JPH08238326A - Primary side core of transformer for contactless energy transmissoin system - Google Patents

Primary side core of transformer for contactless energy transmissoin system

Info

Publication number
JPH08238326A
JPH08238326A JP7070904A JP7090495A JPH08238326A JP H08238326 A JPH08238326 A JP H08238326A JP 7070904 A JP7070904 A JP 7070904A JP 7090495 A JP7090495 A JP 7090495A JP H08238326 A JPH08238326 A JP H08238326A
Authority
JP
Japan
Prior art keywords
core
primary
transformer
secondary
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7070904A
Other languages
Japanese (ja)
Inventor
Katsuya Hirachi
Yasushi Maejima
Masaru Saito
靖 前島
克也 平地
賢 齋藤
Original Assignee
Kaajiopeeshingu Res Lab:Kk
Tabuchi Denki Kk
株式会社カージオペーシングリサーチ・ラボラトリー
田淵電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaajiopeeshingu Res Lab:Kk, Tabuchi Denki Kk, 株式会社カージオペーシングリサーチ・ラボラトリー, 田淵電機株式会社 filed Critical Kaajiopeeshingu Res Lab:Kk
Priority to JP7070904A priority Critical patent/JPH08238326A/en
Publication of JPH08238326A publication Critical patent/JPH08238326A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To make it possible to suppress raising in the temp. of a transformer to be used for percutaneous charging system for a pace maker and to improve the efficiency of a charging system by preventing the overcurrent of a primary side core of this transformer. CONSTITUTION: The surface facing the secondary core of a circumferential outer leg 14 of the primary side core 16 is provided with an expanded width part 15 expanded in an inner circumferential direction. This expanded width part 15 is radially provided with many slits 21 from its center. The eddy current of the expanded width part 15 is prevented by these slits 21, by which the efficiency of the system is improved and heat generation is suppressed.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、体内埋め込み形心臓ペースメーカーなど、トランスの1次側と2次側の間に大きな間隔を設けて電力を伝送する充電器などに使用するトランスの形状の改善、特にそのトランスの1次側コアの形状に関する。 BACKGROUND OF THE INVENTION This invention, such as implantable type cardiac pacemakers, improved transformer shape for use, such as the charger for transferring power by providing a greater distance between the primary side and the secondary side of the transformer , particularly to the shape of the transformer primary core.

【0002】 [0002]

【従来の技術】図3は心臓ペースメーカー用経皮充電システムの概要を示す。 BACKGROUND OF THE INVENTION FIG. 3 shows an overview of the transdermal charging system for a heart pacemaker. 同図において、鎖線で囲んだ部分はペースメーカー(A)を示し、体内に埋め込まれる。 In the figure, a portion surrounded by a chain line indicates a pacemaker (A), are embedded in the body.
その中にはパルスを発生するパルスジェネレータ1やその電源である2次電池2などが収納されている。 Such as secondary batteries 2 is housed a pulse generator 1 and the power supply for generating a pulse in it.

【0003】上記パルスジェネレータ1で作られたパルス信号は電極リード3を介して心臓4に伝えられ、この心臓4を規則正しく拍動させる。 [0003] pulse signal generated by the pulse generator 1 is transmitted through the electrode lead 3 to the heart 4, thereby regularly beating the heart 4.

【0004】また、体外には高周波インバータ5を設置して、トランスの1次側コイル6を励磁し、体内のペースメーカー(A)の内部に収納されたトランスの2次側コイル7に電力を伝送する。 [0004] Also, the body by installing a high-frequency inverter 5, excites the transformer primary coil 6, transmits power to the transformer secondary coil 7 housed inside the body of the pacemaker (A) to.

【0005】2次側コイル7に発生した電圧は整流回路8で直流に交換されて電池2を充電する。 [0005] The voltage generated in the secondary coil 7 is replaced to a DC by the rectifier circuit 8 to charge the battery 2. 1次側コイル6と2次側コイル7の間には皮膚9や脂肪などが存在する。 Such as skin 9 and fat is present between the primary coil 6 and the secondary coil 7. 従って、1次側コイル6と2次側コイル7は10m Therefore, the primary coil 6 and the secondary coil 7 is 10m
mまたは、それ以上の大きな間隔を介してエネルギーを伝送しなければならない。 m or must transmit energy through more large distance.

【0006】上記のように、1次側コイルと2次側コイルの間に大きな間隔が存在する場合は、極力コイルを大きくし、1次側コイルと2次側コイルの対向する面積を大きくしなければ、1次側と2次側の結合率を大きくすることはできない。 [0006] As described above, when a large gap between the primary coil and the secondary coil is present, as much as possible to increase the coil, to increase the opposed area of ​​the primary coil and the secondary coil without it, it is impossible to increase the coupling ratio of the primary side and the secondary side.

【0007】しかし、2次側コイルはペースメーカー内部に収納されるものであるので、極力体積を小さくする必要があり、図4(A)、(B)に示すように、2次側コア11は、円盤状の薄いアモルファスからなり、2次側コイル7は0.1mm程度の細い線材を渦巻き状に巻回して、大変薄い形状にしている。 However, since the secondary coil is intended to be housed inside the pacemaker, it is necessary to reduce as much as possible volume, as shown in FIG. 4 (A), (B), 2 primary core 11 made disc-shaped thin amorphous, the secondary coil 7 is wound around a thin wire of about 0.1mm in a spiral shape, and a very thin form.

【0008】これに対し、従来の1次側コイル6は、図5に示すように、円盤状部分12の1面側に、中央中足13と周囲の外足14を設け、外足14の2次側コアに対向する面を内側に向かって拡張した円盤状の拡幅部分15にして1次側コア16を形成し、この1次側コア1 [0008] In contrast, conventional primary coil 6, as shown in FIG. 5, on one surface side of the disk-shaped portion 12, the central metatarsal 13 and the surrounding outer leg 14 is provided, the outer leg 14 the surface facing the secondary core in the disk-shaped widened portion 15 which extends inward to form a primary core 16, the primary core 1
6の外足14と拡幅部分15で包み込まれた空間に1次側コイル6を配置した構造になっている。 It has a structure of arranging the primary coil 6 in 6 space encased by the outer leg 14 and the widened portion 15 of the.

【0009】上記1次側コイル6と2次側コイル7は、 [0009] The primary coil 6 and the secondary coil 7,
図5に示すように、中心軸心を一致させて対向状に配置される。 As shown in FIG. 5, they are disposed on opposite shape to match the central axis. このように配置して1次側コイル6に電流を流すことにより1次側コイル6を励磁し、2次側コイル7 Thus excites the primary coil 6 by supplying current to the primary coil 6 arranged, the secondary coil 7
に磁束を伝える。 Convey the magnetic flux.

【0010】図6に磁束の方向を示す。 [0010] FIG. 6 shows the direction of the magnetic flux. 1次側コイル6 The primary coil 6
におけるコア16の中足13部分に発生した磁束は2次側コイル7におけるコア11の中心付近に伝わり、2次側コア11の周辺部分から1次側コア16の外足14の拡張された部分に進む。 Extended portions of the outer leg 14 of the inner leg 13 to the magnetic flux generated portion transmitted to the vicinity of the center of the core 11 in the secondary coil 7, 1 from the peripheral portion of the secondary core 11 primary core 16 of the core 16 in the proceed to. そして、1次側コア16の外足14と底部円盤状部分12を経て中足13に戻る。 Then, returning to the metatarsal 13 through the outer leg 14 and the bottom disk-shaped portion 12 of the primary core 16.

【0011】 [0011]

【発明が解決しようとする課題】上記のように、従来のトランスでも体内に配置された2次側コイル7に体外の1次側コイル6から磁束を伝えることができ、2次側コイル7に電力を伝送することができる。 As described above [0005], the secondary coil 7 is also arranged in the body in the conventional transformer can tell flux from the primary coil 6 of the extracorporeal, the secondary coil 7 it is possible to transfer power.

【0012】しかし、1次側コイル6のコア16が外足14に拡幅部分15を設けた構造では、図7に示すように拡幅部分15に矢印で示す方向の大きな渦電流が流れる。 [0012] However, the core 16 of the primary coil 6 is provided with a widened portion 15 in the outer leg 14 structure, large eddy currents in the direction indicated by the arrow in the widened portion 15 as shown in FIG. 7 flows. この渦電流による発熱のため、拡幅部分15の温度上昇を招き、時には人体に低温火傷を与えることがあった。 For heat generated by the eddy currents, it leads to temperature rise of the widened portion 15, and sometimes there is to provide a low-temperature burn on the body.

【0013】また、渦電流による電力損失のため、経皮充電器の効率の低下を招いていた。 Further, since the power loss due to eddy currents, resulting in decrease in efficiency of transdermal charger.

【0014】そこで、この発明の課題は、1次側コアの拡幅部分に渦電流が流れるのを防ぎ、温度上昇の発生がなく、1次側コイルと2次側コイルの間の結合率を大きくすることができる非接触エネルギー伝送システム用トランスの1次側コアを提供することにある。 [0014] Accordingly, an object of the present invention is to prevent eddy current from flowing in the widened portion of the primary core, without the occurrence of temperature rise, increasing the coupling coefficient between the primary coil and the secondary coil to provide a primary core of the non-contact energy transmission transformer for the system that can be.

【0015】 [0015]

【課題を解決するための手段】上記のような課題を解決するため、この発明は、1次側コアの周囲外足部分の2 Means for Solving the Problems] To solve the above problems, the peripheral outer leg part of the invention, the primary core 2
次側コアに対向する面を内側や外側に拡張した円盤状の拡幅部分に形成し、この拡幅部分に中心から放射状の配置でスリットを設けた構成を採用したものである。 Forming a surface opposed to the next side core disc-shaped widened portion which extends inwardly and outwardly, it is obtained by adopting a configuration in which a slit in a radial arrangement from the center to the widened portion.

【0016】 [0016]

【作用】1次側コアの拡幅部分に中心から放射状にスリットを設けたので、拡幅部分に生じようとする渦電流の経路がスリットによって絶たれ、渦電流を大幅に減少させることができ、拡幅部分の温度上昇を抑えることができる。 Since a slit radially from the center to the widened portion of the action The primary side core, the path of the eddy current about to fail in the widened portion is cut off by the slit, it is possible to reduce the eddy currents significantly, widening it is possible to suppress an increase in the temperature of the part. また、スリットは磁束の流れを妨げることがなく、経皮充電器の効率を向上させることができる。 The slit has never impede the flow of the magnetic flux, thereby improving the efficiency of percutaneous charger.

【0017】 [0017]

【実施例】以下、この発明の実施例を添付図面の図1と図2に基づいて説明する。 EXAMPLES The following will be described with reference to FIGS. 1 and 2 of the embodiment of the present invention accompanying drawings.

【0018】図1に示す第1の実施例において、1次側コア16は、フエライトからなる円盤状部分12の一面側に、中央中足13と周囲に外足14を設け、外足14 [0018] In the first embodiment shown in FIG. 1, the primary core 16, on one side of the disc-shaped portion 12 made of ferrite, the outer leg 14 is provided around the central metatarsal 13, the outer leg 14
の2次側コアと対向する面に内側に向かって拡張した円盤状の拡幅部分15を設け、この拡幅部分15に中心から放射状に多数のスリット21を設けている。 Of the secondary core and the opposing disk-shaped widened portion 15 which extends inwardly in plane provided, and a plurality of slits 21 radially from the center to the widened portion 15 provided. この1次側コア16の中央中足13に1次側コイル6を巻装している。 It is wound a primary coil 6 in the central metatarsal 13 of the primary side core 16.

【0019】図1(B)に示す矢印は、拡幅部分15の中を流れる磁束の向きを示し、スリット21を設けることにより渦電流の経路が絶たれ、磁束は拡幅部分15の中心から放射状に流れる。 The arrows shown in FIG. 1 (B) shows the direction of the magnetic flux flowing through the widened portion 15, the path of the eddy current is cut off by providing the slit 21, the magnetic flux radially from the center of the wide part 15 It flows. 従って、このように拡幅部分15にスリット21を入れても磁束の流れは防げられることはなく、磁石によると2次側コアへのエネルギーの伝達はスムーズに行なわれる。 Therefore, thus widened portion 15 to be a slit 21 never flux flow is prevented, the transfer of energy to the secondary core According to the magnet is performed smoothly. このように、スリット2 In this way, the slit 2
1を入れると磁束の流れを妨げることはなく、渦電流を大幅に減少させることができる。 Not interfere Taking 1 the flow of the magnetic flux, it is possible to reduce the eddy currents significantly.

【0020】図2(A)、(B)は第2の実施例を示し、第1の実施例では拡幅部分15を内側に向って拡張したのに対し、この第2の実施例では拡幅部分15を外足14から外側に向って拡張し、この拡幅部分15に中心から外部に向って放射状に多数のスリット21を設けている。 FIG. 2 (A), (B) shows a second embodiment, while the extension towards the widened portion 15 on the inside in the first embodiment, the wide part in the second embodiment 15 extends from outer leg 14 outwardly, is provided with a plurality of slits 21 radially toward the outside from the center to the widened portion 15.

【0021】この第2の実施例においても、第1の実施例と同様に磁束の流れを妨げることなく渦電流を大幅に抑制することができ、効率の向上及び発熱の抑制を実現することができる。 [0021] Also in this second embodiment, that the eddy current without impeding the flow of the magnetic flux as in the first embodiment can be greatly suppressed, realizing a suppression of increase of efficiency and heating it can.

【0022】次に、図2に示した第2の実施例の形状におけるスリットの効果の実験結果を表に示す。 Next, it is shown in Table experimental results of the effect of the slits in the shape of the second embodiment shown in FIG.

【0023】図2において、円盤状部分12の直径(D)を36mmとし、拡幅部分15の寸法(a)が7 [0023] In FIG. 2, the diameter of the disc-shaped portion 12 a (D) and 36 mm, the dimension of the widened portion 15 (a) is 7
mmと17mmの2種類の場合においてコアの鉄損を測定した。 The iron loss of the core was measured in the case of two mm and 17 mm.

【0024】拡幅部分15の寸法(a)が7mmの場合において、スリットなしの時100mWの鉄損となるようにトランスを励磁した場合、スリットを入れると鉄損は84mWに減少した。 The dimensions of the widened portion 15 (a) is in the case of 7 mm, when exciting the transformer so that the iron loss of 100mW when no slit, the iron loss when a slit was reduced to 84MW.

【0025】また、拡幅部分15の寸法(a)が17m [0025] In addition, the dimensions of the widened portion 15 (a) is 17m
mの場合においてスリットなしの時100mWの鉄損となるようにトランスを励磁した場合、スリットを入れると鉄損は76mWに減少した。 If exciting the transformer so that the iron loss of 100mW when no slit in the case of m, the iron loss when a slit was reduced to 76MW.

【0026】 [0026]

【表1】 [Table 1]

【0027】このように、拡幅部分にスリットを設けると、20%前後の損失の低減が実現できる。 [0027] Thus, the provision of the slits in the widened portion, can be realized reduction of around 20% loss.

【0028】なお、この発明は、上記のようなペースメーカ用経皮充電システムに利用できるだけでなく、人工心臓などの、体外から体内に磁束を介して電力を伝送するシステムの全般について適用することができる。 [0028] The present invention is not only available pacemaker for transdermal charging system as described above, such as artificial heart, be applied for general system that transmits power through a magnetic flux into the body from outside the body it can. さらに、例えば、携帯用機器の2次電池の充電などの非接触状態で電力を伝送するシステムの全般について利用できる。 Furthermore, for example, it can be used for general system for transferring power in a non-contact state, such as charging of the secondary battery of the portable device.

【0029】 [0029]

【発明の効果】以上のように、この発明によると、1次側コアから2次側コアの磁束の流れを阻害することなく、効果的に渦電流を防止することができ、ペースメーカーなどに用いられる非接触エネルギー伝送システムの効率の向上および発熱の抑制を実現することができる。 As is evident from the foregoing description, according to the present invention, without obstructing the flow of magnetic flux of the secondary side core from the primary side core, it is possible to effectively prevent the eddy current, using such pacemakers it is possible to realize the suppression of increase and the heat generation of the non-contact energy transmission efficiency of the system to be.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】(A)はこの発明に係る1次側コアの第1の実施例を示す縦断正面図、(B)は同上の底面図。 1 (A) is a longitudinal front view showing a first embodiment of the primary core according to the present invention, (B) is a bottom view of the same.

【図2】(A)は1次側コアの第2の例を示す縦断正面図、(B)は同上の底面図。 Figure 2 (A) is a longitudinal front view showing a second example of the primary core, (B) is a bottom view of the same.

【図3】心臓ペースメーカ用経皮的エネルギー伝達システムの概要を示す回路図。 Figure 3 is a circuit diagram showing an outline of a transcutaneous energy transfer system for a cardiac pacemaker.

【図4】(A)は従来の2次コイルを示す側面図、 [4] (A) is a side view showing a conventional secondary coil,
(B)は同上の底面図。 (B) is a bottom view of the same.

【図5】従来の1次側コイルと2次側コイルを示す縦断側面図。 Figure 5 is a longitudinal side view showing a conventional primary coil and the secondary coil.

【図6】1次側コアと2次側コイルの磁束の流れを示す縦断側面図。 [6] the primary core and longitudinal side view showing the flow of the magnetic flux of the secondary coil.

【図7】従来の1次側コアを示し、(A)は縦断側面図、(B)は同上の渦電流を示す底面図。 7 shows a conventional primary core, (A) is a longitudinal side view, (B) is a bottom view showing the eddy currents of the same.

【符号の説明】 DESCRIPTION OF SYMBOLS

6 1次側コイル 7 2次側コイル 12 円盤状部分 13 中央中足 14 外足 15 拡幅部分 16 1次側コア 21 スリット 6 primary coil 7 the secondary coil 12 a disk-shaped portion 13 the central middle foot 14 outer leg 15 widened portion 16 primary core 21 slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平地 克也 神奈川県足柄上郡中井町井ノ口1500番地 株式会社カージオペーシングリサーチ・ラ ボラトリー内 (72)発明者 前島 靖 兵庫県三田市テクノパーク5番地4 田淵 電機株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Katsuya Hirachi Kanagawa Prefecture ashigarakami district Nakai-cho, Inokuchi 1500 address, Inc. cardioversion pacing research-La in Boratori (72) inventor Yasushi Maejima Hyogo Prefecture Sanda Techno Park address 5 4 Tabuchi electric the Corporation

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 1次側コイルを中央中足に巻装した1次側コアと、2次側コイルを平板状に巻装した2次側コアとを非接触に配置し、1次側コイルに誘起された磁束を1次側コアの中央中足から周囲外足部分を介して2次側コアに伝送して2次側コイルにエネルギーを誘起させる非接触エネルギー伝送システム用トランスの1次側コアにおいて、該1次側コアの周囲外足部分の2次側コアに対向する面を内側や外側に拡張した円盤状の拡幅部分に形成し、この拡幅部分に中心から放射状の配置でスリットを設けたことを特徴とする非接触エネルギー伝送システム用トランスの1次側コア。 1. A and primary core a primary coil wound around the central metatarsal, the secondary coil is disposed in a non-contact and a secondary core which is wound around the flat, primary coil the induced primary side of the non-contact energy transmission system transformer inducing energy to the secondary coil to transmit the secondary core through the peripheral outer leg portion from the central metatarsal of the primary core flux in the core, and formed in a disc-shaped widened portion of the surface facing the secondary core around outer leg portion extends inwardly and outwardly of the primary core, a slit in a radial arrangement from the center to the widened portion non-contact energy transfer transformer primary core system characterized by comprising.
JP7070904A 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system Pending JPH08238326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070904A JPH08238326A (en) 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070904A JPH08238326A (en) 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system

Publications (1)

Publication Number Publication Date
JPH08238326A true JPH08238326A (en) 1996-09-17

Family

ID=13444987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070904A Pending JPH08238326A (en) 1995-03-03 1995-03-03 Primary side core of transformer for contactless energy transmissoin system

Country Status (1)

Country Link
JP (1) JPH08238326A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006947A (en) * 2004-06-24 2006-01-12 Ethicon Endo Surgery Inc Primary coil for transdermal energy transmission accompanied by ferrite core of high aspect ratio
JP2009170627A (en) * 2008-01-16 2009-07-30 Ricoh Elemex Corp Noncontact receiving device
JP2009290764A (en) * 2008-05-30 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Portable terminal and charging system
JP2010530613A (en) * 2007-05-10 2010-09-09 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Electric vehicle that uses a plurality of power supply
JP2011259484A (en) * 2011-08-05 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Mobile phone
JP2012084894A (en) * 2006-03-24 2012-04-26 Toshiba Corp Electronic apparatus and non-contact charger
JP2012164728A (en) * 2011-02-04 2012-08-30 Hitachi Metals Ltd Coil component and power reception device and power supply device using the same
JP2012169633A (en) * 2006-01-12 2012-09-06 Toshiba Corp Electronic apparatus using power reception device and non contact charger
CN102782975A (en) * 2009-09-09 2012-11-14 皇家飞利浦电子股份有限公司 An electronic device as well as a base part and an electronic element suitable for use in such an electronic device
WO2013061618A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device and power supply device and power receiving device used therein
WO2013061615A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device, and power supply device and power receiving device used therein
JP2016015453A (en) * 2014-07-03 2016-01-28 富士通株式会社 Planar transformer, power supply unit, and method of manufacturing planar transformer
US9466419B2 (en) 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
KR101690500B1 (en) * 2015-07-20 2016-12-28 주식회사 아모센스 wireless power transmission module

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006947A (en) * 2004-06-24 2006-01-12 Ethicon Endo Surgery Inc Primary coil for transdermal energy transmission accompanied by ferrite core of high aspect ratio
JP2012169633A (en) * 2006-01-12 2012-09-06 Toshiba Corp Electronic apparatus using power reception device and non contact charger
JP2012084894A (en) * 2006-03-24 2012-04-26 Toshiba Corp Electronic apparatus and non-contact charger
US8749334B2 (en) 2007-05-10 2014-06-10 Auckland Uniservices Ltd. Multi power sourced electric vehicle
US9466419B2 (en) 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
JP2010530613A (en) * 2007-05-10 2010-09-09 オークランド ユニサービシズ リミテッドAuckland Uniservices Limited Electric vehicle that uses a plurality of power supply
JP2009170627A (en) * 2008-01-16 2009-07-30 Ricoh Elemex Corp Noncontact receiving device
US9767955B2 (en) 2008-05-09 2017-09-19 Auckland Uniservices Limited Multi power sourced electric vehicle
JP2009290764A (en) * 2008-05-30 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Portable terminal and charging system
CN102782975A (en) * 2009-09-09 2012-11-14 皇家飞利浦电子股份有限公司 An electronic device as well as a base part and an electronic element suitable for use in such an electronic device
JP2013504869A (en) * 2009-09-09 2013-02-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic device and base part and electronic element suitable for use of such electronic device
JP2012164728A (en) * 2011-02-04 2012-08-30 Hitachi Metals Ltd Coil component and power reception device and power supply device using the same
JP2011259484A (en) * 2011-08-05 2011-12-22 Nippon Telegr & Teleph Corp <Ntt> Mobile phone
WO2013061618A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device and power supply device and power receiving device used therein
WO2013061615A1 (en) * 2011-10-28 2013-05-02 パナソニック株式会社 Contactless power transmission device, and power supply device and power receiving device used therein
JP2016015453A (en) * 2014-07-03 2016-01-28 富士通株式会社 Planar transformer, power supply unit, and method of manufacturing planar transformer
KR101690500B1 (en) * 2015-07-20 2016-12-28 주식회사 아모센스 wireless power transmission module
WO2017014430A1 (en) * 2015-07-20 2017-01-26 주식회사 아모센스 Wireless power transmission module
JP2018530288A (en) * 2015-07-20 2018-10-11 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. Wireless power transmission module

Similar Documents

Publication Publication Date Title
US5923544A (en) Noncontact power transmitting apparatus
Miura et al. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts
US6324430B1 (en) Magnetic shield for primary coil of transcutaneous energy transfer device
US20150202449A1 (en) Charger with Orthogonal PCB for Implantable Medical Device
CN1217357C (en) Inductive coupling system with capacitive parallel compensation of mutual self-inductance between primary and secondary windings
US8751001B2 (en) Universal recharging of an implantable medical device
EP2492932A1 (en) Non-contact rotary power transfer system
JP2015106579A (en) Power transmission coil unit and wireless power transmission device
ES2235220T3 (en) Induction cooking home high performance.
EP2782641B1 (en) Transcutaneous power transmission utilizing non-planar resonators
US9717277B2 (en) Inductive heating device and system for aerosol-generation
US7225018B2 (en) Flyback transformer wire attach method to printed circuit board
CA2271822C (en) Electromagnetic coil configurations for power transmission through tissue
CA1085931A (en) Implantable unipolar pacemaker with improved outer electrode plate
TW398087B (en) Pack cell
US5702431A (en) Enhanced transcutaneous recharging system for battery powered implantable medical device
JP2007538478A (en) Wireless resonant power supply device, a wireless inductive power supply device, excitable load, radio system, wireless energy transmission method
JP2008067590A (en) Inductive charging of tools on surgical tray
CN1171646A (en) Non-Contact electric power transmission device
MXPA01012544A (en) Miniaturized ac dc power supply and battery charger.
CN104659931A (en) An Amplification Relay Device Of Electromagnetic Wave And A Radio Electric Power Conversion Apparatus Using The Above Device
ES2474592T3 (en) Inductive charger with magnetic shield
US6327504B1 (en) Transcutaneous energy transfer with circuitry arranged to avoid overheating
DE10111678B4 (en) Stimulators and excitation coils for magnetic stimulation of neuromuscular tissue
EP3131601B1 (en) Improvements in transcutaneous energy transfer systems