WO2015068476A1 - Non-contact power transmission system - Google Patents
Non-contact power transmission system Download PDFInfo
- Publication number
- WO2015068476A1 WO2015068476A1 PCT/JP2014/074849 JP2014074849W WO2015068476A1 WO 2015068476 A1 WO2015068476 A1 WO 2015068476A1 JP 2014074849 W JP2014074849 W JP 2014074849W WO 2015068476 A1 WO2015068476 A1 WO 2015068476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- coil
- power transmission
- foreign object
- transmission system
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/124—Detection or removal of foreign bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/126—Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a non-contact power transmission system that performs non-contact power transmission from a power feeding unit to a power receiving unit.
- JPJ2012-228121 A In Japanese Patent Laid-Open No. 2012-228121 (hereinafter referred to as “JPJ2012-228121 A”), even if a foreign object exists between the power transmission coil and the power reception coil, the power supply from the power transmission coil to the power reception coil can be continued. It aims at providing the non-contact electric power feeder which can be performed ([0005], summary).
- JP282012-228121 A when foreign matter is detected by the foreign matter detection means, the transmitted power is lowered and the second coil (power transmission coil 16) to the first coil (power receiving coil 26). ) (Summary).
- JP 2012-228121 A foreign matter is detected based on the heat quantity Q of the cooling water for cooling the power transmission coil 16 ([0041], [0058], [0063] to [0064]).
- US Patent Application Publication No. 2011/0270462 (hereinafter referred to as “US ⁇ 2011/0270462 A1 ”), when there is an obstacle such as a person or an object, the system can quickly detect this and control the power supply state. And its control method ([0006]).
- US 2011/0270462 A1 if the transmission efficiency is less than the specified value, there is a possibility that there is an obstacle, so power transmission is temporarily stopped and periodically with a small amount of power. Transmit power to detect efficiency. When the efficiency exceeds the specified value, transmission is resumed with regular power (summary).
- transmission efficiency is calculated from the transmitted power in the power transmission unit 12 and the received power obtained in the power reception unit 14 ([0053]).
- JP 2012-228121 A only determines the transmission power according to the presence or absence of foreign matter, and cannot set the transmission power in detail according to the state of the foreign matter.
- foreign matter is detected based on the heat quantity Q of the cooling water that cools the power transmission coil 16, and therefore foreign matter cannot be detected unless power is actually transmitted.
- the transmission efficiency is calculated from the transmitted power in the power transmission unit 12 and the received power obtained in the power reception unit 14, and therefore the possibility of an obstacle cannot be determined without actually transmitting power.
- the transmission efficiency if there is a foreign object that generates excessive heat, the foreign object may have an adverse effect in US 2011 / 027046246A1.
- the present invention has been made in consideration of the above-described problems, and realizes a new method for setting transmission power in detail, setting transmission power according to a foreign object before transmission, and setting transmission power.
- An object of the present invention is to provide a non-contact power transmission system capable of at least one of doing.
- a non-contact power transmission system transmits power in a non-contact manner from a power feeding unit to a power receiving unit, detects a relative position of a foreign object with respect to the power feeding unit or the power receiving unit, and based on the relative position
- a limit value of transmission power per unit time from the power feeding unit to the power receiving unit is set according to the estimated total amount of magnetic flux in the foreign matter.
- the limit value per unit time of the transmitted power from the power feeding unit to the power receiving unit is set according to the total amount of magnetic flux in the foreign matter. For this reason, it becomes possible to provide the new method of setting transmission power. Further, the total amount of magnetic flux in the foreign matter affects the amount of heat generated in the foreign matter (and the resulting power loss during power transmission). For this reason, it becomes possible to set transmission power finely according to the calorific value (or power loss) in a foreign object.
- the total amount of magnetic flux in the foreign object is estimated based on the relative position of the foreign object with respect to the power feeding unit and the power receiving unit. For this reason, even before actual power transmission, the total amount of magnetic flux can be estimated. In this case, it is possible to set the transmission power according to the foreign object before power transmission.
- a set of plane coordinates in a direction in which one side of the first coil or the second coil is viewed from the other side, with the side surfaces of the solenoid-type first coil for power supply and the second coil for power reception facing each other and contactless. May be used at least as the relative position of the foreign matter. This makes it possible to estimate or calculate the total amount of magnetic flux passing through the foreign matter for the magnetic flux in the direction perpendicular to the central axis direction of the first coil or the second coil. For this reason, in the configuration in which the magnetic flux in the direction has a relatively large influence on the heat generation amount (or power loss) in the foreign material, it is possible to appropriately set the transmission power.
- the contactless power transmission system may include an imaging unit that images the foreign matter, and the set of the plane coordinates as the relative position of the foreign matter may be detected based on an image acquired by the imaging unit. Thereby, it is possible to easily detect a set of plane coordinates in a direction in which one of the first coil and the second coil is viewed from the other.
- the solenoid-type first coil for power feeding and the second coil for power reception face each other to transmit power in a non-contact manner, and the first coil and the second coil are each a plurality of divided coils connected in parallel. Are arranged in a straight line in the direction of the central axis of the first coil and the second coil, and the power transmission is stopped between the split coils sandwiching the foreign matter therebetween, and the split coil does not sandwich the foreign matter therebetween. Power may be transmitted between. Thereby, power transmission can be performed while suppressing heat generation or power loss in the foreign matter.
- At least one of the first coil and the second coil may be wound around a core made of a magnetic material, and the non-energized coil may be used as a magnetic path. As a result, it is possible to suppress leakage magnetic flux and improve power supply efficiency.
- a non-contact power transmission system transmits power from a power feeding unit to a power receiving unit in a non-contact manner, detects a relative position of a foreign object with respect to the power feeding unit or the power receiving unit, and receives the power from the power feeding unit.
- the limit value of the transmission power per unit time to the unit is changed according to the relative position.
- FIG. 1 is a schematic configuration diagram of a contactless power transmission system according to a first embodiment of the present invention. It is a figure which shows arrangement
- FIG. 5A shows an example of the magnetic flux density at the points P1 and P2 in FIG. 4, and FIG. 5B shows an example of the degree of the temperature rise of the foreign matter per unit time at the points P1 and P2.
- FIG. 10 is a flowchart showing details of power transmission mode determination (S3 to S5 in FIG. 9). It is a figure which shows an example of the magnetic flux amount of the Z direction estimated for every coordinate of the XY direction divided into the matrix form. It is a figure which shows an example of the database which memorize
- FIG. 1 is a schematic configuration diagram of a contactless power transmission system 10 (hereinafter also referred to as “system 10”) according to the first embodiment of the present invention. As shown in FIG. 1, the system 10 includes a power supply device 12 that supplies power to the outside and a vehicle 14 that receives power supply from the power supply device 12.
- system 10 includes a power supply device 12 that supplies power to the outside and a vehicle 14 that receives power supply from the power supply device 12.
- the power feeding device 12 includes a DC power supply 20, a power transmission inverter 22 (hereinafter also referred to as “inverter 22”), a power feeding circuit 24, a power feeding device side camera 26, and a communication device 28 (hereinafter referred to as “power feeding device”). And a power supply control device 30 (hereinafter also referred to as “control device 30”). Instead of the DC power supply 20 and the inverter 22, an AC power supply may be used.
- the inverter 22 converts a direct current from the direct current power source 20 into an alternating current and outputs the alternating current to the power feeding circuit 24.
- the power feeding circuit 24 outputs the electric power from the inverter 22 to the vehicle 14. Details of the power feeding circuit 24 will be described later with reference to FIG.
- FIG. 2 is a diagram illustrating an arrangement of the power supply device side camera 26 and a vehicle side camera 54 described later in the first embodiment.
- the power supply device side camera 26 (hereinafter also referred to as “first camera 26” or “camera 26”) is disposed on the far side of the parking space with respect to the power supply coil 80 (described later) of the power supply circuit 24. Images in the peripheral width direction (Y direction) and height direction (Z direction) (hereinafter also referred to as “YZ image Iyz”) are acquired.
- another component position detecting means
- the communication device 28 is used for wireless communication with the vehicle 14.
- the control device 30 controls the inverter 22 and the power feeding circuit 24 via the communication line 32 (FIG. 1). At that time, the control device 30 communicates with the vehicle 14 via the communication device 28.
- the control device 30 includes an input / output unit 34 as an input / output interface, a calculation unit 36 that performs various calculations, and a storage unit 38 that stores programs and data used by the calculation unit 36.
- the vehicle 14 is a so-called electric vehicle having a travel motor 40 (hereinafter also referred to as “motor 40”) as a drive source.
- the vehicle 14 may be an electric vehicle such as a hybrid vehicle having an engine in addition to the motor 40.
- the vehicle 14 includes a motor driving inverter 42 (hereinafter also referred to as “inverter 42”), a battery 44 (power storage device), a voltage sensor 46, a current sensor 48, an SOC sensor 50, The power receiving circuit 52, the vehicle-side camera 54, a communication device 56 (hereinafter also referred to as “vehicle-side communication device 56”), and an electronic control device 58 (hereinafter referred to as “ECU 58”).
- a DC / DC converter may be arranged between the inverter 42 and the battery 44 to transform the output voltage of the battery 44.
- the motor 40 of the first embodiment is a three-phase AC brushless type.
- the motor 40 generates a driving force based on the electric power supplied from the battery 44, and rotates wheels (not shown) through a transmission (not shown) by the driving force. Further, the motor 40 outputs electric power (regenerative power Preg) [W] generated by performing regeneration to the battery 44 or the like.
- the inverter 42 has a three-phase bridge type configuration and performs DC-AC conversion. More specifically, the inverter 42 converts direct current into three-phase alternating current and supplies it to the motor 40, while supplying direct current after alternating current-direct current conversion accompanying the regenerative operation to the battery 44 and the like.
- the battery 44 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydride secondary battery, or a capacitor can be used. In the first embodiment, a lithium ion secondary battery is used.
- the voltage sensor 46 detects an input voltage (hereinafter referred to as “battery input voltage Vbat” or “voltage Vbat”) [V] from the power receiving circuit 52 to the battery 44.
- the current sensor 48 detects an input current (hereinafter referred to as “battery input current Ibat” or “current Ibat”) [A] from the power receiving circuit 52 to the battery 44.
- the SOC sensor 50 detects the remaining capacity (SOC) [%] of the battery 44.
- the power receiving circuit 52 receives power from the power feeding device 12 and charges the battery 44. Details of the power receiving circuit 52 will be described later with reference to FIG.
- the vehicle-side camera 54 (hereinafter also referred to as “second camera 54” or “camera 54”) is disposed at the bottom (under the floor) of the vehicle 14 (vehicle body) so as not to interfere with the feeding coil 80. Then, the lower part of the vehicle 14 is imaged and output to the ECU 58.
- the images acquired by the second camera 54 are images in the front-rear direction (X direction) and the width direction (Y direction) of the power feeding coil 80 and its surroundings, and are also referred to as “XY images Ixy” below.
- an image from the second camera 54 may be processed by the ECU 58 or the like to generate the XY image Ixy.
- another component position detecting means may be used instead of the second camera 54.
- the communication device 56 is used for wireless communication with the power supply device 12.
- the ECU 58 controls the motor 40, the inverter 42, the battery 44, and the power receiving circuit 52 via the communication line 60 (FIG. 1). Further, the ECU 58 communicates with the power supply device 12 via the communication device 56 to control power transmission (power supply) from the power supply device 12. At that time, the ECU 58 uses detection values of various sensors such as the voltage sensor 46, the current sensor 48, and the SOC sensor 50.
- the ECU 58 includes an input / output unit 62 as an input / output interface, a calculation unit 64 that performs various calculations, and a storage unit 66 that stores programs and data used by the calculation unit 64.
- the ECU 58 is not limited to only one ECU, but can be configured from a plurality of ECUs for each of the motor 40, the inverter 42, the battery 44, and the power receiving circuit 52.
- FIG. 3 is a diagram illustrating an electric circuit related to wireless power feeding from the power feeding device 12 to the vehicle 14 in the first embodiment.
- the power supply device 12 includes the DC power supply 20, the inverter 22, and the power supply circuit 24. As shown in FIG. 3, a smoothing capacitor 70 is disposed between the DC power supply 20 and the inverter 22.
- the inverter 22 has a full bridge configuration including four switching elements 72, converts a direct current from the direct current power source 20 into an alternating current, and outputs the alternating current to the power feeding circuit 24.
- the power feeding control device 30 controls each switching element 72.
- the power feeding circuit 24 outputs the electric power from the inverter 22 to the vehicle 14.
- the power supply circuit 24 includes a power supply coil 80 (hereinafter also referred to as “coil 80”) and a capacitor 82.
- the coil 80 is a so-called solenoid coil (tubular coil).
- the coil 80 and the capacitor 82 are connected in parallel to form an LC circuit 84.
- the coil 80 and the capacitor 82 may be connected in series.
- a switch 86 controlled by the control device 30 is disposed between the LC circuit 84 and the inverter 22.
- the vehicle 14 includes the battery 44 and the power receiving circuit 52. As shown in FIG. 3, a smoothing capacitor 90 is disposed between the battery 44 and the power receiving circuit 52. In FIG. 3, the voltage sensor 46, the current sensor 48, and the SOC sensor 50 are omitted.
- the power receiving circuit 52 receives power from the power feeding device 12 and charges the battery 44.
- the power receiving circuit 52 includes a power receiving coil 100 (hereinafter also referred to as “coil 100”) and a capacitor 102.
- the coil 100 is a so-called solenoid coil (tubular coil).
- the coil 100 and the capacitor 102 are connected in parallel to form the LC circuit 104. Note that the coil 100 and the capacitor 102 may be connected in series.
- a rectifier circuit 106 and a switch 108 are disposed between the LC circuit 104 and the battery 44 and the smoothing capacitor 90.
- FIG. 4 is a diagram showing the power supply coil 80 shown in a simplified manner and the amount of magnetic flux ⁇ in each of the X direction, the Y direction, and the Z direction.
- the magnetic flux amount ⁇ in each of the X direction, the Y direction, and the Z direction is also referred to as ⁇ x, ⁇ y, and ⁇ z.
- 5A shows an example of the magnetic flux density B at the points P1 and P2 in FIG. 4
- FIG. 5B shows an example of the degree of temperature rise ⁇ T [° C./sec] of the foreign matter 300 per unit time at the points P1 and P2.
- the magnetic flux density B in FIG. 5A is a composite value of the magnetic flux densities Bx, By, Bz in the X direction, the Y direction, and the Z direction.
- the magnetic flux amounts ⁇ x, ⁇ y, and ⁇ z in the X direction, the Y direction, and the Z direction change depending on the position with respect to the feeding coil 80.
- the magnetic flux amount ⁇ z in the Z direction increases and the magnetic flux amount ⁇ x in the X direction decreases at the end in the front-rear direction (X direction).
- the magnetic flux amount ⁇ x in the X direction increases, and the magnetic flux amounts ⁇ y, ⁇ z in the Y direction and Z direction decrease.
- the temperature rise degree ⁇ T varies depending on the relative position of the foreign object 300 with respect to the power supply coil 80 (FIG. 5B).
- FIG. 6 are diagrams showing the foreign object 300 in the first to third postures with respect to the feeding coil 80.
- FIG. The foreign material 300 here has a rectangular parallelepiped shape (in particular, a thin plate shape).
- linkage area Az the linkage area A in the Z direction
- linkage area Ax the linkage area A in the X direction
- interlinkage area Ax in the X direction is the largest
- interlinkage area A in the Y direction (hereinafter referred to as “interlinkage area Ay”) is the smallest.
- the interlinkage area Ay in the Y direction is the largest
- the interlinkage area Az in the Z direction is the smallest.
- the foreign object 300 is located around the end portion of the feeding coil 80 in the X direction.
- the magnetic flux amount ⁇ z in the Z direction increases and the magnetic flux amount ⁇ x in the X direction decreases near the end in the X direction.
- the interlinkage area Az in the Z direction of the foreign material 300 is the largest.
- the interlinkage area Az in the Z direction of the foreign material 300 is intermediate between the interlinkage areas Ax and Ay in the X direction and the Y direction.
- the interlinkage area Az in the Z direction of the foreign material 300 is the smallest. If the magnetic flux density Bz in the Z direction of the foreign material 300 is assumed to be equal, the foreign material 300 in the first posture (FIG. 6) is most likely to become the highest temperature.
- the degree of temperature rise ⁇ T is different. That is, the magnetic flux amount ⁇ x in the X direction among the XYZ directions is the largest in the vicinity of the center of the feeding coil 80 in the X direction. For this reason, when the magnetic flux density Bx of the X direction in the foreign material 300 is equal, the foreign material 300 in a 2nd attitude
- FIG. 9 is a flowchart of control of the power supply control device 30 (power supply device 12 side) and the ECU 58 (vehicle 14 side) during power transmission according to the first embodiment.
- the control device 30 is already in the standby state before starting the control of FIG.
- step S1 of FIG. 9 the ECU 58 determines whether or not there is a request (external charging request) to charge the battery 44 from the power feeding device 12. For example, an external charging request is issued when an operation button (not shown) of the vehicle 14 is pressed by the user of the vehicle 14 or when a predetermined operation is performed by the user on the touch panel (not shown) of the vehicle 14. Can be determined.
- a request external charging request
- an external charging request is issued when an operation button (not shown) of the vehicle 14 is pressed by the user of the vehicle 14 or when a predetermined operation is performed by the user on the touch panel (not shown) of the vehicle 14. Can be determined.
- step S1 If there is no external charging request (S1: NO), step S1 is repeated.
- the ECU 58 determines whether or not the foreign object 300 exists between the power feeding coil 80 and the power receiving coil 100. The determination is made based on, for example, the YZ image Iyz from the power supply device side camera 26 and the XY image Ixy from the vehicle side camera 54. Alternatively, the determination can be made based only on one of the YZ image Iyz and the XY image Ixy. In the first embodiment, the material of the foreign material 300 is not discriminated, and it is assumed that the foreign material is a foreign material under severe conditions (in other words, the relative dielectric constant is relatively high).
- step S3 the ECU 58 determines that the total amount ⁇ tx, ⁇ ty, and ⁇ tz of the respective magnetic flux amounts in the X, Y, and Z directions between the power feeding coil 80 and the power receiving coil 100 is the specified value THtk. , THty, THtz (upper limit value). Details of the determination will be described later with reference to FIG.
- step S4 If no foreign object 300 exists in step S2 (S2: NO), or if the total amount of magnetic fluxes ⁇ tx, ⁇ ty, ⁇ tz is within the specified values THtx, THty, THtz in step S3 (S3: YES), in step S4, The ECU 58 selects the normal mode as the power transmission mode. On the other hand, if any of the total magnetic flux amounts ⁇ tx, ⁇ ty, and ⁇ tz is not within the specified values THtx, THty, and THtz in step S3 (S3: NO), in step S5, the ECU 58 selects the output restriction mode as the power transmission mode. To do.
- FIG. 10 is a diagram illustrating an example of the relationship between the interlinkage area A, the degree of temperature rise ⁇ T of the foreign object 300 per unit time, and the power transmission mode. As shown in FIG. 10, when the magnetic flux density B in the foreign material 300 is constant, as the interlinkage area A increases, the total amount of magnetic flux ⁇ t increases and the temperature rise degree ⁇ T increases.
- the supply power per unit time is limited by switching from the normal mode to the output limit mode. Then, the degree of temperature rise ⁇ T is reduced (see arrow 200 in FIG. 10). As a result, if the original power supply is maintained, the power transmission can be continued in a state where the power supply is reduced where the foreign object 300 is overheated and the power transmission should be stopped.
- step S6 of FIG. 9 the ECU 58 notifies the control device 30 of the selected power transmission mode (normal mode or output restriction mode) and makes a power transmission request to the control device 30. Accordingly, the ECU 58 turns on the switch 108 (FIG. 3) to charge the battery 44.
- step S ⁇ b> 7 the ECU 58 determines whether or not to end the charging of the battery 44 with the electric power from the power feeding device 12. This determination is made, for example, based on whether or not the SOC of the battery 44 has reached a predetermined threshold value (hereinafter referred to as “charging completion threshold value THsoc” or “SOC threshold value THsoc”).
- a predetermined threshold value hereinafter referred to as “charging completion threshold value THsoc” or “SOC threshold value THsoc”.
- step S7 When the charging of the battery 44 is not terminated (S7: NO), the process returns to step S2. Alternatively, simply repeat step S7.
- step S8 the ECU 58 notifies the control device 30 that the charging should be terminated, and the current process is terminated. At this time, the ECU 58 turns off the switch 108.
- the control device 30 Upon receiving the power transmission mode notification (S6) from the ECU 58, the control device 30 performs power transmission according to the power transmission mode (S11). Specifically, when the normal mode is notified, the control device 30 transmits power in the normal mode, and when the output restriction mode is notified, the control device 30 transmits power in the output restriction mode. Compared to the normal mode, in the output restriction mode, the amount of power per unit time supplied from the feeding coil 80 to the receiving coil 100 is restricted. Thereby, even if the foreign material 300 exists between the power feeding coil 80 and the power receiving coil 100, it is possible to prevent the foreign material 300 from being heated excessively.
- control device 30 turns on the switch 86 (FIG. 3).
- the control device 30 controls the inverter 22 to convert the direct current from the direct current power source 20 into an alternating current, and then supplies (powers) the power receiving coil 100 via the power supply coil 80. Thereby, the battery 44 is charged.
- the electric power output from the power supply device 12 to the vehicle 14 in the output restriction mode is set according to the interlinkage area A in each of the XYZ directions so that the degree of temperature rise ⁇ T of the foreign object 300 per unit time is not more than a predetermined value. (See FIG. 10).
- step S12 the control device 30 determines whether or not to end the power supply. This determination is made based on whether or not notification (S8) that power supply should be terminated has been received from the ECU 58 of the vehicle 14. When the power feeding is not finished (S12: NO), the process returns to step S11. When the power supply is terminated (S12: YES), the current power supply is terminated.
- FIG. 11 is a flowchart showing details of determination of the power transmission mode (S3 to S5 in FIG. 9).
- the ECU 58 uses the XY image Ixy from the vehicle-side camera 54 to determine the length Lx (depth) in the X direction and the length Ly (width) in the Y direction of the foreign material 300 and the position coordinates C of the foreign material 300. And detect.
- the lengths Lx and Ly can be, for example, any one of a maximum value, an average value, and a median value.
- the position coordinates C here are, for example, a coordinate group (XY coordinate group) occupied by the foreign object 300 when viewed from the Z direction.
- the ECU 58 detects the length Lz (height) of the foreign object 300 in the Z direction and the position coordinate C of the foreign object 300 using the YZ image Iyz from the power supply device side camera 26.
- the length Lz can be, for example, any one of a maximum value, an average value, and a median value.
- the position coordinates C here are, for example, a coordinate group (a coordinate group in the YZ direction) occupied by the foreign object 300 when viewed from the X direction. Based on the position coordinates C (coordinate group viewed from the X direction and the Z direction) in steps S21 and S22, the position coordinate C (coordinate group of the XZ direction) viewed from the Y direction can also be calculated.
- the lengths Lx, Ly, Lz and the position coordinates C may be any as long as they can calculate the total magnetic flux amounts ⁇ tx, ⁇ ty, ⁇ tz in steps S24, S26, and S28.
- step S23 the ECU 58 calculates the interlinkage areas Ax, Ay, Az in the X direction, the Y direction, and the Z direction.
- the interlinkage area Ax is obtained by multiplying the length Ly in the Y direction by the length Lz in the Z direction.
- the interlinkage area Ay is obtained by multiplying the length Lx in the X direction by the length Lz in the Z direction.
- the interlinkage area Az is obtained by multiplying the length Lx in the X direction and the length Ly in the Y direction.
- the interlinkage areas Ax, Ay, Az may be obtained by other methods.
- step S24 the ECU 58 calculates the sum ⁇ tz of the amount of magnetic flux ⁇ z in the Z direction occupying the interlinkage area Az in the Z direction.
- the X-direction, Y-direction, and Z-direction coordinates are divided into a matrix, and a database storing the magnetic flux amount ⁇ (or magnetic flux density B) for each coordinate is created.
- FIG. 12 is a diagram illustrating an example of the amount of magnetic flux ⁇ z in the Z direction estimated for each coordinate (Xn, Yn) in the XY direction divided into a matrix.
- FIG. 13 is a diagram illustrating an example of a database that stores the amount of magnetic flux ⁇ z in the Z direction for each coordinate (Xn, Yn) in the XY directions.
- the magnetic flux amount ⁇ z in the Z direction is stored for each coordinate (Xn, Yn) in the XY directions, this is synonymous with storing the magnetic flux density Bz in the Z direction as a result.
- this database stores the amount of magnetic flux ⁇ y in the Y direction for each coordinate (Xn, Zn) in the XZ direction, and stores the amount of magnetic flux ⁇ x in the X direction for each coordinate (Yn, Zn) in the YZ direction.
- the database in the first embodiment is stored in the storage unit 66 of the ECU 58.
- the lengths Lx and Ly and the position coordinates C are detected in step S21. With these numerical values, it is possible to specify the coordinate group occupied by the foreign object 300 in the Z direction. Therefore, the ECU 58 calculates the total ⁇ tz by integrating the magnetic flux amount ⁇ z in the Z direction corresponding to each coordinate included in the coordinate group.
- step S25 the ECU 58 determines whether the total magnetic flux amount ⁇ tz calculated in step S24 is equal to or less than a specified value THtz.
- the specified value THtz is a threshold value used for selecting the normal mode or the output restriction mode.
- step S26 the ECU 58 calculates the sum ⁇ ty of the amount of magnetic flux ⁇ y in the Y direction occupying the interlinkage area Ay in the Y direction.
- This process can be performed in the same manner as in step S24. That is, the coordinate group (the coordinate group in the XZ direction) occupied by the foreign object 300 in the Y direction is specified by the lengths Lx, Lz and the position coordinates C detected in steps S21 and S22. Then, the ECU 58 calculates the total ⁇ ty by integrating the amount of magnetic flux ⁇ y in the Y direction corresponding to each coordinate included in the coordinate group.
- step S27 the ECU 58 determines whether or not the total magnetic flux amount ⁇ ty calculated in step S26 is equal to or less than a specified value THty.
- the specified value THty is a threshold value used for selecting the normal mode or the output restriction mode.
- step S28 the ECU 58 calculates the sum ⁇ tx of the magnetic flux amount ⁇ x in the X direction occupying the interlinkage area Ax in the X direction. This process can be performed in the same manner as steps S24 and S26.
- step S29 the ECU 58 determines whether the total magnetic flux amount ⁇ tx calculated in step S28 is equal to or less than a specified value THtx.
- the specified value THtx is a threshold value used for selecting the normal mode or the output restriction mode.
- the ECU 58 selects the normal mode as the power transmission mode.
- step S31 If the total flux amount ⁇ tz is not less than or equal to the specified value THtz in step S25 (S25: NO), if the total flux amount ⁇ ty is not less than or equal to the defined value THty in step S27 (S27: NO), or if the total flux amount ⁇ tz in step S29. Is not less than the specified value THtx (S29: NO), in step S31, the ECU 58 selects the output restriction mode as the power transmission mode.
- the unit from the power feeding coil 80 (power feeding unit) to the power receiving coil 100 (power receiving unit) according to the total amount ⁇ t of the magnetic flux in the foreign material 300 A limit value of transmission power per hour is set (FIGS. 9 and 11). For this reason, it becomes possible to provide the new method of setting transmission power.
- the total amount ⁇ t of the magnetic flux in the foreign object 300 affects the amount of heat generated in the foreign object 300 (and the resulting power loss during power transmission). For this reason, it becomes possible to set transmission power finely according to the calorific value (or power loss) in the foreign material 300.
- the total amount ⁇ t of the magnetic flux in the foreign object 300 is estimated based on the relative position of the foreign object 300 with respect to the feeding coil 80 and the power receiving coil 100 (see FIGS. 12 and 13). For this reason, even before actual power transmission, the total amount ⁇ t of the magnetic flux can be estimated. In this case, the transmission power corresponding to the foreign object 300 can be set before power transmission.
- power is supplied in a contactless manner with the side surfaces of the solenoid-type power supply coil 80 (first power supply coil) and the power receiving coil 100 (second power receiving coil) facing each other (see FIG. 2).
- first power supply coil first power supply coil
- second power receiving coil second power receiving coil
- a relative position of the foreign object 300 at least a set of plane coordinates in a direction (Z direction) when the power feeding coil 80 is viewed from the power receiving coil 100 is used (see FIGS. 12 and 13).
- FIGS. 12 and 13 As a result, it is possible to estimate the total amount ⁇ t of the magnetic flux passing through the foreign object 300 for the magnetic flux in the direction (Z direction) perpendicular to the central axis direction of the power feeding coil 80 or the power receiving coil 100.
- the configuration in which the magnetic flux in the Z direction has a relatively large influence on the heat generation amount (or power loss) in the foreign material 300, it is possible to appropriately set the transmission power.
- the system 10 includes a vehicle-side camera 54 (imaging unit) that images the foreign object 300, and a set of plane coordinates in the Z direction as a relative position of the foreign object 300 is obtained by an XY image Ixy acquired by the camera 54. (See FIGS. 12 and 13). Thereby, it becomes possible to easily detect a set of plane coordinates in the direction (Z direction) when the power feeding coil 80 is viewed from the power receiving coil 100.
- a vehicle-side camera 54 imaging unit
- a set of plane coordinates in the Z direction as a relative position of the foreign object 300 is obtained by an XY image Ixy acquired by the camera 54.
- FIG. 14 is a schematic configuration diagram of a contactless power transmission system 10A (hereinafter also referred to as “system 10A”) according to the second embodiment of the present invention.
- system 10A a contactless power transmission system 10A
- the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
- the power feeding circuit 24a and the power receiving circuit 52a of the second embodiment are different from the power feeding circuit 24 and the power receiving circuit 52 of the first embodiment. Specific configurations of the power feeding circuit 24a and the power receiving circuit 52a will be described in detail with reference to FIG. Further, the power supply apparatus 12a of the system 10A does not have the power supply apparatus side camera 26.
- FIG. 15 is a diagram illustrating an electric circuit related to wireless power feeding from the power feeding device 12a to the vehicle 14a in the second embodiment.
- the power supply circuit 24 a includes a power supply coil 80 a (hereinafter also referred to as “coil 80 a”) including a plurality of divided coils 120 and a plurality of capacitors 122.
- the coil 80a (divided coil 120) is a so-called solenoid coil (tubular coil) (see FIG. 16).
- a plurality of LC circuits 124 in which one split coil 120 and one capacitor 122 are connected in parallel are arranged in parallel.
- a switch 126 controlled by the control device 30 is disposed between each LC circuit 124 and the inverter 22.
- FIG. 16 is an external perspective view showing a part of the power feeding circuit 24a of the power feeding device 12a and the power receiving circuit 52a of the vehicle 14a in the second embodiment.
- the front-rear direction (X direction), the left-right direction (Y direction), and the up-down direction (Z direction) are based on the vehicle 14a.
- the divided coils 120 constituting the power feeding coil 80 a are each spirally wound around a power transmission side core 130 (hereinafter also referred to as “core 130”).
- Each core 130 is a plate-like magnetic material.
- Each core 130 is linearly arranged at a predetermined interval in the direction of the central axis Ax1 of the power supply coil 80a (in other words, the direction orthogonal to the winding direction of the power supply coil 80a).
- Each core 130 is connected by resin 132 (FIG. 18). It should be noted that the resin 132 is omitted in FIG.
- a core 130 may be provided for each combination of a plurality of divided coils 120. For example, it is possible to wind four divided coils 120 around a single core 130.
- the power receiving circuit 52 a includes a power receiving coil 100 a (hereinafter, also referred to as “coil 100 a”) including a plurality of divided coils 140, and a plurality of capacitors 142.
- the coil 100a (divided coil 140) is a so-called solenoid coil (tubular coil) (see FIG. 16).
- a plurality of LC circuits 144 in which one split coil 140 and one capacitor 142 are connected in parallel are arranged in parallel.
- a rectifier circuit 146 and a switch 148 are disposed between each LC circuit 144 and the battery 44 and the smoothing capacitor 90.
- the divided coils 140 constituting the power receiving coil 100a are spirally wound around each plate-shaped power receiving side core 150 (hereinafter also referred to as “core 150”).
- core 150 is linearly arranged at a predetermined interval in the direction of the central axis Ax2 of the power receiving coil 100a (in other words, the direction orthogonal to the winding direction of the power receiving coil 100a).
- Each core 150 is connected by resin 152 (FIG. 18). It should be noted that the resin 152 is omitted in FIG. Further, instead of providing a separate core 150 for each divided coil 140, a core 150 may be provided for each combination of a plurality of divided coils 140.
- FIG. 17 is a flowchart of control of the power supply control device 30 (power supply device 12a side) and ECU 58 (vehicle 14a side) during power transmission according to the second embodiment.
- FIG. 18 is a diagram for explaining operations of the power feeding coil 80a and the power receiving coil 100a during power transmission according to the second embodiment.
- the control device 30 is already in a standby state before starting the control of FIG.
- the split coils 120 and 140 that are energized are indicated by solid lines, and the split coils 120 and 140 that are not energized are indicated by broken lines.
- step S42 when the foreign object 300 exists (S42: YES), in step S43, the ECU 58 determines whether or not the total amount ⁇ tz of the amount of magnetic flux in the Z direction is within the specified value THtz between the power feeding coil 80a and the power receiving coil 100a. Determine whether. This determination is the same as steps S21, S23, and S24 in FIG. In the second embodiment, only the total amount ⁇ tz of the Z direction magnetic flux is determined. However, as in the first embodiment, the total amount ⁇ tx of the X direction magnetic flux and the total amount ⁇ ty of the Y direction magnetic flux are determined. May be.
- step S44 the ECU 58 sets the normal mode as the power transmission mode. select. In the normal mode in the second embodiment, power is supplied using all the split coils 120 and 140.
- step S45 the ECU 58 selects the output restriction mode as the power transmission mode.
- the output restriction mode in the second embodiment power is supplied using the divided coils 120 and 140 with no foreign material 300 in between, and the divided coils 120 and 140 with the foreign material 300 in between are not used for power supply. Therefore, transmission power is limited.
- step S46 the ECU 58 notifies the control device 30 of the divided coil 120 to be energized. That is, when the normal mode is selected, notification that all the divided coils 120 should be energized is given. When the output restriction mode is selected, it is notified that the divided coil 120 in which no foreign material 300 exists between the opposed divided coils 140 should be energized. For example, in the example of FIG. 18, the ECU 58 issues a command to the control device 30 to energize the left three divided coils 120.
- the power supply device 12a can acquire information for determining the position of the foreign object 300 (for example, image data acquired by the camera 54) on the power supply device 12a side, the determination of the split coil 120 to be energized is performed. It can also be performed on the 12a side (for example, the control device 30).
- the ECU 58 turns on a switch 148 (FIG. 15) corresponding to the split coil 140 corresponding to the split coil 120 that performs power feeding.
- the switch 148 corresponding to the split coil 140 corresponding to the split coil 120 to which power is not supplied is turned off. As a result, it is possible to avoid an eddy current in the split coil 120 that does not supply power from adversely affecting the power supply.
- step S47 the ECU 58 determines whether or not to end the charging of the battery 44 with the electric power from the power supply device 12a. This determination is the same as step S7 in FIG.
- step S47 If the charging of the battery 44 is not terminated (S47: NO), the process returns to step S42. Alternatively, step S47 may be simply repeated.
- step S48 the ECU 58 notifies the control device 30 that the charging should be ended.
- the control device 30 supplies power to the vehicle 14a using the split coil 120 notified from the ECU 58 in step S51 of FIG. (Power transmission).
- the control device 30 turns on the switch 126 (FIG. 15) corresponding to the split coil 120 notified from the ECU 58. At this time, the switch 126 corresponding to the divided coil 120 not notified from the ECU 58 remains off. Then, the control device 30 controls the inverter 22 to convert the direct current from the direct current power supply 20 into an alternating current, and then supplies the alternating current to the power receiving coil 100a (the divided coil 140) via the power feeding coil 80a (the divided coil 140). Power). Thereby, the battery 44 is charged.
- step S52 the control device 30 determines whether or not to end the power feeding. This determination is made based on whether or not a notification (S48) that power supply should be terminated has been received from the ECU 58 of the vehicle 14. When the power feeding is not finished (S52: NO), step S51 is repeated. When the power supply is terminated (S52: YES), the current power supply is terminated.
- the side surfaces of the solenoid-type power feeding coil 80a (first power feeding coil) and the power receiving coil 100a (second power receiving coil) are opposed to each other. Then, power is supplied in a non-contact manner (see FIGS. 15, 16, and 18).
- the power feeding coil 80a and the power receiving coil 100a are configured by arranging a plurality of divided coils 120 and 140, which are connected in parallel, in a straight line in the directions of the central axes Ax1 and Ax2 of the power feeding coil 80a and the power receiving coil 100a (FIG. 16). reference). Then, power transmission is stopped between the split coils 120 and 140 that sandwich the foreign object 300, and power is transmitted between the split coils 120 and 140 that do not sandwich the foreign object 300 (see FIGS. 17 and 18).
- the magnetic flux ring 160 (FIG. 18) formed by the split coils 120 and 140 that are energized does not interlink with the foreign material 300. Therefore, power supply can be performed while suppressing heat generation or power loss in the foreign material 300.
- the power feeding coil 80a and the power receiving coil 100a are wound around cores 130 and 150 made of a magnetic material (see FIGS. 16 and 18), and the non-energized coil is used as a magnetic path (FIG. 18). reference).
- cores 130 and 150 made of a magnetic material
- the non-energized coil is used as a magnetic path (FIG. 18). reference).
- the contactless power transmission system 10, 10A is used for power feeding (charging) of the vehicles 14, 14a, which are electric vehicles, but is used for other electric vehicles (hybrid vehicles, fuel cell vehicles, etc.). May be.
- the systems 10 and 10A can be used not only for the vehicles 14 and 14a but also for other moving bodies (such as ships and airplanes) that require power feeding.
- the systems 10 and 10A may be applied to a manufacturing apparatus, a robot, or a home appliance that requires power supply.
- Feeding coils 80 and 80a and receiving coils 100 and 100a [2-1. Coil type]
- the power supply coils 80 and 80a and the power reception coils 100 and 100a are all solenoid type coils (see, for example, FIG. 16).
- a limit value (upper limit value) of transmitted power per unit time according to the relative position of the foreign object 300, other types of coils can be used.
- the divided coil 120 is obtained by equally dividing the power feeding coil 80a (see FIGS. 16 and 18).
- the size of each split coil 120 is not necessarily the same. The same applies to the split coil 140.
- the number of the divided coils 120 and the number of the divided coils 140 is the same (see FIGS. 15 and 16). However, from the viewpoint of selecting the divided coils 120 to be energized according to the position of the foreign object 300, for example.
- the number of split coils 120 may be different from the number of split coils 140.
- the split coils 120 and 140 are arranged in the front-rear direction of the vehicle 14a, respectively (see FIGS. 16 and 18).
- the split coils 120 and 140 can be arranged in other directions (for example, the left and right direction (vehicle width direction) of the vehicle 14a) in addition to or in place of the longitudinal direction of the vehicle 14a. It is.
- the cores are used in both the feeding coil 80a and the power receiving coil 100a.
- the cores 130 and 150 can be omitted.
- Position detecting means (imaging means)]
- the power supply device-side camera 26 is used to detect the length Lz (height) of the foreign object 300 in the Z direction
- vehicle-side camera 54 is used to detect the length of the foreign object 300 in the X and Y directions. Lx and Ly were detected.
- the lengths Lx and Ly are detected using the vehicle-side camera 54.
- other configurations or methods may be used.
- FIG. 19 is a diagram showing an arrangement of a pressure sensor 170 and a laser displacement meter 172 as a modified example of the position detection means of the foreign object 300.
- the pressure sensor 170 has a substantially rectangular shape in plan view, and is disposed on the feeding coil 80. By using the pressure sensor 170, the coordinates (Xn, Yn) of the foreign material 300 when viewed from the Z direction can be detected.
- the laser displacement meter 172 is disposed in front of the parking space with respect to the feeding coil 80 of the feeding circuit 24, and detects the coordinates (Yn, Zn) of the foreign matter 300 in the feeding coil 80 and its surroundings when viewed from the X direction. be able to.
- the relative position of the foreign object 300 with respect to the feeding coil 80 is detected.
- a limit value (upper limit value) of transmitted power per unit time it is also possible to detect the relative position with respect to the power receiving coil 100.
- the main body that determines the position of the foreign object 300 is the ECU 58 of the vehicle 14 or 14a.
- the configuration is such that information for determining the position of the foreign object 300 (for example, image data acquired by the camera 54) can be acquired on the power supply device 12, 12a side, the power supply device 12, 12a side (for example, the control device). It is also possible to determine the position of the foreign object 300 in 30).
- the influence of the foreign object 300 is determined using the total amount of magnetic fluxes ⁇ tx, ⁇ ty, and ⁇ tz in the X direction, the Y direction, and the Z direction (see FIGS. 9 and 11), and the second embodiment.
- the influence of the foreign matter 300 was determined using the total amount ⁇ tz of the amount of magnetic flux in the Z direction (see FIG. 17).
- other combinations including the case where the total amount ⁇ t of the magnetic flux amount in only one direction is used
- the total sums ⁇ tx, ⁇ ty, and ⁇ tz of the magnetic flux amounts in the X direction, the Y direction, and the Z direction are individually used. However, they can be combined and used.
- the necessity of limiting transmission power was determined using the total amount of magnetic flux ⁇ t (see FIG. 11 and the like).
- the determination may be performed directly from position information of the foreign object 300 (for example, coordinates on the XY plane). For example, in the state where the XY plane (or its coordinates) is set as shown in FIG. 12, the coordinates for limiting the transmission power are set in advance. And when the foreign material 300 exists in the said coordinate, it is also possible to restrict
- the normal mode and the output restriction mode are used as the power transmission mode (see FIGS. 9 and 17).
- the present invention is not limited to this.
- a power transmission stop mode for stopping power transmission can be used.
- the ECU 58 of the vehicle 14a determines the split coil 120 to be energized. However, if the configuration is such that the position of the foreign object 300 or information for determining this (for example, image data acquired by the camera 54) can be acquired on the power supply device 12a side, the power supply device 12a side (for example, the control device 30). It is also possible to make this determination in step (b).
- power is supplied from the power supply devices 12 and 12a to the vehicles 14 and 14a.
- the present invention can also be applied to a case where power is supplied from the vehicles 14 and 14a to the power supply devices 12 and 12a.
- the switch 108 of the power receiving circuit 52 is provided (FIG. 3).
- the switch 148 of the power receiving circuit 52a is provided (FIG. 15).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
In a non-contact power transmission system (10), the relative position of a foreign object (300) with respect to a power supply unit (80) or power reception unit (100) is detected and the limit value per unit time for power transmission from the power supply unit (80) to the power reception unit (100) is set according to the sum of the magnetic flux of the foreign object (300), which is estimated on the basis of the relative position.
Description
本発明は、給電部から受電部に対して非接触で送電する非接触送電システムに関する。
The present invention relates to a non-contact power transmission system that performs non-contact power transmission from a power feeding unit to a power receiving unit.
特開2012-228121号公報(以下「JP 2012-228121 A」という。)では、送電コイルと受電コイルとの間に異物が存在しても、送電コイルから受電コイルへの給電を継続させることができる非接触給電装置を提供することを目的としている([0005]、要約)。この目的を達成するため、JP 2012-228121 Aでは、異物検出手段により異物を検出した場合には、送電電力を下げて、第2のコイル(送電コイル16)から第1のコイル(受電コイル26)へ電力を給電する(要約)。JP 2012-228121 Aでは、送電コイル16を冷却する冷却水の熱量Qに基づいて異物を検出する([0041]、[0058]、[0063]~[0064])。
In Japanese Patent Laid-Open No. 2012-228121 (hereinafter referred to as “JPJ2012-228121 A”), even if a foreign object exists between the power transmission coil and the power reception coil, the power supply from the power transmission coil to the power reception coil can be continued. It aims at providing the non-contact electric power feeder which can be performed ([0005], summary). In order to achieve this object, in JP282012-228121 A, when foreign matter is detected by the foreign matter detection means, the transmitted power is lowered and the second coil (power transmission coil 16) to the first coil (power receiving coil 26). ) (Summary). In JP 2012-228121 A, foreign matter is detected based on the heat quantity Q of the cooling water for cooling the power transmission coil 16 ([0041], [0058], [0063] to [0064]).
米国特許出願公開第2011/0270462号公報(以下「US 2011/0270462 A1」という。)では、人や物等の障害物が存在する場合に、速やかにこれを検出して給電状態を制御できるシステム及びその制御方法を提供することを目的としている([0006])。この目的を達成するため、US 2011/0270462 A1では、伝送効率が規定値未満である場合には、障害物が存在する可能性があるので送電を一時的に停止し、定期的に微小電力で送電して効率を検出する。効率が規定値以上となった場合に正規の電力で送電を再開する(要約)。US 2011/0270462 A1では、送電部12での送電電力と受電部14で得た受電電力から伝送効率を算出する([0053])。
In US Patent Application Publication No. 2011/0270462 (hereinafter referred to as “US「 2011/0270462 A1 ”), when there is an obstacle such as a person or an object, the system can quickly detect this and control the power supply state. And its control method ([0006]). In order to achieve this purpose, in US 2011/0270462 A1, if the transmission efficiency is less than the specified value, there is a possibility that there is an obstacle, so power transmission is temporarily stopped and periodically with a small amount of power. Transmit power to detect efficiency. When the efficiency exceeds the specified value, transmission is resumed with regular power (summary). In US 2011 / 02704246A1, transmission efficiency is calculated from the transmitted power in the power transmission unit 12 and the received power obtained in the power reception unit 14 ([0053]).
JP 2012-228121 Aでは、異物の有無に応じて送電電力を決定するのみであり、異物の状態に応じてきめ細かく送電電力を設定することができない。また、JP 2012-228121 Aでは、送電コイル16を冷却する冷却水の熱量Qに基づいて異物を検出するため、実際に送電を行わないと異物を検出することができない。
JP 2012-228121 A only determines the transmission power according to the presence or absence of foreign matter, and cannot set the transmission power in detail according to the state of the foreign matter. In JP 2012-228121 A, foreign matter is detected based on the heat quantity Q of the cooling water that cools the power transmission coil 16, and therefore foreign matter cannot be detected unless power is actually transmitted.
US 2011/0270462 A1では、送電部12での送電電力と受電部14で得た受電電力から伝送効率を算出するため、実際に送電を行わないと障害物の可能性を判定することができない。加えて、伝送効率に影響を与えないが、過度に発熱している異物が存在する場合、US 2011/0270462 A1では、当該異物が悪影響を及ぼす可能性がある。
In US 2011 / 027046246A1, the transmission efficiency is calculated from the transmitted power in the power transmission unit 12 and the received power obtained in the power reception unit 14, and therefore the possibility of an obstacle cannot be determined without actually transmitting power. In addition, although there is no influence on the transmission efficiency, if there is a foreign object that generates excessive heat, the foreign object may have an adverse effect in US 2011 / 027046246A1.
本発明は上記のような課題を考慮してなされたものであり、きめ細かく送電電力を設定すること、異物に応じた送電電力を送電前に設定すること及び送電電力を設定する新たな方法を実現することの少なくとも1つが可能な非接触送電システムを提供することを目的とする。
The present invention has been made in consideration of the above-described problems, and realizes a new method for setting transmission power in detail, setting transmission power according to a foreign object before transmission, and setting transmission power. An object of the present invention is to provide a non-contact power transmission system capable of at least one of doing.
本発明に係る非接触送電システムは、給電部から受電部に対して非接触で送電するものであって、前記給電部又は前記受電部に対する異物の相対位置を検出し、前記相対位置に基づいて推定される前記異物における磁束量の総和に応じて、前記給電部から前記受電部への単位時間当たりの送電電力の制限値を設定することを特徴とする。
A non-contact power transmission system according to the present invention transmits power in a non-contact manner from a power feeding unit to a power receiving unit, detects a relative position of a foreign object with respect to the power feeding unit or the power receiving unit, and based on the relative position A limit value of transmission power per unit time from the power feeding unit to the power receiving unit is set according to the estimated total amount of magnetic flux in the foreign matter.
本発明によれば、異物における磁束量の総和に応じて、給電部から受電部への送電電力の単位時間当たりの制限値を設定する。このため、送電電力を設定する新たな方法を提供することが可能となる。また、異物における磁束量の総和は、異物における発熱量(及びその結果としての送電時の電力損失)に影響する。このため、異物における発熱量(又は電力損失)に応じてきめ細かく送電電力を設定することが可能となる。
According to the present invention, the limit value per unit time of the transmitted power from the power feeding unit to the power receiving unit is set according to the total amount of magnetic flux in the foreign matter. For this reason, it becomes possible to provide the new method of setting transmission power. Further, the total amount of magnetic flux in the foreign matter affects the amount of heat generated in the foreign matter (and the resulting power loss during power transmission). For this reason, it becomes possible to set transmission power finely according to the calorific value (or power loss) in a foreign object.
さらに、本発明によれば、異物における磁束量の総和は、給電部及び受電部に対する異物の相対位置に基づいて推定される。このため、実際の送電前であっても磁束量の総和を推定可能となる。この場合、異物に応じた送電電力を送電前に設定することが可能となる。
Furthermore, according to the present invention, the total amount of magnetic flux in the foreign object is estimated based on the relative position of the foreign object with respect to the power feeding unit and the power receiving unit. For this reason, even before actual power transmission, the total amount of magnetic flux can be estimated. In this case, it is possible to set the transmission power according to the foreign object before power transmission.
ソレノイド型の給電用第1コイルと受電用第2コイルの側面を互いに対向させて非接触で送電を行い、前記第1コイル又は前記第2コイルの一方から他方を見た方向における平面座標の集合を前記異物の相対位置として少なくとも用いてもよい。これにより、第1コイル又は第2コイルの中心軸方向と直行する方向の磁束について異物を通る磁束量の総和を推定又は算出することが可能となる。このため、当該方向の磁束が、異物における発熱量(又は電力損失)に比較的大きな影響を与える構成では、送電電力を適切に設定することが可能となる。
A set of plane coordinates in a direction in which one side of the first coil or the second coil is viewed from the other side, with the side surfaces of the solenoid-type first coil for power supply and the second coil for power reception facing each other and contactless. May be used at least as the relative position of the foreign matter. This makes it possible to estimate or calculate the total amount of magnetic flux passing through the foreign matter for the magnetic flux in the direction perpendicular to the central axis direction of the first coil or the second coil. For this reason, in the configuration in which the magnetic flux in the direction has a relatively large influence on the heat generation amount (or power loss) in the foreign material, it is possible to appropriately set the transmission power.
前記非接触送電システムは、前記異物を撮像する撮像手段を備え、前記異物の相対位置としての前記平面座標の集合は、前記撮像手段が取得した画像に基づいて検出してもよい。これにより、第1コイル又は第2コイルの一方から他方を見た方向における平面座標の集合を簡易に検出することが可能となる。
The contactless power transmission system may include an imaging unit that images the foreign matter, and the set of the plane coordinates as the relative position of the foreign matter may be detected based on an image acquired by the imaging unit. Thereby, it is possible to easily detect a set of plane coordinates in a direction in which one of the first coil and the second coil is viewed from the other.
ソレノイド型の給電用第1コイルと受電用第2コイルの側面を互いに対向させて非接触で送電を行い、前記第1コイル及び前記第2コイルは、それぞれが並列に接続された複数の分割コイルを、前記第1コイル及び前記第2コイルの中心軸方向に直線状に並べて構成され、前記異物を間に挟む前記分割コイルの間では送電を停止し、前記異物を間に挟まない前記分割コイルの間で送電してもよい。これにより、異物における発熱又は電力損失を抑制しつつ、送電を行うことが可能となる。
The solenoid-type first coil for power feeding and the second coil for power reception face each other to transmit power in a non-contact manner, and the first coil and the second coil are each a plurality of divided coils connected in parallel. Are arranged in a straight line in the direction of the central axis of the first coil and the second coil, and the power transmission is stopped between the split coils sandwiching the foreign matter therebetween, and the split coil does not sandwich the foreign matter therebetween. Power may be transmitted between. Thereby, power transmission can be performed while suppressing heat generation or power loss in the foreign matter.
前記第1コイル及び前記第2コイルの少なくとも一方は、磁性材からなるコアに巻回され、未通電コイルは、磁路として使用されてもよい。これにより、漏れ磁束を抑え、給電効率を向上することが可能となる。
At least one of the first coil and the second coil may be wound around a core made of a magnetic material, and the non-energized coil may be used as a magnetic path. As a result, it is possible to suppress leakage magnetic flux and improve power supply efficiency.
本発明に係る非接触送電システムは、給電部から受電部に対して非接触で送電するものであって、前記給電部又は前記受電部に対する異物の相対位置を検出し、前記給電部から前記受電部への単位時間当たりの送電電力の制限値を前記相対位置に応じて変化させることを特徴とする。
A non-contact power transmission system according to the present invention transmits power from a power feeding unit to a power receiving unit in a non-contact manner, detects a relative position of a foreign object with respect to the power feeding unit or the power receiving unit, and receives the power from the power feeding unit. The limit value of the transmission power per unit time to the unit is changed according to the relative position.
A.第1実施形態
1.構成
[1-1.概要]
図1は、本発明の第1実施形態に係る非接触送電システム10(以下「システム10」ともいう。)の概略構成図である。図1に示すように、システム10は、外部に電力を供給する給電装置12と、給電装置12から電力供給を受ける車両14とを有する。 A. First Embodiment 1. FIG. Configuration [1-1. Overview]
FIG. 1 is a schematic configuration diagram of a contactless power transmission system 10 (hereinafter also referred to as “system 10”) according to the first embodiment of the present invention. As shown in FIG. 1, the system 10 includes a power supply device 12 that supplies power to the outside and a vehicle 14 that receives power supply from the power supply device 12.
1.構成
[1-1.概要]
図1は、本発明の第1実施形態に係る非接触送電システム10(以下「システム10」ともいう。)の概略構成図である。図1に示すように、システム10は、外部に電力を供給する給電装置12と、給電装置12から電力供給を受ける車両14とを有する。 A. First Embodiment 1. FIG. Configuration [1-1. Overview]
FIG. 1 is a schematic configuration diagram of a contactless power transmission system 10 (hereinafter also referred to as “
[1-2.給電装置12]
図1に示すように、給電装置12は、直流電源20と、送電用インバータ22(以下「インバータ22」ともいう。)と、給電回路24と、給電装置側カメラ26と、通信装置28(以下「送電側通信装置28」ともいう。)と、給電制御装置30(以下「制御装置30」ともいう。)とを有する。直流電源20及びインバータ22の代わりに、交流電源を用いてもよい。 [1-2. Power feeding device 12]
As shown in FIG. 1, thepower feeding device 12 includes a DC power supply 20, a power transmission inverter 22 (hereinafter also referred to as “inverter 22”), a power feeding circuit 24, a power feeding device side camera 26, and a communication device 28 (hereinafter referred to as “power feeding device”). And a power supply control device 30 (hereinafter also referred to as “control device 30”). Instead of the DC power supply 20 and the inverter 22, an AC power supply may be used.
図1に示すように、給電装置12は、直流電源20と、送電用インバータ22(以下「インバータ22」ともいう。)と、給電回路24と、給電装置側カメラ26と、通信装置28(以下「送電側通信装置28」ともいう。)と、給電制御装置30(以下「制御装置30」ともいう。)とを有する。直流電源20及びインバータ22の代わりに、交流電源を用いてもよい。 [1-2. Power feeding device 12]
As shown in FIG. 1, the
インバータ22は、直流電源20からの直流電流を交流電流に変換して給電回路24に出力する。給電回路24は、インバータ22からの電力を車両14に出力する。給電回路24の詳細は、図3を参照して後述する。
The inverter 22 converts a direct current from the direct current power source 20 into an alternating current and outputs the alternating current to the power feeding circuit 24. The power feeding circuit 24 outputs the electric power from the inverter 22 to the vehicle 14. Details of the power feeding circuit 24 will be described later with reference to FIG.
図2は、第1実施形態における給電装置側カメラ26及び後述する車両側カメラ54の配置を示す図である。図2では、車両14の前側から駐車する場合を示している。給電装置側カメラ26(以下「第1カメラ26」又は「カメラ26」ともいう。)は、給電回路24の給電コイル80(後述)よりも駐車スペースの奥側に配置され、給電コイル80及びその周辺の幅方向(Y方向)及び高さ方向(Z方向)の画像(以下「YZ画像Iyz」ともいう。)を取得する。後述するように、第1カメラ26の代わりに別の構成要素(位置検出手段)を用いることも可能である。
FIG. 2 is a diagram illustrating an arrangement of the power supply device side camera 26 and a vehicle side camera 54 described later in the first embodiment. In FIG. 2, the case where it parks from the front side of the vehicle 14 is shown. The power supply device side camera 26 (hereinafter also referred to as “first camera 26” or “camera 26”) is disposed on the far side of the parking space with respect to the power supply coil 80 (described later) of the power supply circuit 24. Images in the peripheral width direction (Y direction) and height direction (Z direction) (hereinafter also referred to as “YZ image Iyz”) are acquired. As will be described later, another component (position detecting means) may be used instead of the first camera 26.
通信装置28は、車両14との無線通信に用いられる。
The communication device 28 is used for wireless communication with the vehicle 14.
制御装置30は、通信線32(図1)を介して、インバータ22及び給電回路24を制御する。その際、制御装置30は、通信装置28を介して車両14と通信を行う。制御装置30は、入出力インタフェースとしての入出力部34と、各種の演算を行う演算部36と、演算部36が利用するプログラム及びデータを記憶する記憶部38とを有する。
The control device 30 controls the inverter 22 and the power feeding circuit 24 via the communication line 32 (FIG. 1). At that time, the control device 30 communicates with the vehicle 14 via the communication device 28. The control device 30 includes an input / output unit 34 as an input / output interface, a calculation unit 36 that performs various calculations, and a storage unit 38 that stores programs and data used by the calculation unit 36.
[1-3.車両14]
(1-3-1.全体構成)
車両14は、駆動源として走行モータ40(以下「モータ40」ともいう。)を有するいわゆる電気自動車である。後述するように、車両14は、モータ40に加えてエンジンを有するハイブリッド車両等の電動車両であってもよい。 [1-3. Vehicle 14]
(1-3-1. Overall configuration)
Thevehicle 14 is a so-called electric vehicle having a travel motor 40 (hereinafter also referred to as “motor 40”) as a drive source. As will be described later, the vehicle 14 may be an electric vehicle such as a hybrid vehicle having an engine in addition to the motor 40.
(1-3-1.全体構成)
車両14は、駆動源として走行モータ40(以下「モータ40」ともいう。)を有するいわゆる電気自動車である。後述するように、車両14は、モータ40に加えてエンジンを有するハイブリッド車両等の電動車両であってもよい。 [1-3. Vehicle 14]
(1-3-1. Overall configuration)
The
車両14は、走行モータ40に加え、モータ駆動用インバータ42と(以下「インバータ42」ともいう。)、バッテリ44(蓄電装置)と、電圧センサ46と、電流センサ48と、SOCセンサ50と、受電回路52と、車両側カメラ54と、通信装置56(以下「車両側通信装置56」ともいう。)と、電子制御装置58(以下「ECU58」という。)とを有する。なお、インバータ42とバッテリ44との間に図示しないDC/DCコンバータを配置し、バッテリ44の出力電圧を変圧してもよい。
In addition to the traveling motor 40, the vehicle 14 includes a motor driving inverter 42 (hereinafter also referred to as “inverter 42”), a battery 44 (power storage device), a voltage sensor 46, a current sensor 48, an SOC sensor 50, The power receiving circuit 52, the vehicle-side camera 54, a communication device 56 (hereinafter also referred to as “vehicle-side communication device 56”), and an electronic control device 58 (hereinafter referred to as “ECU 58”). A DC / DC converter (not shown) may be arranged between the inverter 42 and the battery 44 to transform the output voltage of the battery 44.
(1-3-2.モータ40及びインバータ42)
第1実施形態のモータ40は、3相交流ブラシレス式である。モータ40は、バッテリ44から供給される電力に基づいて駆動力を生成し、当該駆動力によりトランスミッション(図示せず)を通じて車輪(図示せず)を回転させる。また、モータ40は、回生を行うことで生成した電力(回生電力Preg)[W]をバッテリ44等に出力する。 (1-3-2.Motor 40 and inverter 42)
Themotor 40 of the first embodiment is a three-phase AC brushless type. The motor 40 generates a driving force based on the electric power supplied from the battery 44, and rotates wheels (not shown) through a transmission (not shown) by the driving force. Further, the motor 40 outputs electric power (regenerative power Preg) [W] generated by performing regeneration to the battery 44 or the like.
第1実施形態のモータ40は、3相交流ブラシレス式である。モータ40は、バッテリ44から供給される電力に基づいて駆動力を生成し、当該駆動力によりトランスミッション(図示せず)を通じて車輪(図示せず)を回転させる。また、モータ40は、回生を行うことで生成した電力(回生電力Preg)[W]をバッテリ44等に出力する。 (1-3-2.
The
インバータ42は、3相ブリッジ型の構成を有し、直流-交流変換を行う。より具体的には、インバータ42は、直流を3相の交流に変換してモータ40に供給する一方、回生動作に伴う交流-直流変換後の直流をバッテリ44等に供給する。
The inverter 42 has a three-phase bridge type configuration and performs DC-AC conversion. More specifically, the inverter 42 converts direct current into three-phase alternating current and supplies it to the motor 40, while supplying direct current after alternating current-direct current conversion accompanying the regenerative operation to the battery 44 and the like.
(1-3-3.バッテリ44、電圧センサ46、電流センサ48及びSOCセンサ50)
バッテリ44は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等を利用することができる。第1実施形態ではリチウムイオン2次電池を利用している。 (1-3-3.Battery 44, voltage sensor 46, current sensor 48 and SOC sensor 50)
Thebattery 44 is a power storage device (energy storage) including a plurality of battery cells, and for example, a lithium ion secondary battery, a nickel hydride secondary battery, or a capacitor can be used. In the first embodiment, a lithium ion secondary battery is used.
バッテリ44は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素2次電池又はキャパシタ等を利用することができる。第1実施形態ではリチウムイオン2次電池を利用している。 (1-3-3.
The
電圧センサ46は、受電回路52からバッテリ44への入力電圧(以下「バッテリ入力電圧Vbat」又は「電圧Vbat」という。)[V]を検出する。電流センサ48は、受電回路52からバッテリ44への入力電流(以下「バッテリ入力電流Ibat」又は「電流Ibat」という。)[A]を検出する。SOCセンサ50は、バッテリ44の残容量(SOC)[%]を検出する。
The voltage sensor 46 detects an input voltage (hereinafter referred to as “battery input voltage Vbat” or “voltage Vbat”) [V] from the power receiving circuit 52 to the battery 44. The current sensor 48 detects an input current (hereinafter referred to as “battery input current Ibat” or “current Ibat”) [A] from the power receiving circuit 52 to the battery 44. The SOC sensor 50 detects the remaining capacity (SOC) [%] of the battery 44.
(1-3-4.受電回路52)
受電回路52は、給電装置12からの電力を受けてバッテリ44に充電させる。受電回路52の詳細は、図3を参照して後述する。 (1-3-4. Power receiving circuit 52)
Thepower receiving circuit 52 receives power from the power feeding device 12 and charges the battery 44. Details of the power receiving circuit 52 will be described later with reference to FIG.
受電回路52は、給電装置12からの電力を受けてバッテリ44に充電させる。受電回路52の詳細は、図3を参照して後述する。 (1-3-4. Power receiving circuit 52)
The
(1-3-5.車両側カメラ54)
図2に示すように、車両側カメラ54(以下「第2カメラ54」又は「カメラ54」ともいう。)は、給電コイル80と干渉しないように車両14(車体)の底部(床下)に配置され、車両14の下方を撮像してECU58に出力する。第2カメラ54が取得する画像は、給電コイル80及びその周辺の前後方向(X方向)及び幅方向(Y方向)の画像であり、以下では「XY画像Ixy」ともいう。なお、第2カメラ54が給電コイル80に対して斜めに配置される場合、第2カメラ54からの画像をECU58等で画像処理してXY画像Ixyを生成してもよい。後述するように、第2カメラ54の代わりに別の構成要素(位置検出手段)を用いることも可能である。 (1-3-5. Vehicle-side camera 54)
As shown in FIG. 2, the vehicle-side camera 54 (hereinafter also referred to as “second camera 54” or “camera 54”) is disposed at the bottom (under the floor) of the vehicle 14 (vehicle body) so as not to interfere with the feeding coil 80. Then, the lower part of the vehicle 14 is imaged and output to the ECU 58. The images acquired by the second camera 54 are images in the front-rear direction (X direction) and the width direction (Y direction) of the power feeding coil 80 and its surroundings, and are also referred to as “XY images Ixy” below. Note that when the second camera 54 is disposed obliquely with respect to the power supply coil 80, an image from the second camera 54 may be processed by the ECU 58 or the like to generate the XY image Ixy. As will be described later, another component (position detecting means) may be used instead of the second camera 54.
図2に示すように、車両側カメラ54(以下「第2カメラ54」又は「カメラ54」ともいう。)は、給電コイル80と干渉しないように車両14(車体)の底部(床下)に配置され、車両14の下方を撮像してECU58に出力する。第2カメラ54が取得する画像は、給電コイル80及びその周辺の前後方向(X方向)及び幅方向(Y方向)の画像であり、以下では「XY画像Ixy」ともいう。なお、第2カメラ54が給電コイル80に対して斜めに配置される場合、第2カメラ54からの画像をECU58等で画像処理してXY画像Ixyを生成してもよい。後述するように、第2カメラ54の代わりに別の構成要素(位置検出手段)を用いることも可能である。 (1-3-5. Vehicle-side camera 54)
As shown in FIG. 2, the vehicle-side camera 54 (hereinafter also referred to as “
(1-3-6.通信装置56)
通信装置56は、給電装置12との無線通信に用いられる。 (1-3-6. Communication device 56)
Thecommunication device 56 is used for wireless communication with the power supply device 12.
通信装置56は、給電装置12との無線通信に用いられる。 (1-3-6. Communication device 56)
The
(1-3-7.ECU58)
ECU58は、通信線60(図1)を介して、モータ40、インバータ42、バッテリ44及び受電回路52を制御する。また、ECU58は、通信装置56を介して給電装置12と通信して給電装置12からの送電(電力供給)を制御する。その際、ECU58は、電圧センサ46、電流センサ48、SOCセンサ50等の各種センサの検出値を用いる。 (1-3-7. ECU58)
TheECU 58 controls the motor 40, the inverter 42, the battery 44, and the power receiving circuit 52 via the communication line 60 (FIG. 1). Further, the ECU 58 communicates with the power supply device 12 via the communication device 56 to control power transmission (power supply) from the power supply device 12. At that time, the ECU 58 uses detection values of various sensors such as the voltage sensor 46, the current sensor 48, and the SOC sensor 50.
ECU58は、通信線60(図1)を介して、モータ40、インバータ42、バッテリ44及び受電回路52を制御する。また、ECU58は、通信装置56を介して給電装置12と通信して給電装置12からの送電(電力供給)を制御する。その際、ECU58は、電圧センサ46、電流センサ48、SOCセンサ50等の各種センサの検出値を用いる。 (1-3-7. ECU58)
The
ECU58は、入出力インタフェースとしての入出力部62と、各種の演算を行う演算部64と、演算部64が利用するプログラム及びデータを記憶する記憶部66とを有する。なお、ECU58は、1つのECUのみからなるのではなく、モータ40、インバータ42、バッテリ44及び受電回路52毎に複数のECUから構成することもできる。
The ECU 58 includes an input / output unit 62 as an input / output interface, a calculation unit 64 that performs various calculations, and a storage unit 66 that stores programs and data used by the calculation unit 64. The ECU 58 is not limited to only one ECU, but can be configured from a plurality of ECUs for each of the motor 40, the inverter 42, the battery 44, and the power receiving circuit 52.
[1-4.無線給電に関する電気回路]
図3は、第1実施形態における給電装置12から車両14への無線給電に関する電気回路を示す図である。 [1-4. Electric circuit for wireless power feeding]
FIG. 3 is a diagram illustrating an electric circuit related to wireless power feeding from thepower feeding device 12 to the vehicle 14 in the first embodiment.
図3は、第1実施形態における給電装置12から車両14への無線給電に関する電気回路を示す図である。 [1-4. Electric circuit for wireless power feeding]
FIG. 3 is a diagram illustrating an electric circuit related to wireless power feeding from the
(1-4-1.給電装置12)
上記のように、給電装置12は、直流電源20、インバータ22及び給電回路24を有する。図3に示すように、直流電源20とインバータ22の間には、平滑コンデンサ70が配置される。 (1-4-1. Power feeding device 12)
As described above, thepower supply device 12 includes the DC power supply 20, the inverter 22, and the power supply circuit 24. As shown in FIG. 3, a smoothing capacitor 70 is disposed between the DC power supply 20 and the inverter 22.
上記のように、給電装置12は、直流電源20、インバータ22及び給電回路24を有する。図3に示すように、直流電源20とインバータ22の間には、平滑コンデンサ70が配置される。 (1-4-1. Power feeding device 12)
As described above, the
インバータ22は、4つのスイッチング素子72からなるフルブリッジ構成を有し、直流電源20からの直流電流を交流電流に変換して給電回路24に出力する。各スイッチング素子72の制御は、給電制御装置30が行う。
The inverter 22 has a full bridge configuration including four switching elements 72, converts a direct current from the direct current power source 20 into an alternating current, and outputs the alternating current to the power feeding circuit 24. The power feeding control device 30 controls each switching element 72.
給電回路24は、インバータ22からの電力を車両14に出力する。図3に示すように、給電回路24は、給電コイル80(以下「コイル80」ともいう。)と、コンデンサ82とを有する。コイル80は、いわゆるソレノイドコイル(管状コイル)である。給電回路24では、コイル80とコンデンサ82が並列に接続されてLC回路84が形成される。なお、コイル80とコンデンサ82を直列に接続してもよい。また、LC回路84とインバータ22との間には、制御装置30により制御されるスイッチ86が配置されている。
The power feeding circuit 24 outputs the electric power from the inverter 22 to the vehicle 14. As shown in FIG. 3, the power supply circuit 24 includes a power supply coil 80 (hereinafter also referred to as “coil 80”) and a capacitor 82. The coil 80 is a so-called solenoid coil (tubular coil). In the power feeding circuit 24, the coil 80 and the capacitor 82 are connected in parallel to form an LC circuit 84. The coil 80 and the capacitor 82 may be connected in series. A switch 86 controlled by the control device 30 is disposed between the LC circuit 84 and the inverter 22.
(1-4-2.車両14)
上記のように、車両14は、バッテリ44及び受電回路52を有する。図3に示すように、バッテリ44と受電回路52の間には、平滑コンデンサ90が配置される。なお、図3では、電圧センサ46、電流センサ48及びSOCセンサ50は省略している。 (1-4-2. Vehicle 14)
As described above, thevehicle 14 includes the battery 44 and the power receiving circuit 52. As shown in FIG. 3, a smoothing capacitor 90 is disposed between the battery 44 and the power receiving circuit 52. In FIG. 3, the voltage sensor 46, the current sensor 48, and the SOC sensor 50 are omitted.
上記のように、車両14は、バッテリ44及び受電回路52を有する。図3に示すように、バッテリ44と受電回路52の間には、平滑コンデンサ90が配置される。なお、図3では、電圧センサ46、電流センサ48及びSOCセンサ50は省略している。 (1-4-2. Vehicle 14)
As described above, the
受電回路52は、給電装置12からの電力を受けてバッテリ44に充電させる。図3に示すように、受電回路52は、受電コイル100(以下「コイル100」ともいう。)とコンデンサ102とを有する。コイル100は、いわゆるソレノイドコイル(管状コイル)である。受電回路52では、コイル100とコンデンサ102が並列に接続されてLC回路104が形成される。なお、コイル100とコンデンサ102を直列に接続してもよい。また、LC回路104とバッテリ44及び平滑コンデンサ90との間には、整流回路106及びスイッチ108が配置されている。
The power receiving circuit 52 receives power from the power feeding device 12 and charges the battery 44. As shown in FIG. 3, the power receiving circuit 52 includes a power receiving coil 100 (hereinafter also referred to as “coil 100”) and a capacitor 102. The coil 100 is a so-called solenoid coil (tubular coil). In the power receiving circuit 52, the coil 100 and the capacitor 102 are connected in parallel to form the LC circuit 104. Note that the coil 100 and the capacitor 102 may be connected in series. A rectifier circuit 106 and a switch 108 are disposed between the LC circuit 104 and the battery 44 and the smoothing capacitor 90.
2.電力供給制御
[2-1.基本的な考え方]
第1実施形態では、給電コイル80と受電コイル100の間に異物300(図2)が入り込んだ場合、給電コイル80から受電コイル100への送電電力を制限する。但し、異物300の状態によっては、制限を行わなくてもよい場合があるため、そのような場合を判定する。具体的には、第1実施形態では、異物300における磁束量の総和Φtを考慮して送電電力を制限する。磁束量の総和Φtは、磁束密度Bと鎖交面積Aに応じて決まる。 2. Power supply control [2-1. basic way of thinking]
In the first embodiment, when a foreign object 300 (FIG. 2) enters between thepower feeding coil 80 and the power receiving coil 100, the transmitted power from the power feeding coil 80 to the power receiving coil 100 is limited. However, depending on the state of the foreign object 300, there is a case where the restriction may not be performed, so such a case is determined. Specifically, in the first embodiment, the transmission power is limited in consideration of the total amount of magnetic flux Φt in the foreign material 300. The total amount of magnetic flux Φt is determined according to the magnetic flux density B and the interlinkage area A.
[2-1.基本的な考え方]
第1実施形態では、給電コイル80と受電コイル100の間に異物300(図2)が入り込んだ場合、給電コイル80から受電コイル100への送電電力を制限する。但し、異物300の状態によっては、制限を行わなくてもよい場合があるため、そのような場合を判定する。具体的には、第1実施形態では、異物300における磁束量の総和Φtを考慮して送電電力を制限する。磁束量の総和Φtは、磁束密度Bと鎖交面積Aに応じて決まる。 2. Power supply control [2-1. basic way of thinking]
In the first embodiment, when a foreign object 300 (FIG. 2) enters between the
(2-1-1.磁束量Φの大小(相対位置による温度上昇の相違))
図4は、簡易的に示した給電コイル80と、X方向、Y方向及びZ方向それぞれにおける磁束量Φを示す図である。以下では、X方向、Y方向及びZ方向それぞれにおける磁束量ΦをΦx、Φy、Φzともいう。図5Aは、図4の地点P1、P2における磁束密度Bの一例を示し、図5Bは、地点P1、P2における単位時間当たりの異物300の温度上昇の度合いΔT[℃/sec]の一例を示す。図5Aにおける磁束密度Bは、X方向、Y方向及びZ方向それぞれの磁束密度Bx、By、Bzの合成値である。 (2-1-1. Magnitude of magnetic flux Φ (difference in temperature rise due to relative position))
FIG. 4 is a diagram showing thepower supply coil 80 shown in a simplified manner and the amount of magnetic flux Φ in each of the X direction, the Y direction, and the Z direction. Hereinafter, the magnetic flux amount Φ in each of the X direction, the Y direction, and the Z direction is also referred to as Φx, Φy, and Φz. 5A shows an example of the magnetic flux density B at the points P1 and P2 in FIG. 4, and FIG. 5B shows an example of the degree of temperature rise ΔT [° C./sec] of the foreign matter 300 per unit time at the points P1 and P2. . The magnetic flux density B in FIG. 5A is a composite value of the magnetic flux densities Bx, By, Bz in the X direction, the Y direction, and the Z direction.
図4は、簡易的に示した給電コイル80と、X方向、Y方向及びZ方向それぞれにおける磁束量Φを示す図である。以下では、X方向、Y方向及びZ方向それぞれにおける磁束量ΦをΦx、Φy、Φzともいう。図5Aは、図4の地点P1、P2における磁束密度Bの一例を示し、図5Bは、地点P1、P2における単位時間当たりの異物300の温度上昇の度合いΔT[℃/sec]の一例を示す。図5Aにおける磁束密度Bは、X方向、Y方向及びZ方向それぞれの磁束密度Bx、By、Bzの合成値である。 (2-1-1. Magnitude of magnetic flux Φ (difference in temperature rise due to relative position))
FIG. 4 is a diagram showing the
図4に示すように、給電コイル80に対する位置によってX方向、Y方向及びZ方向それぞれにおける磁束量Φx、Φy、Φzは変化する。例えば、前後方向(X方向)における端部ではZ方向の磁束量Φzが増加し、X方向の磁束量Φxは低下する。その一方、前後方向(X方向)における中央付近ではX方向の磁束量Φxが増加し、Y方向及びZ方向の磁束量Φy、Φzは低下する。これらの結果、給電コイル80に対する異物300の相対位置により、温度上昇の度合いΔTに相違が生じることとなる(図5B)。
As shown in FIG. 4, the magnetic flux amounts Φx, Φy, and Φz in the X direction, the Y direction, and the Z direction change depending on the position with respect to the feeding coil 80. For example, the magnetic flux amount Φz in the Z direction increases and the magnetic flux amount Φx in the X direction decreases at the end in the front-rear direction (X direction). On the other hand, near the center in the front-rear direction (X direction), the magnetic flux amount Φx in the X direction increases, and the magnetic flux amounts Φy, Φz in the Y direction and Z direction decrease. As a result, the temperature rise degree ΔT varies depending on the relative position of the foreign object 300 with respect to the power supply coil 80 (FIG. 5B).
(2-1-2.鎖交面積Aの大小(形状又は姿勢による温度上昇の相違))
図6~図8は、給電コイル80に対して異物300が第1~第3の姿勢にあるときを示す図である。ここでの異物300は、直方体状(特に、薄板状)をしている。第1の姿勢(図6)では、Z方向の鎖交面積A(以下「鎖交面積Az」という。)が最も大きく、X方向の鎖交面積A(以下「鎖交面積Ax」という。)が最も小さい。第2の姿勢(図7)では、X方向の鎖交面積Axが最も大きく、Y方向の鎖交面積A(以下「鎖交面積Ay」という。)が最も小さい。第3の姿勢(図8)では、Y方向の鎖交面積Ayが最も大きく、Z方向の鎖交面積Azが最も小さい。 (2-1-2. Size of interlinkage area A (difference in temperature rise due to shape or posture))
6 to 8 are diagrams showing theforeign object 300 in the first to third postures with respect to the feeding coil 80. FIG. The foreign material 300 here has a rectangular parallelepiped shape (in particular, a thin plate shape). In the first posture (FIG. 6), the linkage area A in the Z direction (hereinafter referred to as “linkage area Az”) is the largest, and the linkage area A in the X direction (hereinafter referred to as “linkage area Ax”). Is the smallest. In the second posture (FIG. 7), the interlinkage area Ax in the X direction is the largest, and the interlinkage area A in the Y direction (hereinafter referred to as “interlinkage area Ay”) is the smallest. In the third posture (FIG. 8), the interlinkage area Ay in the Y direction is the largest, and the interlinkage area Az in the Z direction is the smallest.
図6~図8は、給電コイル80に対して異物300が第1~第3の姿勢にあるときを示す図である。ここでの異物300は、直方体状(特に、薄板状)をしている。第1の姿勢(図6)では、Z方向の鎖交面積A(以下「鎖交面積Az」という。)が最も大きく、X方向の鎖交面積A(以下「鎖交面積Ax」という。)が最も小さい。第2の姿勢(図7)では、X方向の鎖交面積Axが最も大きく、Y方向の鎖交面積A(以下「鎖交面積Ay」という。)が最も小さい。第3の姿勢(図8)では、Y方向の鎖交面積Ayが最も大きく、Z方向の鎖交面積Azが最も小さい。 (2-1-2. Size of interlinkage area A (difference in temperature rise due to shape or posture))
6 to 8 are diagrams showing the
図6~図8のいずれにおいても、異物300は、給電コイル80のX方向の端部周辺に位置している。図4で説明したように、X方向の端部周辺では、Z方向の磁束量Φzが増加し、X方向の磁束量Φxは低下する。
6 to 8, the foreign object 300 is located around the end portion of the feeding coil 80 in the X direction. As described with reference to FIG. 4, the magnetic flux amount Φz in the Z direction increases and the magnetic flux amount Φx in the X direction decreases near the end in the X direction.
第1の姿勢(図6)の場合、異物300におけるZ方向の鎖交面積Azが最も大きい。第2の姿勢(図7)の場合、異物300におけるZ方向の鎖交面積Azは、X方向及びY方向の鎖交面積Ax、Ayの中間である。第3の姿勢(図8)の場合、異物300におけるZ方向の鎖交面積Azが最も小さい。仮に、異物300におけるZ方向の磁束密度Bzが等しいとした場合、第1の姿勢(図6)にある異物300が最も高温に成り易い。
In the case of the first posture (FIG. 6), the interlinkage area Az in the Z direction of the foreign material 300 is the largest. In the second posture (FIG. 7), the interlinkage area Az in the Z direction of the foreign material 300 is intermediate between the interlinkage areas Ax and Ay in the X direction and the Y direction. In the case of the third posture (FIG. 8), the interlinkage area Az in the Z direction of the foreign material 300 is the smallest. If the magnetic flux density Bz in the Z direction of the foreign material 300 is assumed to be equal, the foreign material 300 in the first posture (FIG. 6) is most likely to become the highest temperature.
また、第1~第3の姿勢のまま、X方向における給電コイル80の中央付近に異物300が存在する場合、温度上昇の度合いΔTは相違する。すなわち、X方向における給電コイル80の中央付近では、XYZ方向のうちX方向の磁束量Φxが最も大きくなる。このため、異物300におけるX方向の磁束密度Bxが等しいとした場合、第2の姿勢(図7)にある異物300が最も高温に成り易い。
Further, when the foreign object 300 is present near the center of the feeding coil 80 in the X direction with the first to third postures, the degree of temperature rise ΔT is different. That is, the magnetic flux amount Φx in the X direction among the XYZ directions is the largest in the vicinity of the center of the feeding coil 80 in the X direction. For this reason, when the magnetic flux density Bx of the X direction in the foreign material 300 is equal, the foreign material 300 in a 2nd attitude | position (FIG. 7) tends to become the highest temperature.
(2-1-3.磁束量の総和Φtの算出)
以上のように、同じ異物300であっても姿勢(向き)又は各方向における鎖交面積Aに応じて(換言すると、磁束量の総和Φtに応じて)温度上昇の度合いが変化する。そこで、第1実施形態では、磁束量の総和Φtに応じて送電電力を制限する。 (2-1-3. Calculation of total magnetic flux Φt)
As described above, even with the sameforeign object 300, the degree of temperature rise changes according to the posture (orientation) or the interlinkage area A in each direction (in other words, according to the total amount Φt of magnetic fluxes). Therefore, in the first embodiment, the transmission power is limited according to the total amount of magnetic flux Φt.
以上のように、同じ異物300であっても姿勢(向き)又は各方向における鎖交面積Aに応じて(換言すると、磁束量の総和Φtに応じて)温度上昇の度合いが変化する。そこで、第1実施形態では、磁束量の総和Φtに応じて送電電力を制限する。 (2-1-3. Calculation of total magnetic flux Φt)
As described above, even with the same
[2-2.全体的な流れ]
図9は、第1実施形態の送電時における給電制御装置30(給電装置12側)及びECU58(車両14側)の制御のフローチャートである。なお、制御装置30は、図9の制御を開始する前において、既にスタンバイ状態となっている。 [2-2. Overall flow]
FIG. 9 is a flowchart of control of the power supply control device 30 (power supply device 12 side) and the ECU 58 (vehicle 14 side) during power transmission according to the first embodiment. The control device 30 is already in the standby state before starting the control of FIG.
図9は、第1実施形態の送電時における給電制御装置30(給電装置12側)及びECU58(車両14側)の制御のフローチャートである。なお、制御装置30は、図9の制御を開始する前において、既にスタンバイ状態となっている。 [2-2. Overall flow]
FIG. 9 is a flowchart of control of the power supply control device 30 (
図9のステップS1において、ECU58は、給電装置12からバッテリ44への充電を行うべき旨の要求(外部充電要求)があったか否かを判定する。例えば、車両14のユーザにより車両14の操作ボタン(図示せず)が押されたこと、又は車両14のタッチパネル(図示せず)においてユーザにより所定の操作が行われたことにより外部充電要求があったと判定することができる。
In step S1 of FIG. 9, the ECU 58 determines whether or not there is a request (external charging request) to charge the battery 44 from the power feeding device 12. For example, an external charging request is issued when an operation button (not shown) of the vehicle 14 is pressed by the user of the vehicle 14 or when a predetermined operation is performed by the user on the touch panel (not shown) of the vehicle 14. Can be determined.
外部充電要求がない場合(S1:NO)、ステップS1を繰り返す。外部充電要求があった場合(S1:YES)、ステップS2において、ECU58は、給電コイル80と受電コイル100との間に異物300が存在するか否かを判定する。当該判定は、例えば、給電装置側カメラ26からのYZ画像Iyz及び車両側カメラ54からのXY画像Ixyに基づいて判定する。或いは、YZ画像Iyz又はXY画像Ixyの一方のみに基づいて判定することも可能である。なお、第1実施形態では、異物300の材質は判別せず、厳しい条件の(換言すると、比誘電率が比較的高い)異物であることを想定する。
If there is no external charging request (S1: NO), step S1 is repeated. When there is an external charging request (S1: YES), in step S2, the ECU 58 determines whether or not the foreign object 300 exists between the power feeding coil 80 and the power receiving coil 100. The determination is made based on, for example, the YZ image Iyz from the power supply device side camera 26 and the XY image Ixy from the vehicle side camera 54. Alternatively, the determination can be made based only on one of the YZ image Iyz and the XY image Ixy. In the first embodiment, the material of the foreign material 300 is not discriminated, and it is assumed that the foreign material is a foreign material under severe conditions (in other words, the relative dielectric constant is relatively high).
異物300が存在する場合(S2:YES)、ステップS3において、ECU58は、給電コイル80及び受電コイル100の間においてX、Y及びZ方向それぞれの磁束量の総和Φtx、Φty、Φtzが規定値THtx、THty、THtz(上限値)内にあるか否かを判定する。当該判定の詳細は、図11を参照して後述する。
When the foreign object 300 exists (S2: YES), in step S3, the ECU 58 determines that the total amount Φtx, Φty, and Φtz of the respective magnetic flux amounts in the X, Y, and Z directions between the power feeding coil 80 and the power receiving coil 100 is the specified value THtk. , THty, THtz (upper limit value). Details of the determination will be described later with reference to FIG.
ステップS2において異物300が存在しない場合(S2:NO)又はステップS3において磁束量の総和Φtx、Φty、Φtzがそれぞれ規定値THtx、THty、THtz内である場合(S3:YES)、ステップS4において、ECU58は、送電モードとして通常モードを選択する。一方、ステップS3において磁束量の総和Φtx、Φty、Φtzのいずれかが規定値THtx、THty、THtz内にない場合(S3:NO)、ステップS5において、ECU58は、送電モードとして出力制限モードを選択する。
If no foreign object 300 exists in step S2 (S2: NO), or if the total amount of magnetic fluxes Φtx, Φty, Φtz is within the specified values THtx, THty, THtz in step S3 (S3: YES), in step S4, The ECU 58 selects the normal mode as the power transmission mode. On the other hand, if any of the total magnetic flux amounts Φtx, Φty, and Φtz is not within the specified values THtx, THty, and THtz in step S3 (S3: NO), in step S5, the ECU 58 selects the output restriction mode as the power transmission mode. To do.
図10は、鎖交面積Aと単位時間当たりの異物300の温度上昇の度合いΔTと送電モードとの関係の一例を示す図である。図10に示すように、異物300における磁束密度Bが一定の場合、鎖交面積Aが大きくなる程、磁束量の総和Φtが増加し、温度上昇の度合いΔTが高くなる。
FIG. 10 is a diagram illustrating an example of the relationship between the interlinkage area A, the degree of temperature rise ΔT of the foreign object 300 per unit time, and the power transmission mode. As shown in FIG. 10, when the magnetic flux density B in the foreign material 300 is constant, as the interlinkage area A increases, the total amount of magnetic flux Φt increases and the temperature rise degree ΔT increases.
そこで、第1実施形態では、磁束量の総和Φtx、Φty、Φtzのいずれかが規定値THtx、THty、THtz内にない場合、通常モードから出力制限モードに切り替えて単位時間当たりの供給電力を制限して温度上昇の度合いΔTを低下させる(図10中の矢印200参照)。これにより、当初の供給電力のままであれば、異物300が過熱することで送電を停止すべきところを、供給電力を下げた状態で送電を継続することが可能となる。
Therefore, in the first embodiment, when any of the total magnetic flux amounts Φtx, Φty, and Φtz is not within the specified values THtx, THty, and THtz, the supply power per unit time is limited by switching from the normal mode to the output limit mode. Then, the degree of temperature rise ΔT is reduced (see arrow 200 in FIG. 10). As a result, if the original power supply is maintained, the power transmission can be continued in a state where the power supply is reduced where the foreign object 300 is overheated and the power transmission should be stopped.
図9のステップS6において、ECU58は、選択した送電モード(通常モード又は出力制限モード)を制御装置30に通知して制御装置30に対して送電要求を行う。これに伴い、ECU58は、スイッチ108(図3)をオンにしてバッテリ44への充電を可能とする。
In step S6 of FIG. 9, the ECU 58 notifies the control device 30 of the selected power transmission mode (normal mode or output restriction mode) and makes a power transmission request to the control device 30. Accordingly, the ECU 58 turns on the switch 108 (FIG. 3) to charge the battery 44.
続くステップS7において、ECU58は、給電装置12からの電力によるバッテリ44の充電を終了するか否かを判定する。当該判定は、例えば、バッテリ44のSOCが所定の閾値(以下「充電完了閾値THsoc」又は「SOC閾値THsoc」という。)に到達したか否かにより行う。
In subsequent step S <b> 7, the ECU 58 determines whether or not to end the charging of the battery 44 with the electric power from the power feeding device 12. This determination is made, for example, based on whether or not the SOC of the battery 44 has reached a predetermined threshold value (hereinafter referred to as “charging completion threshold value THsoc” or “SOC threshold value THsoc”).
バッテリ44の充電を終了しない場合(S7:NO)、ステップS2に戻る。或いは、単にステップS7を繰り返すのみでもよい。バッテリ44の充電を終了する場合(S7:YES)、ステップS8において、ECU58は、充電を終了すべき旨を制御装置30に通知して今回の処理を終了する。この際、ECU58は、スイッチ108をオフにする。
When the charging of the battery 44 is not terminated (S7: NO), the process returns to step S2. Alternatively, simply repeat step S7. When the charging of the battery 44 is to be terminated (S7: YES), in step S8, the ECU 58 notifies the control device 30 that the charging should be terminated, and the current process is terminated. At this time, the ECU 58 turns off the switch 108.
ECU58から送電モードの通知(S6)を受けた制御装置30は、送電モードに応じた送電を行う(S11)。具体的には、通常モードが通知された場合、制御装置30は、通常モードで送電し、出力制限モードが通知された場合、制御装置30は、出力制限モードで送電する。通常モードと比較して、出力制限モードでは、給電コイル80から受電コイル100に供給される単位時間当たりの電力量が制限される。これにより、給電コイル80と受電コイル100の間に異物300が存在する場合であっても、異物300を過度に加熱させることを防止することが可能となる。
Upon receiving the power transmission mode notification (S6) from the ECU 58, the control device 30 performs power transmission according to the power transmission mode (S11). Specifically, when the normal mode is notified, the control device 30 transmits power in the normal mode, and when the output restriction mode is notified, the control device 30 transmits power in the output restriction mode. Compared to the normal mode, in the output restriction mode, the amount of power per unit time supplied from the feeding coil 80 to the receiving coil 100 is restricted. Thereby, even if the foreign material 300 exists between the power feeding coil 80 and the power receiving coil 100, it is possible to prevent the foreign material 300 from being heated excessively.
具体的には、制御装置30は、スイッチ86(図3)をオンにする。そして、制御装置30は、インバータ22を制御して直流電源20からの直流電流を交流電流に変換した上、給電コイル80を介して受電コイル100に供給(給電)する。これにより、バッテリ44が充電される。
Specifically, the control device 30 turns on the switch 86 (FIG. 3). The control device 30 controls the inverter 22 to convert the direct current from the direct current power source 20 into an alternating current, and then supplies (powers) the power receiving coil 100 via the power supply coil 80. Thereby, the battery 44 is charged.
なお、出力制限モードにおいて給電装置12から車両14に出力される電力は、単位時間当たりの異物300の温度上昇の度合いΔTが所定値以下なるようにXYZ方向それぞれの鎖交面積Aに応じて設定される(図10参照)。
Note that the electric power output from the power supply device 12 to the vehicle 14 in the output restriction mode is set according to the interlinkage area A in each of the XYZ directions so that the degree of temperature rise ΔT of the foreign object 300 per unit time is not more than a predetermined value. (See FIG. 10).
次いで、ステップS12において、制御装置30は、給電を終了するか否かを判定する。当該判定は、給電を終了すべき旨の通知(S8)を車両14のECU58から受信したか否かにより判定する。給電を終了しない場合(S12:NO)、ステップS11に戻る。給電を終了する場合(S12:YES)、今回の給電を終了する。
Next, in step S12, the control device 30 determines whether or not to end the power supply. This determination is made based on whether or not notification (S8) that power supply should be terminated has been received from the ECU 58 of the vehicle 14. When the power feeding is not finished (S12: NO), the process returns to step S11. When the power supply is terminated (S12: YES), the current power supply is terminated.
[2-3.送電モードの判定]
図11は、送電モードの判定(図9のS3~S5)の詳細についてのフローチャートである。ステップS21において、ECU58は、車両側カメラ54からのXY画像Ixyを用いて、異物300のX方向の長さLx(奥行)及びY方向の長さLy(幅)と、異物300の位置座標Cとを検出する。長さLx、Lyは、例えば、最大値、平均値又は中央値のいずれかとすることができる。また、ここでの位置座標Cは、例えば、Z方向から見た場合に異物300が占める座標群(XY方向の座標群)である。 [2-3. Determination of power transmission mode]
FIG. 11 is a flowchart showing details of determination of the power transmission mode (S3 to S5 in FIG. 9). In step S21, theECU 58 uses the XY image Ixy from the vehicle-side camera 54 to determine the length Lx (depth) in the X direction and the length Ly (width) in the Y direction of the foreign material 300 and the position coordinates C of the foreign material 300. And detect. The lengths Lx and Ly can be, for example, any one of a maximum value, an average value, and a median value. The position coordinates C here are, for example, a coordinate group (XY coordinate group) occupied by the foreign object 300 when viewed from the Z direction.
図11は、送電モードの判定(図9のS3~S5)の詳細についてのフローチャートである。ステップS21において、ECU58は、車両側カメラ54からのXY画像Ixyを用いて、異物300のX方向の長さLx(奥行)及びY方向の長さLy(幅)と、異物300の位置座標Cとを検出する。長さLx、Lyは、例えば、最大値、平均値又は中央値のいずれかとすることができる。また、ここでの位置座標Cは、例えば、Z方向から見た場合に異物300が占める座標群(XY方向の座標群)である。 [2-3. Determination of power transmission mode]
FIG. 11 is a flowchart showing details of determination of the power transmission mode (S3 to S5 in FIG. 9). In step S21, the
ステップS22において、ECU58は、給電装置側カメラ26からのYZ画像Iyzを用いて、異物300のZ方向の長さLz(高さ)と、異物300の位置座標Cとを検出する。長さLzは、例えば、最大値、平均値又は中央値のいずれかとすることができる。また、ここでの位置座標Cは、例えば、X方向から見た場合に異物300が占める座標群(YZ方向の座標群)である。ステップS21、S22の位置座標C(X方向及びZ方向から見た座標群)に基づいてY方向から見た位置座標C(XZ方向の座標群)も算出することができる。長さLx、Ly、Lz及び位置座標Cは、ステップS24、S26、S28での磁束量の総和Φtx、Φty、Φtzを算出可能なものであればよい。
In step S22, the ECU 58 detects the length Lz (height) of the foreign object 300 in the Z direction and the position coordinate C of the foreign object 300 using the YZ image Iyz from the power supply device side camera 26. The length Lz can be, for example, any one of a maximum value, an average value, and a median value. The position coordinates C here are, for example, a coordinate group (a coordinate group in the YZ direction) occupied by the foreign object 300 when viewed from the X direction. Based on the position coordinates C (coordinate group viewed from the X direction and the Z direction) in steps S21 and S22, the position coordinate C (coordinate group of the XZ direction) viewed from the Y direction can also be calculated. The lengths Lx, Ly, Lz and the position coordinates C may be any as long as they can calculate the total magnetic flux amounts Φtx, Φty, Φtz in steps S24, S26, and S28.
ステップS23において、ECU58は、X方向、Y方向及びZ方向の鎖交面積Ax、Ay、Azを算出する。具体的には、鎖交面積Axは、Y方向の長さLyとZ方向の長さLzを乗算して求める。鎖交面積Ayは、X方向の長さLxとZ方向の長さLzを乗算して求める。鎖交面積Azは、X方向の長さLxとY方向の長さLyを乗算して求める。その他の方法で鎖交面積Ax、Ay、Azを求めてもよい。例えば、XY画像Ixy及びYZ画像Iyzそれぞれにおいて異物300のエッジ(輪郭)を検出し、当該エッジ(輪郭)内に含まれる座標の数に基づいて鎖交面積Ax、Ay、Azを求めることも可能である。
In step S23, the ECU 58 calculates the interlinkage areas Ax, Ay, Az in the X direction, the Y direction, and the Z direction. Specifically, the interlinkage area Ax is obtained by multiplying the length Ly in the Y direction by the length Lz in the Z direction. The interlinkage area Ay is obtained by multiplying the length Lx in the X direction by the length Lz in the Z direction. The interlinkage area Az is obtained by multiplying the length Lx in the X direction and the length Ly in the Y direction. The interlinkage areas Ax, Ay, Az may be obtained by other methods. For example, it is also possible to detect the edge (contour) of the foreign object 300 in each of the XY image Ixy and the YZ image Iyz and obtain the interlinkage areas Ax, Ay, Az based on the number of coordinates included in the edge (contour). It is.
ステップS24において、ECU58は、Z方向の鎖交面積Azに占めるZ方向の磁束量Φzの総和Φtzを算出する。第1実施形態では、X方向、Y方向及びZ方向それぞれの座標をマトリクス状に区分し、それぞれの座標について磁束量Φ(又は磁束密度B)を記憶したデータベースを作成しておく。
In step S24, the ECU 58 calculates the sum Φtz of the amount of magnetic flux Φz in the Z direction occupying the interlinkage area Az in the Z direction. In the first embodiment, the X-direction, Y-direction, and Z-direction coordinates are divided into a matrix, and a database storing the magnetic flux amount Φ (or magnetic flux density B) for each coordinate is created.
図12は、マトリクス状に区分したXY方向の座標(Xn、Yn)毎に推定されるZ方向の磁束量Φzの一例を示す図である。図13は、XY方向の座標(Xn、Yn)毎にZ方向の磁束量Φzを記憶したデータベースの一例を示す図である。図12及び図13では、XY方向の座標(Xn、Yn)毎にZ方向の磁束量Φzを記憶しているため、結果としてZ方向の磁束密度Bzを記憶していることと同義である。さらに、このデータベースは、XZ方向の座標(Xn、Zn)毎にY方向の磁束量Φyを記憶すると共に、YZ方向の座標(Yn、Zn)毎にX方向の磁束量Φxを記憶している。第1実施形態におけるデータベースは、ECU58の記憶部66に記憶されている。
FIG. 12 is a diagram illustrating an example of the amount of magnetic flux Φz in the Z direction estimated for each coordinate (Xn, Yn) in the XY direction divided into a matrix. FIG. 13 is a diagram illustrating an example of a database that stores the amount of magnetic flux Φz in the Z direction for each coordinate (Xn, Yn) in the XY directions. In FIG. 12 and FIG. 13, since the magnetic flux amount Φz in the Z direction is stored for each coordinate (Xn, Yn) in the XY directions, this is synonymous with storing the magnetic flux density Bz in the Z direction as a result. Further, this database stores the amount of magnetic flux Φy in the Y direction for each coordinate (Xn, Zn) in the XZ direction, and stores the amount of magnetic flux Φx in the X direction for each coordinate (Yn, Zn) in the YZ direction. . The database in the first embodiment is stored in the storage unit 66 of the ECU 58.
第1実施形態では、ステップS21において長さLx、Ly及び位置座標Cを検出している。これらの数値により、Z方向において異物300が占める座標群を特定することが可能である。そこで、ECU58は、当該座標群に含まれる各座標に対応するZ方向の磁束量Φzを積算することで総和Φtzを算出する。
In the first embodiment, the lengths Lx and Ly and the position coordinates C are detected in step S21. With these numerical values, it is possible to specify the coordinate group occupied by the foreign object 300 in the Z direction. Therefore, the ECU 58 calculates the total Φtz by integrating the magnetic flux amount Φz in the Z direction corresponding to each coordinate included in the coordinate group.
ステップS25において、ECU58は、ステップS24で算出した磁束量の総和Φtzが規定値THtz以下であるかを判定する。規定値THtzは、通常モード又は出力制限モードの選択に用いる閾値である。磁束量の総和Φtzが規定値THtz以下である場合(S25:YES)、ステップS26に進む。
In step S25, the ECU 58 determines whether the total magnetic flux amount Φtz calculated in step S24 is equal to or less than a specified value THtz. The specified value THtz is a threshold value used for selecting the normal mode or the output restriction mode. When the total amount Φtz of the magnetic flux amounts is equal to or less than the specified value THtz (S25: YES), the process proceeds to step S26.
ステップS26において、ECU58は、Y方向の鎖交面積Ayに占めるY方向の磁束量Φyの総和Φtyを算出する。当該処理は、ステップS24と同様に行うことが可能である。すなわち、ステップS21、S22で検出した長さLx、Lz及び位置座標Cにより、Y方向において異物300が占める座標群(XZ方向の座標群)を特定する。そして、ECU58は、当該座標群に含まれる各座標に対応するY方向の磁束量Φyを積算することで総和Φtyを算出する。
In step S26, the ECU 58 calculates the sum Φty of the amount of magnetic flux Φy in the Y direction occupying the interlinkage area Ay in the Y direction. This process can be performed in the same manner as in step S24. That is, the coordinate group (the coordinate group in the XZ direction) occupied by the foreign object 300 in the Y direction is specified by the lengths Lx, Lz and the position coordinates C detected in steps S21 and S22. Then, the ECU 58 calculates the total Φty by integrating the amount of magnetic flux Φy in the Y direction corresponding to each coordinate included in the coordinate group.
ステップS27において、ECU58は、ステップS26で算出した磁束量の総和Φtyが規定値THty以下であるかを判定する。規定値THtyは、通常モード又は出力制限モードの選択に用いる閾値である。磁束量の総和Φtyが規定値THty以下である場合(S27:YES)、ステップS28に進む。
In step S27, the ECU 58 determines whether or not the total magnetic flux amount Φty calculated in step S26 is equal to or less than a specified value THty. The specified value THty is a threshold value used for selecting the normal mode or the output restriction mode. When the total amount Φty of the magnetic flux is equal to or less than the specified value THty (S27: YES), the process proceeds to step S28.
ステップS28において、ECU58は、X方向の鎖交面積Axに占めるX方向の磁束量Φxの総和Φtxを算出する。当該処理は、ステップS24、S26と同様に行うことが可能である。
In step S28, the ECU 58 calculates the sum Φtx of the magnetic flux amount Φx in the X direction occupying the interlinkage area Ax in the X direction. This process can be performed in the same manner as steps S24 and S26.
ステップS29において、ECU58は、ステップS28で算出した磁束量の総和Φtxが規定値THtx以下であるかを判定する。規定値THtxは、通常モード又は出力制限モードの選択に用いる閾値である。磁束量の総和Φtxが規定値THtx以下である場合(S29:YES)、ステップS30において、ECU58は、送電モードとして通常モードを選択する。
In step S29, the ECU 58 determines whether the total magnetic flux amount Φtx calculated in step S28 is equal to or less than a specified value THtx. The specified value THtx is a threshold value used for selecting the normal mode or the output restriction mode. When the total amount Φtx of the magnetic flux amount is equal to or less than the specified value THtx (S29: YES), in step S30, the ECU 58 selects the normal mode as the power transmission mode.
ステップS25において磁束量の総和Φtzが規定値THtz以下でない場合(S25:NO)、ステップS27において磁束量の総和Φtyが規定値THty以下でない場合(S27:NO)又はステップS29において磁束量の総和Φtxが規定値THtx以下でない場合(S29:NO)、ステップS31において、ECU58は、送電モードとして出力制限モードを選択する。
If the total flux amount Φtz is not less than or equal to the specified value THtz in step S25 (S25: NO), if the total flux amount Φty is not less than or equal to the defined value THty in step S27 (S27: NO), or if the total flux amount Φtz in step S29. Is not less than the specified value THtx (S29: NO), in step S31, the ECU 58 selects the output restriction mode as the power transmission mode.
3.第1実施形態の効果
以上説明したように、第1実施形態によれば、異物300における磁束量の総和Φtに応じて、給電コイル80(給電部)から受電コイル100(受電部)への単位時間当たりの送電電力の制限値を設定する(図9及び図11)。このため、送電電力を設定する新たな方法を提供することが可能となる。また、異物300における磁束量の総和Φtは、異物300における発熱量(及びその結果としての送電時の電力損失)に影響する。このため、異物300における発熱量(又は電力損失)に応じてきめ細かく送電電力を設定することが可能となる。 3. Effects of the First Embodiment As described above, according to the first embodiment, the unit from the power feeding coil 80 (power feeding unit) to the power receiving coil 100 (power receiving unit) according to the total amount Φt of the magnetic flux in theforeign material 300. A limit value of transmission power per hour is set (FIGS. 9 and 11). For this reason, it becomes possible to provide the new method of setting transmission power. In addition, the total amount Φt of the magnetic flux in the foreign object 300 affects the amount of heat generated in the foreign object 300 (and the resulting power loss during power transmission). For this reason, it becomes possible to set transmission power finely according to the calorific value (or power loss) in the foreign material 300.
以上説明したように、第1実施形態によれば、異物300における磁束量の総和Φtに応じて、給電コイル80(給電部)から受電コイル100(受電部)への単位時間当たりの送電電力の制限値を設定する(図9及び図11)。このため、送電電力を設定する新たな方法を提供することが可能となる。また、異物300における磁束量の総和Φtは、異物300における発熱量(及びその結果としての送電時の電力損失)に影響する。このため、異物300における発熱量(又は電力損失)に応じてきめ細かく送電電力を設定することが可能となる。 3. Effects of the First Embodiment As described above, according to the first embodiment, the unit from the power feeding coil 80 (power feeding unit) to the power receiving coil 100 (power receiving unit) according to the total amount Φt of the magnetic flux in the
さらに、第1実施形態によれば、異物300における磁束量の総和Φtは、給電コイル80及び受電コイル100に対する異物300の相対位置に基づいて推定される(図12及び図13参照)。このため、実際の送電前であっても磁束量の総和Φtを推定可能となる。この場合、異物300に応じた送電電力を送電前に設定することが可能となる。
Furthermore, according to the first embodiment, the total amount Φt of the magnetic flux in the foreign object 300 is estimated based on the relative position of the foreign object 300 with respect to the feeding coil 80 and the power receiving coil 100 (see FIGS. 12 and 13). For this reason, even before actual power transmission, the total amount Φt of the magnetic flux can be estimated. In this case, the transmission power corresponding to the foreign object 300 can be set before power transmission.
第1実施形態では、ソレノイド型の給電コイル80(給電用第1コイル)と受電コイル100(受電用第2コイル)の側面を互いに対向させて非接触で給電を行う(図2参照)。また、異物300の相対位置として、受電コイル100から給電コイル80を見た方向(Z方向)における平面座標の集合を少なくとも用いる(図12、図13参照)。これにより、給電コイル80又は受電コイル100の中心軸方向と直行する方向(Z方向)の磁束についての異物300を通る磁束量の総和Φtを推定することが可能となる。このため、Z方向の磁束が、異物300における発熱量(又は電力損失)に比較的大きな影響を与える構成では、送電電力を適切に設定することが可能となる。
In the first embodiment, power is supplied in a contactless manner with the side surfaces of the solenoid-type power supply coil 80 (first power supply coil) and the power receiving coil 100 (second power receiving coil) facing each other (see FIG. 2). In addition, as a relative position of the foreign object 300, at least a set of plane coordinates in a direction (Z direction) when the power feeding coil 80 is viewed from the power receiving coil 100 is used (see FIGS. 12 and 13). As a result, it is possible to estimate the total amount Φt of the magnetic flux passing through the foreign object 300 for the magnetic flux in the direction (Z direction) perpendicular to the central axis direction of the power feeding coil 80 or the power receiving coil 100. For this reason, in the configuration in which the magnetic flux in the Z direction has a relatively large influence on the heat generation amount (or power loss) in the foreign material 300, it is possible to appropriately set the transmission power.
第1実施形態に係るシステム10は、異物300を撮像する車両側カメラ54(撮像手段)を備え、異物300の相対位置としてのZ方向における平面座標の集合は、カメラ54が取得したXY画像Ixyに基づいて検出する(図12、図13参照)。これにより、受電コイル100から給電コイル80を見た方向(Z方向)における平面座標の集合を簡易に検出することが可能となる。
The system 10 according to the first embodiment includes a vehicle-side camera 54 (imaging unit) that images the foreign object 300, and a set of plane coordinates in the Z direction as a relative position of the foreign object 300 is obtained by an XY image Ixy acquired by the camera 54. (See FIGS. 12 and 13). Thereby, it becomes possible to easily detect a set of plane coordinates in the direction (Z direction) when the power feeding coil 80 is viewed from the power receiving coil 100.
B.第2実施形態
1.構成
[1-1.概要]
図14は、本発明の第2実施形態に係る非接触送電システム10A(以下「システム10A」ともいう。)の概略構成図である。第1実施形態と同一の構成要素には同一の参照符号を付して説明を省略する。第2実施形態の給電回路24a及び受電回路52aは、第1実施形態の給電回路24及び受電回路52と異なる。給電回路24a及び受電回路52aの具体的な構成は、図15を参照して詳述する。また、システム10Aの給電装置12aは、給電装置側カメラ26を有していない。 B. Second Embodiment 1. FIG. Configuration [1-1. Overview]
FIG. 14 is a schematic configuration diagram of a contactlesspower transmission system 10A (hereinafter also referred to as “system 10A”) according to the second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The power feeding circuit 24a and the power receiving circuit 52a of the second embodiment are different from the power feeding circuit 24 and the power receiving circuit 52 of the first embodiment. Specific configurations of the power feeding circuit 24a and the power receiving circuit 52a will be described in detail with reference to FIG. Further, the power supply apparatus 12a of the system 10A does not have the power supply apparatus side camera 26.
1.構成
[1-1.概要]
図14は、本発明の第2実施形態に係る非接触送電システム10A(以下「システム10A」ともいう。)の概略構成図である。第1実施形態と同一の構成要素には同一の参照符号を付して説明を省略する。第2実施形態の給電回路24a及び受電回路52aは、第1実施形態の給電回路24及び受電回路52と異なる。給電回路24a及び受電回路52aの具体的な構成は、図15を参照して詳述する。また、システム10Aの給電装置12aは、給電装置側カメラ26を有していない。 B. Second Embodiment 1. FIG. Configuration [1-1. Overview]
FIG. 14 is a schematic configuration diagram of a contactless
[1-2.無線給電に関する電気回路]
図15は、第2実施形態における給電装置12aから車両14aへの無線給電に関する電気回路を示す図である。 [1-2. Electric circuit for wireless power feeding]
FIG. 15 is a diagram illustrating an electric circuit related to wireless power feeding from thepower feeding device 12a to the vehicle 14a in the second embodiment.
図15は、第2実施形態における給電装置12aから車両14aへの無線給電に関する電気回路を示す図である。 [1-2. Electric circuit for wireless power feeding]
FIG. 15 is a diagram illustrating an electric circuit related to wireless power feeding from the
(1-2-1.給電装置12a)
図15に示すように、給電回路24aは、複数の分割コイル120からなる給電コイル80a(以下「コイル80a」ともいう。)と、複数のコンデンサ122とを有する。コイル80a(分割コイル120)は、いわゆるソレノイドコイル(管状コイル)である(図16参照)。給電回路24aでは、1つの分割コイル120と1つのコンデンサ122が並列に接続された複数のLC回路124が並列に配置されている。また、各LC回路124とインバータ22との間には、制御装置30により制御されるスイッチ126が配置されている。 (1-2-1.Power Feed Device 12a)
As shown in FIG. 15, thepower supply circuit 24 a includes a power supply coil 80 a (hereinafter also referred to as “coil 80 a”) including a plurality of divided coils 120 and a plurality of capacitors 122. The coil 80a (divided coil 120) is a so-called solenoid coil (tubular coil) (see FIG. 16). In the power feeding circuit 24a, a plurality of LC circuits 124 in which one split coil 120 and one capacitor 122 are connected in parallel are arranged in parallel. Further, a switch 126 controlled by the control device 30 is disposed between each LC circuit 124 and the inverter 22.
図15に示すように、給電回路24aは、複数の分割コイル120からなる給電コイル80a(以下「コイル80a」ともいう。)と、複数のコンデンサ122とを有する。コイル80a(分割コイル120)は、いわゆるソレノイドコイル(管状コイル)である(図16参照)。給電回路24aでは、1つの分割コイル120と1つのコンデンサ122が並列に接続された複数のLC回路124が並列に配置されている。また、各LC回路124とインバータ22との間には、制御装置30により制御されるスイッチ126が配置されている。 (1-2-1.
As shown in FIG. 15, the
図16は、第2実施形態における給電装置12aの給電回路24aと車両14aの受電回路52aの一部を示す外観斜視図である。図16において、前後方向(X方向)、左右方向(Y方向)及び上下方向(Z方向)は、車両14aを基準としている。
FIG. 16 is an external perspective view showing a part of the power feeding circuit 24a of the power feeding device 12a and the power receiving circuit 52a of the vehicle 14a in the second embodiment. In FIG. 16, the front-rear direction (X direction), the left-right direction (Y direction), and the up-down direction (Z direction) are based on the vehicle 14a.
図16に示すように、給電コイル80aを構成する分割コイル120は、それぞれ送電側コア130(以下「コア130」ともいう。)の周囲に螺旋状に巻かれている。各コア130は、板状の磁性材である。各コア130は、給電コイル80aの中心軸Ax1の方向(換言すると、給電コイル80aの巻回方向と直交する方向)に所定の間隔を隔てて直線状に配置される。各コア130は、樹脂132(図18)で連結される。なお、図16では、樹脂132が省略されていることに留意されたい。また、分割コイル120毎に別々のコア130を設ける代わりに、複数の分割コイル120の組合せ毎にコア130を設けてもよい。例えば、4つの分割コイル120を単一のコア130に巻回することも可能である。
As shown in FIG. 16, the divided coils 120 constituting the power feeding coil 80 a are each spirally wound around a power transmission side core 130 (hereinafter also referred to as “core 130”). Each core 130 is a plate-like magnetic material. Each core 130 is linearly arranged at a predetermined interval in the direction of the central axis Ax1 of the power supply coil 80a (in other words, the direction orthogonal to the winding direction of the power supply coil 80a). Each core 130 is connected by resin 132 (FIG. 18). It should be noted that the resin 132 is omitted in FIG. Further, instead of providing a separate core 130 for each divided coil 120, a core 130 may be provided for each combination of a plurality of divided coils 120. For example, it is possible to wind four divided coils 120 around a single core 130.
(1-2-2.車両14a)
図15に示すように、受電回路52aは、複数の分割コイル140からなる受電コイル100a(以下「コイル100a」ともいう。)と、複数のコンデンサ142とを有する。コイル100a(分割コイル140)は、いわゆるソレノイドコイル(管状コイル)である(図16参照)。受電回路52aでは、1つの分割コイル140と1つのコンデンサ142が並列に接続された複数のLC回路144が並列に配置されている。また、各LC回路144とバッテリ44及び平滑コンデンサ90との間には、整流回路146及びスイッチ148が配置されている。 (1-2-2.Vehicle 14a)
As illustrated in FIG. 15, thepower receiving circuit 52 a includes a power receiving coil 100 a (hereinafter, also referred to as “coil 100 a”) including a plurality of divided coils 140, and a plurality of capacitors 142. The coil 100a (divided coil 140) is a so-called solenoid coil (tubular coil) (see FIG. 16). In the power receiving circuit 52a, a plurality of LC circuits 144 in which one split coil 140 and one capacitor 142 are connected in parallel are arranged in parallel. Further, a rectifier circuit 146 and a switch 148 are disposed between each LC circuit 144 and the battery 44 and the smoothing capacitor 90.
図15に示すように、受電回路52aは、複数の分割コイル140からなる受電コイル100a(以下「コイル100a」ともいう。)と、複数のコンデンサ142とを有する。コイル100a(分割コイル140)は、いわゆるソレノイドコイル(管状コイル)である(図16参照)。受電回路52aでは、1つの分割コイル140と1つのコンデンサ142が並列に接続された複数のLC回路144が並列に配置されている。また、各LC回路144とバッテリ44及び平滑コンデンサ90との間には、整流回路146及びスイッチ148が配置されている。 (1-2-2.
As illustrated in FIG. 15, the
図16に示すように、受電コイル100aを構成する分割コイル140は、それぞれ各板状の受電側コア150(以下「コア150」ともいう。)の周囲に螺旋状に巻かれている。各コア150は、受電コイル100aの中心軸Ax2の方向(換言すると、受電コイル100aの巻回方向と直交する方向)に所定の間隔を隔てて直線状に配置される。各コア150は、樹脂152(図18)で連結される。なお、図16では、樹脂152が省略されていることに留意されたい。また、分割コイル140毎に別々のコア150を設ける代わりに、複数の分割コイル140の組合せ毎にコア150を設けてもよい。
As shown in FIG. 16, the divided coils 140 constituting the power receiving coil 100a are spirally wound around each plate-shaped power receiving side core 150 (hereinafter also referred to as “core 150”). Each core 150 is linearly arranged at a predetermined interval in the direction of the central axis Ax2 of the power receiving coil 100a (in other words, the direction orthogonal to the winding direction of the power receiving coil 100a). Each core 150 is connected by resin 152 (FIG. 18). It should be noted that the resin 152 is omitted in FIG. Further, instead of providing a separate core 150 for each divided coil 140, a core 150 may be provided for each combination of a plurality of divided coils 140.
第2実施形態では、給電コイル80a及び受電コイル100aとの間に異物300が入り込んだ場合、異物300が介在しない分割コイル120、140のみを通電する(詳細は、図17及び図18を参照して後述する。)。
In the second embodiment, when the foreign object 300 enters between the power supply coil 80a and the power receiving coil 100a, only the split coils 120 and 140 that do not include the foreign object 300 are energized (for details, refer to FIGS. 17 and 18). Will be described later.)
2.電力供給制御
図17は、第2実施形態の送電時における給電制御装置30(給電装置12a側)及びECU58(車両14a側)の制御のフローチャートである。図18は、第2実施形態の送電時における給電コイル80a及び受電コイル100aの動作を説明するための図である。なお、制御装置30は、図17の制御を開始する前において、既にスタンバイ状態となっている。また、図18では、通電する分割コイル120、140を実線で示し、通電しない分割コイル120、140を破線で示している。 2. Electric Power Supply Control FIG. 17 is a flowchart of control of the power supply control device 30 (power supply device 12a side) and ECU 58 (vehicle 14a side) during power transmission according to the second embodiment. FIG. 18 is a diagram for explaining operations of the power feeding coil 80a and the power receiving coil 100a during power transmission according to the second embodiment. The control device 30 is already in a standby state before starting the control of FIG. In FIG. 18, the split coils 120 and 140 that are energized are indicated by solid lines, and the split coils 120 and 140 that are not energized are indicated by broken lines.
図17は、第2実施形態の送電時における給電制御装置30(給電装置12a側)及びECU58(車両14a側)の制御のフローチャートである。図18は、第2実施形態の送電時における給電コイル80a及び受電コイル100aの動作を説明するための図である。なお、制御装置30は、図17の制御を開始する前において、既にスタンバイ状態となっている。また、図18では、通電する分割コイル120、140を実線で示し、通電しない分割コイル120、140を破線で示している。 2. Electric Power Supply Control FIG. 17 is a flowchart of control of the power supply control device 30 (
図17のステップS41、S42は、図9のステップS1、S2と同様である。但し、第2実施形態では、給電装置側カメラ26が存在しないため、車両側カメラ54からのXY画像Ixyのみを用いて異物300の有無を判定する。ステップS42において、異物300が存在する場合(S42:YES)、ステップS43において、ECU58は、給電コイル80a及び受電コイル100aの間においてZ方向の磁束量の総和Φtzが規定値THtz内にあるか否かを判定する。当該判定は、図11のステップS21、S23、S24と同様である。なお、第2実施形態では、Z方向の磁束量の総和Φtzのみについて判定するが、第1実施形態と同様、X方向の磁束量の総和Φtx及びY方向の磁束量の総和Φtyについて判定を行ってもよい。
17 are the same as steps S1 and S2 in FIG. However, in the second embodiment, since the power feeding device side camera 26 does not exist, the presence / absence of the foreign object 300 is determined using only the XY image Ixy from the vehicle side camera 54. In step S42, when the foreign object 300 exists (S42: YES), in step S43, the ECU 58 determines whether or not the total amount Φtz of the amount of magnetic flux in the Z direction is within the specified value THtz between the power feeding coil 80a and the power receiving coil 100a. Determine whether. This determination is the same as steps S21, S23, and S24 in FIG. In the second embodiment, only the total amount Φtz of the Z direction magnetic flux is determined. However, as in the first embodiment, the total amount Φtx of the X direction magnetic flux and the total amount Φty of the Y direction magnetic flux are determined. May be.
ステップS42において異物300が存在しない場合(S42:NO)又はステップS43において磁束量の総和Φtzが規定値THtz内である場合(S43:YES)、ステップS44において、ECU58は、送電モードとして通常モードを選択する。第2実施形態における通常モードでは、全ての分割コイル120、140を用いて給電を行う。
If there is no foreign object 300 in step S42 (S42: NO), or if the total magnetic flux amount Φtz is within the specified value THtz in step S43 (S43: YES), in step S44, the ECU 58 sets the normal mode as the power transmission mode. select. In the normal mode in the second embodiment, power is supplied using all the split coils 120 and 140.
一方、ステップS43において磁束量の総和Φtzが規定値THtz内にない場合(S43:NO)、ステップS45において、ECU58は、送電モードとして出力制限モードを選択する。第2実施形態における出力制限モードでは、異物300が間に存在しない分割コイル120、140を用いて給電を行い、異物300が間に存在する分割コイル120、140は給電に用いない。そのため、送電電力が制限される。
On the other hand, when the total amount Φtz of the magnetic flux amount is not within the specified value THtz in step S43 (S43: NO), in step S45, the ECU 58 selects the output restriction mode as the power transmission mode. In the output restriction mode in the second embodiment, power is supplied using the divided coils 120 and 140 with no foreign material 300 in between, and the divided coils 120 and 140 with the foreign material 300 in between are not used for power supply. Therefore, transmission power is limited.
ステップS46において、ECU58は、通電すべき分割コイル120を制御装置30に通知する。すなわち、通常モードを選択している場合、全ての分割コイル120を通電すべき旨を通知する。出力制限モードを選択している場合、向かい合う分割コイル140との間に異物300が間に存在していない分割コイル120を通電すべき旨を通知する。例えば、図18の例では、ECU58は、左側の3つの分割コイル120に通電するよう制御装置30に指令を出す。
In step S46, the ECU 58 notifies the control device 30 of the divided coil 120 to be energized. That is, when the normal mode is selected, notification that all the divided coils 120 should be energized is given. When the output restriction mode is selected, it is notified that the divided coil 120 in which no foreign material 300 exists between the opposed divided coils 140 should be energized. For example, in the example of FIG. 18, the ECU 58 issues a command to the control device 30 to energize the left three divided coils 120.
なお、異物300の位置等を判定するための情報(例えば、カメラ54が取得した画像データ)を給電装置12a側で取得可能な構成であれば、通電すべき分割コイル120の判定は、給電装置12a側(例えば、制御装置30)において行うことも可能である。
Note that if the power supply device 12a can acquire information for determining the position of the foreign object 300 (for example, image data acquired by the camera 54) on the power supply device 12a side, the determination of the split coil 120 to be energized is performed. It can also be performed on the 12a side (for example, the control device 30).
給電装置12aからの給電を行っている際、ECU58は、給電を行う分割コイル120に対応する分割コイル140に対応するスイッチ148(図15)をオンにする。一方、給電を行わない分割コイル120に対応する分割コイル140に対応するスイッチ148はオフにする。これにより、給電を行わない分割コイル120における渦電流が給電に悪影響を及ぼすことを回避することが可能となる。
During power feeding from the power feeding device 12a, the ECU 58 turns on a switch 148 (FIG. 15) corresponding to the split coil 140 corresponding to the split coil 120 that performs power feeding. On the other hand, the switch 148 corresponding to the split coil 140 corresponding to the split coil 120 to which power is not supplied is turned off. As a result, it is possible to avoid an eddy current in the split coil 120 that does not supply power from adversely affecting the power supply.
ステップS46の後、ステップS47において、ECU58は、給電装置12aからの電力によるバッテリ44の充電を終了するか否かを判定する。当該判定は、図9のステップS7と同様である。
After step S46, in step S47, the ECU 58 determines whether or not to end the charging of the battery 44 with the electric power from the power supply device 12a. This determination is the same as step S7 in FIG.
バッテリ44の充電を終了しない場合(S47:NO)、ステップS42に戻る。或いは、単にステップS47を繰り返すのみでもよい。バッテリ44の充電を終了する場合(S47:YES)、ステップS48において、ECU58は、充電を終了すべき旨を制御装置30に通知する。
If the charging of the battery 44 is not terminated (S47: NO), the process returns to step S42. Alternatively, step S47 may be simply repeated. When the charging of the battery 44 is to be ended (S47: YES), in step S48, the ECU 58 notifies the control device 30 that the charging should be ended.
ステップS46においてECU58が、通電すべき分割コイル120を制御装置30に通知した場合、図17のステップS51において、制御装置30は、ECU58から通知された分割コイル120を用いて車両14aに対して給電(送電)する。
When the ECU 58 notifies the control device 30 of the split coil 120 to be energized in step S46, the control device 30 supplies power to the vehicle 14a using the split coil 120 notified from the ECU 58 in step S51 of FIG. (Power transmission).
具体的には、制御装置30は、ECU58から通知された分割コイル120に対応するスイッチ126(図15)をオンにする。この際、ECU58から通知されていない分割コイル120に対応するスイッチ126はオフのままとする。そして、制御装置30は、インバータ22を制御して直流電源20からの直流電流を交流電流に変換した上、給電コイル80a(分割コイル120)を介して受電コイル100a(分割コイル140)に供給(給電)する。これにより、バッテリ44が充電される。
Specifically, the control device 30 turns on the switch 126 (FIG. 15) corresponding to the split coil 120 notified from the ECU 58. At this time, the switch 126 corresponding to the divided coil 120 not notified from the ECU 58 remains off. Then, the control device 30 controls the inverter 22 to convert the direct current from the direct current power supply 20 into an alternating current, and then supplies the alternating current to the power receiving coil 100a (the divided coil 140) via the power feeding coil 80a (the divided coil 140). Power). Thereby, the battery 44 is charged.
次いで、ステップS52において、制御装置30は、給電を終了するか否かを判定する。当該判定は、給電を終了すべき旨の通知(S48)を車両14のECU58から受信したか否かにより判定する。給電を終了しない場合(S52:NO)、ステップS51を繰り返す。給電を終了する場合(S52:YES)、今回の給電を終了する。
Next, in step S52, the control device 30 determines whether or not to end the power feeding. This determination is made based on whether or not a notification (S48) that power supply should be terminated has been received from the ECU 58 of the vehicle 14. When the power feeding is not finished (S52: NO), step S51 is repeated. When the power supply is terminated (S52: YES), the current power supply is terminated.
3.第2実施形態の効果
以上説明したように、第2実施形態によれば、ソレノイド型の給電コイル80a(給電用第1コイル)と受電コイル100a(受電用第2コイル)の側面を互いに対向させて非接触で給電を行う(図15、図16及び図18参照)。給電コイル80a及び受電コイル100aは、それぞれが並列に接続された複数の分割コイル120、140を、給電コイル80a及び受電コイル100aの中心軸Ax1、Ax2方向に直線状に並べて構成される(図16参照)。そして、異物300を間に挟む分割コイル120、140の間では送電を停止し、異物300を間に挟まない分割コイル120、140の間で送電する(図17及び図18参照)。 3. Effects of Second Embodiment As described above, according to the second embodiment, the side surfaces of the solenoid-typepower feeding coil 80a (first power feeding coil) and the power receiving coil 100a (second power receiving coil) are opposed to each other. Then, power is supplied in a non-contact manner (see FIGS. 15, 16, and 18). The power feeding coil 80a and the power receiving coil 100a are configured by arranging a plurality of divided coils 120 and 140, which are connected in parallel, in a straight line in the directions of the central axes Ax1 and Ax2 of the power feeding coil 80a and the power receiving coil 100a (FIG. 16). reference). Then, power transmission is stopped between the split coils 120 and 140 that sandwich the foreign object 300, and power is transmitted between the split coils 120 and 140 that do not sandwich the foreign object 300 (see FIGS. 17 and 18).
以上説明したように、第2実施形態によれば、ソレノイド型の給電コイル80a(給電用第1コイル)と受電コイル100a(受電用第2コイル)の側面を互いに対向させて非接触で給電を行う(図15、図16及び図18参照)。給電コイル80a及び受電コイル100aは、それぞれが並列に接続された複数の分割コイル120、140を、給電コイル80a及び受電コイル100aの中心軸Ax1、Ax2方向に直線状に並べて構成される(図16参照)。そして、異物300を間に挟む分割コイル120、140の間では送電を停止し、異物300を間に挟まない分割コイル120、140の間で送電する(図17及び図18参照)。 3. Effects of Second Embodiment As described above, according to the second embodiment, the side surfaces of the solenoid-type
このため、通電する分割コイル120、140により形成される磁束の環160(図18)は、異物300と鎖交しない。従って、異物300における発熱又は電力損失を抑制しつつ、給電を行うことが可能となる。
For this reason, the magnetic flux ring 160 (FIG. 18) formed by the split coils 120 and 140 that are energized does not interlink with the foreign material 300. Therefore, power supply can be performed while suppressing heat generation or power loss in the foreign material 300.
第2実施形態において、給電コイル80a及び受電コイル100aは、磁性材からなるコア130、150に巻回され(図16、図18参照)、未通電コイルは、磁路として使用される(図18参照)。これにより、漏れ磁束を抑え、給電効率を向上することが可能となる。
In the second embodiment, the power feeding coil 80a and the power receiving coil 100a are wound around cores 130 and 150 made of a magnetic material (see FIGS. 16 and 18), and the non-energized coil is used as a magnetic path (FIG. 18). reference). As a result, it is possible to suppress leakage magnetic flux and improve power supply efficiency.
C.変形例
なお、本発明は、上記各実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。 C. Modifications Note that the present invention is not limited to the above-described embodiments, and various configurations can be adopted based on the description of the present specification. For example, the following configuration can be adopted.
なお、本発明は、上記各実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。 C. Modifications Note that the present invention is not limited to the above-described embodiments, and various configurations can be adopted based on the description of the present specification. For example, the following configuration can be adopted.
1.適用対象
上記各実施形態では、非接触送電システム10、10Aを電気自動車である車両14、14aの給電(充電)用に用いたが、その他の電動車両(ハイブリッド車両、燃料電池車両等)に用いてもよい。或いは、システム10、10Aは、車両14、14aに限らず、給電を要するその他の移動体(船舶や航空機等)に用いることもできる。或いは、システム10、10Aを、給電を要する製造装置、ロボット又は家電製品に適用してもよい。 1. Applicable object In each of the above embodiments, the contactless power transmission system 10, 10A is used for power feeding (charging) of the vehicles 14, 14a, which are electric vehicles, but is used for other electric vehicles (hybrid vehicles, fuel cell vehicles, etc.). May be. Alternatively, the systems 10 and 10A can be used not only for the vehicles 14 and 14a but also for other moving bodies (such as ships and airplanes) that require power feeding. Alternatively, the systems 10 and 10A may be applied to a manufacturing apparatus, a robot, or a home appliance that requires power supply.
上記各実施形態では、非接触送電システム10、10Aを電気自動車である車両14、14aの給電(充電)用に用いたが、その他の電動車両(ハイブリッド車両、燃料電池車両等)に用いてもよい。或いは、システム10、10Aは、車両14、14aに限らず、給電を要するその他の移動体(船舶や航空機等)に用いることもできる。或いは、システム10、10Aを、給電を要する製造装置、ロボット又は家電製品に適用してもよい。 1. Applicable object In each of the above embodiments, the contactless
2.給電コイル80、80a及び受電コイル100、100a
[2-1.コイルのタイプ]
上記各実施形態では、給電コイル80、80a及び受電コイル100、100aは、いずれもソレノイド型のコイルとした(例えば、図16参照)。しかしながら、例えば、異物300の相対位置に応じて単位時間当たりの送電電力の制限値(上限値)を設定する観点からすれば、それ以外のタイプのコイルを用いることも可能である。 2. Feeding coils 80 and 80a and receiving coils 100 and 100a
[2-1. Coil type]
In the above embodiments, the power supply coils 80 and 80a and the power reception coils 100 and 100a are all solenoid type coils (see, for example, FIG. 16). However, for example, from the viewpoint of setting a limit value (upper limit value) of transmitted power per unit time according to the relative position of theforeign object 300, other types of coils can be used.
[2-1.コイルのタイプ]
上記各実施形態では、給電コイル80、80a及び受電コイル100、100aは、いずれもソレノイド型のコイルとした(例えば、図16参照)。しかしながら、例えば、異物300の相対位置に応じて単位時間当たりの送電電力の制限値(上限値)を設定する観点からすれば、それ以外のタイプのコイルを用いることも可能である。 2. Feeding coils 80 and 80a and receiving
[2-1. Coil type]
In the above embodiments, the power supply coils 80 and 80a and the power reception coils 100 and 100a are all solenoid type coils (see, for example, FIG. 16). However, for example, from the viewpoint of setting a limit value (upper limit value) of transmitted power per unit time according to the relative position of the
[2-2.分割コイル120、140]
第2実施形態では、給電コイル80aを均等に分割したものを分割コイル120とした(図16及び図18参照)。しかしながら、例えば、異物300の位置に応じて通電する分割コイル120を選択する観点からすれば、必ずしも各分割コイル120の大きさを同一にする必要はない。分割コイル140についても同様である。 [2-2. Split coils 120, 140]
In the second embodiment, the dividedcoil 120 is obtained by equally dividing the power feeding coil 80a (see FIGS. 16 and 18). However, for example, from the viewpoint of selecting the split coil 120 to be energized according to the position of the foreign object 300, the size of each split coil 120 is not necessarily the same. The same applies to the split coil 140.
第2実施形態では、給電コイル80aを均等に分割したものを分割コイル120とした(図16及び図18参照)。しかしながら、例えば、異物300の位置に応じて通電する分割コイル120を選択する観点からすれば、必ずしも各分割コイル120の大きさを同一にする必要はない。分割コイル140についても同様である。 [2-2. Split coils 120, 140]
In the second embodiment, the divided
第2実施形態では、分割コイル120と分割コイル140の数を同数としたが(図15及び図16参照)、例えば、異物300の位置に応じて通電する分割コイル120を選択する観点からすれば、分割コイル120の数と分割コイル140の数を異ならせてもよい。
In the second embodiment, the number of the divided coils 120 and the number of the divided coils 140 is the same (see FIGS. 15 and 16). However, from the viewpoint of selecting the divided coils 120 to be energized according to the position of the foreign object 300, for example. The number of split coils 120 may be different from the number of split coils 140.
第2実施形態では、分割コイル120、140(コア130、150)をそれぞれ車両14aの前後方向に並べた(図16及び図18参照)。しかしながら、車両14aの前後方向に加えて又はこれに代えて、その他の方向(例えば、車両14aの左右方向(車幅方向))に分割コイル120、140(コア130、150)を並べることも可能である。
In the second embodiment, the split coils 120 and 140 (cores 130 and 150) are arranged in the front-rear direction of the vehicle 14a, respectively (see FIGS. 16 and 18). However, the split coils 120 and 140 (cores 130 and 150) can be arranged in other directions (for example, the left and right direction (vehicle width direction) of the vehicle 14a) in addition to or in place of the longitudinal direction of the vehicle 14a. It is.
[2-3.コア130、150]
第2実施形態では、給電コイル80a及び受電コイル100aのいずれにおいてもコア(コア130、150)を用いたが、例えば、コア130、150のうちいずれか一方又は両方を省くことも可能である。 [2-3.Core 130, 150]
In the second embodiment, the cores (cores 130 and 150) are used in both the feeding coil 80a and the power receiving coil 100a. However, for example, either one or both of the cores 130 and 150 can be omitted.
第2実施形態では、給電コイル80a及び受電コイル100aのいずれにおいてもコア(コア130、150)を用いたが、例えば、コア130、150のうちいずれか一方又は両方を省くことも可能である。 [2-3.
In the second embodiment, the cores (
3.異物300の位置の算出
[3-1.位置検出手段(撮像手段)]
第1実施形態では、給電装置側カメラ26を用いて、異物300のZ方向の長さLz(高さ)を検出し、車両側カメラ54を用いて、異物300のX方向及びY方向の長さLx、Lyを検出した。第2実施形態では、車両側カメラ54を用いて長さLx、Lyを検出した。しかしながら、給電コイル80、80a又は受電コイル100、100aに対する異物300の相対位置を判定する観点からすれば、その他の構成又は方法を用いてもよい。 3. Calculation of position of foreign object 300 [3-1. Position detecting means (imaging means)]
In the first embodiment, the power supply device-side camera 26 is used to detect the length Lz (height) of the foreign object 300 in the Z direction, and the vehicle-side camera 54 is used to detect the length of the foreign object 300 in the X and Y directions. Lx and Ly were detected. In the second embodiment, the lengths Lx and Ly are detected using the vehicle-side camera 54. However, from the viewpoint of determining the relative position of the foreign object 300 with respect to the power feeding coils 80 and 80a or the power receiving coils 100 and 100a, other configurations or methods may be used.
[3-1.位置検出手段(撮像手段)]
第1実施形態では、給電装置側カメラ26を用いて、異物300のZ方向の長さLz(高さ)を検出し、車両側カメラ54を用いて、異物300のX方向及びY方向の長さLx、Lyを検出した。第2実施形態では、車両側カメラ54を用いて長さLx、Lyを検出した。しかしながら、給電コイル80、80a又は受電コイル100、100aに対する異物300の相対位置を判定する観点からすれば、その他の構成又は方法を用いてもよい。 3. Calculation of position of foreign object 300 [3-1. Position detecting means (imaging means)]
In the first embodiment, the power supply device-
図19は、異物300の位置検出手段の変形例としての圧力センサ170及びレーザ変位計172の配置を示す図である。圧力センサ170は、平面視において略長方形状をしており、給電コイル80上に配置されている。圧力センサ170を用いることで、Z方向から見たときの異物300の座標(Xn、Yn)を検出することができる。
FIG. 19 is a diagram showing an arrangement of a pressure sensor 170 and a laser displacement meter 172 as a modified example of the position detection means of the foreign object 300. The pressure sensor 170 has a substantially rectangular shape in plan view, and is disposed on the feeding coil 80. By using the pressure sensor 170, the coordinates (Xn, Yn) of the foreign material 300 when viewed from the Z direction can be detected.
レーザ変位計172は、給電回路24の給電コイル80よりも駐車スペースの手前側に配置され、X方向から見たときの給電コイル80及びその周辺における異物300の座標(Yn、Zn)を検出することができる。
The laser displacement meter 172 is disposed in front of the parking space with respect to the feeding coil 80 of the feeding circuit 24, and detects the coordinates (Yn, Zn) of the foreign matter 300 in the feeding coil 80 and its surroundings when viewed from the X direction. be able to.
上記各実施形態及び図19の変形例では、給電コイル80に対する異物300の相対位置を検出した。しかしながら、異物300の相対位置に応じて単位時間当たりの送電電力の制限値(上限値)を設定する観点からすれば、受電コイル100に対する相対位置を検出することも可能である。
In each of the above embodiments and the modification of FIG. 19, the relative position of the foreign object 300 with respect to the feeding coil 80 is detected. However, from the viewpoint of setting a limit value (upper limit value) of transmitted power per unit time according to the relative position of the foreign object 300, it is also possible to detect the relative position with respect to the power receiving coil 100.
[3-2.判定主体]
上記各実施形態では、異物300の位置を判定する主体は、車両14、14aのECU58であった。しかしながら、異物300の位置を判定するための情報(例えば、カメラ54が取得した画像データ)を給電装置12、12a側で取得可能な構成であれば、給電装置12、12a側(例えば、制御装置30)において異物300の位置を判定することも可能である。 [3-2. Judgment subject]
In each of the above embodiments, the main body that determines the position of theforeign object 300 is the ECU 58 of the vehicle 14 or 14a. However, if the configuration is such that information for determining the position of the foreign object 300 (for example, image data acquired by the camera 54) can be acquired on the power supply device 12, 12a side, the power supply device 12, 12a side (for example, the control device). It is also possible to determine the position of the foreign object 300 in 30).
上記各実施形態では、異物300の位置を判定する主体は、車両14、14aのECU58であった。しかしながら、異物300の位置を判定するための情報(例えば、カメラ54が取得した画像データ)を給電装置12、12a側で取得可能な構成であれば、給電装置12、12a側(例えば、制御装置30)において異物300の位置を判定することも可能である。 [3-2. Judgment subject]
In each of the above embodiments, the main body that determines the position of the
4.送電電力の制限
第1実施形態では、X方向、Y方向及びZ方向の磁束量の総和Φtx、Φty、Φtzを用いて異物300の影響を判定し(図9及び図11参照)、第2実施形態では、Z方向の磁束量の総和Φtzを用いて異物300の影響を判定した(図17参照)。しかしながら、例えば、異物300の影響を判定する観点からすれば、それ以外の組合せ(1方向のみの磁束量の総和Φtを用いる場合を含む。)を用いてもよい。また、第1実施形態では、X方向、Y方向及びZ方向の磁束量の総和Φtx、Φty、Φtzを個別に用いたが、これらを合成して用いることも可能である。 4). Limitation of transmitted power In the first embodiment, the influence of theforeign object 300 is determined using the total amount of magnetic fluxes Φtx, Φty, and Φtz in the X direction, the Y direction, and the Z direction (see FIGS. 9 and 11), and the second embodiment. In the embodiment, the influence of the foreign matter 300 was determined using the total amount Φtz of the amount of magnetic flux in the Z direction (see FIG. 17). However, for example, from the viewpoint of determining the influence of the foreign object 300, other combinations (including the case where the total amount Φt of the magnetic flux amount in only one direction is used) may be used. In the first embodiment, the total sums Φtx, Φty, and Φtz of the magnetic flux amounts in the X direction, the Y direction, and the Z direction are individually used. However, they can be combined and used.
第1実施形態では、X方向、Y方向及びZ方向の磁束量の総和Φtx、Φty、Φtzを用いて異物300の影響を判定し(図9及び図11参照)、第2実施形態では、Z方向の磁束量の総和Φtzを用いて異物300の影響を判定した(図17参照)。しかしながら、例えば、異物300の影響を判定する観点からすれば、それ以外の組合せ(1方向のみの磁束量の総和Φtを用いる場合を含む。)を用いてもよい。また、第1実施形態では、X方向、Y方向及びZ方向の磁束量の総和Φtx、Φty、Φtzを個別に用いたが、これらを合成して用いることも可能である。 4). Limitation of transmitted power In the first embodiment, the influence of the
上記各実施形態では、磁束量の総和Φtを用いて、送電電力の制限の要否を判定した(図11等参照)。しかしながら、その他の方法で供給電力の制限の要否を判定することも可能である。例えば、異物300の位置情報(例えば、XY平面での座標)から直接当該判定を行ってもよい。例えば、図12のようにXY平面(又はその座標)を設定した状態で、送電電力を制限する座標を予め設定しておく。そして、当該座標に異物300が存在する場合、送電電力を制限することも可能である。
In each of the embodiments described above, the necessity of limiting transmission power was determined using the total amount of magnetic flux Φt (see FIG. 11 and the like). However, it is also possible to determine whether or not it is necessary to limit the power supply by other methods. For example, the determination may be performed directly from position information of the foreign object 300 (for example, coordinates on the XY plane). For example, in the state where the XY plane (or its coordinates) is set as shown in FIG. 12, the coordinates for limiting the transmission power are set in advance. And when the foreign material 300 exists in the said coordinate, it is also possible to restrict | limit transmission power.
上記各実施形態では、送電モードとして通常モードと出力制限モードを用いた(図9及び図17参照)。しかしながら、例えば、異物300の相対位置に応じて単位時間当たりの送電電力の制限値を設ける観点からすれば、これに限らない。例えば、通常モードに加え、単位時間当たりの送電電力の制限値が異なる複数の出力制限モードを設けることも可能である。或いは、通常モード及び出力制限モードに加え、送電を停止する送電停止モードを用いることもできる。
In each of the above embodiments, the normal mode and the output restriction mode are used as the power transmission mode (see FIGS. 9 and 17). However, for example, from the viewpoint of providing a limit value of transmitted power per unit time according to the relative position of the foreign object 300, the present invention is not limited to this. For example, in addition to the normal mode, it is also possible to provide a plurality of output restriction modes having different transmission power limit values per unit time. Alternatively, in addition to the normal mode and the output restriction mode, a power transmission stop mode for stopping power transmission can be used.
5.その他
第2実施形態では、通電すべき分割コイル120の判定を車両14aのECU58において行った。しかしながら、異物300の位置又はこれを判定するための情報(例えば、カメラ54が取得した画像データ)を給電装置12a側で取得可能な構成であれば、給電装置12a側(例えば、制御装置30)において当該判定を行うことも可能である。 5. Others In the second embodiment, theECU 58 of the vehicle 14a determines the split coil 120 to be energized. However, if the configuration is such that the position of the foreign object 300 or information for determining this (for example, image data acquired by the camera 54) can be acquired on the power supply device 12a side, the power supply device 12a side (for example, the control device 30). It is also possible to make this determination in step (b).
第2実施形態では、通電すべき分割コイル120の判定を車両14aのECU58において行った。しかしながら、異物300の位置又はこれを判定するための情報(例えば、カメラ54が取得した画像データ)を給電装置12a側で取得可能な構成であれば、給電装置12a側(例えば、制御装置30)において当該判定を行うことも可能である。 5. Others In the second embodiment, the
上記各実施形態では、給電装置12、12aから車両14、14aに対して給電したが、車両14、14aから給電装置12、12aに対して給電する場合にも本発明を適用可能である。
In each of the above embodiments, power is supplied from the power supply devices 12 and 12a to the vehicles 14 and 14a. However, the present invention can also be applied to a case where power is supplied from the vehicles 14 and 14a to the power supply devices 12 and 12a.
第1実施形態では、給電回路24のスイッチ86に加え、受電回路52のスイッチ108を設けた(図3)。第2実施形態では、給電回路24aのスイッチ126に加え、受電回路52aのスイッチ148を設けた(図15)。しかしながら、異物300に基づく送電電力の制限に着目すれば、スイッチ108、148を設けない構成も可能である。
In the first embodiment, in addition to the switch 86 of the power feeding circuit 24, the switch 108 of the power receiving circuit 52 is provided (FIG. 3). In the second embodiment, in addition to the switch 126 of the power feeding circuit 24a, the switch 148 of the power receiving circuit 52a is provided (FIG. 15). However, if attention is paid to the limitation of the transmission power based on the foreign object 300, a configuration in which the switches 108 and 148 are not provided is also possible.
Claims (6)
- 給電部(80、80a)から受電部(100、100a)に対して非接触で送電する非接触送電システム(10、10A)であって、
前記給電部(80、80a)又は前記受電部(100、100a)に対する異物(300)の相対位置を検出し、
前記相対位置に基づいて推定される前記異物(300)における磁束量の総和に応じて、前記給電部(80、80a)から前記受電部(100、100a)への単位時間当たりの送電電力の制限値を設定する
ことを特徴とする非接触送電システム(10、10A)。 A non-contact power transmission system (10, 10A) that performs non-contact power transmission from the power feeding unit (80, 80a) to the power receiving unit (100, 100a),
Detecting the relative position of the foreign object (300) with respect to the power feeding unit (80, 80a) or the power receiving unit (100, 100a);
Limiting the transmission power per unit time from the power supply unit (80, 80a) to the power reception unit (100, 100a) according to the total amount of magnetic flux in the foreign object (300) estimated based on the relative position A non-contact power transmission system (10, 10A) characterized by setting a value. - 請求項1記載の非接触送電システム(10、10A)において、
ソレノイド型の給電用第1コイル(80、80a)と受電用第2コイル(100、100a)の側面を互いに対向させて非接触で送電を行い、
前記第1コイル(80、80a)又は前記第2コイル(100、100a)の一方から他方を見た方向における平面座標の集合を前記異物(300)の相対位置として少なくとも用いる
ことを特徴とする非接触送電システム(10、10A)。 In the non-contact power transmission system (10, 10A) according to claim 1,
Power is transmitted in a contactless manner with the side surfaces of the solenoid-type first coil for power supply (80, 80a) and the second coil for power reception (100, 100a) facing each other,
A set of plane coordinates in a direction in which one of the first coil (80, 80a) or the second coil (100, 100a) is viewed from the other is used as a relative position of the foreign object (300). Contact power transmission system (10, 10A). - 請求項2記載の非接触送電システム(10、10A)において、
前記異物(300)を撮像する撮像手段(54)を備え、
前記異物(300)の相対位置としての前記平面座標の集合は、前記撮像手段(54)が取得した画像に基づいて検出する
ことを特徴とする非接触送電システム(10、10A)。 In the non-contact power transmission system (10, 10A) according to claim 2,
An imaging means (54) for imaging the foreign object (300);
The non-contact power transmission system (10, 10A), wherein the set of the plane coordinates as the relative position of the foreign object (300) is detected based on an image acquired by the imaging means (54). - 請求項1記載の非接触送電システム(10A)において、
ソレノイド型の給電用第1コイル(80a)と受電用第2コイル(100a)の側面を互いに対向させて非接触で送電を行い、
前記第1コイル(80a)及び前記第2コイル(100a)は、それぞれが並列に接続された複数の分割コイル(120、140)を、前記第1コイル(80a)及び前記第2コイル(100a)の中心軸方向に直線状に並べて構成され、
前記異物(300)を間に挟む前記分割コイル(120、140)の間では送電を停止し、前記異物(300)を間に挟まない前記分割コイル(120、140)の間で送電する
ことを特徴とする非接触送電システム(10A)。 In the non-contact power transmission system (10A) according to claim 1,
Power is transmitted in a contactless manner with the side surfaces of the solenoid-type first coil for power supply (80a) and the second coil for power reception (100a) facing each other,
The first coil (80a) and the second coil (100a) include a plurality of divided coils (120, 140) connected in parallel, the first coil (80a) and the second coil (100a). Are arranged in a straight line in the direction of the central axis of
Power transmission is stopped between the split coils (120, 140) sandwiching the foreign object (300), and power is transmitted between the split coils (120, 140) not sandwiching the foreign object (300). Characteristic contactless power transmission system (10A). - 請求項4記載の非接触送電システム(10A)において、
前記第1コイル(80a)及び前記第2コイル(100a)の少なくとも一方は、磁性材からなるコア(130、150)に巻回され、未通電コイルは、磁路として使用される
ことを特徴とする非接触送電システム(10A)。 In the non-contact power transmission system (10A) according to claim 4,
At least one of the first coil (80a) and the second coil (100a) is wound around a core (130, 150) made of a magnetic material, and the non-energized coil is used as a magnetic path. A contactless power transmission system (10A). - 給電部(80、80a)から受電部(100、100a)に対して非接触で送電する非接触送電システム(10、10A)であって、
前記給電部(80、80a)又は前記受電部(100、100a)に対する異物(300)の相対位置を検出し、
前記給電部(80、80a)から前記受電部(100、100a)への単位時間当たりの送電電力の制限値を前記相対位置に応じて変化させる
ことを特徴とする非接触送電システム(10、10A)。 A non-contact power transmission system (10, 10A) that performs non-contact power transmission from the power feeding unit (80, 80a) to the power receiving unit (100, 100a),
Detecting the relative position of the foreign object (300) with respect to the power feeding unit (80, 80a) or the power receiving unit (100, 100a);
A contactless power transmission system (10, 10A), wherein a limit value of transmitted power per unit time from the power feeding unit (80, 80a) to the power receiving unit (100, 100a) is changed according to the relative position. ).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013230259 | 2013-11-06 | ||
JP2013-230259 | 2013-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015068476A1 true WO2015068476A1 (en) | 2015-05-14 |
Family
ID=53041259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/074849 WO2015068476A1 (en) | 2013-11-06 | 2014-09-19 | Non-contact power transmission system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015068476A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016190132A1 (en) * | 2015-05-25 | 2016-12-01 | 株式会社Ihi | System, method, and program for managing power transmission device |
DE102016210724A1 (en) | 2015-06-16 | 2016-12-22 | Honda Motor Co., Ltd. | Non-contact powered electric vehicle and non-contact power supply method |
US20230336034A1 (en) * | 2022-04-15 | 2023-10-19 | Momentum Dynamics Corporation | Foreign object detection for wireless power transfer systems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006246633A (en) * | 2005-03-03 | 2006-09-14 | Sony Corp | System, device and method for supplying power, power-receiving device/method, recording medium and program |
JP2009219177A (en) * | 2008-03-07 | 2009-09-24 | Canon Inc | Feeder system |
WO2012090341A1 (en) * | 2010-12-28 | 2012-07-05 | パナソニック株式会社 | Power control device for contactless charging device |
WO2013061615A1 (en) * | 2011-10-28 | 2013-05-02 | パナソニック株式会社 | Contactless power transmission device, and power supply device and power receiving device used therein |
JP2013219944A (en) * | 2012-04-10 | 2013-10-24 | Sony Corp | Power receiving device, control method of power receiving device, and power feeding system |
WO2013175596A1 (en) * | 2012-05-23 | 2013-11-28 | パイオニア株式会社 | Power transmitting system, power transmitting method, power transmitting apparatus and power receiving apparatus |
JP2014112063A (en) * | 2012-10-31 | 2014-06-19 | Nissan Motor Co Ltd | Non-contact power supply device |
-
2014
- 2014-09-19 WO PCT/JP2014/074849 patent/WO2015068476A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006246633A (en) * | 2005-03-03 | 2006-09-14 | Sony Corp | System, device and method for supplying power, power-receiving device/method, recording medium and program |
JP2009219177A (en) * | 2008-03-07 | 2009-09-24 | Canon Inc | Feeder system |
WO2012090341A1 (en) * | 2010-12-28 | 2012-07-05 | パナソニック株式会社 | Power control device for contactless charging device |
WO2013061615A1 (en) * | 2011-10-28 | 2013-05-02 | パナソニック株式会社 | Contactless power transmission device, and power supply device and power receiving device used therein |
JP2013219944A (en) * | 2012-04-10 | 2013-10-24 | Sony Corp | Power receiving device, control method of power receiving device, and power feeding system |
WO2013175596A1 (en) * | 2012-05-23 | 2013-11-28 | パイオニア株式会社 | Power transmitting system, power transmitting method, power transmitting apparatus and power receiving apparatus |
JP2014112063A (en) * | 2012-10-31 | 2014-06-19 | Nissan Motor Co Ltd | Non-contact power supply device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016190132A1 (en) * | 2015-05-25 | 2016-12-01 | 株式会社Ihi | System, method, and program for managing power transmission device |
US10454319B2 (en) | 2015-05-25 | 2019-10-22 | Ihi Corporation | System, method, and program for managing power transmission device |
DE102016210724A1 (en) | 2015-06-16 | 2016-12-22 | Honda Motor Co., Ltd. | Non-contact powered electric vehicle and non-contact power supply method |
US9873344B2 (en) | 2015-06-16 | 2018-01-23 | Honda Motor Co., Ltd. | Non-contact power supplied electric vehicle and non-contact power supplying method |
US20230336034A1 (en) * | 2022-04-15 | 2023-10-19 | Momentum Dynamics Corporation | Foreign object detection for wireless power transfer systems |
US11904712B2 (en) * | 2022-04-15 | 2024-02-20 | Inductev Inc. | Foreign object detection for wireless power transfer systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5643270B2 (en) | Vehicle and contactless power supply system | |
RU2614052C1 (en) | Electric power supply device, transportation device and noncontact electric power supply system | |
US9283859B2 (en) | Power receiving device, power transmitting device, vehicle, and contactless power supply system | |
EP3631945B1 (en) | Multi-mode wireless power receiver control | |
US8008888B2 (en) | Electrical powered vehicle and power feeding device for vehicle | |
US10038343B2 (en) | Power reception apparatus and wireless power transmission method | |
JP6129890B2 (en) | Power receiving body and vehicle including the power receiving body | |
JP6125948B2 (en) | Non-contact charger | |
JP6124136B2 (en) | Non-contact power receiving device | |
JP5817837B2 (en) | Power supply system, vehicle equipped with the same, and control method of power supply system | |
CN103166278A (en) | Recharge systems and methods | |
CN103561993A (en) | Vehicle and method of controlling vehicle | |
US20150061402A1 (en) | Power reception device, power transmission device and power transfer system | |
WO2015068476A1 (en) | Non-contact power transmission system | |
GB2538845A (en) | Auxiliary battery charging apparatus and method | |
JP6375934B2 (en) | Wireless power transmission system | |
JP2019013122A (en) | Vehicle and power transmission system | |
JP5605301B2 (en) | Contactless power supply system | |
JP2015019551A (en) | Non-contact power supply system | |
JP5999576B2 (en) | Power supply system for houses, houses and electric vehicles | |
JP2022190921A (en) | vehicle | |
JP7294264B2 (en) | Vehicles and vehicle control methods | |
JP2017175703A (en) | Wireless power reception device and wireless power transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14859698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14859698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |