WO2013061615A1 - Contactless power transmission device, and power supply device and power receiving device used therein - Google Patents

Contactless power transmission device, and power supply device and power receiving device used therein Download PDF

Info

Publication number
WO2013061615A1
WO2013061615A1 PCT/JP2012/006930 JP2012006930W WO2013061615A1 WO 2013061615 A1 WO2013061615 A1 WO 2013061615A1 JP 2012006930 W JP2012006930 W JP 2012006930W WO 2013061615 A1 WO2013061615 A1 WO 2013061615A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection electrode
power transmission
cover
transmission device
electrode
Prior art date
Application number
PCT/JP2012/006930
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 定方
藤田 篤志
大森 義治
芳弘 阪本
柏本 隆
裕明 栗原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013061615A1 publication Critical patent/WO2013061615A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

A power supply device (2) of a contactless power transmission device has a primary coil (44) for generating a magnetic flux, a cover for covering the primary coil (44), and a detection electrode disposed between the primary coil (44) and the cover. Provided are a capacitance sensor (14) for detecting foreign matter in the area around the cover on the basis of a variation in the capacitance detected via the detection electrode and a shield electrode interposed between the detection electrode and primary coil (44). The detection electrode has a current path shut-off part for shutting off the current path of an eddy current generated by the magnetic flux.

Description

非接触電力伝送装置、並びにこれに用いる給電装置及び受電装置Non-contact power transmission device, and power feeding device and power receiving device used therefor
 本発明は、非接触電力伝送に好適な非接触電力伝送装置に関するものであり、特に、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等の充電に用いられる非接触電力伝送装置に関する。 The present invention relates to a contactless power transmission device suitable for contactless power transmission, and more particularly to a contactless power transmission device used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
 図15は特許文献1に開示された、非接触電力伝送装置及び装置周辺の構成を示す図である。図15において、非接触電力伝送装置106は、地上側の電源109の電源盤に接続された給電装置(一次側)Fと、電気自動車や電車に搭載された受電装置(二次側)Gとを備えている。そして、給電時において、給電装置Fと受電装置Gとは、物理的な接続なしに空隙空間であるエアギャップを介して対峙するように配置される。 FIG. 15 is a diagram showing the configuration of the non-contact power transmission device and the periphery of the device disclosed in Patent Document 1. In FIG. 15, the non-contact power transmission device 106 includes a power feeding device (primary side) F connected to a power panel of a ground-side power source 109, and a power receiving device (secondary side) G mounted on an electric vehicle or train. It has. And at the time of electric power feeding, the electric power feeder F and the receiving device G are arrange | positioned so as to oppose through the air gap which is a space | gap space, without physical connection.
 このような配置状態で、給電装置Fに備わる一次コイル107に交流電流が与えられ、磁束が形成されると、受電装置Gに備わる二次コイル108に誘導起電力が生じる。これにより、一次コイル107から二次コイル108へと電力が非接触で伝送される。 In such an arrangement state, when an alternating current is applied to the primary coil 107 provided in the power feeding device F and a magnetic flux is formed, an induced electromotive force is generated in the secondary coil 108 provided in the power receiving device G. Thereby, electric power is transmitted from the primary coil 107 to the secondary coil 108 in a non-contact manner.
 受電装置Gは、例えば車載バッテリー110に接続されており、上述の給電装置Fから受電装置Gに伝送された電力は、車載バッテリー110に充電される。この車載バッテリー110に蓄積された電力によって、車載のモータ111が駆動される。なお、非接触給電に係る処理の間、給電装置Fと受電装置Gとの間では、無線通信装置112によって必要な情報交換が行われる。 The power receiving device G is connected to, for example, the in-vehicle battery 110, and the power transmitted from the power feeding device F to the power receiving device G is charged in the in-vehicle battery 110. The in-vehicle motor 111 is driven by the electric power stored in the in-vehicle battery 110. Note that the wireless communication device 112 performs necessary information exchange between the power feeding device F and the power receiving device G during the process related to the non-contact power feeding.
 図16は、図15の給電装置F(受電装置G)の断面図である。図16(A)は給電装置F(受電装置G)の平断面図を示す図であり、図16(B)は給電装置F(受電装置G)の側断面図である。 FIG. 16 is a cross-sectional view of the power feeding device F (power receiving device G) of FIG. FIG. 16A is a plan cross-sectional view of the power feeding device F (power receiving device G), and FIG. 16B is a side cross-sectional view of the power feeding device F (power receiving device G).
 図16に示すように、給電装置Fは一次コイル107、一次磁心コア113、背板115、及びカバー116を備えている。受電装置Gは二次コイル108、二次磁心コア114、背板115、及びカバー116を備えている。そして、給電装置Fの一次コイル107及び一次磁心コア113の表面、並びに受電装置Gの二次コイル108及び二次磁心コア114の表面は、発泡材118が混入されたモールド樹脂117によって被覆固定されている。すなわち、給電装置F(受電装置G)の背板115とカバー116との間には、モールド樹脂117が充填され、内部の一次コイル107(二次コイル108)及び一次磁心コア113(二次磁心コア114)の表面がモールド樹脂117によって被覆固定されている。モールド樹脂117は、例えばシリコン樹脂製であり、上記のように被服固定されることによって、一次コイル107(二次コイル108)の位置を固定し、その機械的強度を確保すると共に放熱機能を発揮する。すなわち、一次コイル107(二次コイル108)は、励磁電流が流れて、ジュール熱により発熱するが、モールド樹脂117の熱伝導によって放熱され、冷却される。 As shown in FIG. 16, the power feeding device F includes a primary coil 107, a primary magnetic core 113, a back plate 115, and a cover 116. The power receiving device G includes a secondary coil 108, a secondary magnetic core 114, a back plate 115, and a cover 116. The surfaces of the primary coil 107 and the primary magnetic core 113 of the power feeding device F and the surfaces of the secondary coil 108 and the secondary magnetic core 114 of the power receiving device G are covered and fixed by a mold resin 117 mixed with a foam material 118. ing. That is, the mold resin 117 is filled between the back plate 115 and the cover 116 of the power feeding device F (power receiving device G), and the primary coil 107 (secondary coil 108) and the primary magnetic core 113 (secondary magnetic core) inside. The surface of the core 114) is covered and fixed by a mold resin 117. The mold resin 117 is made of, for example, silicon resin, and is fixed as described above, thereby fixing the position of the primary coil 107 (secondary coil 108), ensuring its mechanical strength and exhibiting a heat dissipation function. To do. That is, the primary coil 107 (secondary coil 108) generates heat due to Joule heat through an exciting current, but is radiated and cooled by heat conduction of the mold resin 117.
特開2008-87733号公報JP 2008-87733 A
 電気推進車両等の充電に非接触電力伝送装置を適用する場合、給電装置や受電装置は屋外に設置されることが想定される。したがって、非接触電力伝送装置の給電装置と受電装置との間に外部からの異物が侵入する可能性がある。特に、電力伝送の最中に異物の一例である金属異物が給電装置と受電装置との間に侵入して、給電装置または受電装置のカバー上に載った場合、この金属異物をそのまま放置しておくと磁束によって発生する渦電流によって金属異物が過熱される。このように侵入した金属異物が過熱され、過剰に昇温すると、給電装置や受電装置に故障などの被害をもたらす可能性がある。また、一次コイルと二次コイルとの間に、磁束が鎖交可能なループ状の導電体(異物)が挿入されると、導電体両端に起電力が発生する。 When applying a non-contact power transmission device for charging an electric propulsion vehicle or the like, it is assumed that the power feeding device and the power receiving device are installed outdoors. Therefore, there is a possibility that foreign matter enters from between the power feeding device and the power receiving device of the non-contact power transmission device. In particular, when a metal foreign object, which is an example of a foreign object, enters between the power supply device and the power receiving device during power transmission and is placed on the cover of the power supply device or the power receiving device, leave this metal foreign object as it is. Otherwise, the metal foreign object is overheated by the eddy current generated by the magnetic flux. When the metal foreign matter that has entered in this manner is overheated and excessively heated, damage to the power feeding device and the power receiving device may occur. Further, when a loop-shaped conductor (foreign matter) capable of interlinking magnetic flux is inserted between the primary coil and the secondary coil, an electromotive force is generated at both ends of the conductor.
 このため、非接触電力伝送装置において、給電装置と受電装置との間に侵入した異物を検知するセンサが設けられる。例えば、金属異物の過熱を検出するための温度センサが用いられる。ここで、例えば、異物を検知するセンサに静電容量センサを適用する場合、静電容量センサの電極を設ける必要がある。 For this reason, in the non-contact power transmission device, a sensor for detecting a foreign matter that has entered between the power feeding device and the power receiving device is provided. For example, a temperature sensor for detecting overheating of a metal foreign object is used. Here, for example, when a capacitance sensor is applied to a sensor that detects foreign matter, it is necessary to provide an electrode of the capacitance sensor.
 しかしながら、設置した静電容量センサの電極に一次コイルから発生した磁束が鎖交した場合、渦電流が発生し、電極が過熱する可能性がある。 However, when the magnetic flux generated from the primary coil is linked to the electrode of the installed capacitance sensor, an eddy current may be generated and the electrode may be overheated.
 図17は検知電極に鎖交する磁束密度Φの強度に対して、その検知電極の発熱量Wの一例を示した図である。より具体的には、10mm×10mmの検知電極パターンに鎖交する磁束密度Φの強度に対する検知電極パターンの発熱量Wの一例を示している。図17に示すように、磁束密度Φが高くなるにしたがって、発熱量Wは増加する。このように鎖交する磁束によって電極が過熱され、過剰に昇温すると、給電装置や受電装置に故障等の被害をもたらす可能性がある。また、一次コイルから発生した磁束に起因する渦電流が電極に発生することにより、給電効率が低下することが考えられる。 FIG. 17 is a diagram showing an example of the heat generation amount W of the detection electrode with respect to the intensity of the magnetic flux density Φ interlinked with the detection electrode. More specifically, an example of the heat generation amount W of the detection electrode pattern with respect to the intensity of the magnetic flux density Φ interlinking with the detection electrode pattern of 10 mm × 10 mm is shown. As shown in FIG. 17, the heat generation amount W increases as the magnetic flux density Φ increases. If the electrodes are overheated by the interlinkage magnetic flux in this way and the temperature is excessively increased, there is a possibility that the power feeding device or the power receiving device may be damaged such as a failure. Moreover, it is conceivable that the eddy current caused by the magnetic flux generated from the primary coil is generated in the electrode, thereby lowering the power supply efficiency.
 上記の問題に鑑み、本発明は、給電装置、受電装置のカバー周辺、特に給電装置(一次コイル)と受電装置(二次コイル)との間への異物の侵入を確実に検知することができ、安全性の高い非接触電力伝送装置を提供することを目的とする。 In view of the above problems, the present invention can reliably detect the intrusion of foreign matter around the cover of the power feeding device and the power receiving device, particularly between the power feeding device (primary coil) and the power receiving device (secondary coil). An object of the present invention is to provide a contactless power transmission device with high safety.
 本発明の第1の態様では、非接触電力伝送装置は、給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う。そして、前記給電装置は、磁束を発生する一次コイルと、前記一次コイルを覆うカバーと、前記一次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、前記検知電極と前記一次コイルとの間に介在するシールド電極とを備えており、前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している。 In the first aspect of the present invention, the non-contact power transmission device performs power transmission using electromagnetic induction between the power feeding device and the power receiving device. The power supply apparatus includes a primary coil that generates magnetic flux, a cover that covers the primary coil, and a detection electrode that is provided between the primary coil and the cover, A capacitance sensor that detects foreign matter around the cover based on the detected change in capacitance, and a shield electrode that is interposed between the detection electrode and the primary coil; A flow path blocking unit is provided to block a flow path of eddy current generated by the magnetic flux.
 この第1の態様によると、非接触電力伝送装置は、カバー周辺の異物を検知する静電容量センサを備えており、静電容量センサの検知電極は、磁束により生じる渦電流の流路を遮る流路遮断部を有している。これにより、例えば、平面視において、一次コイルの全面を覆うように検知電極を設けた場合においても、一次コイルから発生した磁束によって生じる、検知電極を流れる渦電流の流路を遮断することができる。これにより、検知電極の過剰な昇温を抑制することができる。したがって、給電装置のカバー周辺における広い範囲での異物の侵入を確実に検知しつつ、安全性を確保することができる。 According to the first aspect, the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover, and the detection electrode of the capacitance sensor blocks a flow path of eddy current generated by the magnetic flux. It has a channel blocking part. Thereby, for example, even when the detection electrode is provided so as to cover the entire surface of the primary coil in plan view, the flow path of the eddy current flowing through the detection electrode caused by the magnetic flux generated from the primary coil can be blocked. . Thereby, the excessive temperature rise of a detection electrode can be suppressed. Therefore, safety can be ensured while reliably detecting the entry of foreign matter in a wide range around the cover of the power supply apparatus.
 本発明の第2の態様では、非接触電力伝送装置は、給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う。そして、前記受電装置は、前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、前記二次コイルを覆うカバーと、前記二次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、前記検知電極と前記二次コイルとの間に介在するシールド電極とを備えており、前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している。 In the second aspect of the present invention, the non-contact power transmission device performs power transmission using electromagnetic induction between the power feeding device and the power receiving device. And the said power receiving apparatus was provided between the secondary coil which generate | occur | produces an electromotive force according to the magnetic flux received from the said electric power feeder, the cover which covers the said secondary coil, and the said secondary coil and the said cover A capacitance sensor that detects a foreign object around the cover based on a change in capacitance detected through the detection electrode; and between the detection electrode and the secondary coil. And an intervening shield electrode, and the detection electrode has a flow path blocking portion that blocks a flow path of eddy current generated by the magnetic flux.
 この第2の態様によると、非接触電力伝送装置は、カバー周辺の異物を検知する静電容量センサを備えており、静電容量センサの検知電極は、磁束により生じる渦電流の流路を遮る流路遮断部を有している。これにより、例えば、平面視において、二次コイルの全面を覆うように検知電極を設けた場合においても、二次コイルが給電装置から受ける磁束によって生じる、検知電極を流れる渦電流の流路を遮断することができる。これにより、検知電極の過剰な昇温を抑制することができる。したがって、受電装置のカバー周辺における広い範囲での異物の侵入を確実に検知しつつ、安全性を確保することができる。 According to the second aspect, the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover, and the detection electrode of the capacitance sensor blocks a flow path of eddy current generated by the magnetic flux. It has a channel blocking part. Thus, for example, when the detection electrode is provided so as to cover the entire surface of the secondary coil in a plan view, the flow path of the eddy current flowing through the detection electrode generated by the magnetic flux received by the secondary coil from the power feeding device is blocked. can do. Thereby, the excessive temperature rise of a detection electrode can be suppressed. Therefore, safety can be ensured while reliably detecting the entry of foreign matter in a wide range around the cover of the power receiving device.
 本発明の第3の態様では、対向して配置された非接触電力伝送装置の受電装置に対して、電磁誘導を用いた給電を行う給電装置は、磁束を発生する一次コイルと、前記一次コイルを覆うカバーと、前記一次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、前記検知電極と前記一次コイルとの間に介在するシールド電極とを備えており、前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している。 In a third aspect of the present invention, a power feeding device that feeds power using electromagnetic induction to a power receiving device of a non-contact power transmission device arranged opposite to each other includes a primary coil that generates magnetic flux, and the primary coil And a detection electrode provided between the primary coil and the cover, and detects foreign matter around the cover based on a change in capacitance detected through the detection electrode. A capacitance sensor; and a shield electrode interposed between the detection electrode and the primary coil, the detection electrode having a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux. ing.
 本発明の第4の態様では、非接触電力伝送装置の給電装置から伝送された電力を受電する受電装置は、前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、前記二次コイルを覆うカバーと、前記二次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、前記検知電極と前記二次コイルとの間に介在するシールド電極とを備えており、前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している。 In a fourth aspect of the present invention, a power receiving device that receives power transmitted from a power feeding device of a non-contact power transmission device includes a secondary coil that generates an electromotive force according to magnetic flux received from the power feeding device, and A cover that covers the secondary coil, and a detection electrode provided between the secondary coil and the cover, and is arranged around the cover based on a change in capacitance detected through the detection electrode. A capacitance sensor that detects foreign matter, and a shield electrode that is interposed between the detection electrode and the secondary coil, and the detection electrode blocks a flow path of an eddy current generated by the magnetic flux. It has a blocking part.
 本発明によると、給電装置と受電装置との間への異物の侵入を確実に検知することができ、安全性の高い非接触電力伝送装置を提供することができる。 According to the present invention, it is possible to reliably detect the entry of foreign matter between the power feeding device and the power receiving device, and it is possible to provide a non-contact power transmission device with high safety.
実施形態に係る非接触電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the non-contact electric power transmission apparatus which concerns on embodiment. 図1に示す非接触電力伝送装置の給電装置が地上に敷設され、受電装置が車両に搭載された場合において、車両が駐車スペースに設置された状態を示す外観図である。FIG. 2 is an external view showing a state where the vehicle is installed in a parking space when the power feeding device of the non-contact power transmission device shown in FIG. 1 is laid on the ground and the power receiving device is mounted on the vehicle. 異物検知部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a foreign material detection part. (A),(B),(C)給電装置の部分断面図の一例を示す図である。It is a figure which shows an example of the fragmentary sectional view of (A), (B), (C) electric power feeder. 本実施形態に係る非接触電力伝送制御及び異物検知制御の一例を示すフローチャートである。It is a flowchart which shows an example of the non-contact electric power transmission control and foreign material detection control which concern on this embodiment. 異物検知部の検知電極及びシールド電極の構成例を示した図である。It is the figure which showed the structural example of the detection electrode and shield electrode of a foreign material detection part. 異物検知部の検知電極及びシールド電極の他の構成例を示した図である。It is the figure which showed the other structural example of the detection electrode and shield electrode of a foreign material detection part. 異物検知部の検知電極及びシールド電極の他の構成例を示した図である。It is the figure which showed the other structural example of the detection electrode and shield electrode of a foreign material detection part. 図8の検知電極を有する異物検知部による異物検知処理の一例を説明するための図である。It is a figure for demonstrating an example of the foreign material detection process by the foreign material detection part which has the detection electrode of FIG. 磁束密度と、所定の発熱量以下にするための電極パターン幅との関係を示した図である。It is the figure which showed the relationship between a magnetic flux density and the electrode pattern width for making it below a predetermined calorific value. 異物検知部の検知電極を構成する電極パターンの一例を示す図である。It is a figure which shows an example of the electrode pattern which comprises the detection electrode of a foreign material detection part. 図11のX-X断面及びY-Y断面において、それぞれの断面に沿う方向の各位置での磁束密度を示した図である(プレートコイルの場合)。FIG. 12 is a diagram showing the magnetic flux density at each position in the direction along each cross section in the XX cross section and the YY cross section in FIG. 11 (in the case of a plate coil). 図11のY-Y断面において、それぞれの断面に沿う方向の各位置での磁束密度を示した図である(ソレノイドコイルの場合)。FIG. 12 is a diagram showing the magnetic flux density at each position in the direction along each cross section in the YY cross section of FIG. 11 (in the case of a solenoid coil). 給電装置の給電コイルユニット及び周辺の側断面図の一例を示す図である。It is a figure which shows an example of the electric power feeding coil unit of an electric power feeder, and the surrounding side sectional drawing. 従来の非接触電力伝送装置の構成を示す図である。It is a figure which shows the structure of the conventional non-contact electric power transmission apparatus. 図15の給電装置(受電装置)の断面図であり、(a)は平断面図、(b)は側断面図である。It is sectional drawing of the electric power feeder (power receiving apparatus) of FIG. 15, (a) is a plane sectional view, (b) is a sectional side view. 磁束密度と検知電極パターンの発熱量との関係を示す図である。It is a figure which shows the relationship between magnetic flux density and the emitted-heat amount of a detection electrode pattern.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 図1は実施形態に係る非接触電力伝送装置の構成例を示す図である。図2は電気推進車両が駐車スペースに設置された状態の外観図である。 FIG. 1 is a diagram illustrating a configuration example of a non-contact power transmission apparatus according to an embodiment. FIG. 2 is an external view of a state where the electric propulsion vehicle is installed in the parking space.
 図1に示すように、非接触電力伝送装置は、商用電源6からの電圧を受けて、磁界を発生する給電装置2と、給電装置2からの磁界を受けて、電力として受電する受電装置4とを備えている。 As shown in FIG. 1, the non-contact power transmission device receives a voltage from a commercial power supply 6 and generates a magnetic field, and a power receiving device 4 that receives a magnetic field from the power supply device 2 and receives power as power. And.
 給電装置2は、商用電源6に接続され、整流回路を含む電力供給部としての電源箱8と、電源箱8の出力を受けるインバータ部10と、インバータ部10からの出力を受けて磁束(磁界)を発生する一次コイル44を有する給電コイルユニット12(図1ではコイルユニットと表記)と、静電容量センサを有しており、異物を検知する異物検知部14と、給電装置2を制御する給電制御部(例えば、マイコン。図1では制御部と表記)16とを備えている。商用電源6は、例えば低周波交流電源である200V商用電源である。 The power feeding device 2 is connected to a commercial power source 6 and includes a power source box 8 as a power supply unit including a rectifier circuit, an inverter unit 10 that receives the output of the power source box 8, a magnetic flux (magnetic field) that receives the output from the inverter unit 10 ) That generates the primary coil 44 (referred to as a coil unit in FIG. 1), a capacitance sensor, and a foreign matter detection unit 14 that detects foreign matter, and the power supply device 2 is controlled. A power supply control unit (for example, a microcomputer, referred to as a control unit in FIG. 1) 16 is provided. The commercial power source 6 is a 200V commercial power source which is a low frequency AC power source, for example.
 受電装置4は、給電コイルユニット12から受けた磁束に応じて起電力を発生する二次コイル60を有する受電コイルユニット18(図1ではコイルユニットと表記)と、受電コイルユニット18の出力を受ける整流部20と、整流部20からの出力を受ける負荷としてのバッテリー22と、受電装置4を制御する受電制御部(例えば、マイコン。図1では制御部と表記)24とを備えている。 The power receiving device 4 receives a power receiving coil unit 18 (denoted as a coil unit in FIG. 1) having a secondary coil 60 that generates an electromotive force in accordance with magnetic flux received from the power feeding coil unit 12, and an output of the power receiving coil unit 18. A rectifying unit 20, a battery 22 as a load that receives an output from the rectifying unit 20, and a power reception control unit (for example, a microcomputer; referred to as a control unit in FIG. 1) 24 that controls the power receiving device 4 are provided.
 なお、一次コイル44及び二次コイル60は、プレートコイルを用いてもよいし、ソレノイドコイルを用いてもよい。また、一次コイル44及び二次コイル60は、導電率の高い金属で形成されるのが好ましく、例えば、銅で形成されるのが好ましい。ただし、アルミ等の別の金属を用いて一次コイル44及び二次コイル60を形成してもかまわない。 The primary coil 44 and the secondary coil 60 may be plate coils or solenoid coils. In addition, the primary coil 44 and the secondary coil 60 are preferably formed of a metal having high conductivity, for example, copper. However, the primary coil 44 and the secondary coil 60 may be formed using another metal such as aluminum.
 図2は給電コイルユニット12が地上に敷設され、電気推進車両に搭載された受電装置4に対して給電する例を示している。図2に示すように、給電コイルユニット12は地上に敷設され、電源箱8は、例えば給電コイルユニット12から所定距離だけ離隔した位置に立設される。一方、受電コイルユニット18は、例えば車体底部(例えば、シャーシ)に取り付けられる。 FIG. 2 shows an example in which the power supply coil unit 12 is laid on the ground and supplies power to the power receiving device 4 mounted on the electric propulsion vehicle. As shown in FIG. 2, the power supply coil unit 12 is laid on the ground, and the power supply box 8 is erected at a position separated from the power supply coil unit 12 by a predetermined distance, for example. On the other hand, the power receiving coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
 給電装置2から受電装置4に給電するときには、給電コイルユニット12と受電コイルユニット18とを対向して配置させるために、ユーザーは車両を適宜移動させる。図2に示すように、給電コイルユニット12と受電コイルユニット18とが対向して配置された後、給電制御部16は、インバータ部10を駆動制御することによって、給電コイルユニット12と受電コイルユニット18との間に高周波の電磁場を形成する。受電装置4は、高周波の電磁場より電力を取り出し、取り出した電力によってバッテリー22を充電する。 When power is fed from the power feeding device 2 to the power receiving device 4, the user appropriately moves the vehicle in order to place the power feeding coil unit 12 and the power receiving coil unit 18 facing each other. As shown in FIG. 2, after the power feeding coil unit 12 and the power receiving coil unit 18 are arranged to face each other, the power feeding control unit 16 drives and controls the inverter unit 10, whereby the power feeding coil unit 12 and the power receiving coil unit. A high frequency electromagnetic field is formed between The power receiving device 4 takes out electric power from the high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
 受電制御部24は、検知したバッテリー22の残電圧に応じて電力指令値を決定する。給電制御部16は、無線通信を介して、受電制御部24によって決定された電力指令値を受信する。給電制御部16は、給電コイルユニット12から検知した給電電力と、受電制御部24から受信した電力指令値とを比較し、給電電力の値が電力指令値となるようにインバータ部10を駆動する。受電制御部24は、給電中における受電電力を検知し、バッテリー22に過電流や過電圧がかからないように、給電制御部16に送信する電力指令値を変更する。 The power reception control unit 24 determines a power command value according to the detected remaining voltage of the battery 22. The power supply control unit 16 receives the power command value determined by the power reception control unit 24 via wireless communication. The power supply control unit 16 compares the power supply detected from the power supply coil unit 12 with the power command value received from the power reception control unit 24, and drives the inverter unit 10 so that the value of the power supply power becomes the power command value. . The power reception control unit 24 detects the received power during power supply, and changes the power command value transmitted to the power supply control unit 16 so that the battery 22 is not overcurrent or overvoltage.
 異物検知部14は、カバー40周辺に異物があるか否かを検知する。ここで、「カバー周辺」とは、例えば高周波の電磁場領域及びその近傍のように、電力伝送中に給電装置2の一次コイル44が発生する磁力線が通過する領域を指すものとし、特に、その磁力線により金属の昇温が発生する領域を指すものとする。本実施形態では、異物検知部14は、図2に示すように、給電コイルユニット12に設けられるものとする。なお、異物検知部14が設けられる場所は、上記に限られない。例えば、給電コイルユニット12の外部に設けられていてもよいし、受電装置4に設けられていてもよい。具体的には、例えば受電コイルユニット18に設けられていてもよい。 The foreign object detection unit 14 detects whether there is a foreign object around the cover 40. Here, the “periphery of the cover” refers to a region through which a magnetic field line generated by the primary coil 44 of the power feeding apparatus 2 passes during power transmission, such as a high-frequency electromagnetic field region and its vicinity. It shall refer to the region where the metal temperature rises. In the present embodiment, the foreign object detection unit 14 is provided in the power feeding coil unit 12 as shown in FIG. The place where the foreign object detection unit 14 is provided is not limited to the above. For example, it may be provided outside the feeding coil unit 12 or may be provided in the power receiving device 4. Specifically, for example, the power receiving coil unit 18 may be provided.
 なお、本開示における「異物」とは、カバー周辺に侵入してくる可能性のある物であり、特に電磁界により昇温して非接触電力伝送装置等に拡大被害をもたらす可能性のある金属片などのことである。 The “foreign matter” in the present disclosure is an object that may enter the periphery of the cover, and in particular, a metal that may be heated by an electromagnetic field and cause damage to the non-contact power transmission device. It is a piece.
 図3は異物検知部14の構成例を示すブロック図である。図4は給電装置2の部分断面図の一例を示す図である。 FIG. 3 is a block diagram illustrating a configuration example of the foreign object detection unit 14. FIG. 4 is a diagram illustrating an example of a partial cross-sectional view of the power feeding device 2.
 給電コイルユニット12は、図4(A)に示すように、磁束を発生する一次コイル44と、一次コイル44の外側として、上方及び側方を覆うカバー40と、カバー40の裏面に設置された異物検知部14と、異物検知部14と一次コイル44との間に介在するシールド電極45とを備えている。 As shown in FIG. 4A, the power supply coil unit 12 is installed on the back side of the cover 40 that covers the upper side and the side as the primary coil 44 that generates magnetic flux, the outside of the primary coil 44, and the side. A foreign matter detection unit 14 and a shield electrode 45 interposed between the foreign matter detection unit 14 and the primary coil 44 are provided.
 異物検知部14は、カバー40と対向する表面に検知電極30及び電圧印加電極31を有している。検知電極30は、カバー40の上方部401の裏面(一次コイル44と対向する面)に接するように配置されている。したがって、異物検知部14と一次コイル44との間に介在するシールド電極45は、検知電極30と一次コイル44との間に介在している。 The foreign object detection unit 14 has a detection electrode 30 and a voltage application electrode 31 on the surface facing the cover 40. The detection electrode 30 is disposed so as to be in contact with the back surface (the surface facing the primary coil 44) of the upper portion 401 of the cover 40. Therefore, the shield electrode 45 interposed between the foreign object detector 14 and the primary coil 44 is interposed between the detection electrode 30 and the primary coil 44.
 カバー40は、一次コイル44の上方を覆う上方部401と、上方部401と一体に形成され、一次コイル44の側方を覆う側方部402とを有している。このように、カバー40が、一次コイル44の上方及び側方を覆うように取り付けられることによって、一次コイル44を保護することができる。 The cover 40 has an upper portion 401 that covers the upper side of the primary coil 44, and a side portion 402 that is formed integrally with the upper portion 401 and covers the side of the primary coil 44. Thus, the primary coil 44 can be protected by attaching the cover 40 so as to cover the upper side and the side of the primary coil 44.
 図3に示すように、異物検知部14は、検知電極30及び電圧印加電極31と、電圧供給部32と、C/V変換部34と、信号処理部36と、シールド電極45とを備えている。異物検知部14は、カバー40上に侵入した異物38と検知電極30との間の静電容量を測定する。シールド電極45は、異物検知部14の検知電極30と一次コイル44との間に介在することによって、異物検知部14の検知電極30と一次コイル44との間の磁気結合を抑制する。 As shown in FIG. 3, the foreign object detection unit 14 includes a detection electrode 30 and a voltage application electrode 31, a voltage supply unit 32, a C / V conversion unit 34, a signal processing unit 36, and a shield electrode 45. Yes. The foreign matter detection unit 14 measures the capacitance between the foreign matter 38 that has entered the cover 40 and the detection electrode 30. The shield electrode 45 is interposed between the detection electrode 30 of the foreign object detection unit 14 and the primary coil 44, thereby suppressing magnetic coupling between the detection electrode 30 of the foreign object detection unit 14 and the primary coil 44.
 なお、図3では、シールド電極45は異物検知部14に含まれている例を示しているが、シールド電極45が異物検知部14の外に設けられていてもかまわない。 3 shows an example in which the shield electrode 45 is included in the foreign object detection unit 14, but the shield electrode 45 may be provided outside the foreign object detection unit 14.
 また、図4(A)において、異物検知部14を設置する位置は、カバー40の裏面に限定されず、例えば、カバー40の裏面から離れた位置に設置されてもかまわない。ただし、その場合でも、異物検知部14の検知電極30は、カバー40上に存在する異物38との間の静電容量を測定ができ、かつ外部から保護されるように、カバー40の裏面に設置されるのが好ましい。すなわち、異物検知部14の検知電極30は、カバー40と一次コイル44との間に設置されるのが好ましく、カバー40の表面に近い場所に設置されるのが好ましい。 4A, the position where the foreign object detection unit 14 is installed is not limited to the back surface of the cover 40. For example, the foreign object detection unit 14 may be installed at a position away from the back surface of the cover 40. However, even in such a case, the detection electrode 30 of the foreign matter detection unit 14 can measure the capacitance between the detection electrode 30 and the foreign matter 38 existing on the cover 40, and can be protected from the outside. It is preferable to be installed. That is, the detection electrode 30 of the foreign matter detection unit 14 is preferably installed between the cover 40 and the primary coil 44, and is preferably installed at a location near the surface of the cover 40.
 なお、本開示でいう「カバー上」は、カバーの外側表面上またはカバーの外側表面の上方をいう。 Note that “on the cover” in the present disclosure means on the outer surface of the cover or above the outer surface of the cover.
 また、異物検知部14または異物検知部14の検知電極30は、外部に露出しない範囲において、カバー40内に組み込まれてもよい。これにより、カバー40上に侵入した異物との距離が縮まり、より高精度に異物検知ができる。このとき、シールド電極45も一緒にカバー40内に組み込まれていてもよいし、カバー40と一次コイル44との間に設けられていてもよい。 Further, the foreign matter detection unit 14 or the detection electrode 30 of the foreign matter detection unit 14 may be incorporated in the cover 40 as long as it is not exposed to the outside. Thereby, the distance with the foreign material which invaded on the cover 40 is shortened, and foreign material detection can be performed with higher accuracy. At this time, the shield electrode 45 may be incorporated in the cover 40 together, or may be provided between the cover 40 and the primary coil 44.
 また、異物検知部14または異物検知部14の検知電極30は、図4(B),(C)に示すように、カバー40の上方部401及び側方部402の両方の裏面に設置されてもよい。このとき、シールド電極45は、一次コイル44と異物検知部14の検知電極30との間に設けられる。換言すると、シールド電極45は、一次コイル44の上方及び側方に設けられる。より具体的には、図4(B)は、異物検知部14の検知電極30と電極以外の部分とがカバー40の上方部401及び側方部402の両方の裏面に設置された例を示しており、図4(C)は、異物検知部14のうちの検知電極30のみがカバー40の上方及び側方の裏面に設置された例を示している。ここで、図4(B),(C)に示すように、検知電極30を側方部402の裏面に設ける場合において、側方部402のすべてに検知電極30を設ける場合には、側方部402に設けた検知電極の30の少なくとも1ヶ所に、側方部402の幅方向に対して、長手方向に流れる電流の流路を遮断する流路遮断部(例えば空隙部)を設ける必要がある。これにより、カバー40の側方(カバー周辺)においても高精度に異物を検知することができる。 Moreover, the foreign substance detection part 14 or the detection electrode 30 of the foreign substance detection part 14 is installed in the back surface of both the upper part 401 and the side part 402 of the cover 40, as shown to FIG. 4 (B) and (C). Also good. At this time, the shield electrode 45 is provided between the primary coil 44 and the detection electrode 30 of the foreign matter detection unit 14. In other words, the shield electrode 45 is provided above and to the side of the primary coil 44. More specifically, FIG. 4B shows an example in which the detection electrode 30 of the foreign matter detection unit 14 and a portion other than the electrodes are installed on the back surfaces of both the upper portion 401 and the side portion 402 of the cover 40. FIG. 4C shows an example in which only the detection electrode 30 of the foreign matter detection unit 14 is installed above the cover 40 and on the back surface on the side. Here, as shown in FIGS. 4B and 4C, when the detection electrode 30 is provided on the back surface of the side portion 402, when the detection electrode 30 is provided on all of the side portions 402, the side electrode It is necessary to provide a flow path blocking portion (for example, a gap) that blocks the flow path of the current flowing in the longitudinal direction with respect to the width direction of the side portion 402 at least at one place of the detection electrodes 30 provided in the portion 402. is there. As a result, foreign matter can be detected with high accuracy also on the side of the cover 40 (around the cover).
 また、図4(A)~(C)の例では、異物検知部14が給電装置2に設けられた場合の例を示しているが、異物検知部14が受電装置4に設けられた場合も同様である。具体的には、受電装置4の受電コイルユニット18には、図4(A)~(C)において、一次コイル44に代えて二次コイル60が設けられる。そして、それ以外の構成は、図4(A)~(C)と同様である。 4A to 4C show an example in which the foreign object detection unit 14 is provided in the power feeding device 2, but the foreign object detection unit 14 may be provided in the power receiving device 4. It is the same. Specifically, the power receiving coil unit 18 of the power receiving device 4 is provided with a secondary coil 60 in place of the primary coil 44 in FIGS. 4A to 4C. Other configurations are the same as those shown in FIGS. 4A to 4C.
 図3に示すように、電圧供給部32は、電圧印加電極31と接続され、グラウンド(GND)電位を基準とする所定の電位を電圧印加電極31に印加する。電圧供給部32によって電圧印加電極31に電圧が印加された場合において、図4(A)に示すようにカバー40上に異物38が載ったとき、検知電極30と異物38との間に静電容量C1が発生する。この静電容量C1は、数式1で表現される。 As shown in FIG. 3, the voltage supply unit 32 is connected to the voltage application electrode 31 and applies a predetermined potential with respect to the ground (GND) potential to the voltage application electrode 31. When a voltage is applied to the voltage application electrode 31 by the voltage supply unit 32 and the foreign material 38 is placed on the cover 40 as shown in FIG. A capacity C1 is generated. This capacitance C1 is expressed by Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1において、ε0は真空の誘電率、εrは比誘電率、Sは検知電極30と異物38との対極する最小面積、dは検知電極30と異物38との間の距離である。 In Equation 1, ε0 is the dielectric constant of vacuum, εr is the relative dielectric constant, S is the minimum area opposite to the detection electrode 30 and the foreign material 38, and d is the distance between the detection electrode 30 and the foreign material 38.
 C/V変換部34は、上記の静電容量C1を電圧値に変換する。本実施形態では、C/V変換部34は異物38とGND電位との間の静電容量をC2とした場合、静電容量C1+C2の容量値を、対応する電圧値に変換する。 The C / V conversion unit 34 converts the capacitance C1 into a voltage value. In the present embodiment, when the capacitance between the foreign object 38 and the GND potential is C2, the C / V conversion unit 34 converts the capacitance value of the capacitance C1 + C2 into a corresponding voltage value.
 信号処理部36は、C/V変換部34によって変換された電圧値に対応する信号、すなわち測定した静電容量値に対応する信号を給電制御部17に送信する。 The signal processing unit 36 transmits a signal corresponding to the voltage value converted by the C / V conversion unit 34, that is, a signal corresponding to the measured capacitance value to the power supply control unit 17.
 異物検知部14のシールド電極45は、電力伝送中の磁界と検知電極30との磁気結合を抑制する。これにより、電力伝送において生じる磁界に起因するノイズが、異物検知部14の検知電極30に重畳することを抑制することができる。したがって、異物検知部14は確実に異物を検出することができる。なお、シールド電極45は、グランドに接地するのが好ましい。また、回路の安定電位に接続する構成としてもかまわない。例えば、シールド電極45を電源箱8の整流回路の出力端や、商用電源6のアース、大地などに接続してもかまわない。 The shield electrode 45 of the foreign matter detection unit 14 suppresses magnetic coupling between the magnetic field during power transmission and the detection electrode 30. Thereby, it can suppress that the noise resulting from the magnetic field produced in electric power transmission superimposes on the detection electrode 30 of the foreign material detection part 14. FIG. Therefore, the foreign object detector 14 can reliably detect the foreign object. The shield electrode 45 is preferably grounded to the ground. Further, it may be configured to be connected to the stable potential of the circuit. For example, the shield electrode 45 may be connected to the output terminal of the rectifier circuit of the power supply box 8, the ground of the commercial power supply 6, or the ground.
 また、シールド電極45と検知電極30との間には絶縁物が充填される。例えば、低誘電率の樹脂が充てんされる。この場合、樹脂は、特に空気より低い誘電率が好ましい。なお、シールド電極45と検知電極30との間には空気が充填されてもよい。この充填される空気は、水分を含まないものとすることが好ましく、カバーと基体としての背板とで囲まれる空間内に吸湿材などを同梱する構成がよい。 Further, an insulator is filled between the shield electrode 45 and the detection electrode 30. For example, a low dielectric constant resin is filled. In this case, the resin preferably has a dielectric constant lower than that of air. Note that air may be filled between the shield electrode 45 and the detection electrode 30. It is preferable that the air to be filled does not contain moisture, and a configuration in which a hygroscopic material is enclosed in a space surrounded by a cover and a back plate as a base is good.
 以上のような構成において、異物38が検知電極30に接近した場合、数式1の距離dが小さくなり、静電容量C1が大きくなる。その結果、異物検知部14の静電容量の測定値が増加し、異物38の侵入を検知することができる。すなわち、上述のように異物検知部14を適切に設けることによって、給電装置2と受電装置4の間に侵入した異物を確実に検知することができる。 In the configuration as described above, when the foreign substance 38 approaches the detection electrode 30, the distance d in Expression 1 is reduced and the capacitance C1 is increased. As a result, the measured value of the capacitance of the foreign object detector 14 is increased, and the entry of the foreign object 38 can be detected. That is, by appropriately providing the foreign matter detector 14 as described above, foreign matter that has entered between the power feeding device 2 and the power receiving device 4 can be reliably detected.
 [非接触電力伝送によるバッテリーへの充電動作]
 次に、図5(A),(B)のフローチャートを参照しながら、本実施形態に係る非接触電力伝送制御について説明する。ここでは、図2に示すように、給電装置2は地上に敷設され、受電装置4は車両に搭載されているものとする。
[Battery charging operation by non-contact power transmission]
Next, contactless power transmission control according to the present embodiment will be described with reference to the flowcharts of FIGS. Here, as shown in FIG. 2, it is assumed that the power feeding device 2 is laid on the ground and the power receiving device 4 is mounted on a vehicle.
 まず、図5(A)のS1において、受電装置4を搭載した車両が停止し、給電コイルユニット12と受電コイルユニット18とが対向して配置された後、給電制御部16は、無線通信を介して受電制御部24から電力伝送開始の指示及び電力指令値を受信する(S1)。なお、S1では給電制御部16は受電制御部24から電力伝送開始の指示を受けるものとしたが、これに限られるものではない。例えば、ユーザから電力伝送開始の指示の入力を受けるものとしてもよい。 First, in S1 of FIG. 5A, after the vehicle on which the power receiving device 4 is mounted stops and the power feeding coil unit 12 and the power receiving coil unit 18 are arranged to face each other, the power feeding control unit 16 performs wireless communication. Via the power reception control unit 24, an instruction to start power transmission and a power command value are received (S1). In S1, the power supply control unit 16 receives an instruction to start power transmission from the power reception control unit 24. However, the present invention is not limited to this. For example, an input of an instruction to start power transmission may be received from the user.
 電力指令値が受信されると、S2において、異物検知部14は、静電容量の測定に係る動作を開始し、測定した静電容量の値を給電制御部16に出力する。給電制御部16は、異物検知部14から受けた静電容量値を初期値として記憶する。異物検知部14の静電容量を測定する部分には、検知電極30が用いられており、例えば、給電コイルユニット12を覆うカバー40上における電磁場領域を検知領域として静電容量を測定する。なお、給電制御部16は、上記初期値として、異物検知部14から受けた静電容量値に代えて、あらかじめ保持している所定の値を初期値として用いてもよい。 When the power command value is received, the foreign matter detection unit 14 starts an operation related to the measurement of the capacitance and outputs the measured value of the capacitance to the power supply control unit 16 in S2. The power supply control unit 16 stores the capacitance value received from the foreign object detection unit 14 as an initial value. The detection electrode 30 is used in the portion of the foreign matter detection unit 14 that measures the capacitance. For example, the capacitance is measured using an electromagnetic field region on the cover 40 that covers the power supply coil unit 12 as a detection region. Note that the power supply control unit 16 may use a predetermined value held in advance as the initial value instead of the capacitance value received from the foreign object detection unit 14 as the initial value.
 次に、給電制御部16は、インバータ部10に電力伝送開始を指示し、給電コイルユニット12から受電コイルユニット18への電力供給を開始する(S3)。 Next, the power feeding control unit 16 instructs the inverter unit 10 to start power transmission, and starts power supply from the power feeding coil unit 12 to the power receiving coil unit 18 (S3).
 次に、給電制御部16は、異物検知部14の検知電極30による静電容量の測定値(測定静電容量)と、初期設定値とを比較し、侵入してくる異物による静電容量の変化があるか否かを判定する(S4)。なお、給電制御部16は上記の初期設定値として、例えば、「受電制御部24から受けた初期値に、測定精度による変動などのばらつき要因に配慮した一定値を加えた値」を用いるのが好ましい。これにより、異物侵入の判断に含まれるばらつき要因を排除することができる。 Next, the power supply control unit 16 compares the measured capacitance value (measurement capacitance) by the detection electrode 30 of the foreign object detection unit 14 with the initial setting value, and determines the capacitance value due to the invading foreign object. It is determined whether there is a change (S4). The power supply control unit 16 uses, for example, “a value obtained by adding a constant value in consideration of a variation factor such as a variation due to measurement accuracy to the initial value received from the power reception control unit 24” as the initial setting value. preferable. As a result, it is possible to eliminate variation factors included in the determination of the entry of a foreign object.
 S4において測定された静電容量の値が初期設定値を超えている場合(S4で“YES”)、給電制御部16は異物の侵入があると判定し、送電電力を制御するための異物処理(S5)にフローを移行する。これにより、異物の過熱による拡大被害を防止することができる。 When the capacitance value measured in S4 exceeds the initial setting value (“YES” in S4), the power supply control unit 16 determines that there is an intrusion of foreign matter, and foreign matter processing for controlling transmission power The flow is shifted to (S5). Thereby, the expansion damage by the overheating of a foreign material can be prevented.
 一方、S4において測定された静電容量の値が初期設定値以下である場合(S4で“NO”)、給電制御部16は異物の侵入がないと判定し、インバータ部10に電力伝送を継続させる(S6)。 On the other hand, when the capacitance value measured in S4 is equal to or less than the initial set value (“NO” in S4), the power supply control unit 16 determines that no foreign matter has entered, and continues power transmission to the inverter unit 10. (S6).
 図5(B)は、異物処理(図5(A)のS5)の一例を示すフローチャートである。異物処理に移行すると、まず、給電装置2は、異常検知部14の異常を表示や音などの告知手段により告知する。例えば、図2に示すスピーカ46によって告知する(S21)。 FIG. 5B is a flowchart showing an example of the foreign object processing (S5 in FIG. 5A). When the process proceeds to the foreign object processing, first, the power supply apparatus 2 notifies the abnormality of the abnormality detection unit 14 by a notification means such as a display or sound. For example, notification is made by the speaker 46 shown in FIG. 2 (S21).
 次に、給電制御部16は、測定した静電容量と異物処理設定値とを比較して、経時変化要因の排除や、危険度を含めた詳細な判断をする(S22)。 Next, the power supply control unit 16 compares the measured capacitance with the foreign substance processing set value, and makes a detailed determination including the elimination of the factors that change with time and the risk (S22).
 ここで、「経時変化要因」とは、機器の温度上昇や気候変動等の計測中における環境の変化によって静電容量が変動する場合があり、これらの変化要因のことを指すものとする。 Here, the “time-dependent change factor” means that the capacitance may fluctuate due to changes in the environment during measurement such as temperature rise of the device or climate change, and these change factors are meant.
 また、「異物処理設定値」には、例えば、上記の経時変化要因に配慮した一定値を初期設定値に加えた値や、異物侵入時の静電容量を設計データから求めて、その求めた静電容量値に基づいて、危険を防止するための限度値を設定して用いる。 In addition, the “foreign matter processing set value” is obtained by, for example, obtaining a value obtained by adding a constant value in consideration of the above-described temporal change factor to the initial set value, or the capacitance at the time of entry of foreign matter from the design data. A limit value for preventing danger is set and used based on the capacitance value.
 S22において、測定した静電容量値が異物処理設定値を超えていると判定された場合(S22で“YES”)、給電制御部16は、給電コイルユニット12から受電コイルユニット18への伝送電力を所定量(例えば、1/2)落とす、あるいは電力伝送を停止するなどの伝送電力を抑制する制御を行う(S23)。さらに、異物侵入により伝送電力を制御していることを表示や音などの告知手段により告知して(S24)、異物処理を終了し、フローはS7に移行する。 In S22, when it is determined that the measured capacitance value exceeds the foreign matter processing set value (“YES” in S22), the power feeding control unit 16 transmits the transmission power from the power feeding coil unit 12 to the power receiving coil unit 18. Is controlled to suppress the transmission power, such as dropping a predetermined amount (for example, 1/2) or stopping power transmission (S23). Further, the notification means that the transmission power is controlled by the intrusion of foreign matter is notified by a notification means such as display or sound (S24), the foreign matter processing is terminated, and the flow proceeds to S7.
 一方、ステップS22において測定静電容量が設定値を超えていないと判定された場合(S22で“NO”)、給電制御部16は、S23及びS24を迂回して異物処理を終了し、フローはS7に移行する。 On the other hand, when it is determined in step S22 that the measured capacitance does not exceed the set value (“NO” in S22), the power supply control unit 16 bypasses S23 and S24 and ends the foreign object processing, and the flow is as follows. The process proceeds to S7.
 図5(A)のS7では、人による異物排除や車の使用などの理由により、電力伝送を中断する指示があるか否かを確認する。電力伝送を中断する指示があった場合(S7で“YES”)、給電制御部16は、インバータ部10に電力伝送の終了を指示することによって、給電コイルユニット12から受電コイルユニット18への電力供給を停止し、異物検知部14は、静電容量の測定動作を終了する(S9)。 In S7 of FIG. 5 (A), it is confirmed whether or not there is an instruction to interrupt power transmission for reasons such as removal of foreign objects by a person or use of a car. When there is an instruction to interrupt the power transmission (“YES” in S7), the power supply control unit 16 instructs the inverter unit 10 to end the power transmission, thereby supplying power from the power supply coil unit 12 to the power receiving coil unit 18. The supply is stopped, and the foreign matter detector 14 ends the capacitance measuring operation (S9).
 一方、S7において、電力伝送を中断する指示がない場合(S7で“YES”)、フローはステップS8に移行し、給電制御部16は、充電が完了したかどうかを判定する。充電が完了していない場合(S8で“NO”)、フローがステップS4に戻る一方、充電が完了している場合(S8で“YES”)、給電制御部16は電力供給を終了し、異物検知部14は異物検知動作を終了する(S9)。 On the other hand, if there is no instruction to interrupt power transmission in S7 ("YES" in S7), the flow moves to step S8, and the power supply control unit 16 determines whether charging is completed. If the charging is not completed (“NO” in S8), the flow returns to step S4, whereas if the charging is completed (“YES” in S8), the power supply control unit 16 ends the power supply and the foreign matter The detection unit 14 ends the foreign object detection operation (S9).
 [流路遮断部(1)]
 図6は本実施形態に係る異物検知部14の検知電極30及びシールド電極45の構成例を示した図である。検知電極30及びシールド電極45は、金属(例えば銅が好ましい。ただし、他の金属でもかまわない。)で形成されている。検知電極30及びシールド電極45は、外周円が一次コイル44の外周円より小さく、かつ内周円が一次コイル44の内周円よりも小さい環状に形成されており、かつその一部に検知電極30及びシールド電極45の中心から検知電極30及びシールド電極45の径方向(以下、単に径方向という)の外方に貫通するように形成され、検知電極30及びシールド電極45の周方向(以下、単に周方向という)への電流の流路を遮断する流路遮断部としての空隙部42が設けられている。換言すると、検知電極30及びシールド電極45は、C字状に形成されている。
[Flow path blocking part (1)]
FIG. 6 is a diagram illustrating a configuration example of the detection electrode 30 and the shield electrode 45 of the foreign object detection unit 14 according to the present embodiment. The detection electrode 30 and the shield electrode 45 are made of metal (for example, copper is preferable, but other metals may be used). The detection electrode 30 and the shield electrode 45 are formed in an annular shape in which the outer circumference circle is smaller than the outer circumference circle of the primary coil 44 and the inner circumference circle is smaller than the inner circumference circle of the primary coil 44, and a detection electrode is partially formed 30 and the shield electrode 45 so as to penetrate outward in the radial direction of the detection electrode 30 and the shield electrode 45 (hereinafter simply referred to as the radial direction), and in the circumferential direction of the detection electrode 30 and the shield electrode 45 (hereinafter referred to as the radial direction). A gap 42 is provided as a flow path blocking section that blocks a current flow path in the circumferential direction. In other words, the detection electrode 30 and the shield electrode 45 are formed in a C shape.
 なお、図6では、検知電極30及びシールド電極45の外周円が一次コイル44の外周円より小さいものとしたが、検知電極30及びシールド電極45の外周円を一次コイル44の外周円より大きくしてもよい。また、シールド電極45の内周円は必ずしも必要ではなく、径方向の空隙部42を有する扇形状になっていてもよいし、シールド電極45の外周円を検知電極30の外周円より大きくしてもよい。また、シールド電極45は、流路遮断部を設けなくてもかまわない。 In FIG. 6, the outer circumference circle of the detection electrode 30 and the shield electrode 45 is smaller than the outer circumference circle of the primary coil 44, but the outer circumference circle of the detection electrode 30 and the shield electrode 45 is made larger than the outer circumference circle of the primary coil 44. May be. Further, the inner circumferential circle of the shield electrode 45 is not necessarily required, and may be a fan shape having a radial gap 42, or the outer circumferential circle of the shield electrode 45 is made larger than the outer circumferential circle of the detection electrode 30. Also good. In addition, the shield electrode 45 may not be provided with a flow path blocking part.
 このように、シールドの面積を広げることによって、より広い範囲において、異物検知部14の検知電極30と一次コイル44との間の磁気結合を抑制することができる。 Thus, by increasing the area of the shield, the magnetic coupling between the detection electrode 30 of the foreign matter detection unit 14 and the primary coil 44 can be suppressed in a wider range.
 以上のように、本態様の異物検知部14は、検知電極30及びシールド電極45に生じる渦電流(一次コイル44が発生する磁束の鎖交に起因して生じる渦電流)の流路を遮断することができる。これにより、一次コイル44と同様の範囲に検知電極30及びシールド電極45を配置した場合においても、検知電極30及びシールド電極45の過剰な昇温を抑制することができる。したがって、給電装置2(一次コイル44)と受電装置4(二次コイル60)との間における広い範囲での異物の侵入を確実に検知しつつ、安全性を確保することができる。 As described above, the foreign matter detection unit 14 of this aspect blocks the flow path of eddy currents (eddy currents generated due to the linkage of magnetic flux generated by the primary coil 44) generated in the detection electrodes 30 and the shield electrodes 45. be able to. Thereby, even when the detection electrode 30 and the shield electrode 45 are arranged in the same range as the primary coil 44, an excessive temperature rise of the detection electrode 30 and the shield electrode 45 can be suppressed. Therefore, safety can be ensured while reliably detecting the entry of foreign matter in a wide range between the power feeding device 2 (primary coil 44) and the power receiving device 4 (secondary coil 60).
 なお、検知電極30及びシールド電極45、並びに空隙部42(流路遮断部)は、図6の形状に限られるものではない。具体的には、検知電極30及びシールド電極45は異物を検知したい範囲に設ければよく、流路遮断部は、配置した検知電極30及びシールド電極45に流れる渦電流(一次コイル44が発生する磁束の鎖交に起因して生じる渦電流)の流路を遮るように形成されていればよい。 In addition, the detection electrode 30 and the shield electrode 45, and the space | gap part 42 (flow-path interruption | blocking part) are not restricted to the shape of FIG. Specifically, the detection electrode 30 and the shield electrode 45 may be provided in a range in which foreign matter is desired to be detected, and the flow path blocking unit is configured to generate an eddy current (a primary coil 44 is generated) flowing through the arranged detection electrode 30 and shield electrode 45. What is necessary is just to be formed so that the flow path of the eddy current resulting from the linkage of magnetic flux) may be blocked.
 図7および図8は、検知電極30及びシールド電極45、並びに流路遮断部の他の構成例を示す図である。 7 and 8 are diagrams showing another configuration example of the detection electrode 30, the shield electrode 45, and the flow path blocking unit.
 図7では、図6と同様の環状の検知電極30及びシールド電極45に対して、その外周円のある箇所から外周円の他の箇所まで径方向に沿って貫通するように形成され、周方向に流れる電流の流路を遮断する流路遮断部としての空隙部43が形成されている。さらに、図7に示すように、検知電極30及びシールド電極45に対して、中心から径方向の外方に向かって外周円まで到達しない範囲において、くさび状の流路遮断部としての切欠部49が、中心から放射状に複数個形成されている。換言すると、検知電極30及びシールド電極45は、空隙部43によって2つの検知電極部および2つのシールド電極部に、電気的に分離されており、それぞれの検知電極部およびシールド電極部に放射状の切欠部49が複数個ずつ形成されている。 In FIG. 7, the annular detection electrode 30 and the shield electrode 45 similar to those in FIG. 6 are formed so as to penetrate along the radial direction from a portion of the outer peripheral circle to another portion of the outer peripheral circle. A gap 43 is formed as a flow path blocking section for blocking the flow path of the current flowing through the. Further, as shown in FIG. 7, a cutout portion 49 serving as a wedge-shaped flow path blocking portion is provided in a range in which the detection electrode 30 and the shield electrode 45 do not reach the outer peripheral circle from the center toward the outer side in the radial direction. Are formed radially from the center. In other words, the detection electrode 30 and the shield electrode 45 are electrically separated into two detection electrode portions and two shield electrode portions by the gap 43, and radial notches are formed in the respective detection electrode portions and shield electrode portions. A plurality of portions 49 are formed.
 これにより、図6と同様に、検知電極30及びシールド電極45に生じる渦電流(一次コイル44が発生する磁束の鎖交に起因して生じる渦電流)の流路を遮断することができる。なお、図7では空隙部43と切欠部49との両方が設けられている例について示したが、空隙部43および切欠部49のうちのいずれか一方のみが設けられていてもかまわない。また、切欠部49は三角形状に限定されない。例えば、四角形状や台形状であってもかまわない。 As a result, the flow path of eddy currents generated in the detection electrode 30 and the shield electrode 45 (eddy current generated due to the linkage of the magnetic flux generated by the primary coil 44) can be blocked as in FIG. Although FIG. 7 shows an example in which both the gap 43 and the notch 49 are provided, only one of the gap 43 and the notch 49 may be provided. Further, the notch 49 is not limited to a triangular shape. For example, it may be a square shape or a trapezoidal shape.
 図8では、検知電極30及びシールド電極45は、一辺の長さが一次コイル44の直径とほぼ同様の長さである四角形状に形成されている。また、検知電極30及びシールド電極45には、各辺の中心から対向する辺の中心まで貫通するように形成され、検知電極30及びシールド電極45に対して周方向に流れる電流の流路を遮断する流路遮断部としての空隙部50が形成されている。換言すると、検知電極30及びシールド電極45は、空隙部50によって4つの検知電極部301~304および4つのシールド電極部451~454に、それぞれ電気的に分離されている。 In FIG. 8, the detection electrode 30 and the shield electrode 45 are formed in a quadrangular shape whose length of one side is substantially the same as the diameter of the primary coil 44. Further, the detection electrode 30 and the shield electrode 45 are formed so as to penetrate from the center of each side to the center of the opposite side, and the current flow path flowing in the circumferential direction with respect to the detection electrode 30 and the shield electrode 45 is blocked. A gap portion 50 is formed as a flow path blocking portion. In other words, the detection electrode 30 and the shield electrode 45 are electrically separated into the four detection electrode portions 301 to 304 and the four shield electrode portions 451 to 454 by the gap 50, respectively.
 これにより、図6と同様に、検知電極30及びシールド電極45に生じる渦電流(一次コイル44が発生する磁束の鎖交に起因して生じる渦電流)の流路を遮断することができる。なお、図8では、検知電極30及びシールド電極45が、空隙部50によって4つの検知電極部301~304および4つのシールド電極部451~454に電気的に分離されている例について示したが、分離数は4つに限定されず、4つよりも多くてもよいし、少なくてもよい。また、検知電極30及びシールド電極45に空隙部50を形成する位置も各辺の中心に限定されない。 As a result, the flow path of eddy currents generated in the detection electrode 30 and the shield electrode 45 (eddy current generated due to the linkage of the magnetic flux generated by the primary coil 44) can be blocked as in FIG. 8 shows an example in which the detection electrode 30 and the shield electrode 45 are electrically separated into the four detection electrode portions 301 to 304 and the four shield electrode portions 451 to 454 by the gap 50. The number of separation is not limited to four, and may be more or less than four. Further, the position where the gap 50 is formed in the detection electrode 30 and the shield electrode 45 is not limited to the center of each side.
 図9は、図8に示した検知電極30を有する異物検知部14による異物検知処理の一例を説明するための図である。 FIG. 9 is a diagram for explaining an example of the foreign matter detection processing by the foreign matter detection unit 14 having the detection electrode 30 shown in FIG.
 図9に示すように、異物検知部14は、検知電極部301~304と、切替部51と、C/V変換部34と、信号処理部36とを備えている。なお、図9では、電圧供給部32及びシールド電極部451~454は記載を省略している。 As shown in FIG. 9, the foreign object detection unit 14 includes detection electrode units 301 to 304, a switching unit 51, a C / V conversion unit 34, and a signal processing unit 36. In FIG. 9, the voltage supply unit 32 and the shield electrode units 451 to 454 are not shown.
 切替部51は、検知電極部301~304と接続され、検知電極部301~304のうちのいずれか1つを、静電容量の変化を検知する電極として選択する。C/V変換部34は、切替部51によって選択された検知電極部301~304と、切替部51を介して接続され、その静電容量を電圧値に変換する。 The switching unit 51 is connected to the detection electrode units 301 to 304, and selects any one of the detection electrode units 301 to 304 as an electrode for detecting a change in capacitance. The C / V conversion unit 34 is connected to the detection electrode units 301 to 304 selected by the switching unit 51 via the switching unit 51, and converts the capacitance into a voltage value.
 信号処理部36は、C/V変換部34によって変換された電圧値に対応する信号、すなわち測定した静電容量値に対応する信号を給電制御部17に送信する。 The signal processing unit 36 transmits a signal corresponding to the voltage value converted by the C / V conversion unit 34, that is, a signal corresponding to the measured capacitance value to the power supply control unit 17.
 図9において、切替部51は、例えば時分割で検知電極部301~304を選択する。これにより、異物検知部14は、給電装置2(一次コイル44)と受電装置4(二次コイル60)との間に異物が侵入したときに、異物の侵入位置を特定することができる。例えば、異物検知部14の電極を図4(B),(C)に示したように、カバー40の上方部401の裏面と、側方部402の裏面の両方に設けた場合、例えば、異物が一次コイル44の上方にあるのか否か等を判断することができる。これにより、例えば、異物に位置に応じて、図5(B)のS23における伝送電力制御時の制御量を調整することができる。 In FIG. 9, the switching unit 51 selects the detection electrode units 301 to 304 by time division, for example. Thereby, the foreign material detection part 14 can pinpoint the penetration | invasion position of a foreign material, when a foreign material penetrate | invades between the electric power feeder 2 (primary coil 44) and the power receiving apparatus 4 (secondary coil 60). For example, when the electrodes of the foreign matter detector 14 are provided on both the back surface of the upper portion 401 and the back surface of the side portion 402 as shown in FIGS. It is possible to determine whether or not is located above the primary coil 44. Thereby, the control amount at the time of transmission power control in S23 of Drawing 5 (B) can be adjusted according to a foreign substance position, for example.
 [流路遮断部(2)]
 次に、異物検知部14の検知電極30が電極パターンで形成されている場合の流路遮断部の形成について説明する。
[Flow path blocking part (2)]
Next, the formation of the flow path blocking unit when the detection electrode 30 of the foreign object detection unit 14 is formed with an electrode pattern will be described.
 図10(A)は磁束密度Φと、所定の発熱量以下にするための電極パターン幅との関係を示した図である。より具体的には、図10(A)は、図10(B)に示す長さが10[mm]で幅がa[mm]の電極パターンにおいて、この電極パターンに鎖交する磁束密度Φと、所定の発熱量以下にするための電極パターン幅aとの関係を示している。この磁束密度Φと、所定の発熱量以下にするための電極パターン幅aとの関係は、数式2で表現される。 FIG. 10 (A) is a diagram showing the relationship between the magnetic flux density Φ and the electrode pattern width for reducing the heat generation amount to a predetermined value or less. More specifically, FIG. 10A shows a magnetic flux density Φ interlinked with the electrode pattern in the electrode pattern having a length of 10 mm and a width of a [mm] shown in FIG. The relationship with the electrode pattern width a for making it below a predetermined calorific value is shown. The relationship between the magnetic flux density Φ and the electrode pattern width a for making it equal to or less than a predetermined calorific value is expressed by Equation 2.
 Φ2=K/a    ・・・ (数式2)
 数式(2)において、Kは定数である。
Φ 2 = K / a (Equation 2)
In Equation (2), K is a constant.
 図10及び数式2に示すように、鎖交する磁束密度Φの高さによって、所定の発熱量以下となる検知電極パターンの幅aは異なる。 As shown in FIG. 10 and Formula 2, the width a of the detection electrode pattern that is equal to or less than a predetermined calorific value varies depending on the height of the interlinkage magnetic flux density Φ.
 図11及び図12は、異物検知部14の検知電極30が電極パターンで形成されている場合の流路遮断部の形成について説明するための図である。具体的には、図11は異物検知部14の検知電極30を構成する電極パターンの一例を示す図である。また、図12は、図11のX-X断面及びY-Y断面において、それぞれの断面に沿う方向(図12で左右方向)の各位置での磁束密度を示した図である。なお、図11では、カバー40の上方部401の裏面全体に、電極パターンを用いて形成された検知電極30が設けられているものとする。また、図12では、一次コイル44としてプレートコイルを用いた例を示している。 FIG. 11 and FIG. 12 are diagrams for explaining the formation of the flow path blocking unit when the detection electrode 30 of the foreign object detection unit 14 is formed with an electrode pattern. Specifically, FIG. 11 is a diagram illustrating an example of an electrode pattern constituting the detection electrode 30 of the foreign object detection unit 14. 12 is a diagram showing the magnetic flux density at each position in the direction along the cross-section (left-right direction in FIG. 12) in the XX cross-section and the YY cross-section of FIG. In FIG. 11, it is assumed that the detection electrode 30 formed using an electrode pattern is provided on the entire back surface of the upper portion 401 of the cover 40. FIG. 12 shows an example in which a plate coil is used as the primary coil 44.
 図12に示すように、Y-Y断面においては、一次コイル44のコイル部47の中心付近で磁束密度が最大になっており、一次コイル44の中心付近で磁束密度が最小になっている。また、X-X断面においては、一次コイル44の中心付近で磁束密度が最大になっており、一次コイル44の側断面視における左右方向(図12で左右方向)の両側の端部付近で磁束密度が最小になっている。 As shown in FIG. 12, in the YY section, the magnetic flux density is maximized near the center of the coil portion 47 of the primary coil 44, and the magnetic flux density is minimized near the center of the primary coil 44. In the XX cross section, the magnetic flux density is maximum near the center of the primary coil 44, and the magnetic flux is near the ends on both sides in the left-right direction (left-right direction in FIG. 12) in the side cross-sectional view of the primary coil 44. The density is minimized.
 図11(A)は、検知電極30(電極パターン)の各位置において、鎖交する磁束密度の高さに応じて、検知電極30(電極パターン)をA~Cゾーンの3つのゾーンに領域分けした図である。Aゾーンは、鎖交する磁束密度が一番高い領域であり、Cゾーンは、鎖交する磁束密度が一番低い領域である。 FIG. 11A shows that the detection electrode 30 (electrode pattern) is divided into three zones A to C at each position of the detection electrode 30 (electrode pattern) according to the height of the interlinkage magnetic flux density. FIG. The A zone is the region where the interlinkage magnetic flux density is the highest, and the C zone is the region where the interlinkage magnetic flux density is the lowest.
 図11(B)~(D)は、A~Cゾーンの各領域における電極パターンの一例を示す図である。より具体的には、(B)はAゾーンの領域Xにおける電極パターンの拡大図であり、(C)はBゾーンの領域Yにおける電極パターンの拡大図であり、(D)はCゾーンの領域Zにおける電極パターンの拡大図である。 FIGS. 11B to 11D are diagrams showing examples of electrode patterns in the respective areas of the A to C zones. More specifically, (B) is an enlarged view of the electrode pattern in the area X of the A zone, (C) is an enlarged view of the electrode pattern in the area Y of the B zone, and (D) is an area of the C zone. It is an enlarged view of the electrode pattern in Z.
 図11(B)に示すように、領域Xにおける電極パターンは、周方向に沿うように形成された第1電極パターン部52と、第1電極パターン部52と一体に形成され、第1電極パターン部52から径方向の外方に向かって延びる複数の第2電極パターン部53と、第2電極パターン部53と一体に形成され、周方向に沿うように櫛形に形成された第3電極パターン部54とを備えている。換言すると、周方向に沿うように形成された第1電極パターン部52には、「櫛形の第3電極パターン部54が形成された第2電極パターン部53」が周方向に並んで複数個形成されている。そして、隣接する2つの「櫛形の第3電極パターン部54が形成された第2電極パターン部53」の間には、流路遮断部としての空隙部55が形成されている。同様に、隣接する2つの第3電極パターン部54の間には、流路遮断部としての空隙部56が形成されている。ここで、第1,第2及び第3電極パターン部52~54のパターン幅はa1である。ここで、例えばa1は、Aゾーンにおける最大の磁束密度Φが第1~第3電極パターン部52~54を鎖交しても所定の発熱量以下となる値に設定する。 As shown in FIG. 11B, the electrode pattern in the region X is formed integrally with the first electrode pattern portion 52 and the first electrode pattern portion 52 that are formed along the circumferential direction. A plurality of second electrode pattern portions 53 extending radially outward from the portion 52, and a third electrode pattern portion formed integrally with the second electrode pattern portion 53 and formed in a comb shape along the circumferential direction 54. In other words, in the first electrode pattern portion 52 formed along the circumferential direction, a plurality of “second electrode pattern portions 53 in which the comb-shaped third electrode pattern portion 54 is formed” are formed side by side in the circumferential direction. Has been. Between two adjacent “second electrode pattern portions 53 on which the comb-shaped third electrode pattern portion 54 is formed”, a gap portion 55 is formed as a flow path blocking portion. Similarly, a gap portion 56 as a flow path blocking portion is formed between two adjacent third electrode pattern portions 54. Here, the pattern width of the first, second and third electrode pattern portions 52 to 54 is a1. Here, for example, a1 is set to a value at which the maximum magnetic flux density Φ in the A zone is not more than a predetermined heat generation amount even when the first to third electrode pattern portions 52 to 54 are linked.
 図11(C)に示すように、領域Yにおける電極パターンの形状は図11(B)と同様であり、第1~第3電極パターン部52~54のパターン幅はa2である。ここで、例えばa2は、Bゾーンにおける最大の磁束密度Φが第1~第3電極パターン部52~54を鎖交しても所定の発熱量以下となる値に設定する。 As shown in FIG. 11C, the shape of the electrode pattern in the region Y is the same as that in FIG. 11B, and the pattern widths of the first to third electrode pattern portions 52 to 54 are a2. Here, for example, a2 is set to a value at which the maximum magnetic flux density Φ in the B zone is not more than a predetermined heat generation amount even when the first to third electrode pattern portions 52 to 54 are linked.
 図11(D)に示すように、領域Zにおける電極パターンの形状は図11(B)から第3電極パターン部を省いた形状となっている。また、第1、および第2電極パターン部52,53のパターン幅はa3である。ここで、例えばa3は、Cゾーンにおける最大の磁束密度Φが第1及び第2電極パターン部52,53を鎖交しても所定の発熱量以下となる値に設定する。 As shown in FIG. 11D, the shape of the electrode pattern in the region Z is a shape obtained by omitting the third electrode pattern portion from FIG. The pattern width of the first and second electrode pattern portions 52 and 53 is a3. Here, for example, a3 is set to a value at which the maximum magnetic flux density Φ in the C zone is not more than a predetermined heat generation amount even when the first and second electrode pattern portions 52 and 53 are linked.
 ここで、図11(B)~(D)において、第1電極パターン部52は、周方向に沿うように形成されているが、少なくともその一部に流路遮断部としての空隙部が形成されている。 Here, in FIGS. 11B to 11D, the first electrode pattern portion 52 is formed so as to extend along the circumferential direction, and at least part of the first electrode pattern portion 52 is formed with a gap portion as a flow path blocking portion. ing.
 上記のように電極パターンを形成することにより、鎖交する磁束密度が高い領域(例えばAゾーン)の方が、鎖交する磁束密度が低い領域(例えばCゾーン)と比較して、配線密度が低くなっている。 By forming the electrode pattern as described above, the wiring density is higher in the region where the interlinkage magnetic flux density is higher (for example, the A zone) than in the region where the interlinkage magnetic flux density is lower (for example, the C zone). It is low.
 なお、図11及び図12の例では、3つのゾーン(領域)に分ける例を示したが、3つ以上の領域に分けてもよい。その場合も、各領域のパターン幅は鎖交する磁束密度に応じて設定すればよい。 In addition, in the example of FIG.11 and FIG.12, although the example divided into three zones (area | region) was shown, you may divide into three or more area | regions. Even in that case, the pattern width of each region may be set in accordance with the interlinkage magnetic flux density.
 また、設定した領域のうちのいずれかの領域において、鎖交する磁束が十分に小さい場合には、検知電極30として電極パターンを用いずに、平板の電極を用いてもよい。したがって、例えばカバー40の側方部402の裏面に検知電極30(異物検知部14)を設置する場合に、鎖交する磁束が十分に小さい場合には、平板の電極を用いてもよい。この場合、例えばカバー40の側方部402には検知電極30のみを設けて、異物検知部14の検知電極30以外の部分を省いてもかまわない(図4(C)参照)。 Further, in any one of the set regions, when the interlinkage magnetic flux is sufficiently small, a flat electrode may be used as the detection electrode 30 without using the electrode pattern. Therefore, for example, when the detection electrode 30 (foreign matter detection unit 14) is installed on the back surface of the side portion 402 of the cover 40, a flat plate electrode may be used if the interlinkage magnetic flux is sufficiently small. In this case, for example, only the detection electrode 30 may be provided on the side portion 402 of the cover 40, and the portion other than the detection electrode 30 of the foreign matter detection unit 14 may be omitted (see FIG. 4C).
 また、電極パターン部の形状は、図11(B)~(D)に限られるものではない。具体的には、電極パターンに含まれる配線幅がその領域における最大の磁束密度Φが鎖交しても所定の発熱量以下となる値に設定され、かつ電極パターンに鎖交する磁束に起因する渦電流を遮断する流路遮断部が形成されていればよい。 Further, the shape of the electrode pattern portion is not limited to FIGS. 11 (B) to (D). Specifically, the wiring width included in the electrode pattern is set to a value that is equal to or less than a predetermined calorific value even when the maximum magnetic flux density Φ in the region is interlinked, and is caused by the magnetic flux interlinking the electrode pattern. It is only necessary to form a flow path blocking unit that blocks eddy current.
 より具体的には、例えば図11(B)~(D)において、第2電極パターン部53は、第1電極パターン部52から径方向の外方に向かって延びるものとしたが、径方向の内方に向かって延びてもよい。また、図11(B)~(D)において、各ゾーンにおいて、第1電極パターン部52が複数形成されていてもかまわない。その場合各第1電極パターン部52に対して、第2及び第3電極パターン部53,54が形成される。 More specifically, for example, in FIGS. 11B to 11D, the second electrode pattern portion 53 extends from the first electrode pattern portion 52 outward in the radial direction. It may extend inward. In FIGS. 11B to 11D, a plurality of first electrode pattern portions 52 may be formed in each zone. In that case, second and third electrode pattern portions 53 and 54 are formed for each first electrode pattern portion 52.
 また、図11(B)~(D)では、隣接する2つの「櫛形の第3電極パターン部54が形成された第2電極パターン部53」の間が径方向の外方に向かうにしたがって広がるため、例えば、図11(B),(C)において、第3電極パターン部54の長さが、径方向の外側に向かうにしたがって次第に長くなるようにしてもよい。また、図11(D)では、第3電極パターン部54は省いたが、径方向の外方においては、図11(B),(C)と同様に、パターン幅がa3の第3電極パターン部54を設けてもよい。これにより、径方向の外方に電極パターン部の存在しない場所が形成されるのを防ぐことができる。 Also, in FIGS. 11B to 11D, the space between two adjacent “second electrode pattern portions 53 on which the comb-shaped third electrode pattern portion 54 is formed” spreads outward in the radial direction. Therefore, for example, in FIGS. 11B and 11C, the length of the third electrode pattern portion 54 may be gradually increased toward the outer side in the radial direction. Further, in FIG. 11D, the third electrode pattern portion 54 is omitted, but the third electrode pattern having a pattern width of a3 is formed on the outer side in the radial direction as in FIGS. 11B and 11C. A portion 54 may be provided. Thereby, it can prevent that the place where an electrode pattern part does not exist is formed in the outside of a diameter direction.
 また、図11及び図12では、一次コイルがプレートコイルの例について説明したが、一次コイルはソレノイドコイルでも同様である。図13は、一次コイルがソレノイドコイル(コイル部48)の場合において、図11のY-Y断面において、それぞれの断面に沿う方向(図13で左右方向)の各位置での磁束密度を示した図である。図13に示すように、鎖交する磁束密度の高さに基づいて、図12と同様の領域分けを行うことができ、この領域に基づいて電極パターンを形成すればよい。 11 and 12, the example in which the primary coil is a plate coil has been described, but the primary coil may be the same as a solenoid coil. FIG. 13 shows the magnetic flux density at each position in the direction along the cross-section (left-right direction in FIG. 13) in the YY cross-section of FIG. 11 when the primary coil is a solenoid coil (coil portion 48). FIG. As shown in FIG. 13, based on the height of the interlinkage magnetic flux density, the same region division as that in FIG. 12 can be performed, and an electrode pattern may be formed based on this region.
 以上のように、異物検知部14の検知電極30を電極パターンで形成することにより、検知電極30及びシールド電極45に生じる渦電流(一次コイル44が発生する磁束の鎖交に起因して生じる渦電流)の流路を遮断することができる。さらに、磁束強度に応じたパターン幅にしているため、鎖交する磁束密度の低い部分ではパターン幅を太くするまたは平板の電極を用いることができ、検知電極の形成が容易になる。 As described above, by forming the detection electrode 30 of the foreign object detection unit 14 with an electrode pattern, an eddy current generated in the detection electrode 30 and the shield electrode 45 (an eddy generated due to the linkage of magnetic flux generated by the primary coil 44). The current flow path can be interrupted. Furthermore, since the pattern width is set in accordance with the magnetic flux intensity, the pattern width can be increased or a flat electrode can be used in a portion where the interlinkage magnetic flux density is low, and the detection electrode can be easily formed.
 [給電コイルユニットの他の構成例]
 図14は給電装置2の給電コイルユニット12及び周辺の側断面図の一例を示す図である。図14では、給電装置2は、図4(A)に示した給電コイルユニット12に加えて、カバー40を取り付ける基体71と、一端が基体71に固定され、他端がシールド電極45の下面を支持する支持部材70とを備えている。また、図4(A)と比較すると、異物検知部14及びシールド電極45が側断面視で左右方向(図14で左右方向)に長くなっている。
[Other configuration examples of the feeding coil unit]
FIG. 14 is a diagram illustrating an example of a side sectional view of the power feeding coil unit 12 and the periphery of the power feeding device 2. In FIG. 14, in addition to the power supply coil unit 12 shown in FIG. 4A, the power supply device 2 has a base 71 to which the cover 40 is attached, one end fixed to the base 71, and the other end covering the lower surface of the shield electrode 45. And a supporting member 70 for supporting. 4A, the foreign object detection unit 14 and the shield electrode 45 are longer in the left-right direction (left-right direction in FIG. 14) in a side sectional view.
 図14に示すように、給電装置2に支持部材70を設けることによって、検知電極30の表面がカバー40の上方部401の裏面(一次コイル44側の面)に接するように、異物検知部14を支持することができる。これにより、上方部401の裏面から離れた位置に検知電極30が設けられている場合と比較して、カバー40上にある異物との距離を縮めることができる。すなわち、給電装置2に支持部材70を設けることによって、カバー40周辺に侵入した異物を確実に検知することができる。 As shown in FIG. 14, by providing the support member 70 in the power feeding device 2, the foreign object detection unit 14 is arranged so that the surface of the detection electrode 30 is in contact with the back surface (surface on the primary coil 44 side) of the upper portion 401 of the cover 40. Can be supported. Thereby, compared with the case where the detection electrode 30 is provided in the position away from the back surface of the upper part 401, the distance with the foreign material on the cover 40 can be shortened. That is, by providing the support member 70 in the power feeding device 2, foreign matter that has entered the periphery of the cover 40 can be reliably detected.
 なお、図14において、支持部材70にカバー40上から押付荷重が加わった場合において、押付荷重が解除されたとき、検知電極30がカバー40の上方部401の裏面の元の位置に接するように調整する位置調整部72を有していてもよい。これにより、カバー40上から押付荷重が加わった場合においても、押付荷重が解除された後には検知電極30が上方部401の裏面の元の位置に接する。これにより、カバー40上から押付荷重が加わった場合においても、押付荷重が解除された後にはカバー40周辺に侵入した異物を確実に検知することができる。 In FIG. 14, when a pressing load is applied to the support member 70 from above the cover 40, the detection electrode 30 comes into contact with the original position on the back surface of the upper portion 401 of the cover 40 when the pressing load is released. You may have the position adjustment part 72 to adjust. Accordingly, even when a pressing load is applied from above the cover 40, the detection electrode 30 contacts the original position on the back surface of the upper portion 401 after the pressing load is released. Thereby, even when a pressing load is applied from above the cover 40, it is possible to reliably detect foreign matter that has entered the periphery of the cover 40 after the pressing load is released.
 上述の実施形態では、給電装置2の給電コイルユニット12に異物検知部14が設けられている場合について説明したが、本発明はこれに限られるものではない。例えば、異物検知部14は、受電装置4の受電コイルユニット18に設けられていてもよい。さらに、給電コイルユニット12及び受電コイルユニット18に異物検知部がそれぞれ設けられていてもよい。 In the above-described embodiment, the case where the power supply coil unit 12 of the power supply apparatus 2 is provided with the foreign matter detection unit 14 has been described, but the present invention is not limited to this. For example, the foreign matter detection unit 14 may be provided in the power receiving coil unit 18 of the power receiving device 4. Further, the power supply coil unit 12 and the power receiving coil unit 18 may be provided with foreign matter detection units, respectively.
 また、図5(A),(B)のフローチャートに示す処理では、初期設定値と異物処理設定値との2つの基準を設けて、段階的に異物検知等の処理を行う場合について説明したが、例えば設定値を初期設定値として、1つの基準により異物検知等の処理を行ってもよい。 In the processing shown in the flowcharts of FIGS. 5A and 5B, the case has been described in which two criteria, the initial setting value and the foreign matter processing setting value, are provided and processing such as foreign matter detection is performed step by step. For example, processing such as foreign object detection may be performed based on one reference with a set value as an initial set value.
 また、上記の各態様では、検知電極30とシールド電極45とは重なっているものとして説明したが、これに限定されない。例えば、検知電極30とシールド電極45との大きさが異なってもよいし、重なっていない部分があってもかまわない。ただし、検知電極30の下方にはシールド電極45があるのが好ましい。したがって、検知電極30とシールド電極45との大きさが異なる場合であっても、シールド電極45の面積の方が検知電極の面積よりも大きいのが好ましい。 In each of the above embodiments, the detection electrode 30 and the shield electrode 45 are described as overlapping, but the present invention is not limited to this. For example, the sizes of the detection electrode 30 and the shield electrode 45 may be different, or there may be portions that do not overlap. However, the shield electrode 45 is preferably provided below the detection electrode 30. Therefore, even when the detection electrode 30 and the shield electrode 45 are different in size, the area of the shield electrode 45 is preferably larger than the area of the detection electrode.
 また、上記様々な態様のうちの任意の態様を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。例えば、図6~図8と図11の電極パターンとを組み合わせてもよい。 In addition, by appropriately combining arbitrary aspects of the above-described various aspects, it is possible to achieve the respective effects. For example, the electrode patterns shown in FIGS. 6 to 8 and FIG. 11 may be combined.
 以上のように、本発明の非接触電力伝送装置は、給電装置から受電装置への給電中にカバー周辺に侵入した異物を確実に検知できるため、例えば人や物が不注意にあるいは誤って近づく可能性がある電気推進車両に備わる受電装置への給電等に有用である。 As described above, the contactless power transmission device of the present invention can reliably detect foreign matter that has entered the periphery of the cover during power feeding from the power feeding device to the power receiving device, so that, for example, a person or an object approaches carelessly or mistakenly. This is useful for power supply to a power receiving device provided in a potential electric propulsion vehicle.
2 給電装置
4 受電装置
14 異物検知部(静電容量センサ)
30 検知電極
301,302,303,304 検知電極部
40 カバー
401 上方部
402 側方部
42 空隙部(流路遮断部)
43 空隙部(流路遮断部)
49 切欠部(流路遮断部)
44 一次コイル
45 シールド電極
50 空隙部(流路遮断部)
51 切替部
55,56 空隙部(流路遮断部)
60 二次コイル
70 支持部材
72 位置調整部
2 Power feeding device 4 Power receiving device 14 Foreign matter detection unit (capacitance sensor)
30 detection electrode 301,302,303,304 detection electrode part 40 cover 401 upper part 402 side part 42 space | gap part (flow-path interruption | blocking part)
43 Cavity (channel blocking part)
49 Notch (flow path blocking part)
44 Primary coil 45 Shield electrode 50 Air gap (flow path blocking part)
51 Switching part 55, 56 Air gap part (flow path blocking part)
60 Secondary coil 70 Support member 72 Position adjustment part

Claims (13)

  1.  給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う非接触電力伝送装置であって、
     前記給電装置は、
     磁束を発生する一次コイルと、
     前記一次コイルを覆うカバーと、
     前記一次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、
     前記検知電極と前記一次コイルとの間に介在するシールド電極とを備えており、
     前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している
    ことを特徴とする非接触電力伝送装置。
    A non-contact power transmission device that performs power transmission using electromagnetic induction between a power feeding device and a power receiving device,
    The power supply device
    A primary coil that generates magnetic flux;
    A cover covering the primary coil;
    A capacitance sensor that has a detection electrode provided between the primary coil and the cover, and that detects a foreign object around the cover based on a change in capacitance detected via the detection electrode; ,
    A shield electrode interposed between the detection electrode and the primary coil,
    The non-contact power transmission device according to claim 1, wherein the detection electrode has a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux.
  2.  請求項1記載の非接触電力伝送装置において、
     前記シールド電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The non-contact power transmission device, wherein the shield electrode has a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux.
  3.  請求項1記載の非接触電力伝送装置において、
     前記検知電極は、前記流路遮断部によって複数の検知電極部に、電気的に分離されており、
     前記静電容量センサは、前記各検知電極部を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The detection electrode is electrically separated into a plurality of detection electrode portions by the flow path blocking portion,
    The non-contact power transmission device according to claim 1, wherein the capacitance sensor detects a foreign matter around the cover based on a change in capacitance detected through the detection electrode portions.
  4.  請求項3記載の非接触電力伝送装置において、
     前記静電容量センサは、
     前記各検知電極部と接続され、前記検知電極部のうちのいずれか1つを、静電容量の変化を検知する電極として、選択する切替部をさらに有しており、
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 3,
    The capacitance sensor
    A switching unit that is connected to each of the detection electrode units and selects any one of the detection electrode units as an electrode that detects a change in capacitance;
    A non-contact power transmission device.
  5.  請求項1記載の非接触電力伝送装置において、
     前記検知電極の配線密度は、通過する磁束量が少ない位置に比べて、通過する磁束量が多い位置の方が低い
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The non-contact power transmission apparatus according to claim 1, wherein the wiring density of the detection electrodes is lower at a position where the amount of magnetic flux passing therethrough is lower than a position where the amount of magnetic flux passing therethrough is small.
  6.  請求項1記載の非接触電力伝送装置において、
     前記シールド電極の面積は、前記検知電極の面積よりも大きい
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The non-contact power transmission device, wherein an area of the shield electrode is larger than an area of the detection electrode.
  7.  請求項1記載の非接触電力伝送装置において、
     前記カバーは、前記一次コイルの上方を覆う上方部と、前記一次コイルの側方を覆う側方部とを有しており、
     前記検知電極は、前記カバーの上方部と前記一次コイルの間及び前記カバーの側方部と前記一次コイルとの間に設けられており、
    前記一次コイルの上方及び側方の検知電極は、それぞれ、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The cover has an upper part that covers the upper side of the primary coil, and a side part that covers the side of the primary coil,
    The detection electrode is provided between the upper part of the cover and the primary coil and between the side part of the cover and the primary coil,
    The non-contact power transmission device according to claim 1, wherein each of the upper and side detection electrodes of the primary coil includes a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux.
  8.  請求項1記載の非接触電力伝送装置において、
     前記検知電極は、表面が前記カバーの裏面に接するように配置されている
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The non-contact power transmission device, wherein the detection electrode is disposed so that a surface thereof is in contact with a back surface of the cover.
  9.  請求項8記載の非接触電力伝送装置において、
     前記検知電極を、前記カバーの裏面に接するように、支持する支持部材を備えている
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 8,
    A contactless power transmission device, comprising: a support member that supports the detection electrode so as to contact the back surface of the cover.
  10.  請求項9記載の非接触電力伝送装置において、
     前記支持部材は、前記カバーに外側から押付荷重が加わった場合において、当該押付荷重が解除されたとき、前記検知電極が前記カバーの裏面の元の位置に接するように調整する位置調整部を備えている
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 9,
    The support member includes a position adjusting unit that adjusts the detection electrode so that the detection electrode comes into contact with the original position of the back surface of the cover when the pressing load is released from the outside when the pressing load is applied to the cover. A non-contact power transmission device.
  11.  給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う非接触電力伝送装置であって、
     前記受電装置は、
     前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、
     前記二次コイルを覆うカバーと、
     前記二次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、
     前記検知電極と前記二次コイルとの間に介在するシールド電極とを備えており、
     前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している
    ことを特徴とする非接触電力伝送装置。
    A non-contact power transmission device that performs power transmission using electromagnetic induction between a power feeding device and a power receiving device,
    The power receiving device is:
    A secondary coil that generates an electromotive force in response to magnetic flux received from the power supply device;
    A cover covering the secondary coil;
    A capacitance sensor having a detection electrode provided between the secondary coil and the cover and detecting foreign matter around the cover based on a change in capacitance detected through the detection electrode When,
    A shield electrode interposed between the detection electrode and the secondary coil,
    The non-contact power transmission device according to claim 1, wherein the detection electrode has a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux.
  12.  対向して配置された非接触電力伝送装置の受電装置に対して、電磁誘導を用いた給電を行う給電装置であって、
     磁束を発生する一次コイルと、
     前記一次コイルを覆うカバーと、
     前記一次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、
     前記検知電極と前記一次コイルとの間に介在するシールド電極とを備えており、
     前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している
    ことを特徴とする給電装置。
    A power feeding device that performs power feeding using electromagnetic induction to a power receiving device of a non-contact power transmission device arranged oppositely,
    A primary coil that generates magnetic flux;
    A cover covering the primary coil;
    A capacitance sensor that has a detection electrode provided between the primary coil and the cover, and that detects a foreign object around the cover based on a change in capacitance detected via the detection electrode; ,
    A shield electrode interposed between the detection electrode and the primary coil,
    The power supply apparatus according to claim 1, wherein the detection electrode includes a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux.
  13.  非接触電力伝送装置の給電装置から伝送された電力を受電する受電装置であって、
     前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、
     前記二次コイルを覆うカバーと、
     前記二次コイルと前記カバーとの間に設けられた検知電極を有しており、前記検知電極を介して検知した静電容量の変化に基づいて前記カバー周辺の異物を検知する静電容量センサと、
     前記検知電極と前記二次コイルとの間に介在するシールド電極とを備えており、
     前記検知電極は、前記磁束により生じる渦電流の流路を遮る流路遮断部を有している
    ことを特徴とする受電装置。
    A power receiving device that receives power transmitted from a power supply device of a non-contact power transmission device,
    A secondary coil that generates an electromotive force in response to magnetic flux received from the power supply device;
    A cover covering the secondary coil;
    A capacitance sensor having a detection electrode provided between the secondary coil and the cover and detecting foreign matter around the cover based on a change in capacitance detected through the detection electrode When,
    A shield electrode interposed between the detection electrode and the secondary coil,
    The power receiving device according to claim 1, wherein the detection electrode includes a flow path blocking unit that blocks a flow path of eddy current generated by the magnetic flux.
PCT/JP2012/006930 2011-10-28 2012-10-29 Contactless power transmission device, and power supply device and power receiving device used therein WO2013061615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-236893 2011-10-28
JP2011236893A JP2015008548A (en) 2011-10-28 2011-10-28 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
WO2013061615A1 true WO2013061615A1 (en) 2013-05-02

Family

ID=48167463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006930 WO2013061615A1 (en) 2011-10-28 2012-10-29 Contactless power transmission device, and power supply device and power receiving device used therein

Country Status (2)

Country Link
JP (1) JP2015008548A (en)
WO (1) WO2013061615A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2814046A3 (en) * 2013-06-11 2015-04-29 Kabushiki Kaisha Toshiba Leakage preventing device of electromagnetic wave
WO2015068476A1 (en) * 2013-11-06 2015-05-14 本田技研工業株式会社 Non-contact power transmission system
WO2015176856A1 (en) * 2014-05-20 2015-11-26 Bombardier Transportation Gmbh A housing for at least one object detection device, a primary unit and a pavement slab assembly
JP2016529865A (en) * 2013-08-06 2016-09-23 モーメンタム ダイナミックス コーポレーション Method and apparatus for detecting coil alignment error in wireless inductive power transmission
EP3061643A4 (en) * 2013-09-27 2016-11-02 Nissan Motor Vehicle mounting structure of contactless electricity reception device
WO2018057346A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Electromagnetic shielding for wireless power transfer systems
US10084349B2 (en) 2017-02-15 2018-09-25 Apple Inc. Inductive module
WO2019096737A1 (en) * 2017-11-14 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Coil unit for an inductive charging system
CN111656469A (en) * 2018-02-15 2020-09-11 Abb电网瑞士股份公司 Insulation of non-liquid immersed transformer
US10910862B2 (en) 2016-09-23 2021-02-02 Apple Inc. Electromagnetic shielding for wireless power transfer systems
WO2022163347A1 (en) * 2021-01-29 2022-08-04 ローム株式会社 Transformer chip, and signal-transmitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978918B1 (en) * 2020-01-02 2021-04-13 Apple Inc. Wireless power devices with capacitive foreign object detection sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716553U (en) * 1993-08-25 1995-03-17 松下電工株式会社 Power supply
JPH08238326A (en) * 1995-03-03 1996-09-17 Kaajiopeeshingu Res Lab:Kk Primary side core of transformer for contactless energy transmissoin system
JP2009170627A (en) * 2008-01-16 2009-07-30 Ricoh Elemex Corp Noncontact receiving device
JP2009200174A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
WO2011040392A1 (en) * 2009-09-29 2011-04-07 国立大学法人 電気通信大学 Device, system, and method for transmitting electric power and information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716553U (en) * 1993-08-25 1995-03-17 松下電工株式会社 Power supply
JPH08238326A (en) * 1995-03-03 1996-09-17 Kaajiopeeshingu Res Lab:Kk Primary side core of transformer for contactless energy transmissoin system
JP2009170627A (en) * 2008-01-16 2009-07-30 Ricoh Elemex Corp Noncontact receiving device
JP2009200174A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
WO2011040392A1 (en) * 2009-09-29 2011-04-07 国立大学法人 電気通信大学 Device, system, and method for transmitting electric power and information

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2814046A3 (en) * 2013-06-11 2015-04-29 Kabushiki Kaisha Toshiba Leakage preventing device of electromagnetic wave
JP2016529865A (en) * 2013-08-06 2016-09-23 モーメンタム ダイナミックス コーポレーション Method and apparatus for detecting coil alignment error in wireless inductive power transmission
US10193400B2 (en) 2013-08-06 2019-01-29 Momentum Dynamics Corporation Method of and apparatus for detecting coil alignment error in wireless inductive power transmission
EP3061643A4 (en) * 2013-09-27 2016-11-02 Nissan Motor Vehicle mounting structure of contactless electricity reception device
WO2015068476A1 (en) * 2013-11-06 2015-05-14 本田技研工業株式会社 Non-contact power transmission system
WO2015176856A1 (en) * 2014-05-20 2015-11-26 Bombardier Transportation Gmbh A housing for at least one object detection device, a primary unit and a pavement slab assembly
CN106573544A (en) * 2014-05-20 2017-04-19 庞巴迪无接触运行有限责任公司 A housing for at least one object detection device, a primary unit and a pavement slab assembly
CN108780696A (en) * 2016-09-23 2018-11-09 苹果公司 Electromagnetic screen for Wireless power transmission system
WO2018057346A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Electromagnetic shielding for wireless power transfer systems
CN108780696B (en) * 2016-09-23 2021-01-08 苹果公司 Electromagnetic shielding device for wireless power transmission system
US10910862B2 (en) 2016-09-23 2021-02-02 Apple Inc. Electromagnetic shielding for wireless power transfer systems
US10084349B2 (en) 2017-02-15 2018-09-25 Apple Inc. Inductive module
WO2019096737A1 (en) * 2017-11-14 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Coil unit for an inductive charging system
CN111656469A (en) * 2018-02-15 2020-09-11 Abb电网瑞士股份公司 Insulation of non-liquid immersed transformer
CN111656469B (en) * 2018-02-15 2022-03-25 日立能源瑞士股份公司 Insulation of non-liquid immersed transformer
US11335498B2 (en) 2018-02-15 2022-05-17 Hitachi Energy Switzerland Ag Insulation of non-liquid immersed transformers
WO2022163347A1 (en) * 2021-01-29 2022-08-04 ローム株式会社 Transformer chip, and signal-transmitting device

Also Published As

Publication number Publication date
JP2015008548A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2013061615A1 (en) Contactless power transmission device, and power supply device and power receiving device used therein
US9704643B2 (en) Contactless power transmission device, and power feeder and power receiver for use in the same
JP6210467B2 (en) Non-contact power supply device and detection sensor
WO2013001810A1 (en) Power supply device and power receiving device used in contactless power transmission
RU2554103C1 (en) Non-contact power supply device
US10279691B2 (en) Contactless feeding pad and contactless feeding device
JP2016504755A (en) Coil arrangement in a wireless power transfer system for low electromagnetic radiation
JP2015008547A (en) Non-contact power charger
WO2013061618A1 (en) Contactless power transmission device and power supply device and power receiving device used therein
JP6330637B2 (en) Power receiving device
JP2015008549A (en) Non-contact power transmission device
US20190241087A1 (en) Thermal Feedback for Power Transfer Optimization
JP2015008552A (en) Non-contact power charger
WO2014030294A1 (en) Non-contact power transmission system and non-contact transmission device
WO2013061613A1 (en) Contactless charging device
WO2013001812A1 (en) Power supply device and power-receiving device used for non-contact electric power transmission
WO2013061617A1 (en) Contactless electrical power transmission device, and electricity supply device and electricity reception device using same
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
JP5903990B2 (en) Contactless power supply
WO2013001811A1 (en) Power supply device and power-receiving device used for non-contact electric power transmission
JP2013225980A (en) Non-contact power supply device
JPH11178104A (en) Noncontact feeding equipment
JP2014113018A (en) Non-contact power supply device
JP2014113017A (en) Non-contact power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP