WO2013058161A1 - 連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機 - Google Patents

連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機 Download PDF

Info

Publication number
WO2013058161A1
WO2013058161A1 PCT/JP2012/076316 JP2012076316W WO2013058161A1 WO 2013058161 A1 WO2013058161 A1 WO 2013058161A1 JP 2012076316 W JP2012076316 W JP 2012076316W WO 2013058161 A1 WO2013058161 A1 WO 2013058161A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
hot water
level
molten metal
vibration
Prior art date
Application number
PCT/JP2012/076316
Other languages
English (en)
French (fr)
Inventor
関口 毅
茂生 中村
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Priority to EP20120841803 priority Critical patent/EP2769782A4/en
Priority to US14/256,582 priority patent/US9174273B2/en
Publication of WO2013058161A1 publication Critical patent/WO2013058161A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/051Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds into moulds having oscillating walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/166Controlling or regulating processes or operations for mould oscillation

Definitions

  • the present invention relates to a mold level control method and apparatus for a continuous casting machine, and a continuous casting machine equipped with the apparatus.
  • a method for controlling the molten metal surface level in the mold there is a “continuous casting machine mold molten metal surface level control method” disclosed in Patent Document 1, for example.
  • the “continuous casting machine mold surface level control method” disclosed in Patent Document 1 “measures the mold level in the continuous casting machine mold, inputs a deviation of the measured value relative to the set value to a feedback controller, and performs feedback.
  • the actuator is operated by the control output of the controller, and the opening level of the sliding nozzle provided in the tundish for supplying molten steel is controlled by the actuator output, and the molten metal level is controlled.
  • the adaptive control operation amount is used as the feedforward amount for changing the sliding nozzle opening, and the feedback Is added to the control output of the control vessel and having an operation step of operating the actuator.
  • the conventionally proposed hot water level control in the mold is to keep the hot water level constant by adjusting the opening of a sliding nozzle provided in the tundish and adjusting the amount of hot water supplied to the mold.
  • the basis of control by adjusting the opening of such a sliding nozzle was PID control, but in order to improve the response to disturbance, various control methods have been proposed as represented by Patent Document 1, I got some results.
  • various disturbances such as hot-water surface fluctuations, bulging hot-water surface fluctuations, and hot-water surface fluctuations caused by sliding nozzle clogging due to deposits on the sliding nozzle.
  • the hot water ripple is a state where the average level of the hot water surface does not change, but the height changes depending on the location of the hot water surface, which is caused by mold vibration (frequency: 2 to 3 Hz), and is a constant excited by the movement of the immersion nozzle. There is a standing wave (frequency: 0.6-0.9Hz).
  • the fluctuation of the molten metal surface due to the fluctuation of the bulging surface and the blocking of the sliding nozzle due to the deposits on the sliding nozzle are those in which the average level of the molten metal surface fluctuates.
  • the fluctuation of the bulging level is that the solidified thin steel part is a part where the roll is not supported, and bulging, which is a phenomenon that bulges outward, periodically occurs, and the entire molten level moves up and down.
  • the fluctuation of the molten metal surface caused by the sliding nozzle clogging due to the deposit on the sliding nozzle is, for example, the level of the molten metal level being reduced by reducing the amount of molten steel supplied to the mold due to the sliding nozzle clogging with the deposit. It is a case where it falls, or a case in which the deposit is removed from the sliding nozzle for some reason, so that the amount of molten steel supplied increases rapidly and the surface level rises rapidly.
  • the control that keeps the molten metal level constant by adjusting the opening of the sliding nozzle is effective because of the above-mentioned bulging surface fluctuation that causes the average level of the molten metal to fluctuate, the clogging of the sliding nozzle due to deposits on the sliding nozzle, etc. This is against fluctuations in the hot water surface.
  • some disturbances with varying average surface levels have periodicity, others have no periodicity, and others have periodicity changes. Sliding even with various control theories These disturbances cannot be removed only by adjusting the opening of the nozzle, and the fundamental solution of keeping the mold surface constant has not been reached.
  • the present invention has been made to solve such problems, and an object thereof is to provide a mold level control method and apparatus effective against various disturbances, and a continuous casting machine including the apparatus. .
  • the disturbance cannot be removed even with various control theories only by the method of adjusting the opening of the sliding nozzle.
  • the response speed of the mold vibration control is 1 Hz or more and is overwhelmingly faster than the response speed of the sliding nozzle, and a new method of using the mold vibration control for mold surface control.
  • the mold vibration reference position vibration center
  • the mold surface level control method measures the mold surface level in the mold in a continuous casting machine, and based on the deviation between the set surface value preset as the melt surface target value and the measured value.
  • the vibration reference position of the mold is changed so that the vibration reference position follows the molten metal surface fluctuation.
  • molten_metal surface level control controls the relative level of a mold and hot_water
  • the level of the molten metal is controlled by adjusting the opening of the sliding nozzle based on the deviation of the measured value from the set value.
  • a mold level control apparatus includes a mold vibration controller that controls mold vibration in a continuous casting machine, and a mold level meter that measures the mold level in the mold, The mold vibration controller inputs a measurement value of the molten metal level meter and adjusts a vibration reference position of the mold based on the input value.
  • a sliding nozzle opening adjusting device which inputs the measured value of the molten metal level meter and adjusts the opening of the sliding nozzle. Is.
  • a continuous casting machine comprises the mold hot water level control device according to the above (3) or (4).
  • the mold surface level control method measures a mold surface level in a mold in a continuous casting machine, and vibrates the mold based on a deviation between a set surface value preset as a melt surface target value and the measured value. Since the reference position is changed and the vibration reference position follows the fluctuation of the molten metal surface, the contact surface of the molten steel and the mold (that is, the initial solidification position) can be kept constant. It is possible to prevent the occurrence of defects and scratches on the surface of the steel slab by preventing the fluctuations from occurring, that is, preventing the inclusion of impurities such as powder on the molten steel surface due to the molten metal surface fluctuation.
  • FIG. 1 is a tundish
  • 3 is a mold
  • 5 is an immersion nozzle for injecting molten steel in the tundish into the mold
  • 7 is an amount of molten steel provided between the immersion nozzle and the tundish and supplied to the immersion nozzle.
  • the sliding nozzle to be adjusted.
  • the sliding nozzle 7 is provided with a sliding nozzle hydraulic cylinder 19 that opens and closes the sliding nozzle 7.
  • the opening of the sliding nozzle hydraulic cylinder 19 is adjusted by the hot water level controller 17 controlling the second servo valve 21 based on the measured value of the hot water level meter 16.
  • the mold surface level control device 10 in the present invention includes a mold vibration controller 11 that controls vibration of the mold 3 in a continuous casting machine, and a water surface level meter 16 that measures the surface level in the mold 3.
  • the measurement value of the molten metal level meter 16 is input to the mold vibration controller 11, and the vibration reference position of the mold 3 is adjusted based on the input value.
  • the configuration of the mold vibration controller which is a feature of the present embodiment will be described in detail.
  • the mold vibration controller 11 is a device for controlling the vibration of the mold 3 in the continuous casting machine.
  • the mold vibration controller 11 performs continuous position control of the mold position control cylinder 9 at high speed by controlling the first servo valve 15 that drives the mold position control cylinder 9.
  • the actual position of the mold 3 necessary for the mold vibration controller 11 to perform the above control is acquired by the mold position level meter 13 and fed back to the mold vibration controller 11.
  • the mold vibration controller 11 includes a reference waveform signal for vibration (oscillation) having a predetermined amplitude and period centered on the reference position, a measured value of the molten metal level meter 16, and a molten metal surface set value (target value). And a combined control signal in which the reference position is corrected based on the deviation is generated.
  • FIG. 2 shows an example of the synthesis control signal. In each graph of FIG. 2, the horizontal axis indicates time, and the vertical axis indicates amplitude.
  • FIG. 2A shows a reference waveform signal for oscillation.
  • FIG. 2B shows a deviation between the measured value of the molten metal level meter 16 and the set value (target value) of the molten metal surface, that is, a reference position correction signal for correcting the vibration reference position of the mold 3.
  • FIG. 2C shows a synthesized control signal obtained by synthesizing the reference waveform signal and the reference position correction signal, and this synthesized control signal is output to the first servo valve 15 as a mold position control signal.
  • the mold vibration controller 11 controls the first servo valve 15 based on the mold position control signal, so that the mold 3 is position-controlled so that the vibration reference position is changed following the molten metal surface fluctuation and oscillates.
  • the setting position of the composite control signal (hereinafter referred to as (SV value)) is corrected by the deviation between the molten metal surface measured value and the molten metal surface set value. It can be a value.
  • This relationship is shown in Formula (1).
  • Y SV value f (a, b): function with a and b as variables fo: mold vibration frequency (Hz) t: Time ⁇ H: Deviation between measured value and set value of molten metal surface
  • Making the mold 3 follow the molten metal surface level means that the relative position between the meniscus and the mold 3 is not changed when viewed from the mold reference system. And not changing the relative position between the meniscus and the mold 3 means that the initial solidification position does not change with respect to the mold.
  • the fact that the initial solidification position does not fluctuate is important for maintaining a stable initial solidification portion and stably supplying powder.
  • the powder exists as a powder layer 25, a semi-molten layer 27, and a molten layer 29 on the molten steel 23.
  • the initial solidified portion forms a complicated state including the slag rim 31, the powder fixed layer 33, the powder fluidized layer 35, the solidified shell 37, and the like.
  • the powder of the molten layer 29 can be stably supplied to the interface between the molten steel and the mold 3.
  • the molten metal level fluctuates, such a stable state (relative positional relationship) will collapse, causing insufficient or excessive supply of powder, slag entrainment in the molten steel, and the mold in contact with the molten steel. The temperature will change suddenly, and the solidification situation will change greatly.
  • the temperature distribution of the mold 3 changes rapidly in the vicinity of the molten metal surface even in a stable state. Therefore, if the initial solidification position deviates beyond the normal vibration range, the temperature of the mold 3 with which the molten steel comes into contact changes suddenly, so that the solidification state varies greatly and a stable initial solidification portion cannot be maintained. Conversely, not changing the relative position between the mold 3 and the molten metal surface maintains a stable initial solidified state. That is, the initial solidification position is not changed by making the reference position of the mold 3 follow the fluctuation of the molten metal surface, so that the stable state of the initial solidification portion can be maintained and the powder is stably supplied to the interface between the molten steel and the mold 3. be able to.
  • the vibration due to oscillation is also a change of the slab drawing speed when viewed from the mold reference system.
  • the oscillation assumed a sine wave.
  • the vibration speed of the sine wave vibration is obtained by the equation (2).
  • V represents a vibration speed
  • r represents a half amplitude
  • f represents a vibration frequency.
  • V r ⁇ 2 ⁇ ⁇ f (2)
  • Equation (3) the oscillation speed of oscillation can be obtained as Equation (3).
  • Vo oscillation vibration speed
  • ro oscillation half amplitude
  • fo oscillation frequency
  • the vibration speed at the mold reference position is the same as the molten metal surface fluctuation speed of the bulging hot water surface fluctuation, and the molten metal surface fluctuation speed due to bulging was obtained from the equation (4) based on the equation (2).
  • Vb molten steel surface fluctuation speed by bulging
  • Equations (3) and (4) it can be seen that the oscillation speed of oscillation is orders of magnitude faster than the bulging surface level fluctuation. Therefore, the influence when the mold follows the fluctuation of the bulging surface is smaller than the influence on the casting speed due to the oscillation, and is almost negligible.
  • FIG. 5 illustrates the control flow with arrows.
  • the mold surface level control method performed by the continuous casting machine of the present embodiment can be roughly divided into two types, mold vibration control and sliding nozzle control.
  • the mold vibration control measures the molten metal surface level in the mold 3 in the continuous casting machine, changes the vibration reference position of the mold 3 based on the deviation of the measured value from the set value, and the vibration reference position follows the fluctuation of the molten metal surface. I am doing so. This will be specifically described below.
  • the mold vibration controller 11 is set in advance with a basic vibration waveform centered on a vibration reference position for oscillation (see FIG. 2A).
  • a vibration waveform is synthesized with the corrected vibration reference position as a center to obtain an indication value of the mold position (SV value) (see FIG. 2C).
  • the actual mold position (PV value) fed back from the mold position level meter 13 is compared with this SV value, and the error is corrected by the first servo valve 15, so that the mold position control cylinder 9 is operated and the mold position is controlled to a predetermined position, so that steady oscillation is maintained with respect to the molten metal surface.
  • the level of the hot water level is controlled by adjusting the opening of the sliding nozzle 7 based on the deviation between the hot water level measured by the hot water level meter 16 and the hot water surface setting device. This will be specifically described below.
  • a hot water surface set value (SV value) is set in advance.
  • the deviation is calculated based on the set surface level and the actual level (PV value) fed back from the level meter 16.
  • the hot water level controller 17 controls the second servo valve 21 based on this deviation, and the opening degree of the sliding nozzle 7 is adjusted by the second servo valve 21.
  • the amount of molten steel injected into the mold 3 is controlled by adjusting the opening of the sliding nozzle 7, and the molten metal surface level is controlled and further fed back.
  • the mold 3 performs oscillation while following the molten metal surface level, and the molten metal surface level control is performed by the sliding nozzle. Achieves relative agreement with the surface level. As a result, the relative position between the meniscus and the mold 3 does not fluctuate, the initial solidification position in the mold 3 can be maintained, a stable initial solidification portion can be maintained, the powder supply is insufficient or excessive, and the slag This prevents the steel from being entrained in molten steel and achieves a stable powder supply.
  • the mold hot water surface control device in the present embodiment it is only necessary to change the SV value creation logic of the existing mold vibration controller, and the existing mold vibration controller and the mold 3 are oscillated.
  • the hot water level meter 16 and the like can be used as they are. For this reason, there is also an effect that the cost of the apparatus can be reduced.
  • the mold position control cylinder 9 using hydraulic pressure is taken as an example of the oscillation device.
  • the oscillation device to which the present invention can be applied is limited to the above.
  • an electric cylinder or lever type vibration device may be used as long as it can provide oscillation. .
  • the surface level control target is due to the above-mentioned bulging surface level fluctuation in which the average level of the molten metal surface fluctuates, the sliding nozzle clogging due to deposits on the sliding nozzle, and the like.
  • Such as hot water level fluctuation although the average level of the hot water surface does not change, the hot water surface undulation whose height changes depending on the location of the hot water surface may remain as a disturbance signal that adversely affects the control in the control of the present embodiment. Therefore, a high frequency filter may be installed in the hot water surface level meter 16, and the disturbance signal may be removed by removing vibration of, for example, about 1 Hz or more.
  • the high-frequency filter may be installed anywhere in the mold vibration controller 11 as long as the high-frequency filter can be installed so as to remove the disturbance signal, or the mold position to the first servo valve 15. You may install separately so that a disturbance signal may be removed after a control signal output. Moreover, you may install a damper so that a molten-metal surface fluctuation
  • FIG. 6 shows the result of applying the present invention to control the mold level of the continuous casting machine.
  • the horizontal axis represents the molten metal level control method
  • the vertical axis represents the defect index.
  • 6 (a) and 6 (b) show a case where the hot water level control is performed only by the conventional method
  • FIG. 6 (a) shows a case where the hot water surface control is performed only by the PID hot water surface control
  • FIG. It shows the case of performing the hot water surface respectively controlled only by the H ⁇ bath level control.
  • FIG. 6 (c) shows a case where the molten metal surface control is performed by using both the PID molten metal surface control and the mold vibration control of the present invention
  • FIG. 6 (d) shows the H ⁇ molten metal surface control and the mold vibration control of the present invention.
  • the case where the hot water level control is performed in combination is shown.
  • the defect index in FIGS. 6 (a) to 6 (d) is shown with reference to FIG. 6 (a). Comparing FIG. 6 (a) and FIG. 6 (c), FIG. 6 (b), and FIG. Can be seen to be less than half.
  • the present invention can be applied to any control method of PID hot water level control and H ⁇ hot water level control, and it has been clarified that the effect of preventing defects is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

 種々の外乱に対しても効果のあるモールド湯面制御方法及び装置を提供する。 本発明に係るモールド湯面レベル制御方法は、連続鋳造機におけるモールド内湯面レベルを計測し、湯面目標値として予め設定された湯面設定値と前記計測値との偏差に基づいてモールドの振動基準位置を変更し、該振動基準位置が湯面変動に追従するようにしたことを特徴とするものである。

Description

連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機
 本発明は、連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機に関するものである。
 鋳型(モールド)内の湯面高さ(レベル)が大きく変動すると、モールドに接して凝固中の鋼に、溶鋼面上のパウダ等の不純物が巻き込まれる。不純物が巻き込まれると、鋼片表面に欠陥や傷を生じ、圧延時に銅板傷として露出することになり、品質や歩留まりに大きな影響を及ぼす。したがって、モールド内の湯面変動を抑制することが求められている。
 このようなモールド内の湯面レベルを制御するものとして、例えば特許文献1に開示された「連続鋳造機モールド内湯面レベル制御方法」がある。
 特許文献1に開示された「連続鋳造機モールド内湯面レベル制御方法」は、「連続鋳造機モールド内湯面レベルを計測し、該計測値の設定値に対する偏差をフィードバック制御器に入力し、該フィードバック制御器の制御出力によりアクチュエータを操作し、該アクチュエータの駆動出力によりタンディッシュに設けられ溶鋼給湯を行うスライディングノズルの開度を調節し、前記湯面レベルを制御する方法において、前記湯面レベル計測値の設定値に対する偏差から湯面レベル変動を生じる周期性外乱を推定し、該推定した周期性外乱による湯面レベル変動を打ち消す適応制御操作量を演算する推定・演算工程と、前記演算された適応制御操作量を、前記スライディングノズル開度変更のフィードフォワード量として、前記フィードバック制御器の制御出力に加算して前記アクチュエータを操作する操作工程とを有することを特徴とする。」(特許文献1の請求項1参照)というものである。
特開2000-322106号公報
 従来提案されているモールド内湯面制御は、タンディッシュに設けられたスライディングノズルの開度を調整し、モールドに供給される湯量を調整することにより湯面レベルを一定に保つというものである。
 このようなスライディングノズルの開度調整による制御の基本はPID制御であったが、外乱への応答性を高めるべく、上記特許文献1に代表されるように、種々の制御方式が提案されて、それなりの成果を得てきた。
 しかしながら、外乱には、湯面波立ち、バルジング性湯面変動、スライディングノズルへの付着物によるスライディングノズル閉塞等に起因する湯面変動といった種々のものがある。
 湯面波立ちとは、湯面の平均レベルは変わらないが、湯面の場所によって高さが変わる状態をいい、モールド振動によるもの(周波数:2~3Hz)、浸漬ノズルの移動によって励起される定在波(周波数:0.6~0.9Hz)がある。
 バルジング性湯面変動、スライディングノズルへの付着物によるスライディングノズル閉塞等に起因する湯面変動は、湯面の平均レベルが変動するものであり、この意味で湯面波立ちとは異なっている。
 バルジング性湯面変動は、凝固した薄い鋼の部分が、ロールの支持がない部分で、外側に膨らむ現象であるバルジングが周期的に発生することによって、湯面全体が上下動するものであり、その周波数は0.05~0.15Hzである。
 また、スライディングノズルへの付着物によるスライディングノズル閉塞等起因する湯面変動とは、例えばスライディングノズルが付着物によって閉塞することのよって、溶鋼のモールドへの供給量が減少することで湯面レベルが下がるような場合や、何らかの原因によって付着物がスライディングノズルから除去されることで、溶鋼の供給量が急激に増加して湯面レベルが急上昇するような場合である。
 スライディングノズルの開度調整によって湯面レベルを一定に保つ制御が有効なのは、湯面の平均レベルが変動するような上記のバルジング性湯面変動、スライディングノズルへの付着物によるスライディングノズル閉塞等に起因する湯面変動に対してである。
 しかし、湯面平均レベルが変動するような外乱の中にも、周期性を持つものもあれば、周期性を持たないものや周期が変化するものがあり、種々の制御理論をもってしてもスライディングノズルの開度調整のみでこれらの外乱を取り除くことはできず、モールド湯面を一定に保つということの根本的解決には至っていない。
 本発明はかかる課題を解決するためになされたものであり、種々の外乱に対しても効果のあるモールド湯面制御方法及び装置、該装置を備えた連続鋳造機を提供することを目的としている。
 上述したように、スライディングノズルの開度調整という方法のみでは種々の制御理論をもってしても外乱を取り除くことはできない。これは、スライディングノズルの開度調整の応答性が悪く種々の外乱に対応できないからである。
 そこで、発明者は、モールド振動制御の応答速度が1Hz以上であり、スライディングノズルの応答速度に比べて圧倒的に速いことに着目し、モールド振動制御をモールド湯面制御に利用するという新たな方法を考えた。すなわち、モールドの振動基準位置(振動中心)を、変動する湯面レベルに追従させて、溶鋼とモールドの接触面(すなわち初期凝固位置)を一定に保たせることでスライディングノズルの開度調整のみでは対応できなかった外乱に対しても対応可能になるとの知見を得た。
 つまり、従来は湯面レベル(地球上の固定点からの高さ)を一定にすることのみに着目していたものを「モールドと湯面との相対的レベル」を一定にするように発想転換したものである。
 本発明はかかる新たな発想に基づいてなされたものであり、具体的には以下の構成からなるものである。
(1)本発明に係るモールド湯面レベル制御方法は、連続鋳造機におけるモールド内湯面レベルを計測し、湯面目標値として予め設定された湯面設定値と前記計測値との偏差に基づいてモールドの振動基準位置を変更し、該振動基準位置が湯面変動に追従するようにしたことを特徴とするものである。
 なお、本明細書において、モールド湯面レベル制御とは、モールドの位置制御や湯面レベル(地球上の固定点からの高さ)を制御することでモールドと湯面との相対レベルを制御することを意味する。
(2)また、上記(1)に記載のものにおいて、前記計測値の設定値に対する偏差に基づいてスライディングノズルの開度を調節し前記湯面レベルを制御することを特徴とするものである。
(3)本発明に係るモールド湯面レベル制御装置は、連続鋳造機におけるモールドの振動を制御するモールド振動制御器と、モールド内湯面レベルを計測する湯面レベル計とを有し、
 前記モールド振動制御器は、前記湯面レベル計の計測値を入力して、該入力値に基づいて前記モールドの振動基準位置を調整することを特徴とするものである。
(4)また、上記(3)に記載のものにおいて、前記湯面レベル計の計測値を入力して、スライディングノズルの開度を調節するスライディングノズル開度調整装置を備えたことを特徴とするものである。
(5)本発明に係る連続鋳造機は、上記(3)又は(4)に記載のモールド湯面レベル制御装置を備えてなることを特徴とするものである。
 本発明に係るモールド湯面レベル制御方法は、連続鋳造機におけるモールド内湯面レベルを計測し、湯面目標値として予め設定された湯面設定値と前記計測値との偏差に基づいてモールドの振動基準位置を変更し、該振動基準位置が湯面変動に追従するようにしたので、溶鋼とモールドの接触面(すなわち初期凝固位置)を一定に保たせることができ、これによって湯面の絶対レベル変動を防止したのと同等の効果、すなわち湯面変動による溶鋼面上のパウダ等の不純物の巻き込みを防止し、鋼片表面への欠陥や傷の発生を防止することができる。
本発明の実施の形態に係るモールド湯面レベル制御装置の説明図である。 図1に記載のモールド湯面レベル制御装置のモールド振動制御器から出力されるモールド位置制御信号を表した図である。 モールド内のメニスカス近傍の溶鋼表面の状態を説明する説明図である(鉄鋼便覧4版より引用)。 モールドの高さ方向に沿った温度分布を示した図である(鉄鋼便覧4版より引用)。 図1に記載のモールド湯面レベル制御装置の制御方法を説明する説明図である。 本発明の効果を確認した実施例の結果示したグラフである。
  1 タンディッシュ
  3 モールド
  5 浸漬ノズル
  7 スライディングノズル
  9 モールド位置制御用シリンダ
 10 モールド湯面レベル制御装置
 11 モールド振動制御器
 13 モールド位置レベル計
 15 第1サーボ弁
 16 湯面レベル計
 17 湯面レベル制御器
 19 スライディングノズル用油圧シリンダ
 21 第2サーボ弁
 23 溶鋼
 25 粉末層
 27 半溶融層
 29 溶融層
 31 スラグリム
 33 パウダ固着層
 35 パウダ流動層
 37 凝固シェル
 本実施の形態に係るモールド湯面レベル制御方法及び装置の説明の前に、これらに関連する連続鋳造機を構成する主な装置を図1に基づいて説明する。
 図1において、1はタンディッシュ、3はモールド、5はタンディッシュ内の溶鋼をモールドに注入する浸漬ノズル、7は浸漬ノズルとタンディッシュとの間に設けられて浸漬ノズルに供給する溶鋼量を調整するスライディングノズルである。
 スライディングノズル7には、スライディングノズル7の開閉を行うスライディングノズル用油圧シリンダ19が設けられている。スライディングノズル用油圧シリンダ19は、湯面レベル計16の計測値によって湯面レベル制御器17が第2サーボ弁21を制御することでその開度が調整される。
 次に、本発明の一実施の形態に係るモールド湯面レベル制御装置を、図1に基づいて説明する。
 本発明におけるモールド湯面レベル制御装置10は、連続鋳造機におけるモールド3の振動を制御するモールド振動制御器11と、モールド3内の湯面レベルを計測する湯面レベル計16とを有し、モールド振動制御器11に湯面レベル計16の計測値を入力して、該入力値に基づいてモールド3の振動基準位置を調整することを特徴とするものである。
 以下、本実施の形態の特徴であるモールド振動制御器の構成を詳細に説明する。
 モールド振動制御器11は連続鋳造機におけるモールド3の振動を制御する装置である。モールド振動制御器11は、モールド位置制御用シリンダ9を駆動する第1サーボ弁15を制御することで、モールド位置制御用シリンダ9の連続的な位置制御を高速に行う。
 モールド振動制御器11が上記の制御を行うために必要となるモールド3の実際の位置は、モールド位置レベル計13によって取得され、モールド振動制御器11にフィードバックされる。
 モールド振動制御器11には、基準位置を中心とした所定の振幅と周期を有する振動(オシレーション)のための基準波形信号と湯面レベル計16の測定値と湯面設定値(目標値)との偏差が入力され、該偏差に基づいて前記基準位置を補正した合成制御信号を生成する。
 図2にこの合成制御信号の一例を示す。図2の各グラフにおいては横軸が時間、縦軸が振幅を示している。図2(a)はオシレーションのための基準波形信号である。また、図2(b)は湯面レベル計16の測定値と湯面の設定値(目標値)との偏差であり、すなわちモールド3の振動基準位置を補正する基準位置補正信号である。そして、図2(c)が基準波形信号と基準位置補正信号を合成した合成制御信号であり、この合成制御信号がモールド位置制御信号として第1サーボ弁15に出力される。
 モールド振動制御器11が第1サーボ弁15をモールド位置制御信号に基づいて制御することで、モールド3はその振動基準位置を湯面変動に追従して変更すると共にオシレーションするように位置制御される。
 モールド振動制御器11において合成制御信号を生成するためには、合成制御信号の設定置((Set Variable)以下「SV値」という)を、湯面測定値と湯面設定値の偏差で修正した値とすればよい。この関係を式(1)に示す。
 Y=f(fo,t)+ΔH   ・・・(1)
  ここで、Y:SV値
      f(a,b):a、bを変数とする関数
      fo:モールド振動の周波数(Hz)
      t:時間
      ΔH:湯面の測定値と設定値の偏差
 湯面変動にモールド3を追従させることは、モールド基準系から見ると、メニスカスとモールド3との相対位置が変動しないようにすることを意味している。そして、メニスカスとモールド3との相対位置を変動させないことは、初期凝固位置がモールドに対して変動しないことを意味している。この初期凝固位置が相対的に変動しないことは、安定的な初期凝固部を維持してパウダを安定供給するために重要な意義を有する。以下、この点を、図3と図4に基づいて詳細に説明する。
 パウダは、図3に示すように、溶鋼23上に粉末層25、半溶融層27、溶融層29となって存在する。また、初期凝固部は、図3に示すように、スラグリム31、パウダ固着層33、パウダ流動層35、凝固シェル37等を含めて複雑な状態を形成している。この状態が安定に維持されることで、溶鋼とモールド3の界面に安定的に溶融層29のパウダを供給することができる。しかし、湯面変動が起きれば、このような安定した状態(相対的位置関係)が崩れ、パウダの供給不足や過剰供給、スラグの溶鋼への巻込みを誘発し、また、溶鋼の接触するモールド温度が急変し、凝固状況も大きく変動することになる。
 実際、モールド3の温度分布は、図4に示すように、安定状態においても湯面近傍で急激に変化する。したがって、通常の振動範囲以上に初期凝固位置がずれれば、溶鋼の接触するモールド3の温度が急変するため、凝固状況も大きく変動し、安定的な初期凝固部を維持することができなくなる。逆に、モールド3と湯面の相対位置を変動させないことが安定的な初期凝固状態を維持することになる。つまり、湯面変動にモールド3の基準位置を追従させることによって初期凝固位置を変動させないことで、初期凝固部の安定状態を維持でき、かつ溶鋼とモールド3の界面に安定的にパウダを供給することができる。
 上記のように、湯面変動にモールド3の基準位置を追従させることによって安定的な初期凝固を維持したり、パウダ安定供給を実現できるという大きな効果がある。しかし、湯面変動にモールドを追従させることは、モールド基準系から見ると、鋳片引抜き速度のみが(モールド位置変更速度に応じて)変化することを意味し、鋳片引抜き速度への影響が懸念される。そこで、以下においては、モールド基準位置の変更の引抜き速度への影響について検討を行った。
 モールド基準位置の変更の引抜き速度への影響の検討方法として、オシレーションによる振動もモールド基準系から見ると、鋳片引抜き速度の変化となることから、これと比較することとした。
 まず、オシレーションの振動速度を求めた。オシレーションは正弦波を想定した。正弦波振動の振動速度は式(2)で求まる。ここで、Vは振動速度、rは片振幅、fは振動数を表す。
 V=r×2π×f ・・・(2)
 式(2)に基づいて、オシレーションの振動速度は式(3)として求めることができる。
 Vo=ro×2π×fo=100mm/s=6mpm ・・・(3)
  ここで、Vo:オシレーションの振動速度
      ro:オシレーションの片振幅
      fo:オシレーションの振動数
  また、fo=4(Hz)、ro=4(mm)とした。
 振動しているモールド基準系から見れば、上記のVo=6mpm速度で、相対的引抜き速度が変動することを意味する。
 次に、湯面変動の例としてバルジング性湯面変動を例に挙げ、この湯面変動にモールド基準位置を追従させる振動速度を求めた。
 この場合、モールド基準位置の振動速度は、バルジング性湯面変動の湯面変動速度と同じであるところ、バルジングによる湯面変動速度は式(2)に基づいて、式(4)から求めた。
 Vb=rb×2π×fb=3.1mm/s=0.19mpm・・・(4)
  ここで、Vb:バルジングによる湯面変動速度
      rb:バルジングによる湯面変動片振幅
      fb:バルジング周波数
    また、fb=0.1(Hz)、rb=5(mm)とした。
 式(3)と式(4)に示されるように、オシレーションの振動速度は、バルジング性湯面変動よりも桁違いに早い速度であることがわかる。したがって、オシレーションによる鋳造速度への影響よりも、バルジング性湯面変動にモールドを追従させた場合の影響は小さく、ほとんど無視できる程度である。
 次に、上記のように構成された本実施の形態の連続鋳造機で行っている制御の流れを図5に基づいて説明する。図5は制御の流れを、矢印を交えて図示化したものである。
 本実施の形態の連続鋳造機で行っているモールド湯面レベル制御方法は、モールド振動制御とスライディングノズル制御の2つに大別することができる。
 モールド振動制御は、連続鋳造機におけるモールド3内湯面レベルを計測し、該計測値の設定値に対する偏差に基づいてモールド3の振動基準位置を変更し、該振動基準位置が湯面変動に追従するようにしている。以下、具体的に説明する。
 モールド振動制御器11にはあらかじめオシレーションさせるための振動基準位置を中心とした基本的な振動波形が設定されている(図2(a)参照)。モールド3を湯面変動に追従させるために、まず、湯面レベル計16から取得した湯面の測定値と湯面設定値の偏差(図2(b)参照)に基づいて、前記の振動基準位置を補正する。この補正された振動基準位置を中心に振動波形が合成されてモールド位置の指示値となる(SV値)(図2(c)参照)。
 次に、このSV値に対して、モールド位置レベル計13からフィードバックされた実際のモールド位置(PV値)を比較し、誤差分を第1サーボ弁15で修正することで、モールド位置制御用シリンダ9を稼働させてモールド位置を所定の位置に制御することで、湯面に対して定常的なオシレーションを維持する。
 次にスライディングノズル制御の流れについて説明する。スライディングノズル制御は、湯面レベル計16による湯面測定値と湯面設定置の偏差に基づいてスライディングノズル7の開度を調節し前記湯面レベルを制御するものである。以下、具体的に説明する。
 湯面レベル制御器17には、あらかじめ湯面設定値(SV値)が設定されている。この湯面設定値と、湯面レベル計16からフィードバックされた実際の湯面レベル(PV値)に基づいて偏差を計算する。湯面レベル制御器17は、この偏差に基づいて第2サーボ弁21が制御され、第2サーボ弁21によってスライディングノズル7の開度が調整される。スライディングノズル7の開度調製によってモールド3への溶鋼注入量が制御され、湯面レベル制御が行われ、さらにフィードバックされる。
 以上のように、本実施の形態においては、モールド3が湯面レベルに追従しながらオシレーションを行うと共にスライディングノズルによる湯面レベル制御が行われ、両方の制御が連携し合ってモールド位置と湯面レベルとの相対的一致を実現している。
 これによって、メニスカスとモールド3との相対位置が変動せず、モールド3における初期凝固位置を維持することができ、安定的な初期凝固部を維持して、パウダの供給不足や過剰供給、またスラグの溶鋼への巻込みを防止して、パウダの安定供給を実現できるという効果を奏している。
 また、本実施の形態におけるモールド湯面制御装置を実現するには、既存のモールド振動制御器のSV値作成ロジックを変更するだけでよく、既存のモールド振動制御器や、モールド3をオシレーションさせるためのアクチュエータ、湯面レベル計16等はそのまま使用することができる。このため、装置のコストを低減できるという効果もある。
 なお、上記の本実施の形態においては、オシレーションを行う装置として、油圧を用いたモールド位置制御用シリンダ9を例に挙げたが、本発明が適用できるオシレーション装置は上記のものに限られるものではなく、上記のように油圧を利用した油圧シリンダによるものでなくとも、オシレーションを与えられるようなものであれば、例えば電動シリンダや、レバー式振動装置を用いたものであってもよい。
 なお、本実施の形態において湯面レベル制御の対象としているのは、湯面の平均レベルが変動するような上記のバルジング性湯面変動、スライディングノズルへの付着物によるスライディングノズル閉塞等に起因する湯面変動等である。
 そのため、湯面の平均レベルは変わらないが、湯面の場所によって高さが変わる湯面波立ちは、本実施の形態の制御においては制御上の悪影響を及ぼす外乱信号として残る危険がある。
 そこで、湯面レベル計16に高周波フィルターを設置し、例えば1Hz程度以上の振動を除去することにより、当該外乱信号を取り除くようにしてもよい。
 また、この高周波フィルターは湯面レベル計16ではなく、外乱信号を除去できるように設置できればどこでもよく、モールド振動制御器11内に設置してもよいし、または第1サーボ弁15へのモールド位置制御信号出力後に外乱信号を除去するように別途設置してもよい。
 また、物理的に直接湯面変動を抑えるようにダンパーを設置してもよい。
 本発明を適用して、連続鋳造機のモールド湯面制御を行ったのでその結果を図6に示す。図6のグラフは、横軸に湯面制御の手法、縦軸に欠陥指数を表している。
 図6(a)、図6(b)は従来手法のみで湯面制御を行った場合、図6(a)はPID湯面制御のみで湯面制御を行った場合、図6(b)はH湯面制御のみで湯面制御を行った場合をそれぞれ示している。
 また、図6(c)はPID湯面制御と本発明のモールド振動制御を併用して湯面制御を行った場合、図6(d)はH湯面制御と本発明のモールド振動制御を併用して湯面制御を行った場合をそれぞれ示している。
 図6(a)~図6(d)における欠陥指数は図6(a)を基準として示している。
 図6(a)と図6(c)、図6(b)と図6(d)をそれぞれ比較すると、本発明を適用することによって、同様の手法の制御を行う従来例に比較して欠陥が半分以下になることが分かる。
 このように、本発明はPID湯面制御及びH湯面制御のいずれの制御方法に対しても適用可能であり、欠陥防止の効果が高いことが明らかになった。

Claims (5)

  1.  連続鋳造機におけるモールド内湯面レベルを計測し、湯面目標値として予め設定された湯面設定値と前記計測値との偏差に基づいてモールドの振動基準位置を変更し、該振動基準位置が湯面変動に追従するようにしたことを特徴とするモールド湯面レベル制御方法。
  2.  前記計測値の設定値に対する偏差に基づいてスライディングノズルの開度を調節し前記湯面レベルを制御することを特徴とする請求項1記載のモールド湯面レベル制御方法。
  3.  連続鋳造機におけるモールドの振動を制御するモールド振動制御器と、モールド内湯面レベルを計測する湯面レベル計とを有し、
     前記モールド振動制御器は、前記湯面レベル計の計測値を入力して、該入力値に基づいて前記モールドの振動基準位置を調整することを特徴とするモールド湯面レベル制御装置。
  4.  前記湯面レベル計の計測値を入力して、スライディングノズルの開度を調節するスライディングノズル開度調整装置を備えたことを特徴とする請求項3記載のモールド湯面レベル制御装置。
  5.  請求項3又は請求項4に記載のモールド湯面レベル制御装置を備えてなることを特徴とする連続鋳造機。
PCT/JP2012/076316 2011-10-21 2012-10-11 連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機 WO2013058161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20120841803 EP2769782A4 (en) 2011-10-21 2012-10-11 METHOD AND DEVICE FOR HOT WATER SURFACE CONTROL OF CONTINUOUS CASTING MOLDING MOLD AND CONTINUOUS CASTING MACHINE COMPRISING THE DEVICE
US14/256,582 US9174273B2 (en) 2011-10-21 2012-10-11 Method of and apparatus for controlling molten metal surface in mold of continuous-casting machine and continuous-casting machine including the apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011231428A JP5777482B2 (ja) 2011-10-21 2011-10-21 連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機
JP2011-231428 2011-10-21

Publications (1)

Publication Number Publication Date
WO2013058161A1 true WO2013058161A1 (ja) 2013-04-25

Family

ID=48140809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076316 WO2013058161A1 (ja) 2011-10-21 2012-10-11 連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機

Country Status (4)

Country Link
US (1) US9174273B2 (ja)
EP (1) EP2769782A4 (ja)
JP (1) JP5777482B2 (ja)
WO (1) WO2013058161A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231031B (zh) * 2013-05-16 2015-03-18 重庆大学 考虑振动行为的连铸结晶器流场物理模拟方法
CN107282907A (zh) * 2017-05-17 2017-10-24 河钢股份有限公司邯郸分公司 利用plc程序统计连铸结晶器液面波动合格率的方法
CN114226672B (zh) * 2021-12-21 2023-03-07 东北大学 一种低碳钢连铸结晶器振动参数确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322106A (ja) 1999-05-13 2000-11-24 Nkk Corp 連続鋳造機モールド内湯面レベル制御方法
JP2005238239A (ja) * 2004-02-24 2005-09-08 Jfe Steel Kk 鋼の高速連続鋳造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519060A (en) * 1968-02-07 1970-07-07 Interlake Steel Corp Continuous casting apparatus with a molten metal level control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000322106A (ja) 1999-05-13 2000-11-24 Nkk Corp 連続鋳造機モールド内湯面レベル制御方法
JP2005238239A (ja) * 2004-02-24 2005-09-08 Jfe Steel Kk 鋼の高速連続鋳造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Iron and Steel Handbook"
See also references of EP2769782A4 *

Also Published As

Publication number Publication date
EP2769782A1 (en) 2014-08-27
JP2013086164A (ja) 2013-05-13
US20150000859A1 (en) 2015-01-01
US9174273B2 (en) 2015-11-03
EP2769782A4 (en) 2015-04-22
JP5777482B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
US8684068B2 (en) Apparatus and method for controlling horizontal oscillation of an edge dam of a twin roll strip caster
CN112423911B (zh) 连续铸造的控制装置、方法及记录介质
JP5777482B2 (ja) 連続鋳造機のモールド湯面制御方法及び装置、該装置を備えた連続鋳造機
CN110062672B (zh) 用于调节连铸设施的方法和装置
JP2000202606A (ja) 連続鋳造設備のモ―ルド湯面制御装置
JP2007007722A (ja) 連続鋳造機の湯面レベル制御方法及び湯面レベル制御装置
JP5637007B2 (ja) モールド内溶鋼湯面レベル制御方法
JP5736858B2 (ja) 連続鋳造機の2次冷却水制御方法
Furtmueller et al. Control issues in continuous casting of steel
JP4517518B2 (ja) 連続鋳造機の湯面レベル制御方法及び湯面レベル制御装置
JP2007253170A (ja) 連続鋳造機モールド内湯面レベル制御方法および装置
JP4725291B2 (ja) 連続鋳造機の鋳型内湯面レベル制御方法及び連続鋳造鋳片の製造方法
JP2634108B2 (ja) 連続鋳造における湯面レベル制御方法
JP5347402B2 (ja) 連続鋳造機のモールド内湯面レベル制御方法
JP6156016B2 (ja) 連続鋳造機の湯面レベル制御装置、連続鋳造機の湯面レベル制御方法およびコンピュータプログラム
JP2014111266A (ja) 連続鋳造機の湯面レベル制御装置、方法及びプログラム
KR100711439B1 (ko) 주기적 외란에 강인한 탕면 레벨 제어 장치
JP3160805B2 (ja) 連続鋳造設備のモールドレベル制御装置
JPH03174961A (ja) 連続鋳造における湯面レベル制御方法及び装置
JP2006088212A (ja) 連続鋳造における湯面レベル制御方法
KR101819342B1 (ko) 탕면레벨 안정화 장치 및 방법
JP2018069260A (ja) 湯面レベル制御装置及び湯面レベル制御方法
JPS63192545A (ja) 連鋳モ−ルドレベル制御装置
JPH0679423A (ja) 連続鋳造における湯面レベル制御方法
JP2007275924A (ja) 連続鋳造機におけるモールド内湯面レベル制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14256582

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012841803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012841803

Country of ref document: EP