationship between the torque of the internal combustion engine in a certain driving | running condition, and the temperature measured by a temperature sensor. 図3に示す状況における内燃機関のトルクと、排気ガス濃度との関係を示すグラフである。4 is a graph showing the relationship between the torque of the internal combustion engine and the exhaust gas concentration in the situation shown in FIG. 3. 図3に示す状況における内燃機関のトルクと、上流温度センサおよび下流温度センサによって測定される温度の温度差との関係を示すグラフである。It is a graph which shows the relationship between the torque of the internal combustion engine in the situation shown in FIG. 3, and the temperature difference of the temperature measured by an upstream temperature sensor and a downstream temperature sensor. 本発明に係る内燃機関を使用したガスヒートポンプ装置の全体構成の概略を示す概略図である。It is the schematic which shows the outline of the whole structure of the gas heat pump apparatus which uses the internal combustion engine which concerns on this invention. 本発明に係る内燃機関を使用したコージェネレーション装置の全体構成の概略を示す概略図である。It is the schematic which shows the outline of the whole structure of the cogeneration apparatus using the internal combustion engine which concerns on this invention.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本発明に係るガスエンジン1の全体構成の概略を示し、図2は同ガスエンジン1の三元触媒2付近の構成を示し、図3はある運転状況におけるトルクと、上流温度センサ21および下流温度センサ22によって測定される上流温度T1および下流温度T2との関係を示し、図4は、図3に示す状況におけるトルクと排気ガス濃度との関係を示し、図5は図3に示す状況におけるトルクと、上流温度T1および下流温度T2の温度差ΔTとの関係を示している。 FIG. 1 shows an outline of the overall configuration of a gas engine 1 according to the present invention, FIG. 2 shows a configuration in the vicinity of the three-way catalyst 2 of the gas engine 1, and FIG. 3 shows torque and upstream temperature sensor 21 in a certain operating situation. 4 shows the relationship between upstream temperature T1 and downstream temperature T2 measured by downstream temperature sensor 22, FIG. 4 shows the relationship between torque and exhaust gas concentration in the situation shown in FIG. 3, and FIG. 5 shows FIG. The relationship between the torque in the situation and the temperature difference ΔT between the upstream temperature T1 and the downstream temperature T2 is shown.
 このガスエンジン1は、三元触媒2の排気上流と排気下流とにそれぞれ温度センサ21,22が設けられ、これら上流温度センサ21によって測定される上流温度T1と下流温度センサ22によって測定される下流温度T2との温度差ΔTに基づいて触媒の劣化を検出する制御部10を具備している。 In this gas engine 1, temperature sensors 21 and 22 are respectively provided upstream and downstream of the three-way catalyst 2, and an upstream temperature T 1 measured by the upstream temperature sensor 21 and a downstream temperature measured by the downstream temperature sensor 22. A control unit 10 is provided that detects catalyst deterioration based on a temperature difference ΔT with respect to the temperature T2.
 ガスエンジン1は、吸気経路11aにターボチャージャ12のコンプレッサ12aが設けられており、A/Fバルブ13を介してミキサー14で空気と混合された燃料ガスは、コンプレッサ12aで過給され、インタークーラ15、スロットルバルブ16を介してシリンダヘッド17の吸気口17aへと導入される。シリンダヘッド17の排気口17bから排気経路11bへ排出された排気ガスは、ターボチャージャ12のタービン12bを経て三元触媒2を通過して排気される。 The gas engine 1 is provided with a compressor 12a of a turbocharger 12 in an intake passage 11a, and fuel gas mixed with air by a mixer 14 via an A / F valve 13 is supercharged by the compressor 12a and is supplied to an intercooler. 15. It is introduced into the intake port 17a of the cylinder head 17 through the throttle valve 16. The exhaust gas discharged from the exhaust port 17b of the cylinder head 17 to the exhaust path 11b passes through the three-way catalyst 2 through the turbine 12b of the turbocharger 12 and is exhausted.
 三元触媒2は、図2に示すように、排気経路11bに設けられた浄化装置20内に担持されるように設けられている。この三元触媒2の上流側には温度センサ21が設けられ、下流側には温度センサ22が設けられており、三元触媒2を通過前後の排気ガスの上流温度T1および下流温度T2から、温度差ΔTを測定することができるようになされている。 As shown in FIG. 2, the three-way catalyst 2 is provided so as to be carried in the purification device 20 provided in the exhaust passage 11b. A temperature sensor 21 is provided on the upstream side of the three-way catalyst 2, and a temperature sensor 22 is provided on the downstream side. From the upstream temperature T1 and the downstream temperature T2 of the exhaust gas before and after passing through the three-way catalyst 2, The temperature difference ΔT can be measured.
 この温度差ΔTは、制御部10に入力され、制御部10は、この温度差ΔTの情報を基に三元触媒2が有効に機能しているか、または劣化して機能しなくなっているかを判断して、当該三元触媒2の劣化を検出することができるようになされている。 This temperature difference ΔT is input to the control unit 10, and the control unit 10 determines whether the three-way catalyst 2 is functioning effectively based on the information on the temperature difference ΔT, or is not functioning due to deterioration. Thus, the deterioration of the three-way catalyst 2 can be detected.
 すなわち、排気口17bから排気経路11bを経て三元触媒2を通過する排気ガスは、三元触媒2に吸蔵されていた酸素が放出されることによって分解されることとなる。この酸化反応によって排気ガスが分解される際、発熱するため、三元触媒2が有効に機能しているのであれば、三元触媒2の上流側に設けられた温度センサ21によって測定される温度T1よりも、下流側に設けられた温度センサ22によって測定される温度T2の方が高くなり、温度差ΔTを生じることとなる。また、この温度差ΔTは、排気ガスの酸化反応によって引き起こされるものであるため、各運転状況における排気ガスとの間に相関関係を生じることとなる。 That is, the exhaust gas passing through the three-way catalyst 2 from the exhaust port 17b through the exhaust passage 11b is decomposed by releasing the oxygen stored in the three-way catalyst 2. When the exhaust gas is decomposed by this oxidation reaction, heat is generated. Therefore, if the three-way catalyst 2 functions effectively, the temperature measured by the temperature sensor 21 provided on the upstream side of the three-way catalyst 2. The temperature T2 measured by the temperature sensor 22 provided on the downstream side is higher than T1, and a temperature difference ΔT is generated. Further, since this temperature difference ΔT is caused by the oxidation reaction of the exhaust gas, there is a correlation with the exhaust gas in each operation situation.
 したがって、新しい三元触媒2を使用開始した当初は、運転状況の変化、例えば、図4に示すようなトルク変動時の排気ガス(CO,NOx,THC)の総量に対し、図5に示すように、温度差ΔTrは比例関係を示すこととなる。そのため、制御部10は、現在のトルクにおける上流温度T1および下流温度T2を測定し、その温度差ΔTが、排気ガス量から想定される使用開始当初の温度差ΔTrになっているか否かを図5に示すような制御マップに当てはめて検出することによって、三元触媒2の劣化を検出することができる。すなわち、判定時に実測されたトルクを図5に示すような制御マップのトルクに当てはめた際の、当該制御マップの温度差ΔTrよりも、そのトルクにおいて実際に計測される温度差ΔTの方が所定値以上小さい場合は、酸化反応が十分に行われていないこととなり、三元触媒2が劣化しているということになる。 Therefore, at the beginning of using the new three-way catalyst 2, as shown in FIG. 5, the operating state changes, for example, the total amount of exhaust gas (CO, NOx, THC) at the time of torque fluctuation as shown in FIG. In addition, the temperature difference ΔTr has a proportional relationship. Therefore, the control unit 10 measures the upstream temperature T1 and the downstream temperature T2 at the current torque, and determines whether or not the temperature difference ΔT is the temperature difference ΔTr at the beginning of use assumed from the exhaust gas amount. The deterioration of the three-way catalyst 2 can be detected by applying it to a control map as shown in FIG. That is, when the torque actually measured at the time of determination is applied to the torque of the control map as shown in FIG. 5, the temperature difference ΔT actually measured at the torque is more predetermined than the temperature difference ΔTr of the control map. When the value is smaller than the value, the oxidation reaction is not sufficiently performed, and the three-way catalyst 2 is deteriorated.
 この制御部10による三元触媒2の劣化の検出は、通報手段3を介して通報される。この通報は、ランプの点滅によって行うものであってもよいし、警報音の発生によって行うものであってもよいし、これらを併用して通知するものであってもよい。 The detection of the deterioration of the three-way catalyst 2 by the control unit 10 is notified via the reporting means 3. This notification may be performed by blinking a lamp, may be performed by generation of an alarm sound, or may be performed by using these in combination.
 また、三元触媒2の劣化を検出したとしても、直ちに使用不能になるわけではなく、三元触媒2の寿命は、排気ガスを十分に浄化できなくなった場合、つまり制御マップの温度差ΔTrよりも測定される温度差ΔTがある程度小さくなった場合に決まる。したがって、制御部10では、実測される温度差ΔTが制御マップの温度差ΔTrよりもある所定値以上小さくなった場合に三元触媒2が寿命に達したと判断して、通報手段3を介して再度通報される。この通報は、ランプの点滅によって行うものであってもよいし、警報音の発生によって行うものであってもよいし、ガスエンジン1の停止によって行うものであってもよいし、これらのうちの幾つかを併用して通知するものであってもよい。 Further, even if the deterioration of the three-way catalyst 2 is detected, the three-way catalyst 2 does not immediately become unusable. The life of the three-way catalyst 2 is determined when the exhaust gas cannot be sufficiently purified, that is, from the temperature difference ΔTr in the control map. Is also determined when the measured temperature difference ΔT becomes small to some extent. Therefore, the control unit 10 determines that the three-way catalyst 2 has reached the end of its life when the actually measured temperature difference ΔT is smaller than the temperature difference ΔTr of the control map by a predetermined value or more. Will be reported again. This notification may be performed by blinking a lamp, may be performed by generation of an alarm sound, may be performed by stopping the gas engine 1, or of these Some may be used in combination for notification.
 なお、所定値の設定、すなわち、実測される温度差ΔTが制御マップの温度差ΔTrからどの程度小さくなった場合に三元触媒2の寿命と判断するかについては、ガスエンジン1の構成や設置環境や運転状況によって異なるため、それらを考慮して決定する。この所定値の設定は、制御部10に入力されている制御マップの温度差ΔTrから数℃低く検出されれば劣化と設定することもできるし、制御マップの温度差ΔTrから数%低く検出されれば劣化と設定することもできる。この設定は、単に数値設定するだけで簡単に行うことができる。 Note that the setting of the predetermined value, that is, how much the actually measured temperature difference ΔT is smaller than the temperature difference ΔTr in the control map, the life of the three-way catalyst 2 is determined. Since it varies depending on the environment and driving conditions, determine these factors. This predetermined value can be set to be degraded if it is detected several degrees lower than the temperature difference ΔTr of the control map input to the control unit 10, or can be detected several percent lower than the temperature difference ΔTr of the control map. If so, it can also be set as deterioration. This setting can be easily performed by simply setting a numerical value.
 また、三元触媒2が劣化すると実測される温度差ΔTは、制御マップの温度差ΔTrよりも小さくなるため、実測される温度差ΔTが制御マップの温度差ΔTrよりも大きくなることは無いが、万が一大きくなるようなことがあれば、別の問題となる。したがって、実測される温度差ΔTが、制御マップの温度差ΔTrよりも、ある所定値以上大きくなった場合についても、異常を検出するように設定しておいてもよい。 Further, since the temperature difference ΔT actually measured when the three-way catalyst 2 deteriorates becomes smaller than the temperature difference ΔTr in the control map, the actually measured temperature difference ΔT does not become larger than the temperature difference ΔTr in the control map. If something grows, it will be another problem. Therefore, it may be set so that an abnormality is detected even when the actually measured temperature difference ΔT is larger than the temperature difference ΔTr of the control map by a certain predetermined value or more.
 なお、上記ではトルク変動における温度差ΔTrの制御マップを示しているが、この制御マップとしては、回転数変動における温度差ΔTrの制御マップであってもよい。 In the above description, the control map of the temperature difference ΔTr in torque fluctuation is shown, but this control map may be a control map of the temperature difference ΔTr in rotation speed fluctuation.
 ただし、実際の温度差ΔTを制御マップの温度差ΔTrと比較して三元触媒2の劣化を検出するにあたり、トルク変動の場合は、図4に示すように、排気ガス濃度が濃くなって温度差ΔTrが生じやすくなる低トルク域または高トルク域で判断する方がより好ましく、空燃比の場合は、排気ガス濃度が濃くなって温度差ΔTrが生じやすくなる空燃比、すなわちストイキよりもリッチ側にずれた空燃比で判断する方がより好ましく、回転数変動の場合は、排気ガスの絶対量が多くなり、温度差ΔTrが生じやすくなる高回転域で判断する方がより好ましい。 However, in detecting the deterioration of the three-way catalyst 2 by comparing the actual temperature difference ΔT with the temperature difference ΔTr of the control map, in the case of torque fluctuation, as shown in FIG. It is more preferable to judge in a low torque range or a high torque range where the difference ΔTr is likely to occur. It is more preferable to make a determination based on the air-fuel ratio deviated to, and in the case of a rotational speed fluctuation, it is more preferable to make a determination in a high rotation range where the absolute amount of exhaust gas increases and the temperature difference ΔTr tends to occur.
 また、三元触媒2は、当該三元触媒2に吸蔵されていた酸素が枯渇すると、排気ガスの酸化反応を起こせなくなってしまう。したがって、ガスエンジン1は、リーン運転やパータベーション運転によって三元触媒2が酸素を十分に吸蔵した状態にしておく必要がある。また、三元触媒2の劣化の判定は、このように酸素を十分に吸蔵した状態にした後にタイミングを合わせて行うことが好ましい。 Further, when the three-way catalyst 2 is depleted of the oxygen stored in the three-way catalyst 2, the exhaust gas oxidation reaction cannot occur. Therefore, the gas engine 1 needs to be in a state in which the three-way catalyst 2 sufficiently stores oxygen by lean operation or perturbation operation. The determination of the deterioration of the three-way catalyst 2 is preferably carried out in time after the oxygen is sufficiently occluded.
 このようにして構成される本発明のガスエンジン1は、三元触媒2を通過する前後の排気ガスの上流温度T1および下流温度T2を上流温度センサ21および下流温度センサ22によって測定するだけの簡単な構成で、三元触媒2が劣化を起こしているか否かを制御部10によって検出することができる。 The gas engine 1 of the present invention configured as described above is simple enough to measure the upstream temperature T1 and the downstream temperature T2 of the exhaust gas before and after passing through the three-way catalyst 2 by the upstream temperature sensor 21 and the downstream temperature sensor 22. With this configuration, the control unit 10 can detect whether or not the three-way catalyst 2 has deteriorated.
 また、実測される温度差ΔTが、制御マップの温度差ΔTrからどの程度小さくなるかの所定値を設定しておけば、劣化による三元触媒2の交換時期も知ることができる。 Further, if a predetermined value is set as to how much the actually measured temperature difference ΔT is smaller than the temperature difference ΔTr in the control map, it is possible to know the replacement time of the three-way catalyst 2 due to deterioration.
 さらに、三元触媒2の劣化を知ることができるので、知らないうちに三元触媒2が劣化して排気浄化機能が低下するといったことも防止することができる。 Furthermore, since the deterioration of the three-way catalyst 2 can be known, it is possible to prevent the exhaust gas purification function from being deteriorated due to the deterioration of the three-way catalyst 2 without knowledge.
 このガスエンジン1の用途としては、図6に示すように、ガスヒートポンプ装置4の駆動源として好適に使用することができる。この際、ガスヒートポンプ装置4は、冬場や夏場は高負荷が必要とされるが、春や秋の季節には中低負荷で十分対応できる。しかも、ガスエンジン1は、高負荷が必要とされる場合は、複数台のコンプレッサー41(図6では2台)を駆動しており、逆に低負荷の場合は、一台のコンプレッサー41を駆動しているのか通常である。したがって、このガスエンジン1を使用してガスヒートポンプ装置4を構成する場合は、中低負荷の場合には、リーン運転を行い、高負荷が必要となった場合にはストイキ運転に切り替えて対応することができるようになされたものであることがさらに好ましい。この場合、高負荷時には、ストイキ運転するため熱効率は低下するが、複数台のコンプレッサー41を駆動したりすることで機械効率が高くなるので、熱効率は、中低負荷時のリーン運転と同等となる。当然、この中低負荷時の熱効率は、リーン運転するため優れている。したがって、通年エネルギー消費効率(APF)の高効率化を図ることができることとなる。なお、図6において、ガスヒートポンプ装置4は、ガスエンジン1に2台のコンプレッサー41が接続されているが、コンプレッサー41は、1台であってもよいし、3台以上であってもよい。また、図6において、ガスヒートポンプ装置4は、1台の室外機42に2台の室内機43が接続されているが、室内機43は、1台であってもよいし、3台以上であってもよい。 As an application of the gas engine 1, as shown in FIG. 6, it can be suitably used as a drive source of the gas heat pump device 4. At this time, the gas heat pump device 4 is required to have a high load in winter and summer, but can sufficiently cope with a medium and low load in the spring and autumn seasons. Moreover, the gas engine 1 drives a plurality of compressors 41 (two in FIG. 6) when a high load is required, and conversely drives a single compressor 41 when the load is low. It is normal to do. Therefore, when the gas heat pump device 4 is configured by using the gas engine 1, a lean operation is performed when the load is medium or low, and a stoichiometric operation is switched when a high load is required. It is more preferable that it has been made possible. In this case, the thermal efficiency decreases because the stoichiometric operation is performed at a high load, but the mechanical efficiency is increased by driving a plurality of compressors 41, so the thermal efficiency is equivalent to the lean operation at a medium / low load. . Naturally, the thermal efficiency at the time of medium and low loads is excellent because the lean operation is performed. Therefore, it is possible to increase the efficiency of year-round energy consumption efficiency (APF). In FIG. 6, the gas heat pump device 4 has two compressors 41 connected to the gas engine 1, but the compressor 41 may be one unit or three or more units. In FIG. 6, the gas heat pump device 4 has two indoor units 43 connected to one outdoor unit 42, but the indoor unit 43 may be one unit or three or more units. There may be.
 また、このガスエンジン1は、図7に示すように、コージェネレーション装置5の駆動源としても好適に使用することができる。すなわち、コージェネレーション装置5は、通常運転時はリーン運転を行い、高負荷となる熱主運転に切り替える際に、ストイキ運転を行うことで、省エネルギー化を図ることができる。 Further, the gas engine 1 can also be suitably used as a drive source for the cogeneration apparatus 5 as shown in FIG. That is, the cogeneration apparatus 5 can perform energy saving by performing a lean operation during a normal operation and performing a stoichiometric operation when switching to a heat main operation with a high load.
 なお、本実施の形態において、ガスエンジン1の具体的な構成については、特に図1に示すものに限定されるものではなく、例えば、ターボチャージャ12やインタークーラ15の無いガスエンジン1であってもよい。また、A/Fバルブ13の構成についても、リーン運転用、ストイキ運転用にそれぞれ複数のバルブを有するガスエンジン1であってもよい。 In the present embodiment, the specific configuration of the gas engine 1 is not particularly limited to that shown in FIG. 1, for example, the gas engine 1 without the turbocharger 12 or the intercooler 15. Also good. The configuration of the A / F valve 13 may also be the gas engine 1 having a plurality of valves for lean operation and stoichiometric operation.
 また、本実施の形態においては、ガスエンジン1について述べているが、内燃機関の形式については、酸化能力を有する排気浄化触媒(例えば、酸素吸蔵触媒、三元触媒)を用いるものであれば、ガスエンジン1に限定されるものではなく、例えば、ディーゼルエンジン、その他、各種のエンジンであってもよい。 Further, in the present embodiment, the gas engine 1 is described. As for the type of the internal combustion engine, if an exhaust purification catalyst having an oxidation capability (for example, an oxygen storage catalyst, a three-way catalyst) is used, The engine is not limited to the gas engine 1, and may be, for example, a diesel engine or other various engines.
 なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 Note that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
1 ガスエンジン
10 制御部
2 三元触媒
21 上流温度センサ
22 下流温度センサ
3 通報手段
T1 上流温度
T2 下流温度
ΔT 実測される温度差
ΔTr 制御マップの温度差
DESCRIPTION OF SYMBOLS 1 Gas engine 10 Control part 2 Three-way catalyst 21 Upstream temperature sensor 22 Downstream temperature sensor 3 Notification means T1 Upstream temperature T2 Downstream temperature (DELTA) T Actually measured temperature difference (DELTA) Tr Control map temperature difference

Claims (4)

  1.  酸化能力を有する排気浄化触媒を備えた内燃機関において、
     触媒の上流と下流とに温度センサが設けられ、
     これら上流温度センサによって測定される上流温度と下流温度センサによって測定される下流温度との温度差が所定値以下になるか否かに基づいて触媒の劣化を検出する制御部を具備することを特徴とする内燃機関。
    In an internal combustion engine equipped with an exhaust purification catalyst having oxidation ability,
    Temperature sensors are provided upstream and downstream of the catalyst,
    A controller that detects deterioration of the catalyst based on whether or not a temperature difference between the upstream temperature measured by the upstream temperature sensor and the downstream temperature measured by the downstream temperature sensor is equal to or less than a predetermined value; An internal combustion engine.
  2.  制御部は、触媒使用当初の上流温度および下流温度の温度差と、内燃機関における回転数、負荷、空気過剰率および点火時期との相関関係を示す制御マップに、前記測定される温度差を当てはめて所定値以下になるか否かを検出する請求項1記載の内燃機関。 The control unit applies the measured temperature difference to a control map indicating the correlation between the temperature difference between the upstream temperature and the downstream temperature at the beginning of catalyst use and the rotational speed, load, excess air ratio, and ignition timing in the internal combustion engine. The internal combustion engine according to claim 1, wherein the internal combustion engine detects whether or not a predetermined value or less.
  3.  制御部は、内燃機関が、高回転の場合、高負荷の場合、空気過剰率がストイキよりリッチ側にある場合のうち、少なくともいずれか一つの状況で、制御マップに前記温度差を当てはめる請求項2記載の内燃機関。
    の内燃機関。
    The control unit applies the temperature difference to the control map in at least any one of a case where the internal combustion engine is at a high rotation speed, a high load, or an excess air ratio is on a richer side than the stoichiometry. 3. The internal combustion engine according to 2.
    Internal combustion engine.
  4.  制御部は、触媒の劣化を検出した場合に触媒劣化を通報する通報手段を有する請求項1ないし3の何れか一に記載の内燃機関。 4. The internal combustion engine according to any one of claims 1 to 3, wherein the control unit includes a reporting unit that reports the catalyst degradation when the degradation of the catalyst is detected.
PCT/JP2013/073913 2012-09-21 2013-09-05 Internal combustion engine WO2014045881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208630 2012-09-21
JP2012208630A JP2014062510A (en) 2012-09-21 2012-09-21 Internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014045881A1 true WO2014045881A1 (en) 2014-03-27

Family

ID=50341198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073913 WO2014045881A1 (en) 2012-09-21 2013-09-05 Internal combustion engine

Country Status (2)

Country Link
JP (1) JP2014062510A (en)
WO (1) WO2014045881A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732889B (en) * 2016-07-28 2021-07-11 美商高通公司 Transmission of ultra-reliable low-latency communications (urllc) over time division duplex (tdd) using a urllc configuration for a tdd subframe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6324147B2 (en) * 2014-03-25 2018-05-16 株式会社三共 Game machine
JP6324144B2 (en) * 2014-03-25 2018-05-16 株式会社三共 Game machine
AT516098B1 (en) * 2014-07-21 2016-08-15 Ge Jenbacher Gmbh & Co Og Internal combustion engine
CN108699938B (en) 2016-08-04 2019-10-25 三井金属矿业株式会社 Catalyst degradation detection system and catalyst degradation detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216009A (en) * 1988-02-22 1989-08-30 Mitsubishi Motors Corp Catalyst degradation diagnosing device for internal combustion engine
JP2003106140A (en) * 2001-06-22 2003-04-09 Denso Corp Catalyst deterioration detecting device
JP2010209725A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Catalyst deterioration diagnosis device and catalyst deterioration diagnosis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216009A (en) * 1988-02-22 1989-08-30 Mitsubishi Motors Corp Catalyst degradation diagnosing device for internal combustion engine
JP2003106140A (en) * 2001-06-22 2003-04-09 Denso Corp Catalyst deterioration detecting device
JP2010209725A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Catalyst deterioration diagnosis device and catalyst deterioration diagnosis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732889B (en) * 2016-07-28 2021-07-11 美商高通公司 Transmission of ultra-reliable low-latency communications (urllc) over time division duplex (tdd) using a urllc configuration for a tdd subframe

Also Published As

Publication number Publication date
JP2014062510A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
WO2014045881A1 (en) Internal combustion engine
US9027539B2 (en) Control apparatus for internal combustion engine
US10526942B2 (en) Internal combustion engine and exhaust-gas-component estimating method
JP4240101B2 (en) EGR system for internal combustion engine
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
WO2014087820A1 (en) Fault diagnosing device
JP2008286042A (en) CONTROL METHOD OF NOx PURIFICATION SYSTEM AND NOx PURIFICATION SYSTEM
WO2014024274A1 (en) Exhaust purification device for internal combustion engine
JP4929261B2 (en) Engine control device
US11492952B2 (en) Catalyst degradation detection apparatus
JP4507957B2 (en) Catalyst deterioration detection device for internal combustion engine
JP2020045885A (en) Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
JP2010236458A (en) Deterioration diagnostic device for nox catalyst
US9790886B2 (en) Gas engine, gas heat pump system and cogeneration system using the gas engine, and method for controlling the gas engine
WO2014045880A1 (en) Internal combustion engine
US20200173328A1 (en) Controller for exhaust gas purification system
JP2008038737A (en) Catalyst deterioration detecting device
JP4436397B2 (en) Exhaust gas purification device for internal combustion engine
WO2012098641A1 (en) Air-fuel ratio control device for internal combustion engine
US20150240735A1 (en) Internal combustion engine
JP6380264B2 (en) Oxygen sensor abnormality diagnosis device
JP2007092609A (en) Control device for internal combustion engine
JP4277374B2 (en) Exhaust gas purification device for internal combustion engine
JP2003286907A (en) Method for determining abnormality in internal combustion engine and device
JP2003293844A (en) Deterioration diagnosing device for oxygen concentration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839747

Country of ref document: EP

Kind code of ref document: A1