WO2013061617A1 - Contactless electrical power transmission device, and electricity supply device and electricity reception device using same - Google Patents

Contactless electrical power transmission device, and electricity supply device and electricity reception device using same Download PDF

Info

Publication number
WO2013061617A1
WO2013061617A1 PCT/JP2012/006932 JP2012006932W WO2013061617A1 WO 2013061617 A1 WO2013061617 A1 WO 2013061617A1 JP 2012006932 W JP2012006932 W JP 2012006932W WO 2013061617 A1 WO2013061617 A1 WO 2013061617A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
capacitance sensor
transmission device
cover
Prior art date
Application number
PCT/JP2012/006932
Other languages
French (fr)
Japanese (ja)
Inventor
柏本 隆
芳弘 阪本
大森 義治
秀樹 定方
裕明 栗原
藤田 篤志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013061617A1 publication Critical patent/WO2013061617A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/124Detection or removal of foreign bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a contactless power transmission device suitable for contactless power transmission, and more particularly to a contactless power transmission device used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
  • FIG. 8 is a diagram showing the configuration of the non-contact power transmission device and the periphery of the device disclosed in Patent Document 1.
  • the non-contact power transmission device 101 includes a power feeding device (primary side) F connected to a power panel of a ground-side power source 104, and a power receiving device (secondary side) G mounted on an electric vehicle or train. It has. And at the time of electric power feeding, the electric power feeder F and the receiving device G are arrange
  • the power receiving device G is connected to, for example, the in-vehicle battery 105, and the electric power transmitted from the power feeding device F to the power receiving device G is charged in the in-vehicle battery 105.
  • the in-vehicle motor 106 is driven by the electric power stored in the in-vehicle battery 105.
  • the wireless communication device 107 performs necessary information exchange between the power feeding device F and the power receiving device G during processing related to contactless power feeding.
  • FIG. 9 is a cross-sectional view of the power feeding device F (power receiving device G) of FIG.
  • FIG. 9A is a plan cross-sectional view of the power feeding device F (power receiving device G)
  • FIG. 9B is a side cross-sectional view of the power feeding device F (power receiving device G).
  • the power feeding device F includes a primary coil 102, a primary magnetic core 108, a back plate 110, and a cover 111.
  • the power receiving device G includes a secondary coil 103, a secondary magnetic core 109, a back plate 110, and a cover 111.
  • the surfaces of the primary coil 102 and the primary magnetic core 108 of the power feeding device F and the surfaces of the secondary coil 103 and the secondary magnetic core 109 of the power receiving device G are covered and fixed by the mold resin 112 mixed with the foam material 113. ing.
  • the mold resin 112 is filled between the back plate 110 and the cover 111 of the power feeding device F (power receiving device G), and the primary coil 102 (secondary coil 103) and the primary magnetic core 108 (secondary magnetic core) inside.
  • the surface of the core 109) is fixedly covered with a mold resin 112.
  • the mold resin 112 is made of, for example, silicon resin, and is fixed as described above, thereby fixing the position of the primary coil 102 (secondary coil 103), ensuring its mechanical strength and exhibiting a heat dissipation function. To do. That is, in the primary coil 102 (secondary coil 103), an exciting current flows and heat is generated by Joule heat, but is radiated and cooled by heat conduction of the mold resin 112.
  • a sensor for detecting a foreign matter that has entered between the power feeding device and the power receiving device is provided.
  • a temperature sensor for detecting overheating of a metal foreign object is used.
  • an abnormality such as a failure occurs in the sensor that detects foreign matter, it is not possible to detect overheating of the foreign matter that has entered.
  • the present invention can reliably detect the intrusion of foreign matter around the cover of the power supply device or the power reception device, particularly between the power supply device (primary coil) and the power reception device (secondary coil).
  • An object of the present invention is to provide a non-contact power transmission device.
  • the non-contact power transmission device performs power transmission using electromagnetic induction between the power feeding device and the power receiving device.
  • the power supply apparatus includes a base, a primary coil that is provided on the base and generates magnetic flux, and a cover that is attached to the base and covers the primary coil.
  • the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover, and a monitoring unit that monitors a signal detected by the capacitance sensor.
  • the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover and a monitoring unit that monitors a signal detected by the capacitance sensor. It is possible to operate the capacitance sensor before starting the power feeding operation by the power feeding device, and to check the normal operation of the capacitance sensor by the monitoring unit. Thereby, it can prevent that the electric power feeding operation
  • the non-contact power transmission device performs power transmission using electromagnetic induction between the power feeding device and the power receiving device.
  • the power receiving device includes a base body, a secondary coil that is provided on the base body and generates an electromotive force according to the magnetic flux received from the power feeding device, and a cover that is attached to the base body and covers the secondary coil And.
  • the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover, and a monitoring unit that monitors a signal detected by the capacitance sensor.
  • the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover and a monitoring unit that monitors a signal detected by the capacitance sensor. It is possible to operate the capacitance sensor before starting the power feeding operation by the power feeding device, and to check the normal operation of the capacitance sensor by the monitoring unit. Thereby, it can prevent that the electric power feeding operation
  • a power supply device that supplies power using electromagnetic induction to a power receiving device of a non-contact power transmission device disposed opposite to the power receiving device is provided on a base, the base, and a magnetic flux A cover that is attached to the base and covers the primary coil, a capacitance sensor that detects foreign matter around the cover, and a monitoring unit that monitors a signal detected by the capacitance sensor It has.
  • a power receiving device that receives power transmitted from a power feeding device of a non-contact power transmission device is provided on a base and the base, and is generated according to a magnetic flux received from the power feeding device.
  • a secondary coil that generates electric power, a cover that is attached to the base and covers the secondary coil, a capacitance sensor that detects foreign matter around the cover, and a signal detected by the capacitance sensor are monitored. And a monitoring unit.
  • the non-contact power transmission device can reliably detect the intrusion of foreign matter around the cover of the power feeding device or the power receiving device.
  • FIG. 2 is an external view showing a state where the vehicle is installed in a parking space when the power feeding device of the non-contact power transmission device shown in FIG. 1 is laid on the ground and the power receiving device is mounted on the vehicle.
  • It is a block diagram which shows the structural example of a foreign material detection part.
  • A), (B), (C) It is a figure which shows an example of the sectional side view of a feeding coil unit.
  • It is a flowchart which shows an example of the non-contact electric power transmission control and foreign material detection control which concern on this embodiment. It is a flowchart which shows an example of a foreign material detection part abnormality process.
  • FIG. 1 is a diagram illustrating a configuration example of a non-contact power transmission apparatus according to an embodiment.
  • FIG. 2 is an external view of a state where the electric propulsion vehicle is installed in the parking space.
  • the non-contact power transmission device receives a voltage from a commercial power supply 6 and generates a magnetic field, and a power receiving device 4 that receives a magnetic field from the power supply device 2 and receives power as power. And.
  • the power supply device 2 generates a magnetic flux (magnetic field) by receiving a power supply box 8 as a power supply unit connected to the commercial power supply 6, an inverter unit 10 that receives the output of the power supply box 8, and an output from the inverter unit 10.
  • the feeding coil unit 12 having a primary coil 44 (indicated as a coil unit in FIG. 1), a capacitance sensor, a foreign matter detection unit 14 for detecting foreign matter, and a monitoring unit 17 to be described later are provided.
  • a power supply control unit for example, a microcomputer; expressed as a control unit in FIG. 1) 16 for controlling the power supply device 2 is provided.
  • the commercial power source 6 is a 200V commercial power source which is a low frequency AC power source, for example.
  • the power receiving device 4 generates an electromotive force according to the magnetic flux received from the power feeding coil unit 12 and has a power receiving coil unit 18 having a secondary coil 45 (denoted as a coil unit in FIG. 1), and an output of the power receiving coil unit 18.
  • a rectifying unit 20 for receiving, a battery 22 as a load for receiving an output from the rectifying unit 20, and a power receiving control unit (for example, a microcomputer; expressed as a control unit in FIG. 1) 24 for controlling the power receiving device 4 are provided.
  • the primary coil 44 and the secondary coil 45 may be plate coils or solenoid coils. Further, the primary coil 44 and the secondary coil 45 are preferably formed of a metal having high conductivity, for example, copper. However, another material such as silver or aluminum may be used.
  • FIG. 2 shows an example in which the power supply coil unit 12 is laid on the ground and supplies power to the power receiving device 4 mounted on the electric propulsion vehicle.
  • the power supply coil unit 12 is laid on the ground, and the power supply box 8 is erected at a position separated from the power supply coil unit 12 by a predetermined distance, for example.
  • the power receiving coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
  • the power feeding control unit 16 controls the drive of the inverter unit 10, thereby generating a high frequency between the power feeding coil unit 12 and the power receiving coil unit 18. Create an electromagnetic field.
  • the power receiving device 4 takes out electric power from the high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
  • the power reception control unit 24 determines a power command value according to the detected remaining voltage of the battery 22.
  • the power supply control unit 16 receives the power command value determined by the power reception control unit 24 via wireless communication.
  • the power supply control unit 16 compares the power supply detected from the power supply coil unit 12 with the power command value received from the power reception control unit 24, and drives the inverter unit 10 so that the value of the power supply power becomes the power command value. .
  • the power reception control unit 24 detects the received power during power supply, and changes the power command value transmitted to the power supply control unit 16 so that the battery 22 is not overcurrent or overvoltage.
  • the foreign object detector 14 detects whether there is a foreign object around the cover.
  • the “periphery of the cover” refers to a region through which magnetic lines of force generated by the power feeding device 2 pass during power transmission, such as a high-frequency electromagnetic field region and the vicinity thereof. It shall refer to the area where temperature is generated.
  • the foreign object detection unit 14 is provided in the power feeding coil unit 12 as shown in FIG.
  • the place where the foreign object detection unit 14 is provided is not limited to this.
  • it may be provided outside the feeding coil unit 12 or may be provided in the power receiving device 4.
  • the power receiving coil unit 18 may be provided.
  • the “foreign matter” in the present disclosure is an object that may enter the periphery of the cover, and in particular, the contactless charging device (in this embodiment, the power feeding device 2 or the power receiving device) is heated by an electromagnetic field. 4) Metal pieces that may cause damage.
  • FIG. 3 is a block diagram illustrating a configuration example of the foreign matter detection unit 14.
  • FIG. 4 is a diagram illustrating an example of a partial cross-sectional view of the power feeding coil unit 12 of the power feeding device 2.
  • the feeding coil unit 12 includes a substrate 42 as a base, a primary coil 44 provided on the substrate 42, and attached to the substrate 42.
  • the cover 40 which covers a side and the foreign material detection part 14 installed in the back surface of the cover 40 are provided. As described above, the cover 40 is attached to the substrate 42 so as to cover the upper side and the side of the primary coil 44, whereby the primary coil 44 disposed on the substrate 42 can be protected.
  • the foreign matter detection unit 14 includes an electrode 30, a voltage supply unit 32, a C / V conversion unit 34, and a signal processing unit 36.
  • the monitoring unit 17 receives the signal processed by the signal processing unit 36 and determines whether the capacitance sensor is operating normally by monitoring whether or not the signal is changed. is doing.
  • the position where the foreign object detection unit 14 is installed is not limited to the back surface of the cover 40, and may be installed at a position away from the back surface of the cover 40, for example.
  • the electrode 30 of the foreign matter detection unit 14 is installed on the back surface of the cover 40 so that the capacitance between the electrode 30 and the foreign matter 38 that has entered the cover 40 can be measured and protected from the outside.
  • the electrode 30 of the foreign matter detection unit 14 is preferably installed between the cover 40 and the primary coil 44, and is preferably installed at a location near the surface of the cover 40.
  • on the cover in the present disclosure means on the outer surface of the cover or above the outer surface of the cover.
  • the foreign matter detection unit 14 or the electrode 30 of the foreign matter detection unit 14 may be incorporated in the cover 40 as long as it is not exposed to the outside. Thereby, the distance with the foreign material which invaded on the cover 40 is shortened, and foreign material detection can be performed with higher accuracy.
  • the foreign substance detection part 14 or the electrode 30 of the foreign substance detection part 14 may be installed on the upper side of the cover 40 and on the rear side as shown in FIG. As a result, foreign matter can be detected with high accuracy even around the cover on the side of the cover 40.
  • FIGS. 4A to 4C show an example in which the foreign object detection unit 14 is provided in the power feeding device 2, but the foreign object detection unit 14 may be provided in the power receiving device 4. It is the same. Specifically, the power receiving coil unit 18 of the power receiving device 4 is provided with a secondary coil 45 in place of the primary coil 44 in FIGS. 4A to 4C. Other configurations are the same as those shown in FIGS. 4A to 4C.
  • the voltage supply unit 32 is connected to the electrode 30 and applies a predetermined potential with respect to the ground (GND) potential to the electrode 30.
  • GND ground
  • the electrostatic capacitance C1 is between the electrode 30 and the foreign matter 38. appear.
  • the capacitance C1 is expressed by Equation 1.
  • Equation 1 ⁇ 0 is the dielectric constant of vacuum, ⁇ r is the relative dielectric constant between the electrode 30 and the foreign material 38 (in FIG. 4A, the relative dielectric constant of the cover), and S is the opposite electrode of the electrode 30 and the foreign material 38.
  • the minimum area, d is the distance between the electrode 30 and the foreign material 38. Therefore, the foreign matter detection unit 14 can confirm that the foreign matter 38 has approached the electrode 30 based on the variation in the capacitance C1 between the electrode 30 and the foreign matter 38.
  • the C / V conversion unit 34 converts the capacitance C1 into a voltage value.
  • the C / V conversion unit 34 converts the capacitance value of the capacitance C1 + C2 into a corresponding voltage value.
  • the signal processing unit 36 transmits a signal corresponding to the voltage value converted by the C / V conversion unit 34, that is, a signal corresponding to the measured capacitance value to the monitoring unit 17.
  • contactless power transmission control according to the present embodiment will be described with reference to the flowchart of FIG. Specifically, the control related to the determination of the normal operation of the foreign object detection unit 14 by the monitoring unit 17 and the control related to power transmission including the foreign object intrusion process will be described.
  • FIG. 2 it is assumed that the power feeding device 2 is laid on the ground and the power receiving device 4 is mounted on the vehicle, and the power feeding device 2 and the power receiving device 4 face each other before the start of step S1. Make it not exist. That is, it is assumed that the vehicle needs to be moved in order to supply power (the power receiving device 4 faces the power supply device 2).
  • the vehicle or the power reception control unit 24 is configured to wirelessly communicate between the power reception device 4 and the power supply device 2 until they stop. It is assumed that a trigger signal including a control command is transmitted to the power supply control unit 16.
  • the vehicle or the power reception control unit 24 transmits a vehicle approach trigger signal to the power supply control unit 16 via wireless communication (S1).
  • the power supply control unit 16 receives a control command included in the trigger signal from the vehicle or the power reception control unit 24, the power supply control unit 16 starts the capacitance measuring operation by the foreign matter detection unit 14.
  • the monitoring unit 17 starts monitoring the change in the signal received from the foreign object detection unit 14 (S2).
  • the vehicle body and the power receiving device 4 mounted on the vehicle body approach the foreign object detection unit 14 the surrounding environment is changed by the power receiving coil unit 18 and the like included in the vehicle body and the power receiving device 4, A change in capacitive coupling occurs.
  • the foreign object detection unit 14 measures the capacitance when the foreign object 38 is not present on the cover 40 of the power feeding device 2 in a state where the vehicle is stopped, for example, and stores the capacitance as an initial value.
  • the power supply control unit 16 starts power supply from the power supply coil unit 12 to the power reception coil unit 18 by instructing the inverter unit 10 to start power transmission.
  • the flow proceeds to S6.
  • the foreign material detection part 14 shall measure an initial value in the state which the vehicle stopped, it is not limited to this.
  • the foreign matter detection unit 14 may hold a predetermined initial value in advance and use the held value as the initial value, or may measure the initial value at a timing other than the above before the start of power feeding. It doesn't matter.
  • FIG. 6 is a flowchart showing an example of the foreign object detection unit abnormality process.
  • the power supply device 2 first notifies the abnormality of the abnormality detection unit 14 by a notification means such as a display or sound.
  • notification is made by the speaker 46 shown in FIG. 2 (S21).
  • the power supply control unit 16 stops the function of the power supply apparatus 2 (S22), and ends the foreign matter detection unit abnormality process. Thereafter, the foreign object detection unit 14 ends the foreign object detection operation (S11). Thereby, the power feeding operation by the power feeding device 2 is not performed.
  • the normal operation of the foreign object detection unit 14 can be confirmed before the power supply operation by the power supply device 2 is started, and the power supply by the power supply device 2 while the foreign object detection unit 14 is in an abnormal state. It is possible to prevent the operation from starting.
  • the power supply control unit 16 After the “notification of abnormality of the abnormality detection unit 14 (S21)” and before “stop of the function of the power supply device 2 (S22)”, the power supply control unit 16 has any abnormality other than the foreign matter detection unit 14. After confirming that there is no abnormality other than the foreign matter detection unit 14, the control of “stopping the function of the power supply device 2 (S22)” may be performed.
  • the power supply controller 16 compares the capacitance measured by the foreign object detector 14 during power supply with the initial value stored in S4, and whether or not a foreign object has entered during power supply, that is, It is determined whether or not the capacitance measured by the foreign matter detection unit 14 exceeds an initial value. If it is determined that a foreign object has entered during power supply (“YES” in S6), the process proceeds to a foreign object intrusion process (S7) for controlling transmission power. Note that the foreign object intrusion determination is not limited to the above-described criteria. For example, when the absolute value of the difference between the electrostatic capacitance measured by the foreign object detector 14 during power supply and the initial value stored in S4 exceeds a predetermined value, it may be determined that a foreign object has entered. .
  • FIG. 7 is a flowchart showing an example of foreign object intrusion processing.
  • the power feeding device 2 first notifies the abnormality of the abnormality detection unit 14 by a notification means such as a display or sound.
  • the notification is made by the speaker 46 shown in FIG. 2 (S31).
  • the power supply control unit 16 determines whether or not the capacitance value measured by the foreign object detection unit 14 exceeds a preset setting value while continuing the power supply (S32).
  • the set value is set to a capacitance value that can be taken when the foreign object is a metal object.
  • said setting value you may use the other value according to the kind of foreign material to detect.
  • the power supply control unit 16 transmits the transmission power from the power supply coil unit 12 to the power reception coil unit 18 by a predetermined amount (for example, 1 / 2) Control transmission power such as reducing or stopping power transmission (S33). Further, the notification means such as display or sound notifies that the transmission power is controlled by the foreign object intrusion (S34), the foreign object intrusion process is terminated, and the flow proceeds to S9.
  • step S32 when it is determined in step S32 that the capacitance does not exceed the set value (“NO” in S32), the power supply control unit 16 bypasses S33 and S34 and ends the foreign substance intrusion processing, and the flow Shifts to S9.
  • the power supply control unit 16 causes the inverter unit 10 to continue power transmission (S8), and the flow is as follows. The process proceeds to S9. In S ⁇ b> 9, the power supply control unit 16 confirms whether there is an instruction to interrupt power transmission for reasons such as foreign object removal by a person or use of a car.
  • the power supply control unit 16 determines whether the charging is completed (S10). When the charging is not completed (“NO” in S10), the flow returns to S6, while when the charging is completed (“YES” in S10), the power supply control unit 16 ends the power supply and detects foreign matter. The unit 14 ends the foreign object detection operation (S11).
  • the process of S9 is performed after S8.
  • the power supply control unit 16 confirms whether or not there is an instruction to interrupt power transmission from the start of power supply in S4, and if there is an instruction to interrupt power transmission, the inverter unit 10 terminates power transmission.
  • the power supply from the power supply coil unit 12 to the power receiving coil unit 18 may be terminated, and the foreign object detection unit 14 may end the foreign object detection operation (S11).
  • the foreign matter detection unit 14 having a capacitance sensor capable of detecting foreign matter existing around the cover and the monitoring unit 17 that monitors normal operation of the foreign matter detection unit 14 are provided. Therefore, the normal operation of the foreign object detection unit 14 can be confirmed before the power supply operation by the power supply device 2 is started, and the power supply operation by the power supply device 2 is started while the foreign object detection unit 14 is in an abnormal state. Can be prevented. Accordingly, it is possible to always safely and reliably detect the intrusion of foreign matter around the cover during power feeding, particularly the intrusion of foreign matter between the primary coil 44 and the secondary coil 45.
  • a foreign object detection unit (capacitance sensor) in the power feeding device
  • a foreign object detection unit (capacitance sensor) and a monitoring unit may be provided in the power receiving device.
  • the trigger for starting monitoring (see S ⁇ b> 1 in FIG. 5) in the monitoring unit of the power receiving apparatus may be performed by, for example, approaching a relative positional relationship between the power receiving apparatus and the power feeding apparatus. More specifically, for the approach of the relative positional relationship, for example, the power receiving device or the power feeding device may measure a signal indicating that the relative positional relationship between the power receiving device and the power feeding device is approached, You may receive via the wire communication or radio
  • the power supply device is laid on the ground and the power reception device is mounted on the electric propulsion vehicle.
  • the power reception device is laid on the ground and the power supply device is mounted on the electric propulsion vehicle. The same applies to cases.
  • the contactless power transmission device of the present invention can reliably detect foreign matter that has entered the periphery of the cover during power feeding from the power feeding device to the power receiving device, so that, for example, a person or an object approaches carelessly or mistakenly. This is useful for a safety system related to power supply to a power receiving device provided in a potential electric propulsion vehicle.
  • Power feeding device 4 Power receiving device 14 Foreign matter detection unit (capacitance sensor) 17 Monitoring unit 40 Cover 42 Substrate (base) 44 Primary coil 45 Secondary coil

Abstract

A contactless electrical power transmission device transmits electrical power between an electricity supply device (2) and an electricity reception device (4) using electromagnetic conduction. The electricity supply device (2) is provided with a main body, a primary coil (44), positioned between the main body and the electricity reception device (4), for generating magnetic flux, and a cover, mounted on the main body, for covering the outer side of the primary coil (44). Furthermore, the contactless electrical power transmission device is provided with an electrostatic capacity sensor (14) for detecting contamination around the cover and a monitoring part (17) for monitoring a signal detected by the electrostatic capacity sensor (14).

Description

非接触電力伝送装置、並びにこれに用いる給電装置及び受電装置Non-contact power transmission device, and power feeding device and power receiving device used therefor
 本発明は、非接触電力伝送に好適な非接触電力伝送装置に関するものであり、特に、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等の充電に用いられる非接触電力伝送装置に関する。 The present invention relates to a contactless power transmission device suitable for contactless power transmission, and more particularly to a contactless power transmission device used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.
 図8は特許文献1に開示された、非接触電力伝送装置及び装置周辺の構成を示す図である。図8において、非接触電力伝送装置101は、地上側の電源104の電源盤に接続された給電装置(一次側)Fと、電気自動車や電車に搭載された受電装置(二次側)Gとを備えている。そして、給電時において、給電装置Fと受電装置Gとは、物理的な接続なしに空隙空間であるエアギャップを介して対峙するよう配置される。 FIG. 8 is a diagram showing the configuration of the non-contact power transmission device and the periphery of the device disclosed in Patent Document 1. In FIG. 8, the non-contact power transmission device 101 includes a power feeding device (primary side) F connected to a power panel of a ground-side power source 104, and a power receiving device (secondary side) G mounted on an electric vehicle or train. It has. And at the time of electric power feeding, the electric power feeder F and the receiving device G are arrange | positioned so as to oppose through the air gap which is a space | gap space, without physical connection.
 このような配置状態で、給電装置Fに備わる一次コイル102に交流電流が与えられ、磁束が形成されると、受電装置Gに備わる二次コイル103に誘導起電力が生じる。これにより、一次コイル102から二次コイル103へと電力が非接触で伝送される。 In such an arrangement state, when an alternating current is applied to the primary coil 102 provided in the power feeding device F and a magnetic flux is formed, an induced electromotive force is generated in the secondary coil 103 provided in the power receiving device G. Thereby, electric power is transmitted from the primary coil 102 to the secondary coil 103 in a non-contact manner.
 受電装置Gは、例えば車載バッテリー105に接続されており、上述の給電装置Fから受電装置Gに伝送された電力は、車載バッテリー105に充電される。この車載バッテリー105に蓄積された電力によって、車載のモータ106が駆動される。なお、非接触給電に係る処理の間、給電装置Fと受電装置Gとの間では、無線通信装置107によって必要な情報交換が行われる。 The power receiving device G is connected to, for example, the in-vehicle battery 105, and the electric power transmitted from the power feeding device F to the power receiving device G is charged in the in-vehicle battery 105. The in-vehicle motor 106 is driven by the electric power stored in the in-vehicle battery 105. Note that the wireless communication device 107 performs necessary information exchange between the power feeding device F and the power receiving device G during processing related to contactless power feeding.
 図9は、図8の給電装置F(受電装置G)の断面図である。図9(a)は給電装置F(受電装置G)の平断面図を示す図であり、図9(b)は給電装置F(受電装置G)の側断面図である。 FIG. 9 is a cross-sectional view of the power feeding device F (power receiving device G) of FIG. FIG. 9A is a plan cross-sectional view of the power feeding device F (power receiving device G), and FIG. 9B is a side cross-sectional view of the power feeding device F (power receiving device G).
 図9に示すように、給電装置Fは一次コイル102、一次磁心コア108、背板110、及びカバー111を備えている。受電装置Gは二次コイル103、二次磁心コア109、背板110、及びカバー111を備えている。そして、給電装置Fの一次コイル102及び一次磁心コア108の表面、並びに受電装置Gの二次コイル103及び二次磁心コア109の表面は、発泡材113が混入されたモールド樹脂112によって被覆固定されている。すなわち、給電装置F(受電装置G)の背板110とカバー111との間には、モールド樹脂112が充填され、内部の一次コイル102(二次コイル103)及び一次磁心コア108(二次磁心コア109)の表面がモールド樹脂112によって被覆固定されている。モールド樹脂112は、例えばシリコン樹脂製であり、上記のように被覆固定されることによって、一次コイル102(二次コイル103)の位置を固定し、その機械的強度を確保すると共に放熱機能を発揮する。すなわち、一次コイル102(二次コイル103)は、励磁電流が流れて、ジュール熱により発熱するが、モールド樹脂112の熱伝導によって放熱され、冷却される。 As shown in FIG. 9, the power feeding device F includes a primary coil 102, a primary magnetic core 108, a back plate 110, and a cover 111. The power receiving device G includes a secondary coil 103, a secondary magnetic core 109, a back plate 110, and a cover 111. The surfaces of the primary coil 102 and the primary magnetic core 108 of the power feeding device F and the surfaces of the secondary coil 103 and the secondary magnetic core 109 of the power receiving device G are covered and fixed by the mold resin 112 mixed with the foam material 113. ing. That is, the mold resin 112 is filled between the back plate 110 and the cover 111 of the power feeding device F (power receiving device G), and the primary coil 102 (secondary coil 103) and the primary magnetic core 108 (secondary magnetic core) inside. The surface of the core 109) is fixedly covered with a mold resin 112. The mold resin 112 is made of, for example, silicon resin, and is fixed as described above, thereby fixing the position of the primary coil 102 (secondary coil 103), ensuring its mechanical strength and exhibiting a heat dissipation function. To do. That is, in the primary coil 102 (secondary coil 103), an exciting current flows and heat is generated by Joule heat, but is radiated and cooled by heat conduction of the mold resin 112.
特開2008-87733号公報JP 2008-87733 A
 電気推進車両等の充電に非接触電力伝送装置を適用する場合、給電装置や受電装置は屋外に設置されることが想定される。したがって、非接触電力伝送装置の給電装置と受電装置との間に外部からの異物が侵入する可能性がある。特に、電力伝送の最中に異物の一例である金属異物が給電装置と受電装置との間に侵入して、給電装置または受電装置のカバー上に載った場合、この金属異物をそのまま放置しておくと磁束によって発生する渦電流によって金属異物が過熱される。このように侵入した金属異物が過熱され、過剰に昇温すると、給電装置や受電装置に故障などの被害をもたらす可能性がある。また、一次コイルと二次コイルとの間に、磁束が鎖交可能なループ状の導電体が挿入されると、導電体両端に起電力が発生する。したがって、電力伝送中に給電装置(一次コイル)と受電装置(二次コイル)との間に異物が侵入したときには、異物の侵入を確実に検知することが求められる。 When applying a non-contact power transmission device for charging an electric propulsion vehicle or the like, it is assumed that the power feeding device and the power receiving device are installed outdoors. Therefore, there is a possibility that foreign matter enters from between the power feeding device and the power receiving device of the non-contact power transmission device. In particular, when a metal foreign object, which is an example of a foreign object, enters between the power supply device and the power receiving device during power transmission and is placed on the cover of the power supply device or the power receiving device, leave this metal foreign object as it is. Otherwise, the metal foreign object is overheated by the eddy current generated by the magnetic flux. When the metal foreign matter that has entered in this manner is overheated and excessively heated, damage to the power feeding device and the power receiving device may occur. In addition, when a loop-shaped conductor capable of interlinking magnetic flux is inserted between the primary coil and the secondary coil, an electromotive force is generated at both ends of the conductor. Therefore, when a foreign object enters between the power feeding device (primary coil) and the power receiving device (secondary coil) during power transmission, it is required to reliably detect the entry of the foreign material.
 このため、非接触電力伝送装置において、給電装置と受電装置との間に侵入した異物を検知するセンサが設けられる。例えば、金属異物の過熱を検出するための温度センサが用いられる。しかしながら、異物を検知するセンサに故障等の異常が発生した場合には、侵入した異物の過熱等を検出することができない。 For this reason, in the non-contact power transmission device, a sensor for detecting a foreign matter that has entered between the power feeding device and the power receiving device is provided. For example, a temperature sensor for detecting overheating of a metal foreign object is used. However, when an abnormality such as a failure occurs in the sensor that detects foreign matter, it is not possible to detect overheating of the foreign matter that has entered.
 上記の問題に鑑み、本発明は、給電装置や受電装置のカバー周辺、特に給電装置(一次コイル)と受電装置(二次コイル)との間への異物の侵入を確実に検知することが可能な非接触電力伝送装置を提供することを目的とする。 In view of the above problems, the present invention can reliably detect the intrusion of foreign matter around the cover of the power supply device or the power reception device, particularly between the power supply device (primary coil) and the power reception device (secondary coil). An object of the present invention is to provide a non-contact power transmission device.
 本発明の第1の態様では、非接触電力伝送装置は、給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う。そして、前記給電装置は、基体と、前記基体上に設けられ、磁束を発生する一次コイルと、前記基体に取り付けられ、前記一次コイルを覆うカバーとを備えている。さらに、前記非接触電力伝送装置は、前記カバー周辺の異物を検知する静電容量センサと、前記静電容量センサが検知した信号を監視する監視部とを備えている。 In the first aspect of the present invention, the non-contact power transmission device performs power transmission using electromagnetic induction between the power feeding device and the power receiving device. The power supply apparatus includes a base, a primary coil that is provided on the base and generates magnetic flux, and a cover that is attached to the base and covers the primary coil. Furthermore, the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover, and a monitoring unit that monitors a signal detected by the capacitance sensor.
 この第1の態様によると、非接触電力伝送装置は、カバー周辺の異物を検知する静電容量センサと、静電容量センサが検知した信号を監視する監視部とを備えているため、例えば、給電装置による給電動作を開始する前に静電容量センサを動作させ、監視部によって静電容量センサの正常動作を確認することができる。これにより、静電容量センサが異常な状態のまま給電装置による給電動作が開始されることを防ぐことができる。したがって、本態様の非接触電力伝送装置は、給電装置による給電中の異物の侵入を確実に検知することができる。 According to the first aspect, the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover and a monitoring unit that monitors a signal detected by the capacitance sensor. It is possible to operate the capacitance sensor before starting the power feeding operation by the power feeding device, and to check the normal operation of the capacitance sensor by the monitoring unit. Thereby, it can prevent that the electric power feeding operation | movement by a electric power feeder is started with an electrostatic capacitance sensor in an abnormal state. Therefore, the non-contact power transmission device of this aspect can reliably detect the intrusion of foreign matter during power feeding by the power feeding device.
 本発明の第2の態様では、非接触電力伝送装置は、給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う。そして、前記受電装置は、基体と、前記基体上に設けられ、前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、前記基体に取り付けられ、前記二次コイルを覆うカバーとを備えている。さらに、前記非接触電力伝送装置は、前記カバー周辺の異物を検知する静電容量センサと、前記静電容量センサが検知した信号を監視する監視部とを備えている。 In the second aspect of the present invention, the non-contact power transmission device performs power transmission using electromagnetic induction between the power feeding device and the power receiving device. The power receiving device includes a base body, a secondary coil that is provided on the base body and generates an electromotive force according to the magnetic flux received from the power feeding device, and a cover that is attached to the base body and covers the secondary coil And. Furthermore, the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover, and a monitoring unit that monitors a signal detected by the capacitance sensor.
 この第2の態様によると、非接触電力伝送装置は、カバー周辺の異物を検知する静電容量センサと、静電容量センサが検知した信号を監視する監視部とを備えているため、例えば、給電装置による給電動作を開始する前に静電容量センサを動作させ、監視部によって静電容量センサの正常動作を確認することができる。これにより、静電容量センサが異常な状態のまま給電装置による給電動作が開始されることを防ぐことができる。したがって、本態様の非接触電力伝送装置は、給電装置による給電中の異物の侵入を確実に検知することができる。 According to the second aspect, the non-contact power transmission device includes a capacitance sensor that detects foreign matter around the cover and a monitoring unit that monitors a signal detected by the capacitance sensor. It is possible to operate the capacitance sensor before starting the power feeding operation by the power feeding device, and to check the normal operation of the capacitance sensor by the monitoring unit. Thereby, it can prevent that the electric power feeding operation | movement by a electric power feeder is started with an electrostatic capacitance sensor in an abnormal state. Therefore, the non-contact power transmission device of this aspect can reliably detect the intrusion of foreign matter during power feeding by the power feeding device.
 本発明の第3の態様では、対向して配置された非接触電力伝送装置の受電装置に対して、電磁誘導を用いた給電を行う給電装置は、基体と、前記基体上に設けられ、磁束を発生する一次コイルと、前記基体に取り付けられ、前記一次コイルを覆うカバーと、前記カバー周辺の異物を検知する静電容量センサと、前記静電容量センサが検知した信号を監視する監視部とを備えている。 In a third aspect of the present invention, a power supply device that supplies power using electromagnetic induction to a power receiving device of a non-contact power transmission device disposed opposite to the power receiving device is provided on a base, the base, and a magnetic flux A cover that is attached to the base and covers the primary coil, a capacitance sensor that detects foreign matter around the cover, and a monitoring unit that monitors a signal detected by the capacitance sensor It has.
 本発明の第4の態様では、非接触電力伝送装置の給電装置から伝送された電力を受電する受電装置は、基体と、前記基体上に設けられ、前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、前記基体に取り付けられ、前記二次コイルを覆うカバーと、前記カバー周辺の異物を検知する静電容量センサと、前記静電容量センサが検知した信号を監視する監視部とを備えている。 In a fourth aspect of the present invention, a power receiving device that receives power transmitted from a power feeding device of a non-contact power transmission device is provided on a base and the base, and is generated according to a magnetic flux received from the power feeding device. A secondary coil that generates electric power, a cover that is attached to the base and covers the secondary coil, a capacitance sensor that detects foreign matter around the cover, and a signal detected by the capacitance sensor are monitored. And a monitoring unit.
 本発明によると、非接触電力伝送装置は、給電装置や受電装置のカバー周辺への異物の侵入を確実に検知することができる。 According to the present invention, the non-contact power transmission device can reliably detect the intrusion of foreign matter around the cover of the power feeding device or the power receiving device.
実施形態に係る非接触電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the non-contact electric power transmission apparatus which concerns on embodiment. 図1に示す非接触電力伝送装置の給電装置が地上に敷設され、受電装置が車両に搭載された場合において、車両が駐車スペースに設置された状態を示す外観図である。FIG. 2 is an external view showing a state where the vehicle is installed in a parking space when the power feeding device of the non-contact power transmission device shown in FIG. 1 is laid on the ground and the power receiving device is mounted on the vehicle. 異物検知部の構成例を示すブロック図である。It is a block diagram which shows the structural example of a foreign material detection part. (A),(B),(C)給電コイルユニットの側断面図の一例を示す図である。(A), (B), (C) It is a figure which shows an example of the sectional side view of a feeding coil unit. 本実施形態に係る非接触電力伝送制御及び異物検知制御の一例を示すフローチャートである。It is a flowchart which shows an example of the non-contact electric power transmission control and foreign material detection control which concern on this embodiment. 異物検知部異常処理の一例を示すフローチャートである。It is a flowchart which shows an example of a foreign material detection part abnormality process. 異物侵入処理の一例を示すフローチャートである。It is a flowchart which shows an example of a foreign material penetration | invasion process. 従来の非接触電力伝送装置の構成を示す図である。It is a figure which shows the structure of the conventional non-contact electric power transmission apparatus. 図8の給電装置(受電装置)の断面図であり、(a)は平断面図、(b)は側断面図である。It is sectional drawing of the electric power feeder (power receiving apparatus) of FIG. 8, (a) is a plane sectional view, (b) is a sectional side view.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.
 図1は実施形態に係る非接触電力伝送装置の構成例を示す図である。図2は電気推進車両が駐車スペースに設置された状態の外観図である。 FIG. 1 is a diagram illustrating a configuration example of a non-contact power transmission apparatus according to an embodiment. FIG. 2 is an external view of a state where the electric propulsion vehicle is installed in the parking space.
 図1に示すように、非接触電力伝送装置は、商用電源6からの電圧を受けて、磁界を発生する給電装置2と、給電装置2からの磁界を受けて、電力として受電する受電装置4とを備えている。 As shown in FIG. 1, the non-contact power transmission device receives a voltage from a commercial power supply 6 and generates a magnetic field, and a power receiving device 4 that receives a magnetic field from the power supply device 2 and receives power as power. And.
 給電装置2は、商用電源6に接続される電力供給部としての電源箱8と、電源箱8の出力を受けるインバータ部10と、インバータ部10からの出力を受けて磁束(磁界)を発生する一次コイル44を有する給電コイルユニット12(図1ではコイルユニットと表記)と、静電容量センサを有しており、異物を検知する異物検知部14と、後述する監視部17を有しており、給電装置2を制御する給電制御部(例えば、マイコン。図1では制御部と表記)16とを備えている。商用電源6は、例えば低周波交流電源である200V商用電源である。 The power supply device 2 generates a magnetic flux (magnetic field) by receiving a power supply box 8 as a power supply unit connected to the commercial power supply 6, an inverter unit 10 that receives the output of the power supply box 8, and an output from the inverter unit 10. The feeding coil unit 12 having a primary coil 44 (indicated as a coil unit in FIG. 1), a capacitance sensor, a foreign matter detection unit 14 for detecting foreign matter, and a monitoring unit 17 to be described later are provided. , A power supply control unit (for example, a microcomputer; expressed as a control unit in FIG. 1) 16 for controlling the power supply device 2 is provided. The commercial power source 6 is a 200V commercial power source which is a low frequency AC power source, for example.
 受電装置4は、給電コイルユニット12から受けた磁束に応じて起電力を発生する、二次コイル45を有する受電コイルユニット18(図1ではコイルユニットと表記)と、受電コイルユニット18の出力を受ける整流部20と、整流部20からの出力を受ける負荷としてのバッテリー22と、受電装置4を制御する受電制御部(例えば、マイコン。図1では制御部と表記)24とを備えている。 The power receiving device 4 generates an electromotive force according to the magnetic flux received from the power feeding coil unit 12 and has a power receiving coil unit 18 having a secondary coil 45 (denoted as a coil unit in FIG. 1), and an output of the power receiving coil unit 18. A rectifying unit 20 for receiving, a battery 22 as a load for receiving an output from the rectifying unit 20, and a power receiving control unit (for example, a microcomputer; expressed as a control unit in FIG. 1) 24 for controlling the power receiving device 4 are provided.
 なお、一次コイル44及び二次コイル45は、プレートコイルを用いてもよいし、ソレノイドコイルを用いてもよい。また、一次コイル44及び二次コイル45は、導電率の高い金属で形成されるのが好ましく、例えば、銅で形成されるのが好ましい。ただし、銀やアルミ等の別の材料を用いてもかまわない。 The primary coil 44 and the secondary coil 45 may be plate coils or solenoid coils. Further, the primary coil 44 and the secondary coil 45 are preferably formed of a metal having high conductivity, for example, copper. However, another material such as silver or aluminum may be used.
 図2は給電コイルユニット12が地上に敷設され、電気推進車両に搭載された受電装置4に対して給電する例を示している。図2に示すように、給電コイルユニット12は地上に敷設され、電源箱8は、例えば給電コイルユニット12から所定距離だけ離隔した位置に立設される。一方、受電コイルユニット18は、例えば車体底部(例えば、シャーシ)に取り付けられる。 FIG. 2 shows an example in which the power supply coil unit 12 is laid on the ground and supplies power to the power receiving device 4 mounted on the electric propulsion vehicle. As shown in FIG. 2, the power supply coil unit 12 is laid on the ground, and the power supply box 8 is erected at a position separated from the power supply coil unit 12 by a predetermined distance, for example. On the other hand, the power receiving coil unit 18 is attached to, for example, a vehicle body bottom (for example, a chassis).
 図2に示すように、給電装置2から受電装置4に給電するときには、給電コイルユニット12と受電コイルユニット18とを対向して配置させるために、ユーザーは車両を適宜移動させる。給電コイルユニット12と受電コイルユニット18とが対向して配置された後、給電制御部16は、インバータ部10を駆動制御することにより、給電コイルユニット12と受電コイルユニット18との間に高周波の電磁場を形成する。受電装置4は、高周波の電磁場より電力を取り出し、取り出した電力によってバッテリー22を充電する。 As shown in FIG. 2, when power is supplied from the power feeding device 2 to the power receiving device 4, the user appropriately moves the vehicle in order to place the power feeding coil unit 12 and the power receiving coil unit 18 facing each other. After the power feeding coil unit 12 and the power receiving coil unit 18 are disposed to face each other, the power feeding control unit 16 controls the drive of the inverter unit 10, thereby generating a high frequency between the power feeding coil unit 12 and the power receiving coil unit 18. Create an electromagnetic field. The power receiving device 4 takes out electric power from the high frequency electromagnetic field and charges the battery 22 with the taken out electric power.
 受電制御部24は、検知したバッテリー22の残電圧に応じて電力指令値を決定する。給電制御部16は、無線通信を介して、受電制御部24によって決定された電力指令値を受信する。給電制御部16は、給電コイルユニット12から検知した給電電力と、受電制御部24から受信した電力指令値とを比較し、給電電力の値が電力指令値となるようにインバータ部10を駆動する。受電制御部24は、給電中における受電電力を検知し、バッテリー22に過電流や過電圧がかからないように、給電制御部16に送信する電力指令値を変更する。 The power reception control unit 24 determines a power command value according to the detected remaining voltage of the battery 22. The power supply control unit 16 receives the power command value determined by the power reception control unit 24 via wireless communication. The power supply control unit 16 compares the power supply detected from the power supply coil unit 12 with the power command value received from the power reception control unit 24, and drives the inverter unit 10 so that the value of the power supply power becomes the power command value. . The power reception control unit 24 detects the received power during power supply, and changes the power command value transmitted to the power supply control unit 16 so that the battery 22 is not overcurrent or overvoltage.
 異物検知部14は、カバー周辺に異物があるかどうかを検知する。ここで、「カバー周辺」とは、例えば高周波の電磁場領域及びその近傍のように、電力伝送中に給電装置2が発生する磁力線の通過する領域を指すものとし、特に、その磁力線により金属の昇温が発生する領域を指すものとする。本実施形態では、異物検知部14は、図2に示すように、給電コイルユニット12に設けられるものとする。なお、異物検知部14が設けられる場所は、これに限られるものではない。例えば、給電コイルユニット12の外部に設けられていてもよいし、受電装置4に設けられていてもよい。具体的には、例えば受電コイルユニット18に設けられていてもよい。 The foreign object detector 14 detects whether there is a foreign object around the cover. Here, the “periphery of the cover” refers to a region through which magnetic lines of force generated by the power feeding device 2 pass during power transmission, such as a high-frequency electromagnetic field region and the vicinity thereof. It shall refer to the area where temperature is generated. In the present embodiment, the foreign object detection unit 14 is provided in the power feeding coil unit 12 as shown in FIG. The place where the foreign object detection unit 14 is provided is not limited to this. For example, it may be provided outside the feeding coil unit 12 or may be provided in the power receiving device 4. Specifically, for example, the power receiving coil unit 18 may be provided.
 なお、本開示における「異物」とは、カバー周辺に侵入してくる可能性のある物であり、特に電磁界により昇温して非接触充電装置(本実施形態においては給電装置2や受電装置4)に被害をもたらす可能性のある金属片などのことである。 Note that the “foreign matter” in the present disclosure is an object that may enter the periphery of the cover, and in particular, the contactless charging device (in this embodiment, the power feeding device 2 or the power receiving device) is heated by an electromagnetic field. 4) Metal pieces that may cause damage.
 図3は、異物検知部14の構成例を示すブロック図である。図4は、給電装置2の給電コイルユニット12の部分断面図の一例を示す図である。 FIG. 3 is a block diagram illustrating a configuration example of the foreign matter detection unit 14. FIG. 4 is a diagram illustrating an example of a partial cross-sectional view of the power feeding coil unit 12 of the power feeding device 2.
 給電コイルユニット12は、図4(A)に示すように、基体としての基板42と、基板42上に設けられた一次コイル44と、基板42に取り付けられ、一次コイル44の外側として、上方及び側方を覆うカバー40と、カバー40の裏面に設置された異物検知部14とを備えている。このように、カバー40が、一次コイル44の上方及び側方を覆うように、基板42に取り付けられることによって、基板42上に配置された一次コイル44を保護することができる。 As shown in FIG. 4A, the feeding coil unit 12 includes a substrate 42 as a base, a primary coil 44 provided on the substrate 42, and attached to the substrate 42. The cover 40 which covers a side and the foreign material detection part 14 installed in the back surface of the cover 40 are provided. As described above, the cover 40 is attached to the substrate 42 so as to cover the upper side and the side of the primary coil 44, whereby the primary coil 44 disposed on the substrate 42 can be protected.
 図3に示すように、異物検知部14は、電極30と、電圧供給部32と、C/V変換部34と、信号処理部36とを備えている。監視部17は、信号処理部36で処理された信号を受け、その信号に変化があるか否かを監視することによって、静電容量センサが正常動作を行っているか否かの妥当性を判定している。 As shown in FIG. 3, the foreign matter detection unit 14 includes an electrode 30, a voltage supply unit 32, a C / V conversion unit 34, and a signal processing unit 36. The monitoring unit 17 receives the signal processed by the signal processing unit 36 and determines whether the capacitance sensor is operating normally by monitoring whether or not the signal is changed. is doing.
 なお、図4(A)において、異物検知部14を設置する位置は、カバー40の裏面に限定されず、例えば、カバー40の裏面から離れた位置に設置されてもかまわない。ただし、その場合でも、異物検知部14の電極30は、カバー40上に侵入した異物38との間の静電容量を測定ができ、かつ外部から保護されるように、カバー40の裏面に設置されるのが好ましい。すなわち、異物検知部14の電極30は、カバー40と一次コイル44との間に設置されるのが好ましく、カバー40の表面に近い場所に設置されるのが好ましい。 In FIG. 4A, the position where the foreign object detection unit 14 is installed is not limited to the back surface of the cover 40, and may be installed at a position away from the back surface of the cover 40, for example. However, even in that case, the electrode 30 of the foreign matter detection unit 14 is installed on the back surface of the cover 40 so that the capacitance between the electrode 30 and the foreign matter 38 that has entered the cover 40 can be measured and protected from the outside. Preferably it is done. That is, the electrode 30 of the foreign matter detection unit 14 is preferably installed between the cover 40 and the primary coil 44, and is preferably installed at a location near the surface of the cover 40.
 なお、本開示でいう「カバー上」は、カバーの外側表面上またはカバーの外側表面の上方をいう。 Note that “on the cover” in the present disclosure means on the outer surface of the cover or above the outer surface of the cover.
 また、異物検知部14または異物検知部14の電極30は、図4(B)に示すように、外部に露出しない範囲において、カバー40内に組み込まれてもよい。これにより、カバー40上に侵入した異物との距離が縮まり、より高精度に異物検知ができる。 Further, as shown in FIG. 4B, the foreign matter detection unit 14 or the electrode 30 of the foreign matter detection unit 14 may be incorporated in the cover 40 as long as it is not exposed to the outside. Thereby, the distance with the foreign material which invaded on the cover 40 is shortened, and foreign material detection can be performed with higher accuracy.
 また、異物検知部14または異物検知部14の電極30は、図4(C)に示すように、カバー40の上方及び側方の裏面に設置されてもよい。これにより、カバー40の側方におけるカバー周辺においても高精度に異物を検知することができる。 Moreover, the foreign substance detection part 14 or the electrode 30 of the foreign substance detection part 14 may be installed on the upper side of the cover 40 and on the rear side as shown in FIG. As a result, foreign matter can be detected with high accuracy even around the cover on the side of the cover 40.
 また、図4(A)~(C)の例では、異物検知部14が給電装置2に設けられた場合の例を示しているが、異物検知部14が受電装置4に設けられた場合も同様である。具体的には、受電装置4の受電コイルユニット18には、図4(A)~(C)において、一次コイル44に代えて二次コイル45が設けられる。そして、それ以外の構成は、図4(A)~(C)と同様である。 4A to 4C show an example in which the foreign object detection unit 14 is provided in the power feeding device 2, but the foreign object detection unit 14 may be provided in the power receiving device 4. It is the same. Specifically, the power receiving coil unit 18 of the power receiving device 4 is provided with a secondary coil 45 in place of the primary coil 44 in FIGS. 4A to 4C. Other configurations are the same as those shown in FIGS. 4A to 4C.
 図3に示すように、電圧供給部32は、電極30と接続され、グラウンド(GND)電位を基準とする所定の電位を電極30に印加する。電圧供給部32によって電極30に電圧が印加された場合において、図4(A)に示すようにカバー40上に異物38が載ったとき、電極30と異物38との間に静電容量C1が発生する。その静電容量C1は、数式1で表現される。 As shown in FIG. 3, the voltage supply unit 32 is connected to the electrode 30 and applies a predetermined potential with respect to the ground (GND) potential to the electrode 30. In the case where a voltage is applied to the electrode 30 by the voltage supply unit 32, when the foreign matter 38 is placed on the cover 40 as shown in FIG. 4A, the electrostatic capacitance C1 is between the electrode 30 and the foreign matter 38. appear. The capacitance C1 is expressed by Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式1において、ε0は真空の誘電率、εrは電極30と異物38との間の比誘電率(図4(A)ではカバーの比誘電率)、Sは電極30と異物38との対極する最小面積、dは電極30と異物38との間の距離である。したがって、異物検知部14は、電極30と異物38との間の静電容量C1の変動に基づいて、電極30に異物38が接近したことを確認することができる。 In Equation 1, ε0 is the dielectric constant of vacuum, εr is the relative dielectric constant between the electrode 30 and the foreign material 38 (in FIG. 4A, the relative dielectric constant of the cover), and S is the opposite electrode of the electrode 30 and the foreign material 38. The minimum area, d, is the distance between the electrode 30 and the foreign material 38. Therefore, the foreign matter detection unit 14 can confirm that the foreign matter 38 has approached the electrode 30 based on the variation in the capacitance C1 between the electrode 30 and the foreign matter 38.
 C/V変換部34は、上記の静電容量C1を電圧値に変換する。本実施形態では、C/V変換部34は異物38とGND電位との間の静電容量をC2とした場合、静電容量C1+C2の容量値を、対応する電圧値に変換する。 The C / V conversion unit 34 converts the capacitance C1 into a voltage value. In the present embodiment, when the capacitance between the foreign object 38 and the GND potential is C2, the C / V conversion unit 34 converts the capacitance value of the capacitance C1 + C2 into a corresponding voltage value.
 信号処理部36は、C/V変換部34によって変換された電圧値に対応する信号、すなわち測定した静電容量値に対応する信号を監視部17に送信する。 The signal processing unit 36 transmits a signal corresponding to the voltage value converted by the C / V conversion unit 34, that is, a signal corresponding to the measured capacitance value to the monitoring unit 17.
 [非接触電力伝送によるバッテリーへの充電動作]
 次に、図5のフローチャートを参照しながら、本実施形態に係る非接触電力伝送制御について説明する。具体的には、監視部17による異物検知部14の正常動作の判断に係る制御、及び異物侵入処理を含む電力伝送に係る制御について説明する。ここでは、図2に示すように、給電装置2は地上に敷設され、受電装置4は車両に搭載されているものとし、ステップS1の開始前に給電装置2と受電装置4とは対向していないものとする。すなわち、給電する(受電装置4を給電装置2と対向させる)ために車両を移動させる必要があるものとする。また、車両が給電のために給電装置2に接近する場合において、受電装置4と給電装置2とを対向させて停止するまでの間に、車両または受電制御部24は、無線通信を介して、制御指令を含むトリガー信号を給電制御部16に送信するものとする。
[Battery charging operation by non-contact power transmission]
Next, contactless power transmission control according to the present embodiment will be described with reference to the flowchart of FIG. Specifically, the control related to the determination of the normal operation of the foreign object detection unit 14 by the monitoring unit 17 and the control related to power transmission including the foreign object intrusion process will be described. Here, as shown in FIG. 2, it is assumed that the power feeding device 2 is laid on the ground and the power receiving device 4 is mounted on the vehicle, and the power feeding device 2 and the power receiving device 4 face each other before the start of step S1. Make it not exist. That is, it is assumed that the vehicle needs to be moved in order to supply power (the power receiving device 4 faces the power supply device 2). Further, when the vehicle approaches the power supply device 2 for power supply, the vehicle or the power reception control unit 24 is configured to wirelessly communicate between the power reception device 4 and the power supply device 2 until they stop. It is assumed that a trigger signal including a control command is transmitted to the power supply control unit 16.
 まず、車両または受電制御部24は、無線通信を介して、車両接近のトリガー信号を給電制御部16に送信する(S1)。給電制御部16は、車両または受電制御部24からトリガー信号に含まれる制御指令を受信すると、異物検知部14による静電容量の測定動作を開始する。このとき、監視部17は、異物検知部14から受信する信号の変化の監視を開始する(S2)。ここで、給電するために、車体及び車体に搭載された受電装置4が異物検知部14に接近するため、車体及び受電装置4が有する受電コイルユニット18等により、周囲の環境に変化が生じ、静電容量のカップリングの変化が生じる。したがって、異物検知部14が正常に動作している場合、S3において、異物検知部14によって測定する静電容量値に変化が発生する(S3で“YES”)。このとき、監視部17は、信号処理部36から受ける信号に基づいて静電容量の変化を検知することができるため、給電制御部16に検知結果を送信し、フローはS4に移行する。S4において、異物検知部14は、例えば車両が停止した状態において、異物38が給電装置2のカバー40上に存在しない場合における静電容量を測定し、初期値として記憶する。異物検知部14による初期値の記憶が終了した後、給電制御部16は、インバータ部10に電力伝送の開始を指示することによって、給電コイルユニット12から受電コイルユニット18への電力供給を開始し、フローはS6に移行する。なお、異物検知部14は、車両が停止した状態で初期値の測定を行うものとしたが、これに限定されない。例えば、異物検知部14は、あらかじめ所定の初期値を保持し、その保持した値を初期値として使用してもよいし、給電開始前における上記以外のタイミングで初期値の測定を実施してもかまわない。 First, the vehicle or the power reception control unit 24 transmits a vehicle approach trigger signal to the power supply control unit 16 via wireless communication (S1). When the power supply control unit 16 receives a control command included in the trigger signal from the vehicle or the power reception control unit 24, the power supply control unit 16 starts the capacitance measuring operation by the foreign matter detection unit 14. At this time, the monitoring unit 17 starts monitoring the change in the signal received from the foreign object detection unit 14 (S2). Here, in order to supply power, since the vehicle body and the power receiving device 4 mounted on the vehicle body approach the foreign object detection unit 14, the surrounding environment is changed by the power receiving coil unit 18 and the like included in the vehicle body and the power receiving device 4, A change in capacitive coupling occurs. Therefore, when the foreign object detector 14 is operating normally, a change occurs in the capacitance value measured by the foreign object detector 14 in S3 ("YES" in S3). At this time, since the monitoring unit 17 can detect a change in capacitance based on the signal received from the signal processing unit 36, the monitoring unit 17 transmits a detection result to the power supply control unit 16, and the flow proceeds to S4. In S <b> 4, the foreign object detection unit 14 measures the capacitance when the foreign object 38 is not present on the cover 40 of the power feeding device 2 in a state where the vehicle is stopped, for example, and stores the capacitance as an initial value. After the storage of the initial value by the foreign matter detection unit 14 is completed, the power supply control unit 16 starts power supply from the power supply coil unit 12 to the power reception coil unit 18 by instructing the inverter unit 10 to start power transmission. The flow proceeds to S6. In addition, although the foreign material detection part 14 shall measure an initial value in the state which the vehicle stopped, it is not limited to this. For example, the foreign matter detection unit 14 may hold a predetermined initial value in advance and use the held value as the initial value, or may measure the initial value at a timing other than the above before the start of power feeding. It doesn't matter.
 一方、S3において異物検知部14によって測定する静電容量値に変化が発生しない場合(S3で“NO”)、異物検知部異常処理(S5)に移行する。 On the other hand, when no change occurs in the capacitance value measured by the foreign object detector 14 in S3 ("NO" in S3), the process proceeds to the foreign object detector abnormal process (S5).
 図6は、異物検知部異常処理の一例を示すフローチャートである。異物検知部異常処理に移行すると、まず給電装置2は、異常検知部14の異常を表示や音などの告知手段により告知する。例えば、図2に示すスピーカ46によって告知する(S21)。 FIG. 6 is a flowchart showing an example of the foreign object detection unit abnormality process. When the process proceeds to the foreign object detection unit abnormality process, the power supply device 2 first notifies the abnormality of the abnormality detection unit 14 by a notification means such as a display or sound. For example, notification is made by the speaker 46 shown in FIG. 2 (S21).
 次に、給電制御部16は、給電装置2の機能を停止し(S22)、異物検知部異常処理を終了する。その後、異物検知部14は異物検知動作を終了する(S11)。これにより、給電装置2による給電動作は実施されない。以上のように、本態様によると、給電装置2による給電動作を開始する前に異物検知部14の正常動作を確認することができ、異物検知部14が異常な状態のまま給電装置2による給電動作が開始されるのを防ぐことができる。なお、給電制御部16は、「異常検知部14の異常の告知(S21)」の後、「給電装置2の機能の停止(S22)」の前に、異物検知部14以外に異常がないかを確認し、異物検知部14以外の異常がないことを確認してから、「給電装置2の機能の停止(S22)」の制御を行うようにしてもよい。 Next, the power supply control unit 16 stops the function of the power supply apparatus 2 (S22), and ends the foreign matter detection unit abnormality process. Thereafter, the foreign object detection unit 14 ends the foreign object detection operation (S11). Thereby, the power feeding operation by the power feeding device 2 is not performed. As described above, according to this aspect, the normal operation of the foreign object detection unit 14 can be confirmed before the power supply operation by the power supply device 2 is started, and the power supply by the power supply device 2 while the foreign object detection unit 14 is in an abnormal state. It is possible to prevent the operation from starting. In addition, after the “notification of abnormality of the abnormality detection unit 14 (S21)” and before “stop of the function of the power supply device 2 (S22)”, the power supply control unit 16 has any abnormality other than the foreign matter detection unit 14. After confirming that there is no abnormality other than the foreign matter detection unit 14, the control of “stopping the function of the power supply device 2 (S22)” may be performed.
 S6において、給電制御部16は、電力供給中に異物検知部14が測定する静電容量と、S4において記憶した初期値とを比較し、電力供給中に異物が侵入したか否か、すなわち、異物検知部14が測定する静電容量が初期値を超えたか否かを判定する。電力供給中に異物が侵入したと判定された場合(S6で“YES”)、伝送電力を制御するための異物侵入処理(S7)に移行する。なお、異物の侵入判定は上記の基準に限定されない。例えば、電力供給中に異物検知部14が測定した静電容量と、S4において記憶した初期値との差の絶対値が所定値を超えた場合、異物が侵入したと判定するようにしてもよい。 In S6, the power supply controller 16 compares the capacitance measured by the foreign object detector 14 during power supply with the initial value stored in S4, and whether or not a foreign object has entered during power supply, that is, It is determined whether or not the capacitance measured by the foreign matter detection unit 14 exceeds an initial value. If it is determined that a foreign object has entered during power supply (“YES” in S6), the process proceeds to a foreign object intrusion process (S7) for controlling transmission power. Note that the foreign object intrusion determination is not limited to the above-described criteria. For example, when the absolute value of the difference between the electrostatic capacitance measured by the foreign object detector 14 during power supply and the initial value stored in S4 exceeds a predetermined value, it may be determined that a foreign object has entered. .
 図7は、異物侵入処理の一例を示すフローチャートである。異物侵入処理に移行すると、まず給電装置2は、異常検知部14の異常を表示や音などの告知手段によって告知する。例えば、図2に示すスピーカ46によって告知する(S31)。 FIG. 7 is a flowchart showing an example of foreign object intrusion processing. When the process proceeds to the foreign object intrusion process, the power feeding device 2 first notifies the abnormality of the abnormality detection unit 14 by a notification means such as a display or sound. For example, the notification is made by the speaker 46 shown in FIG. 2 (S31).
 次に、給電制御部16は、電力供給を継続しながら、異物検知部14によって測定される静電容量の値があらかじめ設定された設定値を超えたか否かを判定する(S32)。設定値は、例えば異物が金属物である場合にとりうる静電容量の値に設定する。なお、上記の設定値として、検知したい異物の種類に応じた他の値を用いてもかまわない。 Next, the power supply control unit 16 determines whether or not the capacitance value measured by the foreign object detection unit 14 exceeds a preset setting value while continuing the power supply (S32). For example, the set value is set to a capacitance value that can be taken when the foreign object is a metal object. In addition, as said setting value, you may use the other value according to the kind of foreign material to detect.
 静電容量が設定値を超えていると判定された場合(S32で“YES”)、給電制御部16は、給電コイルユニット12から受電コイルユニット18への伝送電力を所定量(例えば、1/2)低下させる、電力伝送を停止するなどの伝送電力の制御を行う(S33)。さらに、異物侵入により送電電力を制御していることを表示や音などの告知手段によって告知し(S34)、異物侵入処理を終了し、フローはS9に移行する。 When it is determined that the capacitance exceeds the set value (“YES” in S32), the power supply control unit 16 transmits the transmission power from the power supply coil unit 12 to the power reception coil unit 18 by a predetermined amount (for example, 1 / 2) Control transmission power such as reducing or stopping power transmission (S33). Further, the notification means such as display or sound notifies that the transmission power is controlled by the foreign object intrusion (S34), the foreign object intrusion process is terminated, and the flow proceeds to S9.
 一方、ステップS32において、静電容量が設定値を超えていないと判定された場合(S32で“NO”)、給電制御部16は、S33及びS34を迂回して異物侵入処理を終了し、フローはS9に移行する。 On the other hand, when it is determined in step S32 that the capacitance does not exceed the set value (“NO” in S32), the power supply control unit 16 bypasses S33 and S34 and ends the foreign substance intrusion processing, and the flow Shifts to S9.
 図5のS6において、電力供給中に異物が侵入していないと判定された場合(S6で“NO”)、給電制御部16は、インバータ部10に電力伝送を継続させ(S8)、フローはS9に移行する。S9では、給電制御部16は、人による異物排除や車の使用などの理由により、電力伝送を中断する指示があるか否かを確認する。 In S6 of FIG. 5, when it is determined that no foreign object has entered during power supply (“NO” in S6), the power supply control unit 16 causes the inverter unit 10 to continue power transmission (S8), and the flow is as follows. The process proceeds to S9. In S <b> 9, the power supply control unit 16 confirms whether there is an instruction to interrupt power transmission for reasons such as foreign object removal by a person or use of a car.
 S9において、電力伝送を中断する指示があった場合(S9で“YES”)、給電制御部16は、インバータ部10に電力伝送終了を指示し、給電コイルユニット12から受電コイルユニット18への電力供給を停止する(S11)。また、異物検知部14は、静電容量の測定動作を終了する(S11)。 In S9, when there is an instruction to interrupt power transmission (“YES” in S9), the power feeding control unit 16 instructs the inverter unit 10 to end power transmission, and the power from the power feeding coil unit 12 to the power receiving coil unit 18 is reached. Supply is stopped (S11). Further, the foreign matter detection unit 14 ends the capacitance measuring operation (S11).
 一方、電力伝送を中断する指示がなかった場合(S9で“NO”)、給電制御部16は、充電が完了したかどうかを判定する(S10)。充電が完了していない場合(S10で“NO”)、フローがS6に戻る一方、充電が完了している場合(S10で“YES”)、給電制御部16は電力供給を終了し、異物検知部14は異物検知動作を終了する(S11)。 On the other hand, when there is no instruction to interrupt the power transmission (“NO” in S9), the power supply control unit 16 determines whether the charging is completed (S10). When the charging is not completed (“NO” in S10), the flow returns to S6, while when the charging is completed (“YES” in S10), the power supply control unit 16 ends the power supply and detects foreign matter. The unit 14 ends the foreign object detection operation (S11).
 なお、図5では、S9の処理はS8の後に行われるものとしたが、これに限られるものではない。例えば、給電制御部16は、S4の電力供給の開始時から電力伝送を中断する指示があるか否かを確認し、電力伝送を中断する指示があった場合、インバータ部10に電力伝送終了を指示し、給電コイルユニット12から受電コイルユニット18への電力供給を終了し、異物検知部14は、異物検知動作を終了するようにしてもよい(S11)。 In FIG. 5, the process of S9 is performed after S8. However, the process is not limited to this. For example, the power supply control unit 16 confirms whether or not there is an instruction to interrupt power transmission from the start of power supply in S4, and if there is an instruction to interrupt power transmission, the inverter unit 10 terminates power transmission. The power supply from the power supply coil unit 12 to the power receiving coil unit 18 may be terminated, and the foreign object detection unit 14 may end the foreign object detection operation (S11).
 以上のように、本実施形態によれば、カバー周辺に存在する異物を検知可能な静電容量センサを有する異物検知部14と、異物検知部14の正常動作を監視する監視部17とを備えているため、給電装置2による給電動作を開始する前に異物検知部14の正常動作を確認することができ、異物検知部14が異常な状態のまま給電装置2による給電動作が開始されるのを防ぐことができる。したがって、給電中におけるカバー周辺への異物の侵入、特に一次コイル44と二次コイル45との間への異物の侵入を常に安全確実に検知することが可能となる。 As described above, according to the present embodiment, the foreign matter detection unit 14 having a capacitance sensor capable of detecting foreign matter existing around the cover and the monitoring unit 17 that monitors normal operation of the foreign matter detection unit 14 are provided. Therefore, the normal operation of the foreign object detection unit 14 can be confirmed before the power supply operation by the power supply device 2 is started, and the power supply operation by the power supply device 2 is started while the foreign object detection unit 14 is in an abnormal state. Can be prevented. Accordingly, it is possible to always safely and reliably detect the intrusion of foreign matter around the cover during power feeding, particularly the intrusion of foreign matter between the primary coil 44 and the secondary coil 45.
 なお、本開示は上述した実施形態に限られるものではない。 Note that the present disclosure is not limited to the above-described embodiment.
 例えば、給電装置に異物検知部(静電容量センサ)を設けることに加えて、または設けることに代えて、異物検知部(静電容量センサ)及び、監視部を受電装置に設けてもよい。このとき、受電装置の監視部における監視の開始のトリガー(図5のS1参照)は、例えば、受電装置と給電装置との相対的な位置関係の接近によって行ってもよい。より具体的には、相対的な位置関係の接近は、例えば受電装置と給電装置との相対的な位置関係が接近したことを伝える信号を、受電装置または給電装置が計測してもよいし、受電装置または給電装置の外部から有線通信または無線通信等を介して受信してもよい。 For example, in addition to or in place of providing a foreign object detection unit (capacitance sensor) in the power feeding device, a foreign object detection unit (capacitance sensor) and a monitoring unit may be provided in the power receiving device. At this time, the trigger for starting monitoring (see S <b> 1 in FIG. 5) in the monitoring unit of the power receiving apparatus may be performed by, for example, approaching a relative positional relationship between the power receiving apparatus and the power feeding apparatus. More specifically, for the approach of the relative positional relationship, for example, the power receiving device or the power feeding device may measure a signal indicating that the relative positional relationship between the power receiving device and the power feeding device is approached, You may receive via the wire communication or radio | wireless communication etc. from the exterior of a power receiving apparatus or electric power feeding apparatus.
 これにより、受電装置のカバー周辺の異物を検知する異物検知部の動作を監視することができる。したがって、監視部を受電装置に設けた場合においても、上述の実施形態と同様に、給電中におけるカバー周辺への異物の侵入を常に安全確実に検知することが可能となる。 This makes it possible to monitor the operation of the foreign matter detection unit that detects foreign matter around the cover of the power receiving device. Therefore, even when the monitoring unit is provided in the power receiving device, it is possible to always safely and reliably detect intrusion of foreign matter around the cover during power feeding, as in the above-described embodiment.
 また、上述の実施形態では、給電装置が地上に敷設され、受電装置が電気推進車両に搭載された例を示したが、受電装置が地上に敷設され、給電装置が電気推進車両に搭載された場合においても同様に適用することができる。 In the above-described embodiment, the power supply device is laid on the ground and the power reception device is mounted on the electric propulsion vehicle. However, the power reception device is laid on the ground and the power supply device is mounted on the electric propulsion vehicle. The same applies to cases.
 以上のように、本発明の非接触電力伝送装置は、給電装置から受電装置への給電中にカバー周辺に侵入した異物を確実に検知できるため、例えば人や物が不注意にあるいは誤って近づく可能性がある電気推進車両に備わる受電装置への給電等に係る安全システムに有用である。 As described above, the contactless power transmission device of the present invention can reliably detect foreign matter that has entered the periphery of the cover during power feeding from the power feeding device to the power receiving device, so that, for example, a person or an object approaches carelessly or mistakenly. This is useful for a safety system related to power supply to a power receiving device provided in a potential electric propulsion vehicle.
2 給電装置
4 受電装置
14 異物検知部(静電容量センサ)
17 監視部
40 カバー
42 基板(基体)
44 一次コイル
45 二次コイル
2 Power feeding device 4 Power receiving device 14 Foreign matter detection unit (capacitance sensor)
17 Monitoring unit 40 Cover 42 Substrate (base)
44 Primary coil 45 Secondary coil

Claims (7)

  1.  給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う非接触電力伝送装置であって、
     前記給電装置は、
     基体と、
     前記基体上に設けられ、磁束を発生する一次コイルと、
     前記基体に取り付けられ、前記一次コイルを覆うカバーとを備えており、
     前記非接触電力伝送装置は、
     前記カバー周辺の異物を検知する静電容量センサと、
     前記静電容量センサが検知した信号を監視する監視部とを備えている
    ことを特徴とする非接触電力伝送装置。
    A non-contact power transmission device that performs power transmission using electromagnetic induction between a power feeding device and a power receiving device,
    The power supply device
    A substrate;
    A primary coil provided on the substrate and generating magnetic flux;
    A cover attached to the base body and covering the primary coil;
    The non-contact power transmission device is
    A capacitance sensor for detecting foreign matter around the cover;
    A non-contact power transmission device comprising: a monitoring unit that monitors a signal detected by the capacitance sensor.
  2.  請求項1記載の非接触電力伝送装置において、
     前記静電容量センサは、前記一次コイルと前記カバーとの間に設けられている
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The non-contact power transmission device, wherein the capacitance sensor is provided between the primary coil and the cover.
  3.  請求項1記載の非接触電力伝送装置において、
     前記監視部は、前記給電装置と前記受電装置との距離が接近したことをトリガーとして、前記静電容量センサの信号変化を監視し、所定の期間に当該信号変化がなかった場合、前記静電容量センサに異常があると判定する
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 1,
    The monitoring unit monitors a change in the signal of the capacitance sensor, triggered by a distance between the power feeding device and the power receiving device, and if there is no change in the signal during a predetermined period, A non-contact power transmission device that determines that there is an abnormality in a capacitance sensor.
  4.  給電装置と受電装置との間で電磁誘導を用いた電力伝送を行う非接触電力伝送装置であって、
     前記受電装置は、
     基体と、
     前記基体上に設けられ、前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、
     前記基体に取り付けられ、前記二次コイルを覆うカバーとを備えており、
     前記非接触電力伝送装置は、
     前記カバー周辺の異物を検知する静電容量センサと、
     前記静電容量センサが検知した信号を監視する監視部とを備えている
    ことを特徴とする非接触電力伝送装置。
    A non-contact power transmission device that performs power transmission using electromagnetic induction between a power feeding device and a power receiving device,
    The power receiving device is:
    A substrate;
    A secondary coil that is provided on the base body and generates an electromotive force according to the magnetic flux received from the power feeding device;
    A cover attached to the base body and covering the secondary coil;
    The non-contact power transmission device is
    A capacitance sensor for detecting foreign matter around the cover;
    A non-contact power transmission device comprising: a monitoring unit that monitors a signal detected by the capacitance sensor.
  5.  請求項4記載の非接触電力伝送装置において、
     前記監視部は、前記給電装置と前記受電装置との距離が接近したことをトリガーとして、前記静電容量センサの信号変化を監視し、所定の期間に当該信号変化がなかった場合、前記静電容量センサに異常があると判定する
    ことを特徴とする非接触電力伝送装置。
    The contactless power transmission device according to claim 4,
    The monitoring unit monitors a change in the signal of the capacitance sensor, triggered by a distance between the power feeding device and the power receiving device, and if there is no change in the signal during a predetermined period, A non-contact power transmission device that determines that there is an abnormality in a capacitance sensor.
  6.  対向して配置された非接触電力伝送装置の受電装置に対して、電磁誘導を用いた給電を行う給電装置であって、
     基体と、
     前記基体上に設けられ、磁束を発生する一次コイルと、
     前記基体に取り付けられ、前記一次コイルを覆うカバーと、
     前記カバー周辺の異物を検知する静電容量センサと、
     前記静電容量センサが検知した信号を監視する監視部とを備えている
    ことを特徴とする給電装置。
    A power feeding device that performs power feeding using electromagnetic induction to a power receiving device of a non-contact power transmission device arranged oppositely,
    A substrate;
    A primary coil provided on the substrate and generating magnetic flux;
    A cover attached to the substrate and covering the primary coil;
    A capacitance sensor for detecting foreign matter around the cover;
    And a monitoring unit that monitors a signal detected by the capacitance sensor.
  7.  非接触電力伝送装置の給電装置から伝送された電力を受電する受電装置であって、
     基体と、
     前記基体上に設けられ、前記給電装置から受けた磁束に応じて起電力を発生する二次コイルと、
     前記基体に取り付けられ、前記二次コイルを覆うカバーと、
     前記カバー周辺の異物を検知する静電容量センサと、
     前記静電容量センサが検知した信号を監視する監視部とを備えている
    ことを特徴とする受電装置。
    A power receiving device that receives power transmitted from a power supply device of a non-contact power transmission device,
    A substrate;
    A secondary coil that is provided on the base body and generates an electromotive force according to the magnetic flux received from the power feeding device;
    A cover attached to the substrate and covering the secondary coil;
    A capacitance sensor for detecting foreign matter around the cover;
    A power receiving apparatus comprising: a monitoring unit that monitors a signal detected by the capacitance sensor.
PCT/JP2012/006932 2011-10-28 2012-10-29 Contactless electrical power transmission device, and electricity supply device and electricity reception device using same WO2013061617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-236898 2011-10-28
JP2011236898A JP2015008551A (en) 2011-10-28 2011-10-28 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
WO2013061617A1 true WO2013061617A1 (en) 2013-05-02

Family

ID=48167465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006932 WO2013061617A1 (en) 2011-10-28 2012-10-29 Contactless electrical power transmission device, and electricity supply device and electricity reception device using same

Country Status (2)

Country Link
JP (1) JP2015008551A (en)
WO (1) WO2013061617A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541226A (en) * 2013-11-21 2016-12-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Energy transmission system and method for diagnosing energy transmission system
JPWO2015097807A1 (en) * 2013-12-26 2017-03-23 三菱電機エンジニアリング株式会社 Resonant transmission power supply apparatus and resonant transmission power supply system
JP2021039006A (en) * 2019-09-03 2021-03-11 株式会社Soken Ultrasonic sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739226B2 (en) * 2016-05-09 2020-08-12 株式会社テクノバ Foreign object detection device for non-contact power supply system and foreign object detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716553U (en) * 1993-08-25 1995-03-17 松下電工株式会社 Power supply
JP2008087733A (en) * 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd Noncontact power supply device
WO2008140333A2 (en) * 2007-05-10 2008-11-20 Auckland Uniservices Limited Multi power sourced electric vehicle
JP2010226946A (en) * 2009-02-25 2010-10-07 Maspro Denkoh Corp Power supply system for moving body
JP2011010435A (en) * 2009-06-25 2011-01-13 Fujitsu Ten Ltd Contactless power supply system and contactless power supply unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716553U (en) * 1993-08-25 1995-03-17 松下電工株式会社 Power supply
JP2008087733A (en) * 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd Noncontact power supply device
WO2008140333A2 (en) * 2007-05-10 2008-11-20 Auckland Uniservices Limited Multi power sourced electric vehicle
JP2010226946A (en) * 2009-02-25 2010-10-07 Maspro Denkoh Corp Power supply system for moving body
JP2011010435A (en) * 2009-06-25 2011-01-13 Fujitsu Ten Ltd Contactless power supply system and contactless power supply unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541226A (en) * 2013-11-21 2016-12-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Energy transmission system and method for diagnosing energy transmission system
JPWO2015097807A1 (en) * 2013-12-26 2017-03-23 三菱電機エンジニアリング株式会社 Resonant transmission power supply apparatus and resonant transmission power supply system
JP2021039006A (en) * 2019-09-03 2021-03-11 株式会社Soken Ultrasonic sensor
WO2021045049A1 (en) * 2019-09-03 2021-03-11 株式会社デンソー Ultrasonic sensor
JP7287198B2 (en) 2019-09-03 2023-06-06 株式会社Soken ultrasonic sensor

Also Published As

Publication number Publication date
JP2015008551A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP6187871B2 (en) Non-contact power transmission device, and power feeding device and power receiving device used therefor
JP6210467B2 (en) Non-contact power supply device and detection sensor
JP2015008548A (en) Non-contact power transmission device
WO2013001810A1 (en) Power supply device and power receiving device used in contactless power transmission
WO2013065283A1 (en) Non-contact charging apparatus
WO2019229808A1 (en) Power transmission device, and method for controlling power transmission device
WO2013061617A1 (en) Contactless electrical power transmission device, and electricity supply device and electricity reception device using same
WO2013061611A1 (en) Contactless power transmission device
WO2013001812A1 (en) Power supply device and power-receiving device used for non-contact electric power transmission
WO2013061613A1 (en) Contactless charging device
JPWO2017134838A1 (en) Non-contact charging equipment
WO2012090341A1 (en) Power control device for contactless charging device
JP6566131B2 (en) Method for detecting coil position of non-contact power feeding system and non-contact power feeding system
JP2015008546A (en) Non-contact power transmission device
WO2013001811A1 (en) Power supply device and power-receiving device used for non-contact electric power transmission
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
CN107112775B (en) Charging device for the inductive transmission of electrical energy and method for operating a charging device
JP5699960B2 (en) Non-contact power transmission device
JP2019071762A (en) Method for controlling power transmitting device for radio power transmission system, method for detecting foreign matter and power transmitting device
JP5757269B2 (en) Non-contact power feeding device
JPWO2019229806A1 (en) Defrosting method of power transmission equipment, contactless power supply system, and power transmission equipment
WO2019229805A1 (en) Method for defrosting power transmission device, non-contact power feeding system, and power transmission device
JP2014113016A (en) Non-contact power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP