WO2013058259A1 - 階調電圧補正システム、及びこれを用いた表示装置 - Google Patents

階調電圧補正システム、及びこれを用いた表示装置 Download PDF

Info

Publication number
WO2013058259A1
WO2013058259A1 PCT/JP2012/076772 JP2012076772W WO2013058259A1 WO 2013058259 A1 WO2013058259 A1 WO 2013058259A1 JP 2012076772 W JP2012076772 W JP 2012076772W WO 2013058259 A1 WO2013058259 A1 WO 2013058259A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
value
liquid crystal
correction
gradation voltage
Prior art date
Application number
PCT/JP2012/076772
Other languages
English (en)
French (fr)
Inventor
亮 山川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013058259A1 publication Critical patent/WO2013058259A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information

Definitions

  • the present invention relates to a gradation voltage correction system for correcting a gradation voltage according to information to be displayed, particularly a gradation voltage correction system used for a display panel in which a plurality of display areas are set, and a display device using the same. About.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • Such a liquid crystal display device includes a backlight device that emits light, and a liquid crystal panel that displays a desired image by acting as a shutter for light from a light source provided in the backlight device. Yes.
  • gradation correction processing (gamma correction) using a predetermined gamma curve is performed on luminance information (gradation value) for each pixel included in an external video signal. Processing) is performed.
  • Patent Document 1 for example, a plurality of gamma curves are used for a conventional liquid crystal display device according to the combination of the brightness of the backlight device and the environmental illuminance at the installation location of the liquid crystal panel.
  • a conventional liquid crystal display device even when the luminance of the backlight device is changed based on the luminance information for each pixel included in the video signal from the outside, the visibility in the low gradation region is improved. It was possible.
  • the conventional liquid crystal display device as described above may not be able to improve the display quality.
  • the conventional liquid crystal display device when the screen of the liquid crystal panel (display panel) is enlarged, it may be difficult to improve display quality.
  • FIG. 13 is a diagram for explaining a main configuration of a liquid crystal panel included in a conventional liquid crystal display device.
  • FIG. 14A to FIG. 14H are timing charts showing an operation example in each part of the liquid crystal panel shown in FIG.
  • FIG. 15A and FIG. 15B are graphs showing examples of target gamma curves and measurement results at the center BC and the end BE shown in FIG. 13, respectively.
  • an active matrix substrate is used for a liquid crystal panel LP included in a conventional liquid crystal display device, and a plurality of data lines (source lines) and a plurality of data lines (source lines) are provided on the active matrix substrate.
  • a plurality of scanning wirings (gate wirings) are provided in a matrix (not shown).
  • the plurality of source wirings are equally distributed and connected to a plurality of, for example, eight source drivers 51.
  • the plurality of gate wirings are equally distributed and connected to a plurality, for example, four gate drivers 52a and 52b provided on the left end side and the right end side of the liquid crystal panel LP, respectively. That is, in the liquid crystal panel LP, the left end portion and the right end portion of each gate wiring are respectively connected to the gate drivers 52a and 52b on the left end portion side and the right end portion side.
  • the liquid crystal panel LP a plurality of pixels are provided at the intersection of the source wiring and the gate wiring.
  • the source driver 51 also applies the gradation voltage after the gradation correction processing using a predetermined gamma curve is performed on the luminance information (gradation value) for each pixel included in the video signal from the outside. Is supplied to the corresponding source wiring as a gradation signal.
  • scanning signals are supplied from the gate drivers 52a and 52b to the left end and the right end of the gate wiring, respectively, so that the liquid crystal panel LP has a gradation voltage in its liquid crystal layer (not shown). Are charged in pixel units. Thereby, in the liquid crystal panel LP, the transmittance is controlled in units of pixels, and a desired image is displayed.
  • any pixel P included in the end BE of the liquid crystal panel LP as illustrated in FIG. 14A, when the gate clock GLK is turned on at time T1, the gate driver 52a, The scanning signal Goutge is supplied to the gate wiring corresponding to 52b. Subsequently, when the control signal LS to the source driver 51 is turned on at a time point T2, a gradation signal (gradation voltage) Sout se is supplied from the source driver 51 to the corresponding source wiring. That is, in the pixel P, charging of the gradation voltage starts from the time point T2.
  • the gate clock GLK is turned on at time T3
  • the supply of the scanning signal Goutge to the corresponding gate wiring is stopped.
  • the control signal LS to the source driver 51 is turned on at time T4
  • the supply of the gradation signal Soutse to the corresponding source wiring is stopped.
  • charging of the gradation voltage is stopped at time T3. That is, in the pixel P, the period between the time point T2 and the time point T3 is the grayscale voltage charging period.
  • any pixel P ′ included in the central portion BC of the liquid crystal panel LP when the gate clock GLK is turned on at the time T1, the gate drivers 52a and 52b correspond.
  • the scanning signal Gout gc is supplied to the gate wiring to be performed.
  • the scanning signal Gout gc does not become a predetermined value until time T5 due to the resistance of the gate wiring.
  • the gate clock GLK is turned on at time T3
  • the supply of the scanning signal Gout gc to the corresponding gate wiring is stopped.
  • the control signal LS to the source driver 51 is turned on at time T4
  • the supply of the gradation signal Sout sc to the corresponding source wiring is stopped.
  • the charging of the gradation voltage is stopped at time T3. That is, in the pixel P ′, the period from the time point T5 to the time point T3 is the gradation voltage charging period, which is shorter than the charging period of the pixel P.
  • the output light at the central portion BC and the end portion BE of the liquid crystal panel LP are output.
  • the relationship between the brightness and the brightness was not the same, and the display quality could not be improved.
  • the measurement result curve 60 indicated by the solid line in FIG. 15A is substantially the same as the target gamma curve 61 indicated by the dotted line in FIG. Match.
  • a curve 62 as a measurement result indicated by a solid line in the drawing is a curve 61 with respect to a target gamma curve 61 indicated by a dotted line in FIG. Compared with
  • the relationship between the gradation value and the luminance of the output light is not the same, and the display quality may not be improved.
  • the display quality may not be improved.
  • the gamma curve 61 and the curve 60 almost coincide with each other in the central portion BC because the gradation voltage is set large in consideration of the resistance drop in the gate wiring (reduction of the gradation voltage charging period). This is because.
  • an object of the present invention is to provide a gradation voltage correction system capable of improving display quality even when a display panel is enlarged, and a display device using the same. To do.
  • a gradation voltage correction system includes a plurality of pixels and a gradation voltage supplied to the plurality of pixels in a display panel in which a plurality of display areas are set.
  • a gradation voltage correction system for correcting A gradation correction determination unit that determines a correction value for a gradation value for each pixel included in an external video signal according to the plurality of display areas; And a gradation voltage output unit that outputs a gradation voltage corresponding to the correction value determined by the gradation correction determination unit to the display panel side.
  • the gradation correction determination unit determines a correction value for the gradation value for each pixel included in the external video signal in accordance with a plurality of display areas.
  • the gradation voltage output unit outputs a gradation voltage corresponding to the correction value determined by the gradation correction determination unit to the display panel side.
  • the gradation correction determination unit is included in an external video signal so that the luminance of the output light output from the pixel toward the outside becomes a desired value. It is preferable to correct the corresponding gradation value to a predetermined gradation value.
  • the characteristics of the brightness and gradation value of the output light can be improved, and the display quality can be reliably improved even when the display panel is enlarged.
  • the gradation correction determination unit uses a gradation value for each pixel included in an external video signal to obtain a predetermined gradation value by calculation. May be used.
  • the predetermined gradation value is appropriately obtained by the calculation unit.
  • the gradation correction determination unit associates a gradation value for each pixel included in an external video signal with a predetermined gradation value. May be used.
  • the predetermined gradation value is appropriately obtained by the lookup table.
  • the gradation correction determination unit determines a corrected gradation value by using predetermined different gamma curves according to the plurality of display areas. It is preferable to do.
  • the corrected gradation value can be appropriately determined according to the display area, and the display quality can be improved reliably.
  • the gradation correction determination unit may receive an external signal for each of the red, green, and blue pixels provided in the display panel according to the plurality of display areas. A correction value for the corresponding gradation value included in the video signal may be determined.
  • the display device of the present invention is characterized by using any of the gradation voltage correction systems described above.
  • the gradation voltage correction system that can improve the display quality even when the screen of the display panel is enlarged is used. Therefore, the display device with excellent display quality. Can be configured easily.
  • a liquid crystal panel is used as the display panel, In the liquid crystal panel, a gate driver and a plurality of source drivers provided at different positions from the gate driver are provided, In the plurality of source drivers, it is preferable that grayscale voltages using different gamma curves are input from the grayscale voltage output unit according to the distance from the gate driver.
  • liquid crystal display device excellent in display quality can be easily configured.
  • a gradation voltage correction system capable of improving the display quality even when the display panel is enlarged, and a display device using the same.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the main configuration of the gradation voltage correction system and the liquid crystal panel shown in FIG. 1 according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a source driver, a gate driver, and a display area provided in the liquid crystal panel.
  • FIGS. 4A and 4B are graphs for explaining specific examples of correction values determined by the gradation correction determination unit shown in FIG. 2 for different display areas.
  • FIG. 5 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the second embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the second embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a source driver, a gate driver, and a display area provided in the liquid crystal panel shown in FIG.
  • FIG. 7 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the third embodiment of the present invention.
  • FIGS. 8A and 8B are graphs illustrating specific examples of correction values determined by the red tone correction determination unit illustrated in FIG. 7 for different display areas.
  • FIGS. 9A and 9B are graphs illustrating specific examples of correction values determined by the green tone correction determination unit illustrated in FIG. 7 for different display areas.
  • FIGS. 10A and 10B are graphs illustrating specific examples of correction values determined by the blue tone correction determination unit illustrated in FIG. 7 for different display areas.
  • FIG. 8A and 8B are graphs illustrating specific examples of correction values determined by the red tone correction determination unit illustrated in FIG. 7 for different display areas.
  • FIGS. 9A and 9B are graphs illustrating specific examples of correction values determined by the green tone correction determination unit illustrated
  • FIG. 11 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the fourth embodiment of the present invention.
  • FIGS. 12A and 12B are graphs for explaining specific examples of correction values determined by the gradation correction determination unit shown in FIG. 11 for different display areas.
  • FIG. 13 is a diagram for explaining a main configuration of a liquid crystal panel included in a conventional liquid crystal display device.
  • FIG. 14A to FIG. 14H are timing charts showing an operation example in each part of the liquid crystal panel shown in FIG.
  • FIG. 15A and FIG. 15B are graphs showing examples of target gamma curves and measurement results at the center BC and the end BE shown in FIG. 13, respectively.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 in which the upper side of FIG. 1 is installed as a viewing side (display surface side), and a non-display surface side of the liquid crystal panel 2 (lower side of FIG. 1).
  • a backlight device 3 that generates illumination light for illuminating the liquid crystal panel 2.
  • the liquid crystal panel 2 and the backlight device 3 are assembled with each other, and the illuminating light from the backlight device 3 is integrated as a transmissive liquid crystal display device 1 that is incident on the liquid crystal panel 2. It has become.
  • the liquid crystal panel 2 includes a liquid crystal layer and an active matrix substrate and a color filter substrate as a pair of substrates that sandwich the liquid crystal layer (not shown).
  • a pixel electrode, a thin film transistor (TFT), or the like is formed between the liquid crystal layer in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2.
  • TFT thin film transistor
  • the color filter substrate a color filter, a common electrode, and the like are formed between the liquid crystal layer (not shown).
  • the liquid crystal panel 2 is provided with a control device (not shown) that controls the driving of the liquid crystal panel 2, and operates the liquid crystal layer in units of pixels to drive the display surface in units of pixels. A desired image is displayed on the display surface.
  • a normally black mode for example, is used. That is, the liquid crystal panel 2 of the present embodiment is configured such that when no voltage is applied to the liquid crystal layer, black display is performed and the transmittance in the liquid crystal layer increases according to the applied voltage. Has been.
  • the backlight device 3 includes a light emitting diode 4 as a light source, an LED substrate 5 as a light source substrate on which the light emitting diode 4 is mounted, and light from the light emitting diode 4 in a predetermined propagation direction (the horizontal direction in FIG. 1). ) And a light guide plate 6 for emitting the light on the liquid crystal panel (object to be irradiated) 2 side is provided.
  • the light guide plate 6 is made of, for example, a synthetic resin such as a transparent acrylic resin having a rectangular cross section.
  • the light guide plate 6 is disposed so as to face the light emitting diode 4, and light from the light emitting diode 4 is used.
  • the backlight device 3 is provided below the light-emitting diode 4 and the light guide plate 6, a reflection plate 8 that reflects light from the light-emitting diode 4 and the light guide plate 6, and the liquid crystal panel 2 side of the light-emitting diode 4.
  • a reflection plate 9 is provided as a reflection part that is provided and reflects light from the light emitting diode 4.
  • a diffusion sheet 10, a prism sheet 11, and a reflective polarizing sheet 12 are sequentially provided from the light guide plate 6 side as optical members provided between the light guide plate 6 and the liquid crystal panel 2.
  • the end surfaces 10 a, 11 a, and 12 a on the light emitting diode 4 side of the diffusion sheet 10, the prism sheet 11, and the reflective polarizing sheet 12 emit light with respect to the light incident surface 6 a of the light guide plate 6. It is separated from the diode 4 side by a predetermined distance.
  • the backlight device 3 includes a bottomed chassis 13 that houses the light-emitting diode 4, the light guide plate 6, the diffusion sheet 10, the prism sheet 11, and the reflective polarizing sheet 12, and an L-shaped cross section having an opening.
  • a bezel 14 which is assembled to the chassis 13 and constitutes an outer container of the backlight device 3 is provided.
  • a P (plastic) chassis 15 is installed on the bezel 14, and the liquid crystal panel 2 is placed on the P chassis 15. The device 3 is assembled with each other.
  • a light-emitting diode is applied by applying a paint having a high light reflectance such as silver or white on the bottom surface of the chassis 13 facing the light-emitting diode 4 and the light guide plate 6. It is good also as a structure which reflects the light from 4 and the light from the light-guide plate 6.
  • FIG. 2 is a diagram for explaining the main configuration of the gradation voltage correction system and the liquid crystal panel shown in FIG. 1 according to the first embodiment of the present invention.
  • a video signal from the outside of the liquid crystal display device 1 is input to the panel control unit 16 via a signal source (not shown) such as a PC.
  • the panel control unit 16 is provided in the control device, and substantially performs drive control on a pixel-by-pixel basis for a source wiring and a gate wiring, which will be described later, in accordance with an input video signal. It is configured as follows.
  • the panel control unit 16 is provided with an image processing unit 16a that generates instruction signals to the source driver 17 and the gate driver 18 based on the video signal.
  • the panel control unit 16 integrally incorporates a gradation voltage correction unit 16b that constitutes the gradation voltage correction system of the present embodiment.
  • the image processing unit 16a generates the gradation voltage correction unit 16b.
  • the instruction signal to the source driver 17 is corrected by the gradation voltage correction unit 16 b and then output to the source driver 17.
  • the source driver 17 and the gate driver 18 are drive circuits that drive a plurality of pixels P provided in the liquid crystal panel 2 in units of pixels.
  • the source driver 17 and the gate driver 18 include a plurality of source lines S1 to SM (M Is connected to an integer of 2 or more, hereinafter collectively referred to as “S”), and a plurality of gate wirings G1 to GN (N is an integer of 2 or more, hereinafter collectively referred to as “G”). ing.
  • the source lines S1 to SM and the gate lines G1 to GN are arranged in a matrix, and the areas of the plurality of pixels P are formed in the areas partitioned in the matrix.
  • the plurality of pixels P include red, green, and blue pixels P. Further, the red, green, and blue pixels P are sequentially arranged in parallel with each of the gate wirings G1 to GN, for example, in this order.
  • a plurality of source drivers 17 and gate drivers 18 are provided, and are sequentially arranged along the horizontal direction and the vertical direction of the liquid crystal panel 2.
  • the plurality of source drivers 17 and the plurality of gate drivers 18 are installed in accordance with a plurality of display areas provided on the display surface of the liquid crystal panel 2, and the pixels P included in the corresponding display areas are arranged. It is driven appropriately.
  • the plurality of source drivers 17, the plurality of gate drivers 18, and the plurality of display areas in the liquid crystal panel 2 of the present embodiment will be specifically described.
  • FIG. 3 is a diagram for explaining a source driver, a gate driver, and a display area provided in the liquid crystal panel.
  • a plurality of, for example, four source drivers 17-1 to 17-4 include four flexible printed circuit boards.
  • SOF 22 is mounted on each.
  • One end of each flexible printed circuit board 22 is connected to the source wiring S on the active matrix substrate outside the effective display area A.
  • the same number of source lines S, that is, (M / 4) source lines S are connected to each of the source drivers 17-1 to 17-4.
  • each flexible printed circuit board 22 is connected to the printed circuit board 23.
  • an instruction signal corresponding to information displayed on the display unit of the liquid crystal panel 2 is input from the panel control unit 16 to each of the source drivers 17-1 to 17-4. Yes. Thereafter, each of the source drivers 17-1 to 17-4 outputs a gradation signal to be described later to the corresponding source line S.
  • a plurality of, for example, three gate drivers 18-1 to 18-3 are respectively mounted on three flexible printed circuit boards (SOF) 24. Yes.
  • One end of each flexible printed circuit board 24 is connected to the gate wiring G on the active matrix substrate outside the effective display area A.
  • the same number of gate lines G that is, (N / 3) gate lines G are connected to each of the gate drivers 18-1 to 18-3.
  • each of the gate drivers 18-1 to 18-3 is connected to the panel control unit 16 via a corresponding flexible printed circuit board 24 and wiring (not shown) provided on the active matrix substrate.
  • Each of the gate drivers 18-1 to 18-3 receives an instruction signal from the panel control unit 16 and outputs a scanning signal to be described later to the corresponding gate wiring G.
  • a plurality of, for example, twelve display areas A1 to A12 are set in the effective display area A.
  • Each of the display areas A1 to A12 includes a plurality of pixels P provided at the intersections of the source lines S and the gate lines G arranged in a matrix. That is, for example, the display area A1 includes a plurality of pixels P provided at the intersection of the source line S connected to the source driver 17-1 and the gate line G connected to the gate driver 18-1. Yes.
  • one source driver 17 and one gate driver 18 are assigned to each of the display areas A1 to A12. That is, the source driver 17-1 is assigned to the display areas A1, A5, and A9, and the source driver 17-2 is assigned to the display areas A2, A6, and A10. A source driver 17-3 is assigned to the display areas A3, A7, A11, and a source driver 17-4 is assigned to the display areas A4, A8, A12. Further, a gate driver 18-1 is assigned to the display areas A1, A2, A3, A4, and a gate driver 18-2 is assigned to the display areas A5, A6, A7, A8. A gate driver 18-3 is assigned to A9, A10, A11, and A12.
  • the liquid crystal panel 2 is provided with a plurality of source drivers 17-1 to 17-4 provided at different positions from the gate driver 18.
  • gradation voltages using mutually different gamma curves according to the distance from the gate driver 18 are gradation voltages described later. It is input from the output unit.
  • the gate of the switching element 19 provided for each pixel P is connected to each of the gate lines G1 to GN.
  • the source of the switching element 19 is connected to each of the source lines S1 to SM.
  • a pixel electrode 20 provided for each pixel P is connected to the drain of each switching element 19.
  • the common electrode 21 is configured to face the pixel electrode 20 with the liquid crystal layer provided on the liquid crystal panel 2 interposed therebetween.
  • the gate driver 18 sequentially outputs gate signals (scanning signals) for turning on the gates of the corresponding switching elements 19 to the gate lines G1 to GN based on the instruction signal from the image processing unit 16a. .
  • the source driver 17 generates source signals S1 to SM corresponding to gradation signals (gradation voltages) corresponding to the luminance (gradation) of the display image based on an instruction signal from a gradation voltage output unit 16d described later. Output to.
  • the gradation voltage correction unit 16b determines a correction value (corrected gradation value) for the gradation value for each pixel P included in the external video signal in accordance with the plurality of display areas A1 to A12.
  • a gradation correction determination unit 16c and a gradation voltage output unit 16d that outputs a gradation voltage corresponding to the correction value determined by the gradation correction determination unit 16c to the liquid crystal panel 2 side are provided.
  • the gradation correction determination unit 16c determines a corresponding gradation value included in the external video signal in advance so that the luminance of the output light output from the pixel P toward the outside becomes a desired value.
  • the tone value is corrected to the corrected tone value (the tone value after correction). Further, the gradation correction determination unit 16c determines a corrected gradation value using predetermined different gamma curves in accordance with the plurality of display areas A1 to A12 of the liquid crystal panel 2. (Details will be described later).
  • the gradation correction determination unit 16c includes a calculation unit 16c1 that obtains a predetermined gradation value by calculation using a gradation value for each pixel P included in an external video signal.
  • a memory 16c2 is provided in which data necessary for arithmetic processing such as mathematical formulas and parameters used in the arithmetic unit 16c1 is stored in advance.
  • the gradation voltage output unit 16d receives an instruction signal from the image processing unit 16a to the source driver 17 and the corrected gradation value determined by the gradation correction determination unit 16b, and the input gradation value.
  • the instruction signal (gradation signal) to the source driver 17 is corrected and output to the source driver 17.
  • the gradation voltage output unit 16d outputs the corrected gradation value determined by the gradation correction determination unit 16c to the image processing unit 16a, and the image processing unit 16a outputs the corrected gradation value.
  • a new gradation voltage may be determined based on the gradation value and output to the source driver 17 as an instruction signal (gradation signal).
  • 4 (a) and 4 (b) are graphs for explaining specific examples of correction values determined by the gradation correction determination unit shown in FIG. 2 for different display areas.
  • the gradation correction determination unit 16c divides the plurality of display areas A1 to A12 into, for example, two groups, and predetermined gamma curves that are different from each other in advance. Is used to determine the corrected gradation value. Specifically, the gradation correction determining unit 16c includes display areas A1, A2, A5, A6, A9, and A10 closer to the gate driver 18, and display areas A3, A4, A7, farther from the gate driver 18.
  • the gamma curves used for the source drivers 17-3 and 17-4 assigned to A3, A4, A7, A8, A11, and A12 are configured so as to have different values.
  • the calculation unit 16c1 has a gamma used for the source drivers 17-3 and 17-4 farther than the source drivers 17-1 and 17-2 closer to the gate driver 18.
  • a predetermined gradation value (corrected gradation value) is obtained using a value larger than the curve value.
  • the charging of the gradation voltage due to the resistance of the gate wiring G is likely to be insufficient, and the charging rate of the liquid crystal layer for each pixel P is likely to be low.
  • the source drivers 17-3, 17-4 assigned to A7, A8, A11, A12 those having a value smaller than the value of the gamma curve used for the closer source drivers 17-1, 17-2. In this way, a predetermined gradation value (corrected gradation value) is obtained.
  • the calculation unit 16 c 1 has a source closer to the gate driver 18.
  • a gamma curve having a value of “2.3” is used for the drivers 17-1 and 17-2.
  • the arithmetic unit 16c1 uses the gamma curve shown by the curve 71 for the source drivers 17-1 and 17-2, thereby adversely affecting the resistance of the gate wiring G (that is, the charging rate).
  • the gamma curve value can be set to the desired value of “2.2”.
  • the arithmetic unit 16c1 uses a gamma curve having a value of “2.1” for the source drivers 17-3 and 17-4 far from the gate driver 18, for example.
  • the value of the gamma curve that is, the value of ⁇ is “2.2” and “2.1” in the curve 70 and the curve 72, respectively.
  • the calculation unit 16c1 uses the gamma curve shown by the curve 72 for the source drivers 17-3 and 17-4, thereby adversely affecting the resistance of the gate wiring G (that is, the charging rate).
  • the value of the gamma curve can be set to the desired value of “2.2”.
  • a gradation value (input gradation) for a plurality of pixels P included in an external video signal is obtained by performing a verification test or simulation using an actual product.
  • a corrected gradation value (output gradation data) is obtained in advance so that the luminance of the output light output from the pixel P toward the outside becomes a desired value.
  • data such as mathematical formulas and parameters necessary for calculation processing for calculating output gradation data from these input gradation data are obtained. And stored in advance in the memory 16c2.
  • the calculation unit 16c1 calculates a predetermined gradation value by using the gradation value included in the video signal from the outside and the data stored in the memory 16c2. After the determination, the gradation correction determination unit 16c outputs the corrected gradation value calculated by the calculation unit 16c1 to the gradation voltage output unit 16d. Accordingly, in the present embodiment, as described above, the corrected gradation value is determined using predetermined different gamma curves in accordance with the display areas A1 to A12.
  • the data stored in the memory 16c2 may be appropriately calculated when the arithmetic unit 16c1 performs arithmetic processing, or the data may be dynamically received from the outside. .
  • the installation of the memory 16c2 can be omitted.
  • the gradation correction determination unit 16c converts an external video signal according to the plurality of display areas A1 to A12. A correction value for the gradation value for each pixel P included is determined.
  • the gradation voltage output unit 16d outputs a gradation voltage corresponding to the correction value determined by the gradation correction determination unit 16c to the liquid crystal panel (display panel) 2 side.
  • the gradation correction determination unit 16c corresponds to the corresponding level included in the external video signal so that the luminance of the output light output from the pixel P toward the outside becomes a desired value.
  • the tone value is corrected to a predetermined tone value.
  • the gradation correction determination unit 16c uses the gradation value for each pixel P included in the video signal from the outside to calculate a predetermined gradation value by calculation. Therefore, the predetermined gradation value is appropriately obtained by the calculation unit 16c1.
  • the gradation correction determination unit 16c determines a corrected gradation value using predetermined different gamma curves according to the plurality of display areas A1 to A12. ing.
  • the corrected gradation value can be appropriately determined according to the display areas A1 to A12, and the display quality is ensured. Can be improved.
  • the gradation voltage correction unit (gradation voltage correction system) 16b that can improve the display quality even when the liquid crystal panel (display panel) 2 has a large screen is used. Therefore, the liquid crystal display device 1 excellent in display quality can be easily configured.
  • the liquid crystal panel 2 is used as the display panel.
  • the gate driver 18 and a plurality of source drivers 17-1 to 17- provided at different positions from the gate driver 18 are used. 4 are provided.
  • gradation voltages using different gamma curves according to the distance from the gate driver 18 are input from the gradation voltage output unit 16d.
  • the gradation correction determining unit 16c is divided into the source drivers 17-1 and 17-2 closer to the gate driver 18 and the source drivers 17-3 and 17-4 farther from each other.
  • the present embodiment is not limited to this.
  • gamma curves having different values from each other. May be used.
  • FIG. 5 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the second embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a source driver, a gate driver, and a display area provided in the liquid crystal panel shown in FIG.
  • the gate driver is connected to both ends of the gate wiring, and in the gradation correction determination unit, instead of the calculation unit and the memory, This is a point using an LUT (Look Up Table).
  • LUT Look Up Table
  • the first and second gate drivers 28a and 28b are provided on the left end side and the right end side of the liquid crystal panel 2, respectively.
  • a plurality of, for example, eight source drivers 17-1 to 17-8 (hereinafter collectively referred to as “17”) are mounted on eight flexible printed circuit boards (SOFs) 22, respectively.
  • SOFs flexible printed circuit boards
  • One end of each flexible printed circuit board 22 is connected to the source wiring S on the active matrix substrate outside the effective display area A.
  • the same number of source lines S that is, (M / 8) source lines S are connected to each of the source drivers 17-1 to 17-8.
  • each flexible printed circuit board 22 is connected to one of the two printed circuit boards 23.
  • an instruction signal corresponding to information displayed on the display unit of the liquid crystal panel 2 is input from the panel control unit 16 to each of the source drivers 17-1 to 17-8. Yes. Thereafter, each of the source drivers 17-1 to 17-8 outputs a gradation signal to the corresponding source line S.
  • a plurality of, for example, four gate drivers 28a-1 to 28a-4 (hereinafter collectively referred to as “28a”) and four on the left end side and the right end side of the liquid crystal panel 2.
  • Gate drivers 28b-1 to 28b-4 (hereinafter collectively referred to as “28b”) are provided. These gate drivers 28a-1 to 28a-4 and gate drivers 28b-1 to 28b-4 are respectively mounted on a flexible printed circuit board (SOF) 24. One end of each flexible printed circuit board 24 is connected to the gate wiring G on the active matrix substrate outside the effective display area A.
  • SOF flexible printed circuit board
  • each gate line G is connected to the gate drivers 28a and 28b on the left end side and the right end side, respectively, and each gate driver 28a-1 to 28a-4 and each gate driver 28b-1 are connected.
  • the same number of gate lines G, that is, (N / 4) gate lines G are connected to .about.28b-4.
  • each of the gate drivers 28a-1 to 28a-4 and each of the gate drivers 28b-1 to 28b-4 is connected via a corresponding flexible printed circuit board 24 and wiring (not shown) provided on the active matrix substrate. And connected to the panel control unit 16. Then, each of the gate drivers 28a-1 to 28a-4 and each of the gate drivers 28b-1 to 28b-4 inputs an instruction signal from the panel control unit 16, and outputs a scanning signal to be described later to the corresponding gate wiring G. Is output.
  • each display area A1 to A32 includes a plurality of pixels P provided at the intersections of the source lines S and the gate lines G wired in a matrix. That is, for example, in the display area A1, a plurality of pixels P provided at intersections of the source wiring S connected to the source driver 17-1 and the gate wiring G connected to the gate drivers 28a-1 and 28b-1. It is included.
  • one source driver 17 and one set of gate drivers 28a-1 and 28b-1 are assigned to each of the display areas A1 to A32. That is, the source driver 17-1 is assigned to the display areas A1, A9, A17, and A25, and the source driver 17-2 is assigned to the display areas A2, A10, A18, and A26.
  • a source driver 17-3 is assigned to the display areas A3, A11, A19, A27, and a source driver 17-4 is assigned to the display areas A4, A12, A20, A28.
  • a source driver 17-5 is assigned to the display areas A5, A13, A21, and A29, and a source driver 17-6 is assigned to the display areas A6, A14, A22, and A30.
  • a source driver 17-7 is assigned to the display areas A7, A15, A23, and A31, and a source driver 17-8 is assigned to the display areas A8, A16, A24, and A32.
  • gate drivers 28a-1 and 28b-1 are assigned to the display areas A1, A2, A3, A4, A5, A6, A7, A8, and the display areas A9, A10, A11, A12, A13, A14 are assigned.
  • A15, A16 are assigned gate drivers 28a-2 and 28b-2.
  • gate drivers 28a-3 and 28b-3 are assigned to the display areas A17, A18, A19, A20, A21, A22, A23, and A24, and the display areas A25, A26, A27, A28, A29, and A30 are assigned.
  • A31, A32 are assigned gate drivers 28a-4 and 28b-4.
  • the liquid crystal panel 2 is provided with a plurality of source drivers 17-1 to 17-8 provided at positions different from the gate drivers 28a and 28b.
  • gradation voltages using mutually different gamma curves are generated according to the distance from the gate drivers 28a and 28b. It is input from the regulated voltage output unit.
  • the LUT 16e1 is used for the gradation correction determination unit 16e.
  • the LUT 16e1 holds the gradation values before and after the arithmetic processing in association with each other. That is, in the LUT 16e1, the gradation value (input gradation data) for each of the plurality of pixels P included in the external video signal and the luminance of the output light output from the pixel P to the outside are desired.
  • the corrected gradation value (output gradation data) that is a value is associated with each other.
  • the gradation correction determination unit 16e obtains the corresponding output gradation data from the LUT 16e1, and the corrected gradation level. As a gradation value, it is output to the gradation voltage output unit 16d.
  • the gradation correction determination unit 16e divides the plurality of display areas A1 to A32 into, for example, two groups, and predetermined gamma curves that are different from each other in advance. Is used to determine the corrected gradation value. Specifically, the gradation correction determining unit 16e displays the display areas A1, A2, A9, A10, A17, A18, A25, A26, A7, A8, A15, A16, A23, which are closer to the gate drivers 28a and 28b.
  • Gamma curves used for source drivers 17-3, 17-4, 17-5, 17-6 are different from each other Configured to use the value one.
  • the LUT 16e1 is farther away from the source drivers 17-1, 17-2, 17-7, and 17-8 that are closer to the gate drivers 28a and 28b. 3.
  • a predetermined gradation value (corrected gradation value) is obtained using a value larger than the value of the gamma curve used for 3, 17-4, 17-5, and 17-6. Yes.
  • a gamma curve having a value of “2.3” is used.
  • the LUT 16e1 uses the gamma curve shown by the curve 71 for the source drivers 17-1, 17-2, 17-7, and 17-8, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.1” is used for the source drivers 17-3, 17-4, 17-5, and 17-6 far from the gate drivers 28a and 28b. It has become.
  • the value of the gamma curve that is, the value of ⁇ is “2.2” and “2.1” in the curve 70 and the curve 72, respectively.
  • the LUT 16e1 uses the gamma curve shown by the curve 72 for the source drivers 17-3, 17-4, 17-5, and 17-6, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the gradation correction determination unit 16e uses a lookup table (LUT) that associates a gradation value for each pixel P included in an external video signal with a predetermined gradation value. Since 16e1 is used, the predetermined gradation value is appropriately obtained by the LUT 16e1.
  • LUT lookup table
  • the present embodiment is not limited to this, for example, each of eight source drivers Different gamma curves may be used for 17-1 to 17-8 (the same applies to the third and fourth embodiments described later).
  • FIG. 7 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the third embodiment of the present invention.
  • FIGS. 8A and 8B are graphs illustrating specific examples of correction values determined by the red tone correction determination unit illustrated in FIG. 7 for different display areas.
  • FIGS. 9A and 9B are graphs illustrating specific examples of correction values determined by the green tone correction determination unit illustrated in FIG. 7 for different display areas.
  • FIGS. 10A and 10B are graphs illustrating specific examples of correction values determined by the blue tone correction determination unit illustrated in FIG. 7 for different display areas.
  • the main difference between this embodiment and the second embodiment described above is that a plurality of display areas are provided for each of the red, green, and blue pixels in which the gradation correction determination unit is provided in the liquid crystal panel. Accordingly, a correction value for the corresponding gradation value included in the video signal from the outside is determined.
  • symbol is attached
  • each of the gradation correction determination units 16fr, 16fg, and 16fb has LUT16fr1, LUT16fg1, LUT16fb1 is used.
  • the gradation value (input gradation data) for each red pixel Pr included in the external video signal and the luminance of the output light output from the pixel Pr to the outside are desired.
  • the corrected gradation value (output gradation data) that is a value is associated with each other.
  • the gradation value (input gradation data) for each green pixel Pg included in the external video signal and the luminance of the output light output from the pixel Pg to the outside are desired.
  • the corrected gradation value (output gradation data) are associated with the corrected gradation value (output gradation data).
  • the gradation value (input gradation data) for each blue pixel Pb included in the external video signal and the luminance of the output light output from the pixel Pb to the outside are desired.
  • the corrected gradation value (output gradation data) are associated with the corrected gradation value (output gradation data).
  • the gradation correction determination unit 16fr obtains the corresponding output gradation data from the LUT 16fr1 and performs the correction. Is output to the gradation voltage output unit 16d.
  • the gradation correction determination unit 16fg obtains the corresponding output gradation data from the LUT 16fg1 and performs correction.
  • the gradation value is output to the gradation voltage output unit 16d as a subsequent gradation value.
  • the gradation correction determination unit 16fb obtains the corresponding output gradation data from the LUT 16fb1 and performs correction.
  • the gradation value is output to the gradation voltage output unit 16d as a subsequent gradation value.
  • each of the gradation correction determination units 16fr, 16fg, and 16fb includes a plurality of display areas A1 to A32, for example, as in the case of the second embodiment. Dividing into groups, the gradation values after correction are determined using predetermined gamma curves different from each other in advance.
  • a gamma curve having a value of “2.31” is used.
  • the LUT 16fr1 uses the gamma curve indicated by the curve 81r for the source drivers 17-1, 17-2, 17-7, and 17-8, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.11” is used for the source drivers 17-3, 17-4, 17-5, and 17-6 farther from the gate drivers 28a and 28b. It has become.
  • the equation y x ⁇
  • the value of the gamma curve that is, the value of ⁇ is “2.2” and “2.11” in the curve 80r and the curve 82r, respectively.
  • the LUT 16fr1 uses the gamma curve indicated by the curve 82r for the source drivers 17-3, 17-4, 17-5, and 17-6, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.32” is used for ⁇ 1, 17-2, 17-7, and 17-8.
  • the LUT 16fg1 uses the gamma curve shown by the curve 81g for the source drivers 17-1, 17-2, 17-7, and 17-8, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.12” is used for the source drivers 17-3, 17-4, 17-5, and 17-6 farther from the gate drivers 28a and 28b. It has become.
  • the LUT 16fg1 uses the gamma curve indicated by the curve 82g for the source drivers 17-3, 17-4, 17-5, and 17-6, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.33” is used for ⁇ 1, 17-2, 17-7, and 17-8.
  • the LUT 16fb1 uses the gamma curve indicated by the curve 81b for the source drivers 17-1, 17-2, 17-7, and 17-8, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.13” is used for the source drivers 17-3, 17-4, 17-5, and 17-6 farther from the gate drivers 28a and 28b. It has become.
  • the value of the gamma curve that is, the value of ⁇ is “2.2” and “2.13” in the curve 80b and the curve 82b, respectively.
  • the LUT 16fb1 uses the gamma curve shown by the curve 82b for the source drivers 17-3, 17-4, 17-5, and 17-6, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • the present embodiment can achieve the same operations and effects as those of the second embodiment.
  • the gradation correction determination units 16fr, 16fg, and 16fb have a plurality of colors for each of the corresponding red, green, and blue pixels Pr, Pg, and Pb provided in the liquid crystal panel 2.
  • correction values for the corresponding gradation values included in the external video signal are determined.
  • FIG. 11 is a diagram for explaining a main configuration of a liquid crystal panel including a gradation voltage correction system according to the fourth embodiment of the present invention.
  • FIGS. 12A and 12B are graphs for explaining specific examples of correction values determined by the gradation correction determination unit shown in FIG. 11 for different display areas.
  • the main difference between the present embodiment and the second embodiment is that a normally white mode liquid crystal panel is used in place of the normally black mode liquid crystal panel.
  • a normally white mode liquid crystal panel is used in place of the normally black mode liquid crystal panel.
  • symbol is attached
  • the liquid crystal panel 2 of the present embodiment uses, for example, a normally white mode. That is, the liquid crystal panel 2 of the present embodiment is configured such that when no voltage is applied to the liquid crystal layer, white display is performed and the transmittance in the liquid crystal layer increases according to the applied voltage. Has been.
  • the gradation voltage correction unit 16b of the present embodiment is provided with a gradation correction determination unit 16g as in the second embodiment.
  • the gradation correction determining unit 16g uses an LUT 16g1 in which gradation values before and after the arithmetic processing are stored in association with each other.
  • the gradation correction determination unit 16g divides the display areas A1 to A32 into two groups, for example, as in the second embodiment. In these groups, predetermined different gamma curves that are different from each other are used to determine the corrected gradation value.
  • the LUT 16e1 is connected to the source drivers 17-1, 17-2, 17-7, 17-8 closer to the gate drivers 28a and 28b.
  • Tone value a value that is smaller than the value of the gamma curve used is used.
  • the gradation correction determination unit 16g in order to cope with the normally white mode liquid crystal panel 2, the gradation voltage is insufficiently charged due to the resistance of the gate wiring G, contrary to the second embodiment.
  • Distant display areas A3, A4, A5, A6, A11, A12, A13, A14, A19, A20, A21, A22, A27, A28, A29 The source drivers 17-3, 17-4, 17-5, and 17-6 assigned to A30 are used for the closer source drivers 17-1, 17-2, 17-7, and 17-8.
  • a predetermined gradation value (corrected gradation value) is obtained using a value larger than the value of the gamma curve.
  • a gamma curve having a value of “2.1” is used.
  • the LUT 16g1 uses the gamma curve shown by the curve 92 for the source drivers 17-1, 17-2, 17-7, and 17-8, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • a gamma curve having a value of “2.3” is used for the source drivers 17-3, 17-4, 17-5, and 17-6 farther from the gate drivers 28a and 28b. It has become.
  • the value of the gamma curve that is, the value of ⁇ is “2.2” and “2.3” in the curve 90 and the curve 91, respectively.
  • the LUT 16g1 uses the gamma curve shown by the curve 91 for the source drivers 17-3, 17-4, 17-5, and 17-6, thereby adversely affecting the resistance of the gate wiring G.
  • the value can be a desired value of “2.2” above.
  • the present embodiment can achieve the same operations and effects as those of the second embodiment.
  • the present invention is applied to a transmissive liquid crystal display device.
  • the gradation voltage correction system of the present invention is not limited to this, and a transflective liquid crystal display device is used.
  • it can be applied to various display devices such as a projection display device using a liquid crystal panel as a light valve.
  • the present invention is applied to a liquid crystal display device having an edge light type backlight device using a light guide plate.
  • the gradation voltage correction system of the present invention is not limited to this.
  • the present invention can also be applied to a liquid crystal display device having a direct type backlight device in which a light source is disposed below the liquid crystal panel.
  • the light emitting diode is used as the light source.
  • the light source of the present invention is not limited to this, and a discharge tube such as a cold cathode fluorescent tube or a hot cathode fluorescent tube is used. You can also.
  • the grayscale voltage correction unit is integrally incorporated in the panel control unit on the liquid crystal display device side.
  • the grayscale voltage correction system of the present invention corresponds to a plurality of display areas.
  • a gradation correction determining unit for determining a correction value for the gradation value for each pixel included in the video signal from the outside, and a display panel for the gradation voltage corresponding to the correction value determined by the gradation correction determining unit may be configured separately from the panel control unit.
  • the case where the panel control unit and the gradation voltage correction unit are integrally configured is preferable in that the configuration of the display device can be simplified.
  • the gradation correction determining unit determines a corrected gradation value using predetermined different gamma curves according to a plurality of display areas.
  • the gradation correction determination unit of the present invention may be any unit that determines a correction value for the gradation value for each pixel included in the external video signal according to a plurality of display areas. You may not use a curve.
  • the corrected gradation value is appropriately determined according to the display area even when the display panel is enlarged. This is preferable in that the display quality can be improved with certainty.
  • the present invention is useful for a gradation voltage correction system capable of improving display quality even when a display panel is enlarged, and a display device using the same.
  • Liquid crystal display device 2 Liquid crystal panel (display panel) 16b Gradation voltage correction unit (gradation voltage correction system) 16c, 16e, 16fr, 16fg, 16fb, 16g Gradation correction determination unit 16c1 arithmetic unit 16d gradation voltage output unit 16e1, 16fr1, 16fg1, 16fb1, 16g1 LUT 17, 17-1 to 17-8 Source driver 18, 18-1 to 18-3, 28a, 28a-1 to 28a-4, 28b, 28b-1 to 28b-4 Gate driver P Pixel A1 to A32 Display area

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

 複数の表示エリアが設定された液晶パネル(表示パネル)(2)において、複数の画素に供給される階調電圧を補正する階調電圧補正システム(16b)を設ける。階調電圧補正システム(16b)は、複数の表示エリアに応じて、外部からの映像信号に含まれた画素毎の階調値に対する補正値を決定する階調補正決定部(16c)と、階調補正決定部(16c)にて決定された補正値に応じた階調電圧を液晶パネル(2)側に出力する階調電圧出力部(16d)を備える。

Description

階調電圧補正システム、及びこれを用いた表示装置
 本発明は、表示すべき情報に応じた階調電圧を補正する階調電圧補正システム、特に複数の表示エリアが設定された表示パネルに用いられる階調電圧補正システム、及びこれを用いた表示装置に関する。
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置には、光を発光するバックライト装置と、バックライト装置に設けられた光源からの光に対しシャッターの役割を果たすことで所望画像を表示する液晶パネルとが含まれている。
 また、上記のような液晶表示装置では、通常、外部からの映像信号に含まれた画素毎の輝度情報(階調値)に対して、所定のガンマカーブを用いた階調補正処理(ガンマ補正処理)を施すことが行われている。
 また、従来の液晶表示装置には、例えば下記特許文献1に記載されているように、バックライト装置の輝度及び液晶パネルの設置場所の環境照度の組合せに応じて、複数のガンマカーブを用いることが提案されている。そして、この従来の液晶表示装置では、外部からの映像信号に含まれた画素毎の輝度情報に基づいて、バックライト装置の輝度を変化させたときでも、低階調域の視認性を向上させることが可能とされていた。
特開2011-53264号公報
 しかしながら、上記のような従来の液晶表示装置では、表示品位を向上させることができないおそれがあった。特に、従来の液晶表示装置では、その液晶パネル(表示パネル)の大画面化を図ったときに、表示品位の向上を行うことが難しくなり易いという問題点を生じることがあった。
 ここで、図13~図15を参照して、従来の液晶表示装置での問題点について具体的に説明する。
 図13は、従来の液晶表示装置に含まれた液晶パネルの要部構成を説明する図である。図14(a)~図14(h)は、図13に示した液晶パネルの各部での動作例を示すタイミングチャートである。図15(a)及び図15(b)は、それぞれ図13に示した中央部BC及び端部BEでの目標ガンマカーブと測定結果の一例を示すグラフである。
 図13において、従来の液晶表示装置に含まれた液晶パネルLPには、周知のように、アクティブマトリクス基板が用いられており、このアクティブマトリクス基板上には、複数のデータ配線(ソース配線)及び複数の走査配線(ゲート配線)がマトリクス状に設けられている(図示せず。)。また、複数のソース配線は、複数、例えば8個のソースドライバ51に均等に分散されて接続されている。また、複数のゲート配線は、液晶パネルLPの左端部側及び右端部側のそれぞれに設けられた複数、例えば4個のゲートドライバ52a及び52bに均等に分散されて接続されている。すなわち、液晶パネルLPでは、各ゲート配線の左端部及び右端部がそれぞれ左端部側及び右端部側のゲートドライバ52a及び52bに接続されている。
 そして、液晶パネルLPでは、複数の画素がソース配線とゲート配線との交差部単位に設けられている。また、ソースドライバ51は、外部からの映像信号に含まれた画素毎の輝度情報(階調値)に対して、所定のガンマカーブを用いた階調補正処理を施された後の階調電圧を階調信号として、対応するソース配線に供給される。また、液晶パネルLPでは、走査信号がゲートドライバ52a及び52bからゲート配線の左端部及び右端部にそれぞれ供給されることにより、液晶パネルLPでは、その液晶層(図示せず)において、階調電圧が画素単位に充電される。これにより、液晶パネルLPでは、画素単位に透過率が制御されて、所望の画像を表示される。
 しかしながら、従来の液晶表示装置では、ゲート配線の配線抵抗により、液晶パネルLPの端部BEの画素に比べて、液晶パネルLPの中央部BCの画素での階調電圧の充電が不十分になった。このため、従来の液晶表示装置では、画像表示をしたときに、画面全面が所望の輝度にて表示されないことがあった。
 具体的にいえば、液晶パネルLPの端部BEに含まれた任意の画素Pにおいて、図14(a)に例示するように、ゲートクロックGLKが時点T1でオン状態となると、ゲートドライバ52a、52bが対応するゲート配線に対し走査信号Gout geが供給される。続いて、ソースドライバ51への制御信号LSが時点T2でオン状態となると、ソースドライバ51から対応するソース配線に対し階調信号(階調電圧)Sout seが供給される。すなわち、上記画素Pにおいて、階調電圧の充電が時点T2から開始される。
 その後、ゲートクロックGLKが時点T3でオン状態となると、上記対応するゲート配線に対し走査信号Gout geの供給が停止される。続いて、ソースドライバ51への制御信号LSが時点T4でオン状態となると、上記対応するソース配線に対し階調信号Sout seの供給が停止される。また、上記画素Pでは、時点T3で階調電圧の充電が停止される。すなわち、画素Pでは、時点T2から時点T3の間が階調電圧の充電期間である。
 一方、液晶パネルLPの中央部BCに含まれた任意の画素P’では、図14(e)に例示するように、ゲートクロックGLKが時点T1でオン状態となると、ゲートドライバ52a、52bが対応するゲート配線に対し走査信号Gout gcが供給される。しかしながら、この画素P’では、ゲートドライバ52a、52bから離れているため、走査信号Gout gcはゲート配線の抵抗により、時点T5まで所定値とならない。このため、ソースドライバ51への制御信号LSが時点T2でオン状態となって、ソースドライバ51から対応するソース配線に対し階調信号(階調電圧)Sout scが供給されても、上記画素P’では、階調電圧の充電は時点T2から時点T5までの期間は不十分なものとなり、時点T5から開始される。
 その後、ゲートクロックGLKが時点T3でオン状態となると、上記対応するゲート配線に対し走査信号Gout gcの供給が停止される。続いて、ソースドライバ51への制御信号LSが時点T4でオン状態となると、上記対応するソース配線に対し階調信号Sout scの供給が停止される。また、上記画素P’では、時点T3で階調電圧の充電が停止される。すなわち、画素P’では、時点T5から時点T3の間が階調電圧の充電期間であり、画素Pの充電期間に比べて、短い時間となる。
 この結果、図15(a)及び図15(b)に示すように、液晶パネルLPの中央部BC及び端部BEにおいて、階調値(例えば、8ビット=256階調の場合)と出力光の輝度との関係が同じものとならず、表示品位を向上させることができなかった。
 具体的にいえば、液晶パネルLPの中央部BCにおいては、図15(a)に点線にて示す目標とするガンマカーブ61に対して、同図に実線にて示す測定結果のカーブ60がほぼ一致している。
 これに対して、液晶パネルLPの端部BEにおいては、図15(b)に点線にて示す目標とするガンマカーブ61に対して、同図に実線にて示す測定結果のカーブ62がカーブ61に比べて大きくずれている。
 以上のように、液晶パネルLPの中央部BC及び端部BEにおいて、階調値と出力光の輝度との関係が同じものとならず、表示品位を向上させることができないことがあった。特に、従来の液晶表示装置では、その液晶パネルの大画面化を図ったときに、表示品位の向上を行うことが難しくなり易かった。尚、中央部BCにおいて、ガンマカーブ61とカーブ60がほぼ一致しているのは、ゲート配線での抵抗降下(階調電圧の充電期間の短縮)を考慮して、階調電圧を大きく設定しているためである。
 上記の課題を鑑み、本発明は、表示パネルの大画面化を図ったときでも、表示品位を向上させることができる階調電圧補正システム、及びこれを用いた表示装置を提供することを目的とする。
 上記の目的を達成するために、本発明にかかる階調電圧補正システムは、複数の画素を有するとともに、複数の表示エリアが設定された表示パネルにおいて、前記複数の画素に供給される階調電圧を補正する階調電圧補正システムであって、
 前記複数の表示エリアに応じて、外部からの映像信号に含まれた画素毎の階調値に対する補正値を決定する階調補正決定部と、
 前記階調補正決定部にて決定された補正値に応じた階調電圧を前記表示パネル側に出力する階調電圧出力部とを備えていることを特徴とするものである。
 上記のように構成された階調電圧補正システムでは、階調補正決定部が複数の表示エリアに応じて、外部からの映像信号に含まれた画素毎の階調値に対する補正値を決定する。また、階調電圧出力部が、階調補正決定部にて決定された補正値に応じた階調電圧を前記表示パネル側に出力する。これにより、上記従来例と異なり、表示パネルの大画面化を図ったときでも、表示品位を向上させることができる。
 また、上記階調電圧補正システムにおいて、前記階調補正決定部は、前記画素から外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値に補正することが好ましい。
 この場合、上記出力光の輝度と階調値との特性を向上させることができ、表示パネルの大画面化を図ったときでも、表示品位を確実に向上させることができる。
 また、上記階調電圧補正システムにおいて、前記階調補正決定部には、外部からの映像信号に含まれた画素毎の階調値を用いて、予め定められた階調値を演算によって求める演算部が用いられてもよい。
 この場合、演算部によって上記予め定められた階調値が適切に求められる。
 また、上記階調電圧補正システムにおいて、前記階調補正決定部には、外部からの映像信号に含まれた画素毎の階調値と、予め定められた階調値とを関連付けたルックアップテーブルが用いられてもよい。
 この場合、ルックアップテーブルによって上記予め定められた階調値が適切に求められる。
 また、上記階調電圧補正システムにおいて、前記階調補正決定部は、前記複数の表示エリアに応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定することが好ましい。
 この場合、表示パネルの大画面化を図ったときでも、表示エリアに応じて、補正後の階調値を適切に決定することができ、表示品位を確実に向上させることができる。
 また、上記階調電圧補正システムにおいて、前記階調補正決定部は、前記表示パネルに設けられた赤色、緑色、及び青色の画素の色毎に、前記複数の表示エリアに応じて、外部からの映像信号に含まれた対応する階調値に対する補正値を決定してもよい。
 この場合、各色の階調調整、及びホワイトバランス(色温度)の調整を容易に行うことができ、表示品位を容易に向上させることができる。
 また、本発明の表示装置は、上記いずれかに記載の階調電圧補正システムを用いたことを特徴とする。
 上記のように構成された表示装置では、表示パネルの大画面化を図ったときでも、表示品位を向上させることができる階調電圧補正システムが用いられているので、表示品位に優れた表示装置を容易に構成することができる。
 また、上記表示装置において、前記表示パネルとして、液晶パネルが用いられるとともに、
 前記液晶パネルでは、ゲートドライバと、前記ゲートドライバから互いに異なる位置に設けられた複数のソースドライバとが設けられ、
 前記複数のソースドライバでは、前記ゲートドライバからの距離に応じて、互いに異なるガンマカーブを使用した階調電圧が、前記階調電圧出力部から入力されることが好ましい。
 この場合、表示品位に優れた液晶表示装置を容易に構成することができる。
 本発明によれば、表示パネルの大画面化を図ったときでも、表示品位を向上させることができる階調電圧補正システム、及びこれを用いた表示装置を提供することが可能となる。
図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。 図2は、本発明の第1の実施形態にかかる階調電圧補正システム及び図1に示した液晶パネルの要部構成を説明する図である。 図3は、上記液晶パネルに設けられたソースドライバ、ゲートドライバ、及び表示エリアを説明する図である。 図4(a)及び図4(b)は、異なる表示エリアに対して図2に示した階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。 図5は、本発明の第2の実施形態にかかる階調電圧補正システムを含む液晶パネルの要部構成を説明する図である。 図6は、図3に示した液晶パネルに設けられたソースドライバ、ゲートドライバ、及び表示エリアを説明する図である。 図7は、本発明の第3の実施形態にかかる階調電圧補正システムを含む液晶パネルの要部構成を説明する図である。 図8(a)及び図8(b)は、異なる表示エリアに対して図7に示した赤色用の階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。 図9(a)及び図9(b)は、異なる表示エリアに対して図7に示した緑色用の階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。 図10(a)及び図10(b)は、異なる表示エリアに対して図7に示した青色用の階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。 図11は、本発明の第4の実施形態にかかる階調電圧補正システムを含む液晶パネルの要部構成を説明する図である。 図12(a)及び図12(b)は、異なる表示エリアに対して図11に示した階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。 図13は、従来の液晶表示装置に含まれた液晶パネルの要部構成を説明する図である。 図14(a)~図14(h)は、図13に示した液晶パネルの各部での動作例を示すタイミングチャートである。 図15(a)及び図15(b)は、それぞれ図13に示した中央部BC及び端部BEでの目標ガンマカーブと測定結果の一例を示すグラフである。
 以下、本発明の階調電圧補正システム、及びこれを用いた表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、本発明を透過型の液晶表示装置に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。図1において、本実施形態の液晶表示装置1は、図1の上側が視認側(表示面側)として設置される液晶パネル2と、液晶パネル2の非表示面側(図1の下側)に配置されて、当該液晶パネル2を照明する照明光を発生するバックライト装置3とが設けられている。また、液晶表示装置1では、液晶パネル2とバックライト装置3とが互いに組み付けられており、当該バックライト装置3からの照明光が液晶パネル2に入射される透過型の液晶表示装置1として一体化されている。
 液晶パネル2は、液晶層と、この液晶層を狭持する一対の基板としてのアクティブマトリクス基板及びカラーフィルタ基板を備えている(図示せず)。アクティブマトリクス基板では、後に詳述するように、液晶パネル2の表示面に含まれる複数の画素に応じて、画素電極や薄膜トランジスタ(TFT:Thin Film Transistor)などが上記液晶層との間に形成されている。一方、カラーフィルタ基板には、カラーフィルタや共通電極などが上記液晶層との間に形成されている(図示せず)。
 また、液晶パネル2では、当該液晶パネル2の駆動制御を行う制御装置(図示せず)が設けられており、上記液晶層を画素単位に動作することで表示面を画素単位に駆動して、当該表示面上に所望画像を表示するようになっている。
 また、本実施形態の液晶パネル2には、例えばノーマリブラックモードのものが用いられている。すなわち、本実施形態の液晶パネル2では、上記液晶層に電圧が印加されていないとき、黒色表示が行われるとともに、印加される電圧に応じて、液晶層での透過率が増加するように構成されている。
 また、バックライト装置3には、光源としての発光ダイオード4と、発光ダイオード4が実装された光源基板としてのLED基板5と、発光ダイオード4からの光を所定の伝搬方向(図1の左右方向)に導くとともに、液晶パネル(被照射物)2側に当該光を出射する導光板6が設けられている。この導光板6には、例えば断面矩形状で透明なアクリル樹脂などの合成樹脂が用いられており、この導光板6は、発光ダイオード4と対向して配置されて、当該発光ダイオード4からの光を入光する入光面6aと、液晶パネル2側に光を発光する発光面6bと、発光面6bに対向する対向面6cを備えている。
 また、バックライト装置3は、発光ダイオード4及び導光板6の下方に設けられるとともに、これら発光ダイオード4及び導光板6からの光を反射する反射板8と、発光ダイオード4の液晶パネル2側に設けられるとともに、発光ダイオード4からの光を反射する反射部としての反射板9を備えている。また、バックライト装置3には、導光板6と液晶パネル2との間に設けられた光学部材として、例えば拡散シート10、プリズムシート11、及び反射型偏光シート12が導光板6側から順次設けられており、導光板6の発光面6bからの光を均一な輝度をもつ平面状の上記照明光に変えて液晶パネル2に与えるようになっている。
 また、バックライト装置3では、拡散シート10、プリズムシート11、及び反射型偏光シート12の各発光ダイオード4側の端面10a、11a、及び12aは、導光板6の入光面6aに対し、発光ダイオード4側から所定の距離をおいて離間されている。
 さらに、バックライト装置3には、発光ダイオード4、導光板6、及び拡散シート10、プリズムシート11、及び反射型偏光シート12を収容する有底状のシャーシ13と、開口部を有する断面L字状の枠体により構成されるとともに、シャーシ13に組み付けられて、バックライト装置3の外容器を構成するベゼル14が設けられている。そして、本実施形態の液晶表示装置1では、ベゼル14上にP(プラスチック)シャーシ15が設置されるとともに、このPシャーシ15に液晶パネル2が載置されることにより、液晶パネル2とバックライト装置3とが互いに組み付けられる。
 尚、上記の説明以外に、反射板8に代えて、シャーシ13の発光ダイオード4及び導光板6に対向する底面に、銀色や白色などの光反射率の高い塗料を塗布することにより、発光ダイオード4からの光及び導光板6からの光を反射する構成としてもよい。
 次に、図2も参照して、本実施形態の階調電圧補正システム及び液晶パネル2について具体的に説明する。
 図2は、本発明の第1の実施形態にかかる階調電圧補正システム及び図1に示した液晶パネルの要部構成を説明する図である。図2において、パネル制御部16には、PC等の信号源(図示せず)などを介して液晶表示装置1の外部からの映像信号が入力されるようになっている。また、このパネル制御部16は、上記制御装置に設けられたものであり、入力された映像信号に応じて、後述のソース配線及びゲート配線に対して、画素単位の駆動制御を実質的に行うように構成されている。
 具体的にいえば、パネル制御部16には、上記映像信号を基にソースドライバ17及びゲートドライバ18への各指示信号を生成する画像処理部16aが設けられている。また、このパネル制御部16には、本実施形態の階調電圧補正システムを構成する階調電圧補正部16bが一体的に組み込まれており、後に詳述するように、画像処理部16aが生成したソースドライバ17への指示信号は階調電圧補正部16bにて補正された後、ソースドライバ17に出力されるようになっている。
 ソースドライバ17及びゲートドライバ18は、液晶パネル2に設けられた複数の画素Pを画素単位に駆動する駆動回路であり、ソースドライバ17及びゲートドライバ18には、複数のソース配線S1~SM(Mは、2以上の整数、以下、“S”にて総称する。)及び複数のゲート配線G1~GN(Nは、2以上の整数、以下、“G”にて総称する。)がそれぞれ接続されている。これらソース配線S1~SM及びゲート配線G1~GNは、マトリクス状に配列されており、当該マトリクス状に区画された各領域には、上記複数の各画素Pの領域が形成されている。これら複数の画素Pには、赤色、緑色、及び青色の画素Pが含まれている。また、これらの赤色、緑色、及び青色の画素Pは、例えばこの順番で、各ゲート配線G1~GNに平行に順次配設されている。
 また、ソースドライバ17及びゲートドライバ18は、各々複数設けられており、液晶パネル2の横方向及び縦方向に沿って順次配列されている。また、これらの複数のソースドライバ17及び複数のゲートドライバ18は、液晶パネル2の表示面に設けられた複数の表示エリアに応じて設置されており、対応する表示エリアに含まれた画素Pを適宜駆動するようになっている。
 ここで、図3を参照して、本実施形態の液晶パネル2での複数のソースドライバ17、複数のゲートドライバ18、及び複数の表示エリアについて具体的に説明する。
 図3は、上記液晶パネルに設けられたソースドライバ、ゲートドライバ、及び表示エリアを説明する図である。
 図3に示すように、本実施形態の液晶パネル2では、複数、例えば4つのソースドライバ17-1~17-4(以下、“17”にて総称する。)が、4つのフレキシブルプリント回路基板(SOF)22にそれぞれ実装されている。各フレキシブルプリント回路基板22の一端部側は、有効表示領域Aの外側で、上記アクティブマトリクス基板上のソース配線Sに接続されている。また、各ソースドライバ17-1~17-4には、同じ数のソース配線S、つまり(M/4)本のソース配線Sが接続されている。
 また、各フレキシブルプリント回路基板22の他端部側は、プリント回路基板23に接続されている。そして、液晶パネル2では、各ソースドライバ17-1~17-4に対して、液晶パネル2の表示部に表示される情報に応じた指示信号がパネル制御部16から入力されるようになっている。その後、各ソースドライバ17-1~17-4は、対応するソース配線Sに対し、後述の階調信号を出力する。
 また、液晶パネル2では、複数、例えば3つのゲートドライバ18-1~18-3(以下、“18”にて総称する。)が、3つのフレキシブルプリント回路基板(SOF)24にそれぞれ実装されている。各フレキシブルプリント回路基板24の一端部側は、有効表示領域Aの外側で、上記アクティブマトリクス基板上のゲート配線Gに接続されている。また、各ゲートドライバ18-1~18-3には、同じ数のゲート配線G、つまり(N/3)本のゲート配線Gが接続されている。さらに、各ゲートドライバ18-1~18-3は、対応するフレキシブルプリント回路基板24と上記アクティブマトリクス基板上に設けられた配線(図示せず)を介して、パネル制御部16に接続されている。そして、各ゲートドライバ18-1~18-3は、パネル制御部16からの指示信号を入力して、対応するゲート配線Gに対し、後述の走査信号を出力する。
 また、液晶パネル2では、図3に示すように、有効表示領域Aにおいて、複数、例えば12個の表示エリアA1~A12が設定されている。各表示エリアA1~A12には、マトリクス状に配線されたソース配線Sとゲート配線Gとの交差部に設けられた複数の画素Pが含まれている。つまり、例えば表示エリアA1には、ソースドライバ17-1に接続されたソース配線Sとゲートドライバ18-1に接続されたゲート配線Gとの交差部に設けられた複数の画素Pが含まれている。
 言い換えれば、各表示エリアA1~A12では、各々1つのソースドライバ17及びゲートドライバ18が割り当てられている。すなわち、表示エリアA1、A5、A9に対しては、ソースドライバ17-1が割り当てられ、表示エリアA2、A6、A10に対しては、ソースドライバ17-2が割り当てられている。また、表示エリアA3、A7、A11に対しては、ソースドライバ17-3が割り当てられ、表示エリアA4、A8、A12に対しては、ソースドライバ17-4が割り当てられている。また、表示エリアA1、A2、A3、A4に対しては、ゲートドライバ18-1が割り当てられ、表示エリアA5、A6、A7、A8に対しては、ゲートドライバ18-2が割り当てられ、表示エリアA9、A10、A11、A12に対しては、ゲートドライバ18-3が割り当てられている。
 また、液晶パネル2では、図3に示したように、ゲートドライバ18から互いに異なる位置に設けられた複数のソースドライバ17-1~17-4が設けられている。また、これら複数のソースドライバ17-1~17-4では、後に詳述するように、ゲートドライバ18からの距離に応じて、互いに異なるガンマカーブを使用した階調電圧が、後述の階調電圧出力部から入力されるようになっている。
 図2に戻って、各ゲート配線G1~GNには、画素P毎に設けられたスイッチング素子19のゲートが接続されている。一方、各ソース配線S1~SMには、スイッチング素子19のソースが接続されている。また、各スイッチング素子19のドレインには、画素P毎に設けられた画素電極20が接続されている。また、各画素Pでは、共通電極21が液晶パネル2に設けられた上記液晶層を間に挟んだ状態で画素電極20に対向するように構成されている。そして、ゲートドライバ18は、画像処理部16aからの指示信号に基づいて、ゲート配線G1~GNに対して、対応するスイッチング素子19のゲートをオン状態にするゲート信号(走査信号)を順次出力する。一方、ソースドライバ17は、後述の階調電圧出力部16dからの指示信号に基づいて、表示画像の輝度(階調)に応じた階調信号(階調電圧)を対応するソース配線S1~SMに出力する。
 階調電圧補正部16bには、複数の表示エリアA1~A12に応じて、外部からの映像信号に含まれた画素P毎の階調値に対する補正値(補正後の階調値)を決定する階調補正決定部16cと、階調補正決定部16cにて決定された補正値に応じた階調電圧を液晶パネル2側に出力する階調電圧出力部16dとが設けられている。
 階調補正決定部16cは、画素Pから外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値(補正後の階調値)に補正するように構成されている。また、階調補正決定部16cは、液晶パネル2の複数の表示エリアA1~A12に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている(詳細は後述。)。
 具体的にいえば、階調補正決定部16cには、外部からの映像信号に含まれた画素P毎の階調値を用いて、予め定められた階調値を演算によって求める演算部16c1と、演算部16c1で用いられる数式やパラメータ等の演算処理に必要なデータを予め記憶しているメモリ16c2が設けられている。
 階調電圧出力部16dは、画像処理部16aからソースドライバ17への指示信号及び階調補正決定部16bで決定された補正後の階調値が入力されるとともに、入力された階調値を用いて、ソースドライバ17への指示信号(階調信号)を補正して、当該ソースドライバ17に出力する。
 尚、上記の説明以外に、階調電圧出力部16dが階調補正決定部16cで決定された補正後の階調値を画像処理部16aに出力して、当該画像処理部16aが当該補正後の階調値を基に新たな階調電圧を定めて指示信号(階調信号)として、ソースドライバ17に出力する構成でもよい。
 以下、上記のように構成された本実施形態の液晶表示装置1の動作について説明する。尚、以下の説明では、図4も参照して、本実施形態の階調電圧補正部16bの動作について主に説明する。
 図4(a)及び図4(b)は、異なる表示エリアに対して図2に示した階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。
 本実施形態の階調電圧補正部16bでは、階調補正決定部16cは複数の表示エリアA1~A12を、例えば2つの組に分けて、これらの組において予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている。具体的には、階調補正決定部16cは、ゲートドライバ18に近い方の表示エリアA1、A2、A5、A6、A9、A10と、ゲートドライバ18から遠い方の表示エリアA3、A4、A7、A8、A11、A12に分けて、近い方の表示エリアA1、A2、A5、A6、A9、A10に割り当てられたソースドライバ17-1、17-2に用いられるガンマカーブと、遠い方の表示エリアA3、A4、A7、A8、A11、A12に割り当てられたソースドライバ17-3、17-4に用いられるガンマカーブを互いに異なる値のものを使用するように構成されている。
 すなわち、階調補正決定部16cでは、演算部16c1はゲートドライバ18に近い方のソースドライバ17-1、17-2に対しては、遠い方のソースドライバ17-3、17-4に用いるガンマカーブの値よりも大きい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。
 言い換えれば、階調補正決定部16cでは、ゲート配線Gの抵抗による階調電圧の充電不足が生じ易く、画素P毎の液晶層の充電率が低くなり易い、遠い方の表示エリアA3、A4、A7、A8、A11、A12に割り当てられたソースドライバ17-3、17-4に対しては、近い方のソースドライバ17-1、17-2に用いるガンマカーブの値よりも小さい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。
 詳細にいえば、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、演算部16c1では、ゲートドライバ18に近い方のソースドライバ17-1、17-2に対して、例えば“2.3”の値のガンマカーブを用いるようになっている。具体的には、図4(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線70及び曲線71は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線70及び曲線71ではそれぞれ“2.2”及び“2.3”である。そして、本実施形態では、演算部16c1が、ソースドライバ17-1、17-2に対して、曲線71に示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A5、A6、A9、A10において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 一方、演算部16c1では、ゲートドライバ18から遠い方のソースドライバ17-3、17-4に対して、例えば“2.1”の値のガンマカーブを用いるようになっている。具体的には、図4(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線70及び曲線72は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線70及び曲線72ではそれぞれ“2.2”及び“2.1”である。そして、本実施形態では、演算部16c1が、ソースドライバ17-3、17-4に対して、曲線72に示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A7、A8、A11、A12において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 また、本実施形態の階調補正決定部16cでは、実製品を用いた検証試験またはシミュレーションを行うことにより、外部からの映像信号に含まれた複数の各画素Pに対する階調値(入力階調のデータ)に対して、当該画素Pから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)を予め求めておく。また、求めた入力階調のデータと出力階調のデータとの関係から、これらの入力階調のデータから出力階調のデータを算出するための演算処理に必要な数式やパラメータなどのデータを定めて、メモリ16c2に予め保持する。そして、階調補正決定部16cでは、演算部16c1が外部からの映像信号に含まれた階調値と、メモリ16c2に記憶されているデータを用いて、予め定められた階調値を演算によって求めた後、階調補正決定部16cは、演算部16c1が求めた補正後の階調値を階調電圧出力部16dに出力する。これにより、本実施形態では、上述のように、表示エリアA1~A12に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値が決定される。
 尚、上記の説明以外に、例えばメモリ16c2に記憶されている上記データを演算部16c1が演算処理を行う際に適宜計算して求めたり、外部から動的に上記データを受け取ったりする構成でもよい。このように、構成した場合では、メモリ16c2の設置を省略することできる。
 以上のように構成された本実施形態の階調電圧補正部(階調電圧補正システム)16bでは、階調補正決定部16cが複数の表示エリアA1~A12に応じて、外部からの映像信号に含まれた画素P毎の階調値に対する補正値を決定する。また、階調電圧出力部16dが、階調補正決定部16cにて決定された補正値に応じた階調電圧を液晶パネル(表示パネル)2側に出力する。これにより、本実施形態では、上記従来例と異なり、液晶パネル2の大画面化を図ったときでも、表示品位を向上させることができる。
 また、本実施形態では、階調補正決定部16cは、画素Pから外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値に補正している。これにより、本実施形態では、上記出力光の輝度と階調値との特性を向上させることができ、液晶パネル2の大画面化を図ったときでも、表示品位を確実に向上させることができる。
 また、本実施形態では、階調補正決定部16cには、外部からの映像信号に含まれた画素P毎の階調値を用いて、予め定められた階調値を演算によって求める演算部16c1が用いられているので、演算部16c1によって上記予め定められた階調値が適切に求められる。
 また、本実施形態では、階調補正決定部16cは、複数の表示エリアA1~A12に応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定している。これにより、本実施形態では、液晶パネル2の大画面化を図ったときでも、表示エリアA1~A12に応じて、補正後の階調値を適切に決定することができ、表示品位を確実に向上させることができる。
 また、本実施形態では、液晶パネル(表示パネル)2の大画面化を図ったときでも、表示品位を向上させることができる階調電圧補正部(階調電圧補正システム)16bが用いられているので、表示品位に優れた液晶表示装置1を容易に構成することができる。
 また、本実施形態では、表示パネルとして、液晶パネル2が用いられるとともに、液晶パネル2では、ゲートドライバ18と、ゲートドライバ18から互いに異なる位置に設けられた複数のソースドライバ17-1~17-4とが設けられている。また、複数のソースドライバ17-1~17-4では、ゲートドライバ18からの距離に応じて、互いに異なるガンマカーブを使用した階調電圧が、階調電圧出力部16dから入力されている。これにより、本実施形態では、表示品位に優れた液晶表示装置1を容易に構成することができる。
 尚、上記の説明では、階調補正決定部16cにおいて、ゲートドライバ18に近い方のソースドライバ17-1、17-2と遠い方のソースドライバ17-3、17-4に分けて、互いに異なる値のガンマカーブを用いた場合について説明したが、本実施形態はこれに限定されるものではなく、例えば4つの各ソースドライバ17-1~17-4に対して、互いに互いに異なる値のガンマカーブを用いてもよい。
 [第2の実施形態]
 図5は、本発明の第2の実施形態にかかる階調電圧補正システムを含む液晶パネルの要部構成を説明する図である。図6は、図3に示した液晶パネルに設けられたソースドライバ、ゲートドライバ、及び表示エリアを説明する図である。図において、本実施形態と上記第1の実施形態との主な相違点は、ゲート配線の両端部にゲートドライバを接続した点、及び階調補正決定部において、演算部及びメモリに代えて、LUT(Look Up Table)を用いた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図5に示すように、本実施形態の液晶パネル2では、第1及び第2のゲートドライバ28a、28bが当該液晶パネル2の左端部側及び右端部側にそれぞれ設けられている。
 また、図6に示すように、複数、例えば8つのソースドライバ17-1~17-8(以下、“17”にて総称する。)が、8つのフレキシブルプリント回路基板(SOF)22にそれぞれ実装されている。各フレキシブルプリント回路基板22の一端部側は、有効表示領域Aの外側で、上記アクティブマトリクス基板上のソース配線Sに接続されている。また、各ソースドライバ17-1~17-8には、同じ数のソース配線S、つまり(M/8)本のソース配線Sが接続されている。
 また、各フレキシブルプリント回路基板22の他端部側は、2つのプリント回路基板23のいずれか一方のプリント回路基板23に接続されている。そして、液晶パネル2では、各ソースドライバ17-1~17-8に対して、液晶パネル2の表示部に表示される情報に応じた指示信号がパネル制御部16から入力されるようになっている。その後、各ソースドライバ17-1~17-8は、対応するソース配線Sに対し、階調信号を出力する。
 また、液晶パネル2では、当該液晶パネル2の左端部側及び右端部側において、複数、例えば4つのゲートドライバ28a-1~28a-4(以下、“28a”にて総称する。)及び4つのゲートドライバ28b-1~28b-4(以下、“28b”にて総称する。)が、それぞれ設けられている。これらのゲートドライバ28a-1~28a-4及びゲートドライバ28b-1~28b-4は、各々フレキシブルプリント回路基板(SOF)24にそれぞれ実装されている。各フレキシブルプリント回路基板24の一端部側は、有効表示領域Aの外側で、上記アクティブマトリクス基板上のゲート配線Gに接続されている。また、各ゲート配線Gの左端部及び右端部がそれぞれ左端部側及び右端部側のゲートドライバ28a及び28bに接続されており、各ゲートドライバ28a-1~28a-4と各ゲートドライバ28b-1~28b-4には、同じ数のゲート配線G、つまり(N/4)本のゲート配線Gが接続されている。
 さらに、各ゲートドライバ28a-1~28a-4と各ゲートドライバ28b-1~28b-4は、対応するフレキシブルプリント回路基板24と上記アクティブマトリクス基板上に設けられた配線(図示せず)を介して、パネル制御部16に接続されている。そして、各ゲートドライバ28a-1~28a-4と各ゲートドライバ28b-1~28b-4は、パネル制御部16からの指示信号を入力して、対応するゲート配線Gに対し、後述の走査信号を出力する。
 また、液晶パネル2では、図6に示すように、有効表示領域Aにおいて、複数、例えば32個の表示エリアA1~A32が設定されている。各表示エリアA1~A32には、マトリクス状に配線されたソース配線Sとゲート配線Gとの交差部に設けられた複数の画素Pが含まれている。つまり、例えば表示エリアA1には、ソースドライバ17-1に接続されたソース配線Sとゲートドライバ28a-1及び28b-1に接続されたゲート配線Gとの交差部に設けられた複数の画素Pが含まれている。
 言い換えれば、各表示エリアA1~A32では、各々1つのソースドライバ17と1組のゲートドライバ28a-1及び28b-1が割り当てられている。すなわち、表示エリアA1、A9、A17、A25に対しては、ソースドライバ17-1が割り当てられ、表示エリアA2、A10、A18、A26に対しては、ソースドライバ17-2が割り当てられている。また、表示エリアA3、A11、A19、A27に対しては、ソースドライバ17-3が割り当てられ、表示エリアA4、A12、A20、A28に対しては、ソースドライバ17-4が割り当てられている。また、表示エリアA5、A13、A21、A29に対しては、ソースドライバ17-5が割り当てられ、表示エリアA6、A14、A22、A30に対しては、ソースドライバ17-6が割り当てられている。また、表示エリアA7、A15、A23、A31に対しては、ソースドライバ17-7が割り当てられ、表示エリアA8、A16、A24、A32に対しては、ソースドライバ17-8が割り当てられている。
 また、表示エリアA1、A2、A3、A4、A5、A6、A7、A8に対しては、ゲートドライバ28a-1及び28b-1が割り当てられ、表示エリアA9、A10、A11、A12、A13、A14、A15、A16に対しては、ゲートドライバ28a-2及び28b-2が割り当てられている。また、表示エリアA17、A18、A19、A20、A21、A22、A23、A24に対しては、ゲートドライバ28a-3及び28b-3が割り当てられ、表示エリアA25、A26、A27、A28、A29、A30、A31、A32に対しては、ゲートドライバ28a-4及び28b-4が割り当てられている。
 また、液晶パネル2では、図6に示したように、ゲートドライバ28a及び28bから互いに異なる位置に設けられた複数のソースドライバ17-1~17-8が設けられている。また、これら複数のソースドライバ17-1~17-8では、後に詳述するように、ゲートドライバ28a及び28bからの距離に応じて、互いに異なるガンマカーブを使用した階調電圧が、後述の階調電圧出力部から入力されるようになっている。
 図5に戻って、階調電圧補正部16bでは、階調補正決定部16eに、LUT16e1が用いられている。このLUT16e1は、上記演算処理前後の階調値が互いに関連付けられて保持されている。つまり、LUT16e1では、外部からの映像信号に含まれた複数の各画素Pに対する階調値(入力階調のデータ)と、当該画素Pから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)とが互いに関連付けられている。そして、階調補正決定部16eは、外部からの映像信号に含まれた画素Pに対する入力階調のデータが入力されると、LUT16e1から対応する出力階調のデータを求めて、補正後の階調値として、階調電圧出力部16dに出力するようになっている。
 本実施形態の階調電圧補正部16bでは、階調補正決定部16eは複数の表示エリアA1~A32を、例えば2つの組に分けて、これらの組において予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている。具体的には、階調補正決定部16eは、ゲートドライバ28a及び28bに近い方の表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32と、ゲートドライバ28a及び28bから遠い方の表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30に分けて、近い方の表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32に割り当てられたソースドライバ17-1、17-2。17-7、17-8に用いられるガンマカーブと、遠い方の表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30に割り当てられたソースドライバ17-3、17-4、17-5、17-6に用いられるガンマカーブを互いに異なる値のものを使用するように構成されている。
 すなわち、階調補正決定部16eでは、LUT16e1はゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対しては、遠い方のソースドライバ17-3、17-4、17-5、17-6に用いるガンマカーブの値よりも大きい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。
 言い換えれば、階調補正決定部16eでは、第1の実施形態のものと同様に、ゲート配線Gの抵抗による階調電圧の充電不足が生じ易く、画素P毎の液晶層の充電率が低くなり易い、遠い方の表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30に割り当てられたソースドライバ17-3、17-4、17-5、17-6に対しては、近い方のソースドライバ17-1、17-2、17-7、17-8に用いるガンマカーブの値よりも小さい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。
 詳細にいえば、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、LUT16e1では、ゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対して、例えば“2.3”の値のガンマカーブを用いるようになっている。具体的には、図4(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線70及び曲線71は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線70及び曲線71ではそれぞれ“2.2”及び“2.3”である。そして、本実施形態では、LUT16e1が、ソースドライバ17-1、17-2、17-7、17-8に対して、曲線71に示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 一方、LUT16e1では、ゲートドライバ28a及び28bから遠い方のソースドライバ17-3、17-4、17-5、17-6に対して、例えば“2.1”の値のガンマカーブを用いるようになっている。具体的には、図4(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線70及び曲線72は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線70及び曲線72ではそれぞれ“2.2”及び“2.1”である。そして、本実施形態では、LUT16e1が、ソースドライバ17-3、17-4、17-5、17-6に対して、曲線72に示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、階調補正決定部16eにおいて、外部からの映像信号に含まれた画素P毎の階調値と、予め定められた階調値とを関連付けたLUT(ルックアップテーブル)16e1が用いられているので、LUT16e1によって上記予め定められた階調値が適切に求められる。
 尚、上記の説明では、階調補正決定部16eにおいて、ゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8と遠い方のソースドライバ17-3、17-4、17-5、17-6に分けて、互いに異なる値のガンマカーブを用いた場合について説明したが、本実施形態はこれに限定されるものではなく、例えば8つの各ソースドライバ17-1~17-8に対して、互いに互いに異なる値のガンマカーブを用いてもよい(後掲の第3及び第4の各実施形態においても、同様。)。
 [第3の実施形態]
 図7は、本発明の第3の実施形態にかかる階調電圧補正システムを含む液晶パネルの要部構成を説明する図である。図8(a)及び図8(b)は、異なる表示エリアに対して図7に示した赤色用の階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。図9(a)及び図9(b)は、異なる表示エリアに対して図7に示した緑色用の階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。図10(a)及び図10(b)は、異なる表示エリアに対して図7に示した青色用の階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。
 図において、本実施形態と上記第2の実施形態との主な相違点は、階調補正決定部が液晶パネルに設けられた赤色、緑色、及び青色の画素の色毎に、複数の表示エリアに応じて、外部からの映像信号に含まれた対応する階調値に対する補正値を決定する点である。なお、上記第2の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図7に示すように、本実施形態の階調電圧補正部16bでは、赤色、緑色、及び青色の画素Pの色毎に、複数の表示エリアA1~A32に応じて、外部からの映像信号に含まれた対応する階調値に対する補正値を決定する赤色用、緑色用、及び青色用の階調補正決定部16fr、16fg、及び16fbが設けられている。また、これらの各階調補正決定部16fr、16fg、及び16fbには、第2の実施形態のものと同様に、それぞれ演算処理前後の階調値が互いに関連付けられて保持されたLUT16fr1、LUT16fg1、及びLUT16fb1が用いられている。
 つまり、LUT16fr1では、外部からの映像信号に含まれた赤色の各画素Prに対する階調値(入力階調のデータ)と、当該画素Prから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)とが互いに関連付けられている。
 同様に、LUT16fg1では、外部からの映像信号に含まれた緑色の各画素Pgに対する階調値(入力階調のデータ)と、当該画素Pgから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)とが互いに関連付けられている。
 同様に、LUT16fb1では、外部からの映像信号に含まれた青色の各画素Pbに対する階調値(入力階調のデータ)と、当該画素Pbから外部に向かって出力される出力光の輝度が所望の値となる補正後の階調値(出力階調のデータ)とが互いに関連付けられている。
 そして、階調補正決定部16frは、外部からの映像信号に含まれた赤色の画素Prに対する入力階調のデータが入力されると、LUT16fr1から対応する出力階調のデータを求めて、補正後の階調値として、階調電圧出力部16dに出力するようになっている。
 同様に、階調補正決定部16fgは、外部からの映像信号に含まれた緑色の画素Pgに対する入力階調のデータが入力されると、LUT16fg1から対応する出力階調のデータを求めて、補正後の階調値として、階調電圧出力部16dに出力するようになっている。
 同様に、階調補正決定部16fbは、外部からの映像信号に含まれた青色の画素Pbに対する入力階調のデータが入力されると、LUT16fb1から対応する出力階調のデータを求めて、補正後の階調値として、階調電圧出力部16dに出力するようになっている。
 また、本実施形態の階調電圧補正部16bでは、各階調補正決定部16fr、16fg、及び16fbは、第2の実施形態のものと同様に、複数の表示エリアA1~A32を、例えば2つの組に分けて、これらの組において予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている。
 詳細にいえば、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、LUT16fr1では、ゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対して、例えば“2.31”の値のガンマカーブを用いるようになっている。具体的には、図8(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80r及び曲線81rは、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80r及び曲線81rではそれぞれ“2.2”及び“2.31”である。そして、本実施形態では、LUT16fr1が、ソースドライバ17-1、17-2、17-7、17-8に対して、曲線81rに示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 一方、LUT16fr1では、ゲートドライバ28a及び28bから遠い方のソースドライバ17-3、17-4、17-5、17-6に対して、例えば“2.11”の値のガンマカーブを用いるようになっている。具体的には、図8(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80r及び曲線82rは、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80r及び曲線82rではそれぞれ“2.2”及び“2.11”である。そして、本実施形態では、LUT16fr1が、ソースドライバ17-3、17-4、17-5、17-6に対して、曲線82rに示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 同様に、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、LUT16fg1では、ゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対して、例えば“2.32”の値のガンマカーブを用いるようになっている。具体的には、図9(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80g及び曲線81gは、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80g及び曲線81gではそれぞれ“2.2”及び“2.32”である。そして、本実施形態では、LUT16fg1が、ソースドライバ17-1、17-2、17-7、17-8に対して、曲線81gに示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 一方、LUT16fg1では、ゲートドライバ28a及び28bから遠い方のソースドライバ17-3、17-4、17-5、17-6に対して、例えば“2.12”の値のガンマカーブを用いるようになっている。具体的には、図9(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80g及び曲線82gは、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80g及び曲線82gではそれぞれ“2.2”及び“2.12”である。そして、本実施形態では、LUT16fg1が、ソースドライバ17-3、17-4、17-5、17-6に対して、曲線82gに示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 同様に、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、LUT16fb1では、ゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対して、例えば“2.33”の値のガンマカーブを用いるようになっている。具体的には、図10(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80b及び曲線81bは、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80b及び曲線81bではそれぞれ“2.2”及び“2.33”である。そして、本実施形態では、LUT16fb1が、ソースドライバ17-1、17-2、17-7、17-8に対して、曲線81bに示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 一方、LUT16fb1では、ゲートドライバ28a及び28bから遠い方のソースドライバ17-3、17-4、17-5、17-6に対して、例えば“2.13”の値のガンマカーブを用いるようになっている。具体的には、図10(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線80b及び曲線82bは、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線80b及び曲線82bではそれぞれ“2.2”及び“2.13”である。そして、本実施形態では、LUT16fb1が、ソースドライバ17-3、17-4、17-5、17-6に対して、曲線82bに示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 以上の構成により、本実施形態では、上記第2の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、階調補正決定部16fr、16fg、及び16fbは、液晶パネル2に設けられた対応する赤色、緑色、及び青色の画素Pr、Pg、及びPbの色毎に、複数の表示エリアA1~A32に応じて、外部からの映像信号に含まれた対応する階調値に対する補正値を決定している。これにより、本実施形態では、各色の階調調整、及びホワイトバランス(色温度)の調整を容易に行うことができ、表示品位を容易に向上させることができる。
 [第4の実施形態]
 図11は、本発明の第4の実施形態にかかる階調電圧補正システムを含む液晶パネルの要部構成を説明する図である。図12(a)及び図12(b)は、異なる表示エリアに対して図11に示した階調補正決定部にて決定される補正値の具体例をそれぞれ説明するグラフである。
 図において、本実施形態と上記第2の実施形態との主な相違点は、ノーマリブラックモードの液晶パネルに代えて、ノーマリホワイトモードの液晶パネルを用いた点である。なお、上記第2の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。
 つまり、図11において、本実施形態の液晶パネル2には、例えばノーマリホワイトモードのものが用いられている。すなわち、本実施形態の液晶パネル2では、上記液晶層に電圧が印加されていないとき、白色表示が行われるとともに、印加される電圧に応じて、液晶層での透過率が増加するように構成されている。
 また、図11に示すように、本実施形態の階調電圧補正部16bでは、第2の実施形態と同様に、階調補正決定部16gが設けられている。この階調補正決定部16gには、第2の実施形態のものと同様に、演算処理前後の階調値が互いに関連付けられて保持されたLUT16g1が用いられている。
 また、本実施形態の階調電圧補正部16bでは、階調補正決定部16gは、第2の実施形態のものと同様に、複数の表示エリアA1~A32を、例えば2つの組に分けて、これらの組において予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定するようになっている。
 但し、階調補正決定部16gでは、第2の実施形態のものとは異なり、LUT16e1はゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対しては、遠い方のソースドライバ17-3、17-4、17-5、17-6に用いるガンマカーブの値よりも小さい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。
 言い換えれば、階調補正決定部16gでは、ノーマリホワイトモードの液晶パネル2に対応するために、第2の実施形態のものと反対に、ゲート配線Gの抵抗による階調電圧の充電不足が生じ易く、画素P毎の液晶層の充電率が低くなり易い、遠い方の表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30に割り当てられたソースドライバ17-3、17-4、17-5、17-6に対しては、近い方のソースドライバ17-1、17-2、17-7、17-8に用いるガンマカーブの値よりも大きい値のものを用いて、予め定められた階調値(補正後の階調値)を求めるようになっている。
 詳細にいえば、液晶パネル2において、そのガンマカーブの値が、所望の値として、例えば“2.2”の値に設定されている場合、LUT16g1では、ゲートドライバ28a及び28bに近い方のソースドライバ17-1、17-2、17-7、17-8に対して、例えば“2.1”の値のガンマカーブを用いるようになっている。具体的には、図12(a)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線90及び曲線92は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線90及び曲線92ではそれぞれ“2.2”及び“2.1”である。そして、本実施形態では、LUT16g1が、ソースドライバ17-1、17-2、17-7、17-8に対して、曲線92に示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ難い表示エリアA1、A2、A9、A10、A17、A18、A25、A26、A7、A8、A15、A16、A23、A24、A31、A32において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 一方、LUT16g1では、ゲートドライバ28a及び28bから遠い方のソースドライバ17-3、17-4、17-5、17-6に対して、例えば“2.3”の値のガンマカーブを用いるようになっている。具体的には、図12(b)において、横軸及び縦軸をそれぞれx軸及びy軸とし、かつ、階調値が、例えば、8ビット=256階調である場合、曲線90及び曲線91は、ともにy=xγの式で表されるものであり、ガンマカーブの値、つまりγの値が、曲線90及び曲線91ではそれぞれ“2.2”及び“2.3”である。そして、本実施形態では、LUT16g1が、ソースドライバ17-3、17-4、17-5、17-6に対して、曲線91に示したガンマカーブを用いることにより、ゲート配線Gの抵抗による悪影響(つまり、上記充電率の低下)が生じ易い表示エリアA3、A4、A5、A6、A11、A12、A13、A14、A19、A20、A21、A22、A27、A28、A29、A30において、ガンマカーブの値を上記“2.2”の所望の値とすることができる。
 以上の構成により、本実施形態では、上記第2の実施形態と同様な作用・効果を奏することができる。
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。
 例えば、上記の説明では、本発明を透過型の液晶表示装置に適用した場合について説明したが、本発明の階調電圧補正システムはこれに限定されるものではなく、半透過型の液晶表示装置、あるいは液晶パネルをライトバルブに用いた投写型表示装置などの各種表示装置に適用することができる。
 また、上記の説明では、導光板を使用したエッジライト型のバックライト装置を有する液晶表示装置に適用した場合について説明したが、本発明の階調電圧補正システムはこれに限定されるものではなく、光源が液晶パネルの下方側に配置された直下型のバックライト装置を有する液晶表示装置に適用することもできる。
 また、上記の説明では、光源として発光ダイオードを用いた場合について説明したが、本発明の光源はこれに限定されるものではなく、例えば冷陰極蛍光管や熱陰極蛍光管などの放電管を用いることもできる。
 また、上記の説明では、液晶表示装置側のパネル制御部に階調電圧補正部を一体的に組み込んだ場合について説明したが、本発明の階調電圧補正システムは、複数の表示エリアに応じて、外部からの映像信号に含まれた画素毎の階調値に対する補正値を決定する階調補正決定部と、階調補正決定部にて決定された補正値に応じた階調電圧を表示パネル側に出力する階調電圧出力部とを備えたものであればよく、例えばパネル制御部と別体に構成してもよい。但し、上記のように、パネル制御部と階調電圧補正部とを一体的に構成する場合の方が、表示装置の構成を簡略化できる点で好ましい。
 また、上記の説明では、階調補正決定部が、複数の表示エリアに応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定する場合について説明したが、本発明の階調補正決定部は、複数の表示エリアに応じて、外部からの映像信号に含まれた画素毎の階調値に対する補正値を決定するものであればよく、所定のガンマカーブを使用しないものでもよい。
 但し、上記の各実施形態のように、所定のガンマカーブを用いる場合の方が、表示パネルの大画面化を図ったときでも、表示エリアに応じて、補正後の階調値を適切に決定することができ、表示品位を確実に向上させることができる点で好ましい。
 本発明は、表示パネルの大画面化を図ったときでも、表示品位を向上させることができる階調電圧補正システム、及びこれを用いた表示装置に対して有用である。
 1 液晶表示装置
 2 液晶パネル(表示パネル)
 16b 階調電圧補正部(階調電圧補正システム)
 16c、16e、16fr、16fg、16fb、16g 階調補正決定部
 16c1 演算部
 16d 階調電圧出力部
 16e1、16fr1、16fg1、16fb1、16g1 LUT
 17、17-1~17-8 ソースドライバ
 18、18-1~18-3、28a、28a-1~28a-4、28b、28b-1~28b-4 ゲートドライバ
 P 画素
 A1~A32 表示エリア

Claims (8)

  1. 複数の画素を有するとともに、複数の表示エリアが設定された表示パネルにおいて、前記複数の画素に供給される階調電圧を補正する階調電圧補正システムであって、
     前記複数の表示エリアに応じて、外部からの映像信号に含まれた画素毎の階調値に対する補正値を決定する階調補正決定部と、
     前記階調補正決定部にて決定された補正値に応じた階調電圧を前記表示パネル側に出力する階調電圧出力部と、
     を備えていることを特徴とする階調電圧補正システム。
  2. 前記階調補正決定部は、前記画素から外部に向かって出力される出力光の輝度が所望の値となるように、外部からの映像信号に含まれた対応する階調値を、予め定められた階調値に補正する請求項1に記載の階調電圧補正システム。
  3. 前記階調補正決定部には、外部からの映像信号に含まれた画素毎の階調値を用いて、予め定められた階調値を演算によって求める演算部が用いられている請求項1または2に記載の階調電圧補正システム。
  4. 前記階調補正決定部には、外部からの映像信号に含まれた画素毎の階調値と、予め定められた階調値とを関連付けたルックアップテーブルが用いられている請求項1または2に記載の階調電圧補正システム。
  5. 前記階調補正決定部は、前記複数の表示エリアに応じて、予め定められた互いに異なる所定のガンマカーブを使用して、補正後の階調値を決定する請求項1~4のいずれか1項に記載の階調電圧補正システム。
  6. 前記階調補正決定部は、前記表示パネルに設けられた赤色、緑色、及び青色の画素の色毎に、前記複数の表示エリアに応じて、外部からの映像信号に含まれた対応する階調値に対する補正値を決定する請求項1~5のいずれか1項に記載の階調電圧補正システム。
  7. 請求項1~6のいずれか1項に記載の階調電圧補正システムを用いたことを特徴とする表示装置。
  8. 前記表示パネルとして、液晶パネルが用いられるとともに、
     前記液晶パネルでは、ゲートドライバと、前記ゲートドライバから互いに異なる位置に設けられた複数のソースドライバとが設けられ、
     前記複数のソースドライバでは、前記ゲートドライバからの距離に応じて、互いに異なるガンマカーブを使用した階調電圧が、前記階調電圧出力部から入力される請求項7に記載の表示装置。
PCT/JP2012/076772 2011-10-18 2012-10-17 階調電圧補正システム、及びこれを用いた表示装置 WO2013058259A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-228888 2011-10-18
JP2011228888 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058259A1 true WO2013058259A1 (ja) 2013-04-25

Family

ID=48140905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076772 WO2013058259A1 (ja) 2011-10-18 2012-10-17 階調電圧補正システム、及びこれを用いた表示装置

Country Status (1)

Country Link
WO (1) WO2013058259A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275331A (zh) * 2018-03-13 2019-09-24 夏普株式会社 液晶显示装置及液晶显示装置的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318898A (ja) * 1994-05-24 1995-12-08 Hitachi Ltd アクティブマトリクス型液晶表示装置およびその駆動方法
JPH0830240A (ja) * 1994-07-19 1996-02-02 Sharp Corp 液晶表示装置
JP2000267638A (ja) * 1999-03-18 2000-09-29 Toshiba Corp シェーディング補正回路
JP2003134525A (ja) * 2001-10-29 2003-05-09 Nec Viewtechnology Ltd 固定画素表示装置
JP2004086093A (ja) * 2002-08-29 2004-03-18 Sharp Corp 液晶駆動装置
JP2005148386A (ja) * 2003-11-14 2005-06-09 Seiko Epson Corp 電気光学装置の駆動方法、電気光学装置および電子機器
JP2006330084A (ja) * 2005-05-23 2006-12-07 Nec Corp 液晶表示装置及びその駆動方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318898A (ja) * 1994-05-24 1995-12-08 Hitachi Ltd アクティブマトリクス型液晶表示装置およびその駆動方法
JPH0830240A (ja) * 1994-07-19 1996-02-02 Sharp Corp 液晶表示装置
JP2000267638A (ja) * 1999-03-18 2000-09-29 Toshiba Corp シェーディング補正回路
JP2003134525A (ja) * 2001-10-29 2003-05-09 Nec Viewtechnology Ltd 固定画素表示装置
JP2004086093A (ja) * 2002-08-29 2004-03-18 Sharp Corp 液晶駆動装置
JP2005148386A (ja) * 2003-11-14 2005-06-09 Seiko Epson Corp 電気光学装置の駆動方法、電気光学装置および電子機器
JP2006330084A (ja) * 2005-05-23 2006-12-07 Nec Corp 液晶表示装置及びその駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275331A (zh) * 2018-03-13 2019-09-24 夏普株式会社 液晶显示装置及液晶显示装置的制造方法

Similar Documents

Publication Publication Date Title
RU2565480C2 (ru) Дисплейное устройство и способ отображения
CN108169839B (zh) 导光板以及包括导光板的液晶显示器
US7443463B2 (en) Liquid crystal display device and luminance difference compensating method thereof
US8749599B2 (en) 4-primary color display and pixel data rendering method thereof
WO2013080985A1 (ja) 制御ユニット、該制御ユニットを含む表示装置、及び、制御方法
US9852700B2 (en) Liquid crystal display and method for driving the same
WO2019210641A1 (zh) 消除背光Mura的方法
US20080191979A1 (en) Display Control Device and Display Device
US20110267541A1 (en) Display apparatus
JP2011186191A (ja) 液晶装置とその駆動方法、および電子機器
JP4278696B2 (ja) 表示制御装置、および、表示装置
CN111161678A (zh) 一种曲面显示面板的伽马电压调整方法、驱动方法及装置
US11543689B2 (en) Liquid crystal display device
KR101705903B1 (ko) 액정표시장치
US9355614B2 (en) Image quality processing method and display device using the same
KR20160092416A (ko) 액정표시장치
KR20150078212A (ko) 디스플레이 장치
WO2013073428A1 (ja) 表示装置
WO2013108646A1 (ja) 表示装置
US20100013850A1 (en) Liquid crystal display device
WO2013058259A1 (ja) 階調電圧補正システム、及びこれを用いた表示装置
KR101728349B1 (ko) 양면 디스플레이용 액정표시장치
CN101499250A (zh) 液晶显示装置的控制方法、液晶显示装置以及电子设备
KR102658431B1 (ko) 백라이트 유닛 및 이를 이용한 액정 표시 장치
JP2008185932A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP