WO2013058076A1 - 信号伝達用通信体及びカプラ - Google Patents

信号伝達用通信体及びカプラ Download PDF

Info

Publication number
WO2013058076A1
WO2013058076A1 PCT/JP2012/074872 JP2012074872W WO2013058076A1 WO 2013058076 A1 WO2013058076 A1 WO 2013058076A1 JP 2012074872 W JP2012074872 W JP 2012074872W WO 2013058076 A1 WO2013058076 A1 WO 2013058076A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
linear conductor
communication body
transmission line
linear
Prior art date
Application number
PCT/JP2012/074872
Other languages
English (en)
French (fr)
Inventor
洋嗣 三舩
天野 信之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013058076A1 publication Critical patent/WO2013058076A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/22Capacitive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • H01P1/20345Multilayer filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/028Transitions between lines of the same kind and shape, but with different dimensions between strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to a signal transmission communication body and a coupler, and more particularly, to a signal transmission communication body that performs communication in a proximity state, and a coupler that includes a plurality of the signal transmission communication bodies.
  • Patent Document 1 discloses a communication system that performs large-capacity data communication between information devices by a UWB (Ultra Wide Band) communication method using a high-frequency broadband signal.
  • a UWB signal is transmitted at high speed by electrostatic coupling between high-frequency couplers of a transmitter and a receiver.
  • FIG. 38 the configuration of the communication system described in Patent Document 1 is shown in FIG.
  • This communication system includes a transmitter that performs data transmission and a receiver that performs data reception.
  • the high frequency coupler provided in each of the transmitter and the receiver is configured by a flat electrode, a series inductor, and a parallel inductor.
  • FIG. 38 when the high frequency couplers of the transceivers are arranged face to face, the two electrodes operate as one capacitor, and a high frequency signal can be efficiently transmitted between the two high frequency couplers. it can.
  • Measured value of S parameter propagation loss S21 until the signal radiated from the transmitting side reaches the receiving side
  • S parameter propagation loss S21 until the signal radiated from the transmitting side reaches the receiving side
  • the frequency characteristic of the passing waveform is wide and gentle. For this reason, coupling may occur in a frequency band unnecessary for communication, and there is a possibility of causing a communication error due to radio wave interference with other wireless devices using the frequency band.
  • the present invention has been made to solve the above problems, and provides a signal transmission communication body and a coupler capable of arbitrarily setting a pass band or a stop band of a communication signal with a simpler configuration.
  • the purpose is to do.
  • a signal transmission communication body is a signal transmission communication body including a flat coupling electrode and a signal transmission line connecting the coupling electrode and the signal input / output terminal. Is connected to the ground terminal, and the other end is an open end, and the end of the end is arranged so that at least a part thereof is close to the signal transmission line. .
  • the linear conductor since the linear conductor is disposed close to the signal transmission line, a capacitance (C) component is formed between the linear conductor and the signal transmission line.
  • the capacitance component is grounded via the inductor (L) component of the linear conductor. Therefore, the capacitance and the inductor can be regarded as equivalent to those inserted in parallel with the signal transmission line. Therefore, the linear conductor functions as a resonator.
  • the attenuation pole is generated by the linear conductor (resonator), unnecessary coupling between the communication bodies for signal transmission can be suppressed. That is, without using an external filter or the like, it is possible to suppress the frequency passing characteristics that hinder communication and avoid communication errors due to radio wave interference.
  • an attenuation pole can be generated at an arbitrary frequency, and the frequency band for communication can be adjusted. Further, since the capacitance component changes depending on the positional relationship between the linear conductor (resonator) and the signal transmission line, the coupling strength changes and the depth of the attenuation pole can be adjusted. Therefore, it is possible to adjust the degree of resistance to radio wave interference. As a result, according to the communication body for signal transmission according to the present invention, it is possible to arbitrarily set a pass band or a stop band of a communication signal (that is, obtain a desired pass characteristic) with a simpler configuration. .
  • the linear conductor is arranged so as to cross three-dimensionally close to the signal transmission line.
  • the linear conductor is disposed in parallel with the signal transmission line.
  • the linear conductor and the signal transmission line each include a strip portion, and the linear conductor and the signal transmission line are close to each other so that the flat surfaces of the strip portion face each other. And are preferably arranged in parallel.
  • the linear conductor and the signal transmission line are arranged in parallel so that the flat surfaces of the belt-like portions are opposed to each other, so that the capacitance component between the linear conductor (resonator) and the signal transmission line. Becomes even larger. For this reason, the coupling becomes stronger and the attenuation pole can be further deepened.
  • the signal transmission communication body preferably includes a plurality of linear conductors, and the plurality of linear conductors are arranged close to each other.
  • the plurality of linear conductors (resonators) are arranged close to each other, the plurality of resonators are coupled.
  • the resonance frequency is separated into the high frequency side and the low frequency side. Therefore, for example, by utilizing the resonance on the low frequency side, it is possible to substantially reduce the size of the resonator without changing the frequency of the attenuation pole.
  • the communication body for signal transmission according to the present invention includes a plurality of linear conductors, and the plurality of linear conductors are arranged at a predetermined distance from each other.
  • the signal transmission communication body includes a flat coupling electrode, a first linear conductor having one end connected to the ground terminal and the other end being an open end, and one end connected to the ground terminal. The other end is an open end, the second linear conductor is disposed close to the first linear conductor, one end is connected to the signal input / output terminal, and the other end is the first linear conductor. And a second signal transmission line having one end connected to a second linear conductor and the other end connected to a coupling electrode.
  • the first signal transmission line is connected to the first linear conductor (resonator), and is arranged close to the first linear conductor (resonator).
  • the second signal transmission line is taken out from the second linear conductor (resonator) that is coupled (ie, spatially coupled) and connected to the coupling electrode, so that only the signal near the resonance frequency passes.
  • the effect of the bandpass filter to be obtained is obtained. For this reason, it is possible to suppress coupling in an unnecessary frequency range.
  • the connection point between the first linear conductor (resonator) and the first signal transmission line, and the connection point between the second linear conductor (resonator) and the second signal transmission line By adjusting the position, impedance matching can be obtained.
  • the signal transmission communication body includes a flat coupling electrode, a first linear conductor having one end connected to the ground terminal and the other end being an open end, and one end connected to the ground terminal. The other end is an open end, the second linear conductor is disposed at a predetermined distance from the first linear conductor, one end is connected to the signal input / output terminal, and the other end is the first line.
  • a first signal transmission line connected to the conductor, and a second signal transmission line having one end connected to the second linear conductor and the other end connected to the coupling electrode. .
  • the first linear conductor (resonator) and the second linear conductor (resonator) are arranged with a predetermined distance therebetween.
  • the number of stages can be increased. For this reason, it is possible to widen the passband width of the signal and make the attenuation characteristic outside the passband steep.
  • a communication body for signal transmission includes a flat coupling electrode, a first linear conductor whose both ends are open ends, and both ends which are open ends, which are close to the first linear conductor.
  • the second linear conductor one end connected to the signal input / output terminal, the other end connected to the first linear conductor, and one end to the second linear conductor And a second signal transmission line connected to the conductor and having the other end connected to the coupling electrode.
  • both ends of the first linear conductor and the second linear conductor are open, that is, not grounded to the ground terminal. Stabilize. For this reason, for example, when two communication bodies for signal transmission are arranged to face each other, even if the relative position of the communication body for signal transmission of the other party changes, the change in the electric field seen from the other party becomes small. It is possible to suppress fluctuations in the pass characteristics due to the deviation.
  • a signal transmission communication body includes a flat coupling electrode, a first signal transmission line having one end connected to a signal input / output terminal, a spiral shape, and one end having a first signal transmission.
  • a spiral electrode connected to the other end of the line, a first flat plate electrode connected to the other end of the spiral electrode, and a second flat plate provided in close proximity to face the first flat plate electrode
  • An electrode and a second signal transmission line having one end connected to a second plate electrode and the other end connected to a coupling electrode are provided.
  • the inductor component is generated in the spiral electrode, and the capacitor component is generated in the first plate electrode and the second plate electrode. Therefore, the LC resonator is connected in series to the signal transmission line.
  • the configuration is inserted (between the first signal transmission line and the second signal transmission line). For this reason, LC resonance occurs in series, and a frequency characteristic like a bandpass filter can be provided. Accordingly, it is possible to adjust a frequency band through which a signal passes while suppressing unnecessary coupling, and obtain a desired frequency characteristic. Further, since the LC resonator composed of the spiral electrode and the first and second plate electrodes is not grounded to the ground terminal, the ground potential is stabilized.
  • a signal transmission communication body includes a plate-shaped coupling electrode, a signal transmission line that is at least partially formed in a spiral shape, and connects the coupling electrode and the signal input / output terminal, a coupling electrode, A flat plate electrode provided in close proximity so as to face each other, at least a part of which is formed in a spiral shape, a spiral conductor that connects the flat plate electrode and the ground terminal, a ground terminal, and one end of the ground terminal And a linear conductor having the other end opened, and at least a part of the linear conductor is disposed close to the signal transmission line.
  • the LC resonator is formed by the capacitance component of the coupling electrode and the plate-like electrode and the inductance component of the spiral conductor. Further, as described above, the linear conductor arranged in the vicinity of the signal transmission line also functions as a resonator. Therefore, the attenuation pole can be increased by using both in combination.
  • a signal transmission communication body includes a flat coupling electrode, a flat electrode provided close to the coupling electrode so as to face the coupling electrode, and at least a part of which is formed in a spiral shape.
  • a spiral conductor that connects the electrode and the ground terminal, a first signal transmission line having one end connected to the signal input / output terminal, and a spiral formed, and one end connected to the other end of the first signal transmission line
  • the LC resonator is formed by the capacitance component of the coupling electrode and the plate-like electrode and the inductance component of the spiral conductor.
  • the inductor component is generated by the spiral electrode and the capacitor component is generated by the first plate electrode and the second plate electrode
  • the LC resonator is connected in series to the signal transmission line (the first signal transmission line and the second signal transmission line). Between the signal transmission lines). Therefore, by combining the parallel resonance and the series resonance, it is possible to adjust a frequency band through which a signal passes while suppressing unnecessary coupling, and to obtain a desired pass characteristic (frequency characteristic).
  • the coupler according to the present invention is characterized in that a plurality of signal transmission communication bodies including one or more of the above signal transmission communication bodies are arranged to face each other in a non-contact state.
  • a plurality of signal transmission communication bodies including one or more of any of the above signal transmission communication bodies are disposed so as to face each other in a non-contact state, thereby obtaining desired pass characteristics.
  • a coupler having (frequency characteristics) can be configured.
  • S11 reflection characteristic
  • FIG. 1 is a perspective view showing a configuration of a signal transmission communication body 11.
  • FIG. 2 is a side view of the signal transmission communication body 11 as seen from the direction of the white arrow in FIG.
  • FIG. 3 is a diagram showing an equivalent circuit of the communication body 11 for signal transmission.
  • the signal transmission communication body 11 includes a rectangular flat wiring board 110 having a signal input / output terminal 112 and a ground terminal 113 formed on the main surface.
  • the back surface of the wiring board 110 is a solid ground (layer) 111.
  • the signal transmission communication body 11 includes a flat coupling electrode 120 provided in parallel with the main surface of the wiring board 110. More specifically, the coupling electrode 120 is formed in a square with a side of 6 mm, and is arranged at a height of 3 mm from the main surface of the wiring board 110.
  • the signal input / output terminal 112 and the coupling electrode 120 are electrically connected by a signal transmission line 130.
  • the signal transmission line 130 has one end connected to the center of the signal input / output terminal 112 and extending in a direction perpendicular to the main surface of the wiring board 110, and one end other than the first columnar part 131.
  • a linear portion 132 connected to the end and extending in parallel to the main surface of the wiring substrate 110, and one end connected to the other end of the linear portion 132 and perpendicular to the main surface of the wiring substrate 110 (first The second columnar portion 133 is connected to the center of the coupling electrode 120 at the other end.
  • a linear conductor 140 is connected to the ground terminal 113.
  • the linear conductor 140 has one end connected to a corner of the ground terminal 113, a columnar part 141 extending in a direction perpendicular to the main surface of the wiring board 110, and one end connected to the other end of the columnar part 141.
  • the linear portion 142 extends in the direction of the signal input / output terminal 112 in parallel with the main surface of 110 and has the other end opened.
  • the length of the columnar portion 141 is set to 0.5 mm
  • the width of the linear portion 142 is set to 0.15 mm
  • the length is set to 11 mm.
  • the linear portion 142 constituting the linear conductor 140 and the linear portion 132 constituting the signal transmission line 130 are close to each other so as to form a three-dimensional intersection (in a plan view, so as to be orthogonal). Is arranged.
  • the linear conductor 140 and the signal transmission line 130 are arranged so as to be close and three-dimensionally crossed, so that the linear conductor 140 and the signal transmission line 130 A capacitance (C) component is formed between the two.
  • the capacitance component is grounded via the inductor (L) component of the linear conductor 140. Therefore, as shown in the equivalent circuit of FIG. 3, the capacitance C111 and the inductor L113 can be regarded as equivalent to those inserted in parallel to the signal transmission line 130. Therefore, the linear conductor 140 functions as the resonator LC111 (hereinafter, the linear conductor 140 may be referred to as a resonator).
  • the inductor L111 and the inductor L112 in FIG. 3 are inductor components caused by the signal transmission line 130 (the first columnar portion 131, the linear portion 132, and the second columnar portion 133).
  • FIG. 4 is a perspective view showing the configuration of the coupler 1 using the signal transmission communication body 11.
  • FIG. 5 is a diagram showing an equivalent circuit of the coupler 1.
  • the coupler 1 is configured by arranging two signal transmission communication bodies 11 according to the above-described first embodiment so as to face each other in a non-contact state. More specifically, the coupling electrodes 120 and 120 constituting the two signal transmission communication bodies 11 and 11 are disposed so as to face each other. By arranging in this way, a predetermined capacitance is formed between the two coupling electrodes 120 and 120 facing each other (see FIG. 5), and when a signal is input, the two communication bodies for signal transmission A coupling by an induced electric field is formed between 11 and 11.
  • the coupler 1 using the signal transmission communication body 11 having the resonator 140 and the signal transmission without the resonator 140 are used.
  • FIG. 6 is a graph showing reflection characteristics (S11) between signal transmission communication bodies.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S11 (dB)
  • the simulation result with the resonator 140 is a solid line, and the case without the resonator 140 is shown.
  • the simulation results are shown by broken lines.
  • S11 indicates a signal reflected to port 1 when a signal is input from port 1, that is, the reflection coefficient of port 1.
  • FIG. 7 is a graph showing pass characteristics (S21) between signal transmission communication bodies.
  • the horizontal axis represents frequency (GHz)
  • the vertical axis represents S21 (dB)
  • the case where the resonator 140 is provided is indicated by a solid line
  • the case where the resonator 140 is not provided is indicated by a broken line.
  • S21 is a ratio transmitted to port 2 when a signal is input to port 1, that is, a forward transmission coefficient.
  • the coupler using the signal transmission communication body that does not have the resonator 140 has a wide and gentle characteristic in which no pole appears in both reflection characteristics and transmission characteristics. ing.
  • a pole is generated in the vicinity of 5.4 GHz due to the parallel resonance by the resonator 140. Yes.
  • the coupler 1 using the signal transmission communication body 11 having the resonator 140 can cut off the communication signal near the resonance frequency.
  • the pole is generated by the linear conductor 140 functioning as a resonator, unnecessary coupling can be suppressed and communication errors due to radio wave interference can be avoided. That is, it is possible to suppress the pass characteristic of a frequency that hinders communication without using an external filter or the like. Therefore, it is possible to arbitrarily set the pass band or the cutoff band of the communication signal with a simpler configuration.
  • a plurality of signal transmission communication bodies including the signal transmission communication body 11 are arranged so as to face each other in a non-contact state, thereby realizing a desired pass characteristic. It becomes possible to do.
  • an attenuation pole can be generated at an arbitrary frequency, and the frequency band for communication can be adjusted. Can do. Further, since the capacitance component changes depending on the positional relationship between the linear conductor (resonator) 140 and the signal transmission line 130, the strength of coupling changes and the depth of the attenuation pole can be adjusted. Therefore, it is possible to adjust the degree of resistance to radio wave interference.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the three-dimensional intersection between the linear conductor (resonator) 140 and the signal transmission line 130 is not limited to the illustrated location, and can be set arbitrarily.
  • the signal transmission communication body 11 is configured in the space.
  • the signal transmission communication body 11 may be configured by using a multilayer substrate made of a multilayer ceramic.
  • FIG. 8 is a perspective view showing a configuration of the signal transmission communication body 12.
  • the signal transmission communication body 12 is different from the signal transmission communication body 11 described above in that the shape of the linear conductor 240 and the arrangement of the linear conductor 240 with respect to the signal transmission line 230 are different. Other configurations are the same as or similar to those of the signal transmission communication body 11 described above, and thus detailed description thereof is omitted here.
  • the linear conductor 240 includes a columnar part 241, a first linear part 242, and a second linear part 243.
  • the columnar portion 241 has one end connected to the center of the ground terminal 213 and is formed so as to extend in the direction perpendicular to the main surface of the wiring board 210.
  • the length of the columnar conductor 241 is 0.5 mm.
  • the first linear part 242 is formed so that one end is connected to the other end of the columnar part 241 and extends in the direction of the signal input / output terminal 212 in parallel to the main surface of the wiring board 210.
  • the second linear portion 243 has one end continuously connected to the other end of the first linear portion 242, parallel to the main surface of the wiring board 210, and constituting the signal transmission line 230. It is formed so as to extend in parallel in the same plane as H.232. That is, a part of the second linear portion 243 is disposed in parallel and close to the linear portion 232 constituting the signal transmission line 230 in a plane parallel to the main surface of the wiring board 210. Note that the other end of the second linear portion 243 is an open end. In the present embodiment, the width of the first linear portion 242 and the second linear portion 243 is set to 0.15 mm, and the total length is set to 13.4 mm.
  • the linear conductor 240 functions as a resonator (hereinafter, the linear conductor 240 may be referred to as a resonator).
  • the linear conductor 240 may be referred to as a resonator.
  • FIG. 10 is a graph showing the pass characteristics (S21) of the communication body 12 for signal transmission.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 12 are indicated by broken lines.
  • the transmission characteristic (S21) of the above-described signal transmission communication body 11 is also shown by a solid line.
  • an attenuation pole is generated in the vicinity of 5.4 GHz due to the parallel resonance by the resonator 240, as in the signal transmission communication body 11. Further, it was confirmed that the signal transmission communication body 12 has a deeper attenuation pole than the signal transmission communication body 11.
  • the second linear portion 243 that constitutes the linear conductor 240 and the linear portion 232 that constitutes the signal transmission line 230 are arranged close to each other in parallel. Therefore, the capacitance component between the linear conductor (resonator) 240 and the signal transmission line 230 is larger than that of the signal transmission communication body 11 according to the first embodiment described above. Therefore, the coupling becomes stronger and the attenuation pole can be made deeper. Further, according to the present embodiment, by adjusting the length of the region where the linear conductor (resonator) 240 and the signal transmission line 230 are close to each other, the attenuation pole frequency can be changed without changing the frequency of the attenuation pole. The depth can be adjusted.
  • the second linear portion 243 constituting the linear conductor (resonator) 240 and the linear portion 232 constituting the signal transmission line 230 are formed in the same plane.
  • the number of electrode layers can be reduced, and the cost can be reduced.
  • FIG. 9 is a perspective view showing a configuration of the signal transmission communication body 13.
  • the signal transmission communication body 13 is different from the signal transmission communication body 11 described above in that the shape of the linear conductor 340 and the arrangement of the linear conductor 340 with respect to the signal transmission line 330 are different. Other configurations are the same as or similar to those of the signal transmission communication body 11 described above, and thus detailed description thereof is omitted here.
  • the linear conductor 340 includes a columnar part 341, a first linear part 342, and a second linear part 343.
  • the columnar part 341 is formed so that one end is connected to the center of the ground terminal 313 and extends in a direction perpendicular to the main surface of the wiring board 310.
  • the length of the columnar conductor 341 is 0.5 mm.
  • the first linear portion 342 has one end connected to the other end of the columnar portion 341 and is formed to extend in the direction of the signal input / output terminal 312 in parallel to the main surface of the wiring board 310.
  • the first linear portion 342 and the second linear portion 343 are formed in a strip shape.
  • the linear part 332 which comprises the signal transmission line 330 is also formed in strip
  • the 2nd linear part 343 and the linear part 332 are equivalent to the strip
  • the second linear portion 343 has one end continuously connected to the other end of the first linear portion 342, parallel to the main surface of the wiring substrate 310, and constituting the signal transmission line 330. 332 and the flat surfaces are formed to face each other and extend in parallel.
  • a part of the second linear part 243 is close to the linear part 232 constituting the signal transmission line 230 so as to overlap when viewed in plan (that is, in a direction perpendicular to the main surface of the wiring board 310).
  • the other end of the second linear portion 343 is an open end.
  • the width of the first linear portion 342 and the second linear portion 343 is set to 0.15 mm, and the total length is set to 12.7 mm.
  • the second linear portion 343 constituting the linear conductor 340 and the linear portion 332 constituting the signal transmission line 330 are arranged close to each other in parallel.
  • a capacitance (C) component is formed between the linear conductor 340 and the signal transmission line 330 in the proximity region.
  • the capacitance component is grounded to the ground via an inductor (L) component included in the linear conductor 340. Therefore, it can be considered that the capacitance and the inductor are equivalently inserted in parallel to the signal transmission line 330. Therefore, the linear conductor 340 functions as a resonator (hereinafter, the linear conductor 340 may be referred to as a resonator).
  • the linear conductor 340 may be referred to as a resonator.
  • FIG. 10 is a graph showing the pass characteristic (S21) of the communication body 13 for signal transmission.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 13 are indicated by a one-dot chain line.
  • the transmission characteristic (S21) of the signal transmission communication body 11 according to the first embodiment is indicated by a solid line
  • the transmission characteristic (S21) of the signal transmission communication body 12 according to the second embodiment ( S21) is also shown by a broken line.
  • an attenuation pole is generated in the vicinity of 5.4 GHz as in the case of the signal transmission communication body 11 and the signal transmission communication body 12 due to the parallel resonance by the resonator 340. is doing. Moreover, in the signal transmission communication body 13, it was confirmed that the depth of the attenuation pole is deeper than that of the signal transmission communication body 11 and the signal transmission communication body 12.
  • the flat surfaces of the second linear portion 343 constituting the linear conductor 340 and the linear portion 332 constituting the signal transmission line 330 are opposed to each other. Therefore, the capacitance components of the linear conductor (resonator) 340 and the signal transmission line 330 are larger than those of the signal transmission communication body 11 and the signal transmission communication body 12 described above. . For this reason, the coupling becomes stronger and the attenuation pole can be further deepened. Further, according to the present embodiment, by adjusting the length of the region where the linear conductor (resonator) 340 and the signal transmission line 330 are close to each other, the attenuation pole frequency can be changed without changing the frequency of the attenuation pole. The depth can be adjusted.
  • FIG. 11 is a perspective view illustrating a configuration of the signal transmission communication body 14.
  • FIG. 12 is a side view of the signal transmission communication body 14 as seen from the direction of the white arrow in FIG.
  • the signal transmission communication body 14 is different from the signal transmission communication body 11 described above in that it includes a pair (two) of linear conductors 440 and 443 arranged close to each other. Other configurations are the same as or similar to those of the signal transmission communication body 11 described above, and thus detailed description thereof is omitted here.
  • Two ground terminals 413 and 414 are formed on the main surface of the wiring board 410 at symmetrical positions with the signal input / output terminal 412 as the center.
  • a linear conductor 440 is connected to one ground terminal 413.
  • One end of the linear conductor 440 is connected to the corner of the ground terminal 413, the columnar portion 441 extending in a direction perpendicular to the main surface of the wiring substrate 410, and one end is connected to the other end of the columnar portion 441.
  • the linear portion 442 extends in the direction of the signal input / output terminal 412 in parallel with the main surface of 410. Note that the other end of the linear portion 442 is an open end.
  • the length of the columnar portion 441 is set to 0.54 mm
  • the width of the linear portion 442 is set to 0.15 mm
  • the length is set to 4.2 mm.
  • a linear conductor 443 is connected to the other ground terminal 414.
  • One end of the linear conductor 443 is connected to the corner of the ground terminal 414, the columnar portion 444 extends in a direction perpendicular to the main surface of the wiring substrate 410, and one end is connected to the other end of the columnar portion 444.
  • the linear portion 445 extends in the direction of the signal input / output terminal 412 in parallel to the main surface of 410.
  • the other end of the linear portion 445 is an open end.
  • the length of the columnar portion 444 is set to 0.49 mm
  • the width of the linear portion 445 is set to 0.15 mm
  • the length is set to 4.2 mm.
  • the linear portion 442 constituting the linear conductor 440 and the linear portion 445 constituting the linear conductor 443 are perpendicular to the main surface of the wiring board 410 with a space of 0.05 mm. Are arranged parallel to each other (so as to overlap when viewed in plan). Moreover, the linear part 442 and the linear part 445, and the linear part 432 which comprises the signal transmission line 430 are arrange
  • the linear portion 442 constituting the linear conductor 440 and the linear portion 445 constituting the linear conductor 443 are arranged close to each other in parallel,
  • the linear portion 442 and the linear portion 445 are arranged so as to three-dimensionally cross close to the signal transmission line 430. Therefore, it can be regarded as equivalent to two resonators coupled together and connected in parallel to the signal transmission line 430 (hereinafter, the linear conductor 440 and the linear conductor 443 are referred to as resonators).
  • the linear conductor 440 and the linear conductor 443 are referred to as resonators.
  • the resonance frequency is separated into the high frequency side and the low frequency side. (That is, the attenuation pole is generated separately on the high frequency side and the low frequency side).
  • FIG. 13 is a graph showing the pass characteristic (S21) of the communication body 14 for signal transmission.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 14 are indicated by solid lines.
  • the pass characteristic (S21) of the signal transmission communication body 11 in the case of one resonator according to the first embodiment is indicated by a broken line.
  • the two linear conductors (resonators) 440 and 443 are arranged close to each other, the two resonators 440 and 443 are coupled to each other so that the resonance frequency is higher than the high frequency side. Separated to the low frequency side. Therefore, for example, by utilizing the resonance on the low frequency side, it is possible to substantially reduce the size of the resonators 440 and 443 without changing the frequency of the attenuation pole.
  • the linear conductor (resonator) 440 is generated while generating an attenuation pole at the same frequency as compared with the signal transmission communication body 11 (when there is one resonator) according to the first embodiment.
  • 443 of the linear portions 442, 445 can be shortened from 11 mm to 4.2 mm.
  • two resonators 440 and 443 are coupled, but the number of resonators coupled may be three or more.
  • the lengths of the linear portions 442 and 445 constituting the resonators 440 and 443 can be arbitrarily adjusted according to the required frequency of the attenuation pole.
  • the three-dimensional intersections between the linear conductors (resonators) 440 and 443 and the signal transmission line 430 are not limited to the illustrated locations, and can be set arbitrarily.
  • FIG. 14 is a perspective view showing the configuration of the signal transmission communication body 15.
  • the signal transmission communication body 14 is different from the signal transmission communication body 11 described above in that the signal transmission communication body 14 includes two linear conductors 540 and 543 arranged at a predetermined distance from each other. Other configurations are the same as or similar to those of the signal transmission communication body 11 described above, and thus detailed description thereof is omitted here.
  • Two ground terminals 513 and 514 are formed on the main surface of the wiring board 510 along the direction in which the linear portion 532 constituting the signal transmission line 530 extends.
  • a linear conductor 540 is connected to one ground terminal 513. Since the configuration of the linear conductor 540 is the same as that of the linear conductor 140 described above, detailed description thereof is omitted here.
  • a linear conductor 543 is connected to the other ground terminal 514. Since the configuration of the linear conductor 543 is also the same as that of the linear conductor 140 described above, detailed description thereof is omitted here. In this embodiment, the linear conductor 540 and the linear conductor 543 are arranged in parallel with a distance of 1.9 mm.
  • Each of the linear portion 542 constituting the linear conductor 540 and the linear portion 545 constituting the linear conductor 543 and the linear portion 532 constituting the signal transmission line 530 are close to each other so as to form a three-dimensional intersection (planar). (When viewed, they are orthogonal).
  • the part 532 is arranged so as to make a three-dimensional intersection in the vicinity.
  • the linear conductor (resonator) 540 and the linear conductor (resonator) 543 are arranged apart from each other, the coupling between them becomes weak. Therefore, the degree of separation of the resonance frequency is reduced, and two attenuation poles are generated in the near frequency range.
  • FIG. 15 is a graph showing the pass characteristic (S21) of the communication body 15 for signal transmission.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 15 are indicated by a solid line.
  • the pass characteristic (S21) of the signal transmission communication body 11 (in the case of one resonator) according to the first embodiment is also shown by a broken line.
  • two linear conductors (resonators) 540 and 543 having the same length are arranged with a predetermined distance (1.9 mm in the present embodiment) from each other. Therefore, although coupling occurs between the two resonators and the attenuation pole is separated into two, the coupling is weak because the distance between the resonators is large. As a result, the degree of separation of the resonance frequency is reduced, and two attenuation poles can be generated in the near frequency range. Therefore, the width of the attenuation pole can be increased.
  • the two linear conductors (resonators) 540 and 543 are arranged apart from each other, but three or more linear conductors (resonators) may be arranged apart from each other. In this way, more attenuation poles can be generated and the width of the attenuation pole can be further expanded.
  • the two linear conductors (resonators) 540 and 543 are arranged with a distance of 1.9 mm, but the distance between the linear conductors (resonators) is not limited to this value. It can be arbitrarily set according to the required passage characteristics.
  • the above-described linear conductors 440 and 443 may be arranged apart from each other.
  • FIG. 16 is a perspective view showing a configuration of the signal transmission communication body 16.
  • FIG. 17 is a diagram showing the configuration of the linear conductors (resonators) 640, 643, 646, and 649 constituting the signal transmission communication body 16 as seen from the direction of the white arrow in FIG.
  • the signal transmission communication body 16 includes two pairs (four) of linear conductors (resonators) 640, 643, 646, and 649 arranged close to each other, and thus the signal transmission communication body described above. 11 and different. Further, instead of the signal transmission line 130 connecting the signal input / output terminal 112 and the coupling electrode 120, the signal input / output terminal 612 and the linear conductor 646 (corresponding to the first linear conductor described in the claims)
  • the first signal transmission line 630 that connects the linear portion 648 that configures the linear portion 648 and the linear portion 645 that configures the linear conductor 643 (corresponding to the second linear conductor recited in the claims) It differs from the signal transmission communication body 11 described above in that it includes a second signal transmission line 633 that connects to the electrode 620 for use.
  • Other configurations are the same as or similar to those of the signal transmission communication body 11 described above, and thus detailed description thereof is omitted here.
  • ground terminals 613 and 614 are formed at symmetrical positions with the signal input / output terminal 612 as the center. That is, the ground terminal 613, the signal input / output terminal 612, and the ground terminal 614 are arranged side by side on a straight line.
  • the linear conductor 640 has one end connected to a corner of the ground terminal 613, a columnar part 641 extending in a direction perpendicular to the main surface of the wiring board 610, and one end connected to the other end of the columnar part 641.
  • the linear portion 642 extends in the direction of the signal input / output terminal 612 (and the other ground terminal 614) in parallel to the main surface of 610.
  • the linear portion 642 is formed in a band shape, and the other end (tip) is an open end.
  • the linear conductor 643 has a common base end portion with the columnar portion 641 described above, a columnar portion 644 that extends slightly longer than the columnar portion 641, and one end connected to the other end of the columnar portion 644, and a wiring board.
  • the linear portion 645 extends in the direction of the signal input / output terminal 612 (and the other ground terminal 614) in parallel to the main surface of 610 (that is, extends in parallel with the linear portion 642 described above).
  • the linear portion 645 is formed in a band shape, and the other end (tip) is an open end.
  • the linear conductor 646 has one end connected to the corner of the ground terminal 614, a columnar portion 647 extending in a direction perpendicular to the main surface of the wiring substrate 610, and one end connected to the other end of the columnar portion 647.
  • a linear portion 648 extending in the direction of the signal input / output terminal 612 (and one ground terminal 613) in parallel to the main surface of 610 is configured.
  • the linear portion 648 is formed in a band shape, and the other end (tip) is an open end.
  • the linear conductor 649 has a common base end portion with the columnar portion 647 described above, and is connected to the columnar portion 650 extending slightly longer than the columnar portion 647 and one end to the other end of the columnar portion 650,
  • the linear portion 651 extends in the direction of the signal input / output terminal 612 (and one ground terminal 613) in parallel to the main surface of 610 (that is, extends in parallel with the linear portion 648 described above).
  • the linear portion 651 is formed in a band shape, and the other end (tip) is an open end.
  • the linear part 642 constituting the linear conductor 640, the linear part 645 constituting the linear conductor 643, the linear part 648 constituting the linear conductor 646, and the linear part constituting the linear conductor 649 651 are arranged close to each other (for example, with an interval of 0.05 mm) and parallel to the main surface of the wiring substrate 410 in a vertical direction (so as to overlap when viewed in a plan view).
  • the first signal transmission line 630 connects the signal input / output terminal 612 and the linear portion 648 constituting the linear conductor 646.
  • the first signal transmission line 630 has one end connected to the center of the signal input / output terminal 612, a columnar portion 631 extending in a direction perpendicular to the main surface of the wiring substrate 610, and one end connected to the other end of the columnar portion 631.
  • an L-shaped linear portion 632 disposed in a plane parallel to the main surface of the wiring board 610. The other end of the linear portion 632 is connected to the side surface of the linear portion 648 that constitutes the linear conductor 646.
  • the second signal transmission line 633 connects the linear portion 645 constituting the linear conductor 643 and the coupling electrode 620.
  • the second signal transmission line 633 is formed in an L shape and is disposed in a plane parallel to the main surface of the wiring board 610, and one end is connected to a side surface of the linear portion 645 constituting the linear conductor 643.
  • a columnar portion 635 having one end connected to the other end of the linear portion 634 and extending in a direction perpendicular to the main surface of the line substrate 610 and the other end connected to the center of the coupling electrode 620. It consists of and.
  • connection location of the linear part 648 which comprises the 1st signal transmission line 630 and the linear conductor 646, and the connection of the linear part 645 which comprises the 2nd signal transmission line 633 and the linear conductor 643 is set in consideration of impedance matching.
  • the pass characteristic of the signal transmission communication body 16 has a characteristic like a band pass filter that selectively passes only a signal in a specific frequency band.
  • FIG. 18 is a graph showing pass characteristics (S21) of the signal transmission communication body 16 in which four resonators are inserted in series.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 16 are indicated by a solid line.
  • the pass characteristic (S21) in the case where the linear conductors (resonators) 640, 643, 646, and 649 are not provided is also shown by a broken line.
  • the signal transmission communication body 16 allows a communication signal to pass in a frequency band of about 3.8 to 5.2 GHz, and blocks the communication signal in other frequency bands. confirmed.
  • the signal transmission communication body that does not have the linear conductors (resonators) 640, 643, 646, and 649 showed a wide and gentle pass characteristic.
  • the first signal transmission line 630 is connected to the linear conductor (resonator) 646, and is arranged close to the linear conductor (resonator) 646 (ie, spatially coupled).
  • the second signal transmission line 633 is taken out from the linear conductor (resonator) 643 and connected to the coupling electrode 620, so that the resonator is inserted in series, and only the signal near the resonance frequency is obtained. Pass characteristics such as a bandpass filter that passes through are obtained. For this reason, it is possible to suppress coupling in an unnecessary frequency range.
  • connection point between the linear conductor (resonator) 646 and the first signal transmission line 630 and the connection point between the linear conductor (resonator) 643 and the second signal transmission line 633 are adjusted. By doing so, impedance matching can be taken.
  • the number of resonators is four (two pairs), but the number of resonators is not limited to four. That is, the number of resonators may be two (pair) or six (three pairs) or more.
  • FIG. 19 is a perspective view showing a configuration of the signal transmission communication body 17.
  • the signal transmission communication body 17 includes the linear conductors (resonators) 740, Parallel to 743, 746, 749, two pairs (four) of linear conductors (resonators) 752, 755, 758, 761 are provided, that is, two pairs (four) of resonators are arranged in two rows.
  • the signal transmission communication body 16 is different from the above-described signal transmission communication body 16 in that it is spaced apart and arranged in parallel.
  • first signal transmission line 730 that connects the signal input / output terminal 712 and the linear portion 748 constituting the linear conductor 746 (corresponding to the first linear conductor described in the claims)
  • second signal transmission line 733 that connects the linear portion 757 and the coupling electrode 720 that constitute the linear conductor 755 (corresponding to the second linear conductor recited in the claims). This is different from the signal transmission communication body 16.
  • Other configurations are the same as or similar to those of the signal transmission communication body 16 described above, and thus detailed description thereof is omitted here.
  • Each location is set in consideration of impedance matching.
  • FIG. 20 is a graph showing pass characteristics (S21) of the signal transmission communication body 17 in which four resonators are inserted in two stages in series.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristic of the signal transmission communication body 17 is indicated by a solid line.
  • the transmission characteristic (S21) of the above-described signal transmission communication body 16 is indicated by a broken line
  • the transmission characteristic (S21) when no resonator is provided is indicated by a one-dot chain line.
  • the communication signal is passed in the frequency band of about 2.8 to 5.6 GHz, and the other frequency bands. It was confirmed that the communication signal was cut off. That is, it was confirmed that the width of the pass band can be widened as compared with the signal transmission communication body 16 (in the case where the resonators are arranged in one row). It was also confirmed that the attenuation characteristics outside the passband can be made steep.
  • the number of resonator stages can be increased with respect to the signal transmission communication body 16 described above. it can. Therefore, it is possible to extend the passband width of the signal and make the attenuation characteristic outside the passband steep.
  • the number of resonator stages is two (two rows), but the number of resonator stages is not limited to two (two rows). That is, the number of resonators may be three (three rows) or more.
  • FIG. 21 is a perspective view showing a configuration of the signal transmission communication body 18.
  • FIG. 22 is a side view of the signal transmission communication body 18 as seen from the direction of the white arrow A1 in FIG.
  • FIG. 23 is a side view of the signal transmission communication body 18 as seen from the direction of the white arrow A2 in FIG.
  • the signal transmission communication body 18 is different from the signal transmission communication body 16 according to the sixth embodiment described above in that it does not include a ground terminal formed on the main surface of the wiring board 810.
  • each of the two pairs (four) of linear conductors (resonators) 840, 841, 843, and 844 does not have a columnar conductor connected to the ground terminal (that is, to the ground). It is different from the signal transmission communication body 16 in that it is not grounded.
  • the connection location between the first signal transmission line 830 and the linear conductor 843 and the connection location between the linear conductor 841 and the second signal transmission line 833 are different.
  • Other configurations are the same as or similar to those of the signal transmission communication body 16 described above, and thus detailed description thereof is omitted here.
  • the linear conductor 840 and the linear conductor 841 are arranged in parallel to the main surface of the wiring board 810, and the ends are connected to each other by the columnar part 842.
  • the linear conductor 843 and the linear conductor 844 are also arranged in parallel to the main surface of the wiring board 810, and the end portions are connected by the columnar portion 845.
  • the linear conductors 840 and 841 and the linear conductors 843 and 844 are arranged so that their tip portions face each other. Further, the respective linear conductors 843, 840, 844, 841 are arranged close to each other (for example, with an interval of 0.05 mm) and alternately arranged in layers in a direction perpendicular to the main surface of the wiring board 810.
  • the first signal transmission line 830 has one end connected to the center of the signal input / output terminal 812, a columnar portion 831 extending in a direction perpendicular to the main surface of the wiring substrate 810, and one end connected to the other end of the columnar portion 831. And an L-shaped linear portion 832 arranged in a plane parallel to the main surface of the wiring board 810. The other end of the linear portion 832 is connected to the side surface of the linear conductor 843.
  • the second signal transmission line 833 is formed in an L shape, is disposed in a plane parallel to the main surface of the wiring board 810, and has a linear portion 834 having one end connected to the side surface of the linear conductor 841. One end is connected to the other end of the linear portion 834, and the columnar portion 835 extends in the direction perpendicular to the main surface of the line substrate 810 and the other end is connected to the center of the coupling electrode 820.
  • connection location between the first signal transmission line 830 and the linear conductor 843 and the connection location between the second signal transmission line 833 and the linear conductor 841 are set in consideration of impedance matching.
  • FIG. 24 is a graph showing pass characteristics (S21) of the signal transmission communication body 18 in which four resonators 840, 841, 843, 844 having both ends opened are inserted in series.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 18 are indicated by a solid line.
  • the pass characteristic (S21) when no resonator is provided is shown together with a broken line.
  • FIG. 25 is a perspective view showing the configuration of the coupler 8 using the signal transmission communication body 18.
  • the coupler 8 is configured by arranging two signal transmission communication bodies 18 according to the above-described eighth embodiment so as to face each other in a non-contact state. More specifically, the coupling electrodes 820 and 820 constituting the two signal transmission communication bodies 18 and 18 are arranged to face each other. By arranging in this way, a predetermined capacitance is formed between the two coupling electrodes 820 and 820 facing each other, and when a signal is input, between the two signal transmission communication bodies 18 and 18. A coupling due to an induced electric field is formed.
  • FIG. 26 is a graph showing pass characteristics (S21) when the deviation in the XY directions is changed in the coupler 8 using the signal transmission communication body 18 according to the eighth embodiment.
  • FIGS. 26 and 27 are graph showing pass characteristics (S21) when the deviation in the XY directions is changed in the coupler 1 using the signal transmission communication body 11 according to the first embodiment.
  • the horizontal axis of the graphs shown in FIGS. 26 and 27 is the frequency (GHz), and the vertical axis is S21 (dB).
  • the frequency fluctuation of the attenuation pole can be suppressed to about 1/3 as compared with the coupler 1 in which the resonator 140 is grounded. confirmed.
  • the resonators 840, 841, 843, and 844 are not grounded to the ground terminal, the ground potential of the wiring board 810 is stabilized. Therefore, when the signal transmission communication body 18 is disposed oppositely, even if the relative position of the partner signal transmission communication body 18 is changed, the change in the electric field seen from the other party side is reduced, so that the passage characteristic due to the positional deviation is obtained. It is possible to suppress fluctuations in
  • FIG. 28 is a perspective view showing the configuration of the signal transmission communication body 19.
  • FIG. 29 is a side view of the signal transmission communication body 19 as seen from the direction of the white arrow in FIG.
  • FIG. 30 is a diagram showing an equivalent circuit of the communication body 19 for signal transmission.
  • the signal transmission communication body 19 includes a spiral electrode 932 and two parallel plate electrodes 933 arranged opposite to each other in place of the four linear conductors (resonators) 840, 841, 843, and 844. This is different from the signal transmission communication body 18 according to the eighth embodiment described above. With this change, the first signal transmission line 930 connecting the signal input / output terminal 912 and the spiral electrode 932 and the second signal transmission line connecting the parallel plate electrode 933 and the coupling electrode 920 are also provided. Each configuration of 936 is different from the signal transmission communication body 18. Other configurations are the same as or similar to those of the signal transmission communication body 18 described above, and thus detailed description thereof is omitted here.
  • the spiral electrode 932 is formed by being spirally wound so that the winding axis is perpendicular to the main surface of the wiring substrate 910.
  • the spiral electrode 932 is formed by rotating and laminating a plurality of U-shaped electrodes each having a side of 0.8 mm by 90 degrees, and between the ends of the upper and lower U-shaped electrodes. Were connected via a cylindrical electrode.
  • One end (start end) of the spiral electrode 932 is connected to the other end of the first signal transmission line 930 having one end connected to the center of the signal input / output terminal 912.
  • the first plate electrode 934 constituting the parallel plate electrode 933 is connected to the other end (termination) of the spiral electrode.
  • the parallel plate electrode 933 includes the above-described first plate electrode 934 and the second plate electrode 935 provided in close proximity so as to face the first plate electrode 934.
  • each of the first plate electrode 934 and the second plate electrode 935 is formed in a square shape having a side of 1.1 mm.
  • the second flat plate electrode 935 is connected to the coupling electrode 920 via a linear portion 937 and a columnar portion 938 constituting the second signal transmission line 936.
  • the signal transmission communication unit 19 includes the inductor L911 formed by the spiral electrode 932 and the capacitor C911 formed by the parallel plate electrode 933 as shown in the equivalent circuit of FIG.
  • the transmission line 930 and the second signal transmission line 936 can be regarded as equivalent to those inserted in series with respect to the inductor (component) L912. Therefore, since resonance occurs in LC in series, the pass characteristic of the signal transmission communication body 19 indicates the characteristic of a band-pass filter.
  • FIG. 31 is a graph showing the pass characteristic (S21) of the communication body 19 for signal transmission.
  • the horizontal axis is frequency (GHz) and the vertical axis is S21 (dB), and the characteristics of the signal transmission communication body 19 are indicated by a solid line.
  • the passage characteristic (S21) in the case where the spiral electrode 932 and the parallel plate electrode 933 are not provided is also shown by a broken line.
  • the LC resonator composed of the spiral electrode 932 and the parallel plate electrode 933 (the first plate electrode 934 and the second plate electrode 935) is connected in series to the signal transmission line (first signal). It is configured to be inserted between the transmission line 930 and the second signal transmission line 936. For this reason, series resonance occurs, and a frequency characteristic like a bandpass filter can be provided. Thereby, unnecessary coupling can be suppressed and the frequency band through which the signal passes can be adjusted, and desired pass characteristics can be obtained.
  • the LC resonator composed of the spiral electrode 932 and the first and second flat plate electrodes 934 and 935 is not grounded to the ground terminal, the ground potential of the mounting substrate 910 is stabilized. Therefore, for example, when the signal transmission communication body 19 is disposed oppositely, even if the relative position of the partner signal transmission communication body 19 is changed, the change in the electric field seen from the other party side is reduced. It is possible to suppress fluctuations in the pass characteristics.
  • the size can be reduced as compared with the signal transmission communication body 18 according to the above-described eighth embodiment. .
  • the spiral electrode 932 is wound along a winding axis perpendicular to the main surface of the wiring board 910.
  • the spiral electrode 932 is along a winding axis parallel to the main surface of the wiring board 910. It is good also as a structure wound up.
  • FIG. 32 is a perspective view showing a configuration of the communication body 20 for signal transmission.
  • FIG. 33 is a diagram showing an equivalent circuit of the communication body 20 for signal transmission.
  • the signal transmission communication body 20 includes a rectangular flat wiring board 1010 having signal input / output terminals 1012 and ground terminals 1013 and 1014 formed on the main surface.
  • the back surface of the wiring board 1010 is a solid ground (layer) 1011.
  • a rectangular parallelepiped laminate 200 in which a flat coupling electrode 1020, a signal transmission line 1030, LC resonators 1053 and 1056, and a linear conductor (resonator) 1040 are formed.
  • the laminated body 200 is formed in a rectangular parallelepiped shape having, for example, a length and width of about 5 mm and a height of about 1 mm.
  • the laminate 200 is formed by laminating a plurality of dielectric layers and a plurality of conductor layers.
  • the coupling electrode 1020 is a flat electrode formed in a square shape and provided in parallel with the main surface of the wiring substrate 1010.
  • the signal input / output terminal 1012 and the coupling electrode 1020 are electrically connected by a signal transmission line 1030.
  • the signal transmission line 1030 has one end connected to the center of the signal input / output terminal 1012, a columnar portion 1031 extending in a direction perpendicular to the main surface of the wiring substrate 1010, and one end connected to the other end of the columnar portion 1031.
  • a linear portion 1032 extending in parallel to the main surface of the substrate 1010, and four spiral portions 1033 having one end connected to the other end of the linear portion 1032 and the other end connected to the center of the coupling electrode 1020. It is configured.
  • Each of the four spiral portions 1033 is formed in a spiral shape so that the winding axis is perpendicular to the main surface of the wiring substrate 1010.
  • the spiral portion 1033 is formed by a conductor layer parallel to the main surface of the wiring substrate 1010 and a via that is perpendicular to the plurality of portions, and the spiral portion 1033 rotates along a plane parallel to the main surface of the wiring substrate 1010. It is comprised from the spiral conductor pattern of this. Note that the end of each spiral portion 1033 is connected to the start end of the next spiral portion 1033, so that four spiral portions 1033 are connected in series.
  • a pair (two) of LC resonators 1053 and 1056 are connected to the pair of ground terminals 1013 and 1014 formed on the main surface of the wiring board 1010.
  • the LC resonator 1053 (1056) includes a flat plate electrode (hereinafter also referred to as a “trap electrode”) 1050 that is formed in a square shape and is provided close to the coupling electrode 1020, and a winding axis. Are spirally wound so as to be perpendicular to the main surface of the wiring substrate 1010, one end of which is connected to the trap electrode 1050 and a spiral portion 1052 (1055). And a columnar portion 1051 (1054) having the other end connected to the ground terminal 1013 (1014).
  • the spiral portion 1052 (1055) can be formed, for example, by alternately stacking dielectric layers having vias and electrode pattern layers.
  • the spiral portion 1052 (1055) and the columnar portion 1051 (1054) correspond to the spiral conductor described in the claims.
  • a linear conductor 1040 is connected to the ground terminal 1013.
  • One end of the linear conductor 1040 is connected to the ground terminal 1013, the columnar portion 1041 extending in a direction perpendicular to the main surface of the wiring substrate 1010, and one end is connected to the other end of the columnar portion 1041.
  • the linear portion 1042 extends parallel to the surface and has the other end as an open end.
  • the linear portion 1042 constituting the linear conductor 1040 and the linear portion 1032 constituting the signal transmission line 1030 are close to each other and three-dimensionally intersect (in a plan view, orthogonal to each other). Has been placed.
  • the linear portion 1042 that constitutes the linear conductor 1040 and the linear portion 1032 that constitutes the signal transmission line 1030 are arranged close to each other and three-dimensionally crossed.
  • a capacitance (C) component is formed between the linear conductor 1040 and the signal transmission line 1030 in the three-dimensional intersection region.
  • the capacitance component is grounded via the inductor (L) component of the linear conductor 1040. Therefore, as shown in the equivalent circuit of FIG. 33, the capacitance C201 and the inductor L202 can be regarded as equivalent to those inserted in parallel to the signal transmission line.
  • the linear conductor 1040 functions as the resonator LC201 (hereinafter, the linear conductor 1040 may be referred to as a resonator).
  • the resonator LC201 when the resonator LC201 is inserted in parallel, parallel resonance occurs between the signal transmission line 1030 and the ground, and an attenuation pole occurs in the frequency characteristics.
  • the inductor L201 in FIG. 33 is an inductor component included in the signal transmission line 130 (the columnar portion 1031, the linear portion 1032, and the spiral portion 1033).
  • resonators LC202 and LC203 including capacitors C202 and C203 and inductors L203 and L204 in FIG. 33 correspond to the LC resonators 1053 and 1056 described above.
  • the signal transmission communication body 20 having the resonator 1040 and the signal transmission communication body not having the resonator 140 are used. For each, a simulation was performed for the amount of signal passing (S parameter S21). Next, the difference in pass characteristics depending on the presence or absence of the resonator 140 will be described with reference to FIG.
  • FIG. 34 is a graph showing the pass characteristic (S21) of the communication body 20 for signal transmission.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the case where the resonator 140 is included is indicated by a solid line, and the resonator 140 is included. The case of not doing it is indicated by a broken line.
  • the attenuation pole (2.8 GHz and 5 GHz) by the trap electrode is compared with the signal transmission communication body not having the resonator 1040 (see the broken line). It was confirmed that an attenuation pole was generated by the resonator 1040 in the vicinity of 6.6 GHz.
  • the LC resonators 1053 and 1056 are formed by the capacitance component of the coupling electrode 1020 and the trap electrode 1050 and the inductance component of the spiral portions 1052 and 1054. Further, as described above, the linear conductor 1040 arranged in the vicinity of the signal transmission line 1030 also functions as a resonator. Therefore, the attenuation pole can be increased by using both in combination. As a result, attenuation characteristics outside the passband are improved, and resistance to radio wave interference can be further improved.
  • the spiral portion 1033 and the spiral portions 1052 and 1054 are wound along the winding axis perpendicular to the main surface of the wiring substrate 1010, but are parallel to the main surface of the wiring substrate 1010. It is good also as a structure wound along a winding axis
  • FIG. 35 is a perspective view showing the configuration of the signal transmission communication body 21.
  • FIG. 36 is a diagram showing an equivalent circuit of the communication body 21 for signal transmission.
  • a spiral electrode 1132 and two parallel plate electrodes 1133 arranged opposite to each other include a first signal transmission line 1130 and a spiral portion.
  • the signal transmission communication body 20 according to the tenth embodiment described above is different from the signal transmission communication body 20 according to the tenth embodiment described above in that it is inserted between the communication body 1134 and the first transmission body 1134.
  • Other configurations are the same as or similar to those of the signal transmission communication body 20 described above, and thus detailed description thereof is omitted here.
  • the spiral electrode 1132 is formed by being spirally wound so that the winding axis is perpendicular to the main surface of the wiring board 1110.
  • the spiral electrode 1132 is formed by rotating and laminating a plurality of U-shaped electrodes each having a side of 0.8 mm by 90 degrees, and between the ends of the upper and lower U-shaped electrodes. Were connected via a cylindrical electrode.
  • One end (start end) of the spiral electrode 1132 is connected to the other end of the first signal transmission line 1130 having one end connected to the center of the signal input / output terminal 1112.
  • the first plate electrode constituting the parallel plate electrode 1133 is connected to the other end (termination) of the spiral electrode.
  • the parallel plate electrode 1133 includes a first plate electrode and a second plate electrode provided in close proximity so as to face the first plate electrode.
  • each of the first plate electrode and the second plate electrode is formed in a square shape having a side of 1.1 mm.
  • the second flat plate electrode is connected to the coupling electrode 1120 via four spiral portions (second signal transmission lines) 1134.
  • the configuration of the spiral portion 1134 is the same as the configuration of the spiral portion 1033 described above, and thus detailed description thereof is omitted here.
  • the signal transmission communication body 21 includes the inductor L211 formed by the spiral electrode 1131 and the capacitor C211 formed by the parallel plate electrode 1133 as shown in the equivalent circuit of FIG. It can be regarded as equivalent to that inserted in series with respect to the transmission line 1130 and the inductor component L212 of the spiral portion 1134.
  • resonators LC211 and LC212 including capacitors C212 and C213 and inductors L213 and L214 in FIG. 36 correspond to LC resonators 1153 and 1156, respectively.
  • FIG. 37 is a graph showing the pass characteristic (S21) of the communication body 21 for signal transmission.
  • the horizontal axis is frequency (GHz)
  • the vertical axis is S21 (dB)
  • the characteristics of the signal transmission communication body 21 are indicated by solid lines.
  • the pass characteristic (S21) in the case where the spiral electrode 1132 and the parallel plate electrode 1133 are not provided is also shown by a broken line.
  • the signal transmission communication body 21 has a frequency band through which a signal passes compared to the signal transmission communication body (see the broken line) that does not have the spiral electrode 1132 and the parallel plate electrode 1133. It was confirmed that the out-of-band pass characteristics can be suppressed without changing (about 4.1 to 4.8 GHz).
  • the LC resonators 1153 and 1156 are formed by the capacitance component of the coupling electrode 1120 and the trap electrode 1150 and the inductance component of the spiral portions 1152 and 1154.
  • the inductor component is generated in the spiral electrode 1132 and the capacitor component is generated in the plate parallel electrode 1133, the LC resonator is inserted in series into the signal transmission line (between the first signal transmission line 1130 and the spiral portion 1134). It becomes the composition which was done. Therefore, by combining the parallel resonance and the series resonance, it is possible to adjust the frequency band through which the signal passes while suppressing unnecessary coupling, and to obtain a desired pass characteristic. In addition, attenuation characteristics outside the passband are improved, and resistance to radio wave interference can be further improved.
  • the coupler 1 is configured by combining two signal transmission communication bodies 11 so as to face each other
  • the coupler 8 is configured by combining two signal transmission communication bodies 18 so as to face each other.
  • the number of signal transmission communication bodies 11 and 18 constituting the couplers 1 and 8 is not limited to two, and may be three or more.
  • the signal transmission communication body constituting the coupler is not limited to the signal transmission communication body 11 or the signal transmission communication body 18, and the signal transmission communication bodies 11 to 21 described above may be used in any combination. it can.
  • the signal transmission communication bodies 11 to 21 may be arranged on one side (one side of the transceiver) and a different signal transmission communication body (for example, a conventional signal transmission communication body) may be arranged on the other side.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 よりシンプルな構成で、通信信号の通過帯域又は遮断帯域を任意に設定する ことが可能な信号伝達用通信体を提供する。 信号伝達用通信体(11)は、配線基板(110)と、配線基板(110)と平行に配置された平板状の結合用電極(120)と、結合用電極(120)と配線基板(110)に形成された信号入出力端子(112)とを接続する信号伝送線路(130)と、一端が配線基板(110)に形成されたグランド端子(113)に接続され、他端が開放端とされた線状導体(140)とを備える。線状導体(140)を構成する線状部(142)は、信号伝送線路(130)を構成する線状部(132)と近接して立体交差するように配置されている。

Description

信号伝達用通信体及びカプラ
 本発明は、信号伝達用通信体及びカプラに関し、特に、近接状態で通信を行う信号伝達用通信体、及び、該信号伝達用通信体を複数備えて構成されるカプラに関する。
 下記特許文献1には、高周波数の広帯域信号を用いるUWB(Ultra Wide Band)通信方式により情報機器間での大容量のデータ通信を行う通信システムが開示されている。この通信システムでは、送信機と受信機それぞれが持つ高周波結合器間における静電結合によりUWB信号を高速データ伝送する。
 ここで、特許文献1記載の通信システムの構成を図38に示す。この通信システムは、データ送信を行う送信機と、データ受信を行う受信機とで構成される。また、本通信システムでは、送信機及び受信機それぞれに設けられる高周波結合器を、平板状の電極と、直列インダクタ、並列インダクタとにより構成している。図38に示されるように、送受信機それぞれの高周波結合器を向かい合わせて配置すると、2つの電極が1つのコンデンサとして動作し、2つの高周波結合器の間で効率よく高周波信号を伝達することができる。
特開2008-154267号公報
 上述した2つの高周波結合器を対向させて配置し、結合用電極間の距離を変えたときのSパラメータ(送信側から放射された信号が受信側に到達するまでの伝搬損S21)の実測値を図39に示す。図39に示されるように、上述した送受信機(信号伝達用通信体)からなる通信システムでは、通過波形の周波数特性は広くなだらかとなる。そのため、通信に不要な周波数帯で結合が生じる場合があり、その周波数帯を使用する他の無線機器との電波干渉により、通信エラーを起こすおそれがある。
 これに対して、不要な周波数帯で生じる結合の対策としては、送受信機(信号伝達用通信体)に外付けのフィルタを使用することが考えられるが、その場合、部品点数が増加することによりコストアップや占有面積の増大等を招いてしまう。そのため、外部にフィルタ等を設けることなく、よりシンプルな構成で、通信信号の通過帯域又は遮断帯域を任意に設定し、所望する周波数帯域のみで結合させたいという要望があった
 本発明は、上記問題点を解消する為になされたものであり、よりシンプルな構成で、通信信号の通過帯域又は遮断帯域を任意に設定することが可能な信号伝達用通信体及びカプラを提供することを目的とする。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、結合用電極と信号入出力端子とを接続する信号伝送線路と、を備える信号伝達用通信体において、グランド端子と、一端がグランド端子と接続され、他端が開放端とされた線状導体とを備え、当該線状導体は、少なくとも一部が、信号伝送線路と近接するように配置されていることを特徴とする。
 本発明に係る信号伝達用通信体によれば、線状導体が信号伝送線路と近接して配置されているため、該線状導体と信号伝送線路との間でキャパシタンス(C)成分が形成される。また、該キャパシタンス成分が、線状導体が有するインダクタ(L)成分を介してグランドに接地される。よって、キャパシタンスとインダクタとが、信号伝送線路に対して並列に挿入されたものと等価的にみなすことができる。そのため、該線状導体が共振器として機能する。その結果、該線状導体(共振器)により、減衰極が発生するため、信号伝達用通信体間の不要な結合を抑えることができる。すなわち、外付けのフィルタ等を用いることなく、通信の妨げとなる周波数の通過特性を抑え、電波干渉による通信エラーを避けることができる。
 その際に、線状導体(共振器)の形状を変更することによって、任意の周波数に減衰極を発生させることができ、通信用の周波数帯域を調整することができる。また、線状導体(共振器)と信号伝送線路との位置関係によってキャパシタンス成分が変化するため、結合の強さが変化し、減衰極の深さを調節することができる。よって、電波干渉への耐性の度合いを調整することが可能となる。その結果、本発明に係る信号伝達用通信体によれば、よりシンプルな構成で、通信信号の通過帯域又は遮断帯域を任意に設定すること(すなわち所望の通過特性を得ること)が可能となる。
 本発明に係る信号伝達用通信体では、上記線状導体が、信号伝送線路と近接して立体交差するように配置されていることが好ましい。
 この場合、線状導体と信号伝送線路とが近接して立体交差するように配置されているため、該立体交差領域においてキャパシタンス成分を形成することができる。
 本発明に係る信号伝達用通信体では、上記線状導体が、信号伝送線路と近接して平行に配置されていることが好ましい。
 この場合、線状導体と信号伝送線路とが近接して平行に配置されているため、線状導体(共振器)と信号伝送線路とで形成されるキャパシタンスがより大きくなる。そのため、結合がより強くなり、減衰極をより深くすることができる。
 本発明に係る信号伝達用通信体では、上記線状導体、及び信号伝送線路それぞれが帯状部を含み、線状導体と信号伝送線路とが、当該帯状部の平坦面同士が対向するように近接して平行に配置されていることが好ましい。
 この場合、線状導体と信号伝送線路とが、帯状部の平坦面同士が対向するように近接して平行に配置されているため、線状導体(共振器)と信号伝送線路とのキャパシタンス成分がさらに大きくなる。そのため、結合がさらに強くなり、減衰極をさらに深くすることができる。
 本発明に係る信号伝達用通信体は、複数の線状導体を備え、当該複数の線状導体同士が近接して配置されていることが好ましい。
 この場合、複数の線状導体(共振器)同士が近接して配置されているため、複数の共振器が結合する。これによって、共振周波数が高周波数側と低周波数側に分離される。そのため、例えば、低周波数側の共振を利用することにより、減衰極の周波数を変動させることなく、実質的に共振器のサイズを小型化することが可能となる。
 本発明に係る信号伝達用通信体は、複数の線状導体を備え、当該複数の線状導体が、互いに所定の距離を隔てて配置されていることが好ましい。
 この場合、複数の線状導体(共振器)が、互いに所定の距離を隔てて配置されているため、それぞれの共振器の相互の結合が弱くなる。そのため、共振周波数の分離の程度も小さくなる。よって、近い周波数範囲に複数の減衰極を設けることが可能となる。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、一端がグランド端子と接続され、他端が開放端とされた第1の線状導体と、一端がグランド端子と接続され、他端が開放端とされ、第1の線状導体と近接して配置された第2の線状導体と、一端が信号入出力端子と接続され、他端が第1の線状導体と接続された第1の信号伝送線路と、一端が第2の線状導体と接続され、他端が結合用電極と接続された第2の信号伝送線路とを備えることを特徴とする。
 本発明に係る信号伝達用通信体によれば、第1の線状導体(共振器)に第1の信号伝送線路が接続され、該第1の線状導体(共振器)と近接して配置された(すなわち空間的に結合された)第2の線状導体(共振器)から第2の信号伝送線路が取り出されて結合用電極に接続されることで、共振周波数付近の信号のみを通過させるバンドパスフィルタの効果が得られる。そのため、不要な周波数範囲の結合を抑えることが可能となる。なお、この場合、第1の線状導体(共振器)と第1の信号伝送線路との接続点、及び、第2の線状導体(共振器)と第2の信号伝送線路との接続点の位置を調節することにより、インピーダンスマッチングを取ることができる。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、一端がグランド端子と接続され、他端が開放端とされた第1の線状導体と、一端がグランド端子と接続され、他端が開放端とされ、第1の線状導体と所定の距離を隔てて配置された第2の線状導体と、一端が信号入出力端子と接続され、他端が第1の線状導体と接続された第1の信号伝送線路と、一端が第2の線状導体と接続され、他端が結合用電極と接続された第2の信号伝送線路とを備えることを特徴とする。
 本発明に係る信号伝達用通信体によれば、第1の線状導体(共振器)と第2の線状導体(共振器)とが所定の距離を隔てて配置されているため、共振器の段数を増やすことができる。そのため、信号の通過帯域幅を広くすること、及び、通過帯域外の減衰特性を急峻にすることが可能となる。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、両端が開放端とされた第1の線状導体と、両端が開放端とされ、第1の線状導体と近接して配置された第2の線状導体と、一端が信号入出力端子と接続され、他端が第1の線状導体と接続された第1の信号伝送線路と、一端が第2の線状導体と接続され、他端が結合用電極と接続された第2の信号伝送線路とを備えることを特徴とする。
 本発明に係る信号伝達用通信体によれば、第1の線状導体及び第2の線状導体それぞれの両端が開放されている、すなわち、グランド端子に接地されていないため、グランドの電位が安定する。そのため、例えば、2個の当該信号伝達用通信体を対向配置した場合には、相手の信号伝達用通信体の相対位置が変化したとしても、相手側から見える電場の変化が小さくなるため、位置ずれによる通過特性の変動を抑制することが可能となる。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、一端が信号入出力端子と接続された第1の信号伝送線路と、スパイラル状に形成され、一端が第1の信号伝送線路の他端と接続されたスパイラル状電極と、スパイラル状電極の他端と接続された第1の平板電極と、第1の平板電極と対向するように近接して設けられた第2の平板電極と、一端が第2の平板電極と接続され、他端が結合用電極と接続された第2の信号伝送線路とを備えることを特徴とする。
 本発明に係る信号伝達用通信体によれば、スパイラル状電極でインダクタ成分が、第1の平板電極と第2の平板電極とでキャパシタ成分が発生するため、LC共振器が直列に信号伝送線路(第1の信号伝送線路と第2の信号伝送線路との間)に挿入された構成となる。そのため、直列にLC共振が起こり、バンドパスフィルタのような周波数特性を持たせることができる。それにより、不要な結合を抑えて信号が通過する周波数帯域を調整することができ、所望の周波数特性を得ることができる。また、スパイラル状電極及び第1,第2の平板電極から構成されるLC共振器はグランド端子に接地されていないため、グランドの電位が安定する。そのため、例えば、2個の当該信号伝達用通信体を対向配置した場合には、相手の信号伝達用通信体の相対位置が変化したとしても、相手側から見える電場の変化が小さくなるため、位置ずれによる通過特性の変動を抑制することが可能となる。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、少なくとも一部がスパイラル状に形成され、結合用電極と信号入出力端子とを接続する信号伝送線路と、結合用電極と対向するように近接して設けられた平板状の電極と、少なくとも一部がスパイラル状に形成され、平板状の電極とグランド端子とを接続するスパイラル状導体と、グランド端子と、一端がグランド端子と接続され、他端が開放端とされた線状導体とを備え、当該線状導体は、少なくとも一部が、信号伝送線路と近接するように配置されていることを特徴とする。
 本発明に係る信号伝達用通信体によれば、結合用電極と平板状の電極によるキャパシタンス成分、及び、スパイラル状導体のインダクタンス成分によりLC共振器が形成される。また、上述したように、信号伝送線路と近接して配置された線状導体も共振器として機能する。よって、双方を組み合わせて用いることにより、減衰極を増やすことが可能となる。
 本発明に係る信号伝達用通信体は、平板状の結合用電極と、結合用電極と対向するように近接して設けられた平板状の電極と、少なくとも一部がスパイラル状に形成され、平板電極とグランド端子とを接続するスパイラル状導体と、一端が信号入出力端子と接続された第1の信号伝送線路と、スパイラル状に形成され、一端が第1の信号伝送線路の他端と接続されたスパイラル状電極と、スパイラル状電極の他端と接続された第1の平板電極と、第1の平板電極と対向するように近接して設けられた第2の平板電極と、少なくとも一部がスパイラル状に形成され、一端が第2の平板電極と接続され、他端が結合用電極と接続された第2の信号伝送線路とを備えることを特徴とする。
 本発明に係る信号伝達用通信体によれば、結合用電極と平板状の電極によるキャパシタンス成分、及び、スパイラル状導体のインダクタンス成分によりLC共振器が形成される。一方、スパイラル状電極でインダクタ成分が、第1の平板電極と第2の平板電極とでキャパシタ成分が発生するため、LC共振器が直列に信号伝送線路(第1の信号伝送線路と第2の信号伝送線路との間)に挿入された構成となる。そのため、並列共振と直列共振とが組み合わされることにより、不要な結合を抑えて信号が通過する周波数帯域を調整することができ、所望の通過特性(周波数特性)を得ることができる。
 本発明に係るカプラは、1以上の上記いずれかの信号伝達用通信体を含む複数の信号伝達用通信体が、非接触状態で互いに対向するように配置されていることを特徴とする。
 本発明に係るカプラによれば、1以上の上記いずれかの信号伝達用通信体を含む複数の信号伝達用通信体を、非接触状態で互いに対向するように配置することにより、所望の通過特性(周波数特性)を有するカプラを構成することが可能となる。
 本発明によれば、よりシンプルな構成で、通信信号の通過帯域又は遮断帯域を任意に設定すること(すなわち所望の通過特性を得ること)が可能となる。
第1実施形態に係る信号伝達用通信体の構成を示す斜視図である。 図1の白抜き矢印方向から見た第1実施形態に係る信号伝達用通信体の側面図である。 第1実施形態に係る信号伝達用通信体の等価回路を示す図である。 第1実施形態に係る信号伝達用通信体を用いたカプラの構成を示す斜視図である。 第1実施形態に係る信号伝達用通信体を用いたカプラの等価回路を示す図である。 カプラを構成する信号伝達用通信体間の反射特性(S11)を示すグラフである。 カプラを構成する信号伝達用通信体間の通過特性(S21)を示すグラフである。 第2実施形態に係る信号伝達用通信体の構成を示す斜視図である。 第3実施形態に係る信号伝達用通信体の構成を示す斜視図である。 第2,第3実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第4実施形態に係る信号伝達用通信体の構成を示す斜視図である。 図11の白抜き矢印方向から見た第4実施形態に係る信号伝達用通信体の側面図である。 第4実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第5実施形態に係る信号伝達用通信体の構成を示す斜視図である。 第5実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第6実施形態に係る信号伝達用通信体の構成を示す斜視図である。 図16の白抜き矢印方向から見た第6実施形態に係る信号伝達用通信体を構成する共振器の構成を示す図である。 第6実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第7実施形態に係る信号伝達用通信体の構成を示す斜視図である。 第7実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第8実施形態に係る信号伝達用通信体の構成を示す斜視図である。 図21の白抜き矢印A1方向から見た第8実施形態に係る信号伝達用通信体の側面図である。 図21の白抜き矢印A2方向から見た第8実施形態に係る信号伝達用通信体の側面図である。 第8実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第8実施形態に係る信号伝達用通信体を用いたカプラの構成を示す斜視図である。 第8実施形態に係る信号伝達用通信体を用いたカプラにおいて、XY方向のずれを変えた場合の通過特性(S21)を示すグラフである。 第1実施形態に係る信号伝達用通信体を用いたカプラにおいて、XY方向のずれを変えた場合の通過特性(S21)を示すグラフである。 第9実施形態に係る信号伝達用通信体の構成を示す斜視図である。 図28の白抜き矢印方向から見た第9実施形態に係る信号伝達用通信体の側面図である。 第9実施形態に係る信号伝達用通信体の等価回路を示す図である。 第9実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第10実施形態に係る信号伝達用通信体の構成を示す斜視図である。 第10実施形態に係る信号伝達用通信体の等価回路を示す図である。 第10実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 第11実施形態に係る信号伝達用通信体の構成を示す斜視図である。 第11実施形態に係る信号伝達用通信体の等価回路を示す図である。 第11実施形態に係る信号伝達用通信体の通過特性(S21)を示すグラフである。 従来の通信システムの構成を示した図である。 従来の通信システムにおいて、結合用電極間の距離を変えたときのSパラメータ(伝搬損S21)の実測値を示した図である。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図において、同一要素には同一符号を付して重複する説明を省略する。
 [第1実施形態]
 まず、図1~図3を併せて用いて、第1実施形態に係る信号伝達用通信体11の構成について説明する。図1は、信号伝達用通信体11の構成を示す斜視図である。図2は、図1の白抜き矢印方向から見た信号伝達用通信体11の側面図である。また、図3は、信号伝達用通信体11の等価回路を示す図である。
 信号伝達用通信体11は、主面に信号入出力端子112及びグランド端子113が形成された矩形の平板状の配線基板110を備えている。なお、配線基板110の裏面は、ベタグランド(層)111とされている。信号伝達用通信体11は、配線基板110の主面と平行に設けられた、平板状の結合用電極120を備えている。より詳細には、結合用電極120は、一辺6mmの正方形に形成されており、配線基板110の主面から高さ3mmの位置に配置されている。
 信号入出力端子112と結合用電極120とは、信号伝送線路130によって電気的に接続されている。信号伝送線路130は、一端が信号入出力端子112の中央に接続され、配線基板110の主面に対して垂直方向に延びる第1の柱状部131と、一端が第1の柱状部131の他端に接続され、配線基板110の主面に対して平行に延びる線状部132と、一端が線状部132の他端に接続され、配線基板110の主面に対して垂直方向(第1の柱状部131と平行)に延び、他端が結合用電極120の中央に接続された第2の柱状部133とから構成されている。
 グランド端子113には、線状導体140が接続されている。線状導体140は、一端がグランド端子113の角部に接続され、配線基板110の主面に対して垂直方向に延びる柱状部141と、一端が柱状部141の他端に接続され、配線基板110の主面に対して平行に信号入出力端子112方向へ延び、他端が開放端とされた線状部142とから構成されている。本実施形態では、柱状部141の長さを0.5mm、線状部142の幅を0.15mm、長さを11mmに設定した。ここで、線状導体140を構成する線状部142と、信号伝送線路130を構成する線状部132とは、近接して立体交差するように(平面視した場合には直交するように)配置されている。
 信号伝達用通信体11によれば、線状導体140と信号伝送線路130とが近接して立体交差するように配置されているため、該立体交差領域において線状導体140と信号伝送線路130との間でキャパシタンス(C)成分が形成される。また、該キャパシタンス成分が、線状導体140が有するインダクタ(L)成分を介してグランドに接地される。よって、図3の等価回路に示されるように、キャパシタンスC111とインダクタL113とが、信号伝送線路130に対して並列に挿入されたものと等価的にみなすことができる。そのため、線状導体140は、共振器LC111として機能する(以下、線状導体140を共振器と呼ぶこともある)。このように、共振器LC111が並列に挿入されることにより、信号伝送線路130とグランドとの間に並列共振が生じ、周波数特性に減衰極が発生する。なお、図3中のインダクタL111及びインダクタL112は、信号伝送線路130(第1の柱状部131、線状部132、及び第2の柱状部133)に起因するインダクタ成分である。
 信号伝達用通信体11を送受信機の双方または片方に適用し、結合用電極120を相手の信号伝達用通信体に接近させることにより、誘導電界によって結合が生じ、金属接点を持たずに高周波信号を伝えることができる。そこで、次に、図4,図5を参照しつつ、2個の信号伝達用通信体11を用いたカプラ1の構成について説明する。図4は、信号伝達用通信体11を用いたカプラ1の構成を示す斜視図である。また、図5は、カプラ1の等価回路を示す図である。
 図4に示されるように、カプラ1は、上述した第1実施形態に係る信号伝達用通信体11が、2個、非接触状態で互いに対向するように配置されて構成されている。より具体的には、2つの信号伝達用通信体11,11を構成する結合用電極120,120同士が対向するように配置されている。このように配置されることにより、互いに対向する2つの結合用電極120,120の間に所定のキャパシタンスが形成され(図5参照)、信号が入力された際に、2つの信号伝達用通信体11,11間に誘導電界による結合が形成される。
 ここで、線状導体(共振器)140の有無による通過特性の違いを評価するために、共振器140を有する信号伝達用通信体11を用いたカプラ1と共振器140を有しない信号伝達用通信体を用いたカプラそれぞれについて、信号伝達用通信体間の反射量(SパラメータのS11)及び通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図6,図7を参照しつつ、共振器140の有無による通過特性の違いについて、シミュレーション結果を示して説明する。
 図6は、信号伝達用通信体間の反射特性(S11)を示すグラフである。図6に示されたグラフおいて、横軸は周波数(GHz)、縦軸はS11(dB)であり、共振器140を有する場合のシミュレーション結果を実線で、共振器140を有さない場合のシミュレーション結果を破線で示した。なお、S11は、ポート1から信号を入力したときに、ポート1に反射する信号、すなわち、ポート1の反射係数を示す。
 一方、図7は、信号伝達用通信体間の通過特性(S21)を示すグラフである。図7に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、共振器140を有する場合を実線で、共振器140を有さない場合を破線で示した。なお、S21は、ポート1に信号を入力したときにポート2に伝達される割合、すなわち順方向の伝達係数である。
 図6及び図7において破線で示されるように、共振器140を有さない信号伝達用通信体を用いたカプラでは、反射特性、通過特性共に、極が現れず、広くなだらかな特性を有している。一方、図6,7において実線で示されるように、本実施形態に係る信号伝達用通信体11を用いたカプラ1では、共振器140による並列共振によって、5.4GHz付近に極が発生している。これにより、共振器140を有する信号伝達用通信体11を用いたカプラ1では、共振周波数付近の通信信号を遮断できることが確認された。
 本実施形態に係る信号伝達用通信体11によれば、線状導体140が共振器として機能することにより極が発生するため、不要な結合を抑え、電波干渉による通信エラーを避けることができる。すなわち、外付けのフィルタ等を用いることなく、通信の妨げとなる周波数の通過特性を抑えることができる。よって、よりシンプルな構成で、通信信号の通過帯域又は遮断帯域を任意に設定することが可能となる。
 また、本実施形態に係るカプラ1によれば、信号伝達用通信体11を含む複数の信号伝達用通信体を、非接触状態で互いに対向するように配置することにより、所望の通過特性を実現することが可能となる。
 なお、線状導体(共振器)140の長さ等の形状を変更し、インダクタ成分を調整することによって、任意の周波数に減衰極を発生させることができ、通信用の周波数帯域を調整することができる。また、線状導体(共振器)140と信号伝送線路130との位置関係によってキャパシタンス成分が変化するため、結合の強さが変化し、減衰極の深さを調節することができる。よって、電波干渉への耐性の度合いを調整することが可能となる。
 また、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、線状導体(共振器)140と信号伝送線路130との立体交差箇所は、図示した箇所には限られることなく、任意に設定することができる。さらに、上記実施形態では、信号伝達用通信体11を空間内で構成したが、例えば、積層セラミックによる多層基板等を用いて構成することもできる。
 [第2実施形態]
 次に、図8を用いて、第2実施形態に係る信号伝達用通信体12の構成について説明する。図8は、信号伝達用通信体12の構成を示す斜視図である。
 信号伝達用通信体12は、線状導体240の形状、及び、該線状導体240の信号伝送線路230に対する配置が異なる点で、上述した信号伝達用通信体11と異なっている。その他の構成は、上述した信号伝達用通信体11と同一または同様であるので、ここでは詳細な説明を省略する。
 線状導体240は、柱状部241、第1の線状部242、及び第2の線状部243から構成されている。柱状部241は、一端がグランド端子213の中央に接続され、配線基板210の主面に対して垂直方向に延びるように形成されている。なお、本実施形態では、柱状導体241の長さを0.5mmとした。第1の線状部242は、一端が柱状部241の他端に接続され、配線基板210の主面に対して平行に、信号入出力端子212方向に延びるように形成されている。
 第2の線状部243は、一端が第1の線状部242の他端と連続的につながり、配線基板210の主面に対して平行に、かつ信号伝送線路230を構成する線状部232と同一平面内において平行に延びるように形成されている。すなわち、第2の線状部243の一部は、信号伝送線路230を構成する線状部232と配線基板210の主面に平行な平面内において近接して平行に配置されている。なお、第2の線状部243の他端は、開放端とされている。本実施形態では、第1の線状部242及び第2の線状部243の幅を0.15mm、合計の長さを13.4mmに設定した。
 信号伝達用通信体12によれば、線状導体240を構成する第2の線状部243と信号伝送線路230を構成する線状部232とが近接して平行に配置されているため、該近接領域において線状導体240と信号伝送線路230との間でキャパシタンス(C)成分が形成される。また、該キャパシタンス成分が、線状導体240が有するインダクタ(L)成分を介してグランドに接地される。よって、キャパシタンスとインダクタとが、信号伝送線路230に対して並列に挿入されたものと等価的にみなすことができる。そのため、線状導体240は、共振器として機能する(以下、線状導体240を共振器と呼ぶこともある)。このように、共振器240が並列に挿入されることにより、信号伝送線路230とグランドとの間に並列共振が生じ、周波数特性に減衰極が発生する。
 ここで、信号伝達用通信体12の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図10を参照しつつ、信号伝達用通信体12の通過特性について、シミュレーション結果を示して説明する。
 図10は、信号伝達用通信体12の通過特性(S21)を示すグラフである。図10に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体12の特性を破線で示した。なお、比較のため、図10には、上述した信号伝達用通信体11の通過特性(S21)を実線で併せて示した。
 図10に示されるように、信号伝達用通信体12では、共振器240による並列共振によって、信号伝達用通信体11と同様に、5.4GHz付近に減衰極が発生している。また、信号伝達用通信体12では、減衰極の深さが、信号伝達用通信体11よりも深くなることが確認された。
 本実施形態に係る信号伝達用通信体12よれば、線状導体240を構成する第2の線状部243と信号伝送線路230を構成する線状部232とが近接して平行に配置されているため、線状導体(共振器)240と信号伝送線路230とのキャパシタンス成分が、上述した第1実施形態に係る信号伝達用通信体11よりも大きくなる。そのため、結合がより強くなり、減衰極をより深くすることができる。また、本実施形態によれば、線状導体(共振器)240と信号伝送線路230とが近接している領域の長さを調節することにより、減衰極の周波数を変えることなく、減衰極の深さを調節することができる。
 また、本実施形態によれば、線状導体(共振器)240を構成する第2の線状部243と信号伝送線路230を構成する線状部232とが同一平面内に形成されるため、例えば、多層基板工法で量産する際には電極層数を減らすことができ、コストを低減することが可能となる。
 [第3実施形態]
 次に、図9を用いて、第3実施形態に係る信号伝達用通信体13の構成について説明する。図9は、信号伝達用通信体13の構成を示す斜視図である。
 信号伝達用通信体13は、線状導体340の形状、及び、該線状導体340の信号伝送線路330に対する配置が異なる点で、上述した信号伝達用通信体11と異なっている。その他の構成は、上述した信号伝達用通信体11と同一または同様であるので、ここでは詳細な説明を省略する。
 線状導体340は、柱状部341、第1の線状部342、及び、第2の線状部343から構成されている。柱状部341は、一端がグランド端子313の中央に接続され、配線基板310の主面に対して垂直方向に延びるように形成されている。なお、本実施形態では、柱状導体341の長さを0.5mmとした。第1の線状部342は、一端が柱状部341の他端に接続され、配線基板310の主面に対して平行に、信号入出力端子312方向に延びるように形成されている。
 第1の線状部342,第2の線状部343は帯状に形成されている。同様に、信号伝送線路330を構成する線状部332も帯状に形成されている。第2の線状部343及び線状部332は、請求の範囲に記載の帯状部に相当する。第2の線状部343は、一端が第1の線状部342の他端と連続的につながり、配線基板310の主面に対して平行に、かつ信号伝送線路330を構成する線状部332と平坦面同士が対向して平行に延びるように形成されている。すなわち、第2の線状部243の一部は、信号伝送線路230を構成する線状部232と平面視した場合に重なり合うように(すなわち配線基板310の主面に対して垂直方向に)近接して平行に配置されている。なお、第2の線状部343の他端は、開放端とされている。本実施形態では、第1の線状部342及び第2の線状部343の幅を0.15mm、合計の長さを12.7mmに設定した。
 信号伝達用通信体13によれば、線状導体340を構成する第2の線状部343と信号伝送線路330を構成する線状部332とが近接して平行に配置されているため、該近接領域において線状導体340と信号伝送線路330との間でキャパシタンス(C)成分が形成される。また、該キャパシタンス成分が、線状導体340が有するインダクタ(L)成分を介してグランドに接地される。よって、キャパシタンスとインダクタとが、信号伝送線路330に対して並列に挿入されたものと等価的にみなすことができる。そのため、線状導体340は、共振器として機能する(以下、線状導体340を共振器と呼ぶこともある)。このように、共振器が並列に挿入されることにより、信号伝送線路330とグランドとの間に並列共振が生じ、周波数特性に減衰極が発生する。
 ここで、信号伝達用通信体13の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図10を参照しつつ、信号伝達用通信体13の通過特性について、シミュレーション結果を示して説明する。
 図10は、信号伝達用通信体13の通過特性(S21)を示すグラフである。図10に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体13の特性を一点鎖線で示した。なお、上述したように、図10には、第1実施形態に係る信号伝達用通信体11の通過特性(S21)を実線で、第2実施形態に係る信号伝達用通信体12の通過特性(S21)を破線で併せて示してある。
 図10に示されるように、信号伝達用通信体13では、共振器340による並列共振によって、信号伝達用通信体11、信号伝達用通信体12と同様に、5.4GHz付近に減衰極が発生している。また、信号伝達用通信体13では、減衰極の深さが、信号伝達用通信体11及び信号伝達用通信体12よりも深くなることが確認された。
 本実施形態に係る信号伝達用通信体13よれば、線状導体340を構成する第2の線状部343と信号伝送線路330を構成する線状部332とが、平坦面同士が対向するように近接して平行に配置されているため、線状導体(共振器)340と信号伝送線路330とのキャパシタンス成分が、上述した信号伝達用通信体11、信号伝達用通信体12よりも大きくなる。そのため、結合がさらに強くなり、減衰極をさらに深くすることができる。また、本実施形態によれば、線状導体(共振器)340と信号伝送線路330とが近接している領域の長さを調節することにより、減衰極の周波数を変えることなく、減衰極の深さを調節することができる。
 [第4実施形態]
 次に、図11,図12を併せて用いて、第4実施形態に係る信号伝達用通信体14の構成について説明する。図11は、信号伝達用通信体14の構成を示す斜視図である。また、図12は、図11の白抜き矢印方向から見た信号伝達用通信体14の側面図である。
 信号伝達用通信体14は、互いに近接して配置された一対(2つ)の線状導体440,443を備えている点で、上述した信号伝達用通信体11と異なっている。その他の構成は、上述した信号伝達用通信体11と同一または同様であるので、ここでは詳細な説明を省略する。
 配線基板410の主面には、信号入出力端子412を中心として対称な位置に2つのグランド端子413,414が形成されている。一方のグランド端子413には、線状導体440が接続されている。線状導体440は、一端がグランド端子413の角部に接続され、配線基板410の主面に対して垂直方向に延びる柱状部441と、一端が柱状部441の他端に接続され、配線基板410の主面に対して平行に信号入出力端子412方向に延びる線状部442とから構成されている。なお、線状部442の他端は開放端とされている。本実施形態では、柱状部441の長さを0.54mm、線状部442の幅を0.15mm、長さを4.2mmに設定した。
 他方のグランド端子414には、線状導体443が接続されている。線状導体443は、一端がグランド端子414の角部に接続され、配線基板410の主面に対して垂直方向に延びる柱状部444と、一端が柱状部444の他端に接続され、配線基板410の主面に対して平行に信号入出力端子412方向に延びる線状部445とから構成されている。
なお、線状部445の他端は開放端とされている。本実施形態では、柱状部444の長さを0.49mm、線状部445の幅を0.15mm、長さを4.2mmに設定した。
 すなわち、線状導体440を構成する線状部442と、線状導体443を構成する線状部445とは、0.05mmの間隔を空けて、配線基板410の主面に対して垂直方向に沿って互いに平行に(平面視した場合に重なり合うように)配置されている。また、線状部442及び線状部445と、信号伝送線路430を構成する線状部432とは、近接して立体交差するように(平面視した場合に直交するように)配置されている。
 信号伝達用通信体14によれば、上述したように、線状導体440を構成する線状部442と線状導体443を構成する線状部445とが近接して平行に配置されるとともに、該線状部442及び線状部445が、信号伝送線路430と近接して立体交差するように配置されている。そのため、2つの共振器が結合されて、信号伝送線路430に対して並列に接続されたものと等価的にみなすことができる(以下、線状導体440及び線状導体443を共振器と呼ぶこともある)。このように、結合された2つの共振器が並列に挿入されることにより、信号伝送線路430とグランドとの間に並列共振が生じる際に、共振周波数が高周波数側と低周波数側に分離される(すなわち、減衰極が高周波数側と低周波数側とに分離されて発生する)。
 ここで、信号伝達用通信体14の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図13を参照しつつ、信号伝達用通信体14の通過特性について、シミュレーション結果を示して説明する。
 図13は、信号伝達用通信体14の通過特性(S21)を示すグラフである。図13に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体14の特性を実線で示した。なお、図13では、高周波数側と低周波数側とに分離された減衰極のうち、低周波数側の減衰極のみを表示した。また、図13には、比較として、第1実施形態に係る信号伝達用通信体11(共振器が1つの場合)の通過特性(S21)を破線で示した。
 図13に示されるように、信号伝達用通信体14では、結合された2つの共振器440,443による並列共振によって、信号伝達用通信体11と同様に、5.4GHz付近に減衰極が発生していることが確認された。
 本実施形態によれば、2つの線状導体(共振器)440,443同士が近接して配置されているため、2つの共振器440,443が結合することによって、共振周波数が高周波数側と低周波数側に分離される。そのため、例えば、低周波数側の共振を利用することにより、減衰極の周波数を変動させることなく、実質的に共振器440,443のサイズを小型化することが可能となる。本実施形態の場合では、第1実施形態に係る信号伝達用通信体11(共振器が1つの場合)と比較して、同じ周波数に減衰極を発生させつつ、線状導体(共振器)440,443を構成する線状部442,445の長さを11mmから4.2mmに短縮することができる。
 なお、本実施形態では、2個の共振器440,443を結合させたが、結合させる共振器の数は3個以上であってもよい。また、共振器440,443を構成する線状部442,445の長さは、要求される減衰極の周波数に応じて任意に調整することができる。さらに、線状導体(共振器)440,443と信号伝送線路430との立体交差箇所は、図示した箇所には限られることなく、任意に設定することができる。
 [第5実施形態]
 次に、図14を用いて、第5実施形態に係る信号伝達用通信体15の構成について説明する。図14は、信号伝達用通信体15の構成を示す斜視図である。
 信号伝達用通信体14は、互いに所定の距離を隔てて配置された2つの線状導体540,543を備えている点で、上述した信号伝達用通信体11と異なっている。その他の構成は、上述した信号伝達用通信体11と同一または同様であるので、ここでは詳細な説明を省略する。
 配線基板510の主面には、信号伝送線路530を構成する線状部532が伸びる方向に沿って、2つのグランド端子513,514が形成されている。一方のグランド端子513には、線状導体540が接続されている。該線状導体540の構成は、上述した線状導体140と同一であるので、ここでは詳細な説明を省略する。他方のグランド端子514には、線状導体543が接続されている。該線状導体543の構成も、上述した線状導体140と同一であるので、ここでは詳細な説明を省略する。本実施形態では、線状導体540と線状導体543とを1.9mm離間して平行に配置した。線状導体540を構成する線状部542及び線状導体543を構成する線状部545それぞれと、信号伝送線路530を構成する線状部532とは、近接して立体交差するように(平面視した場合には直交するように)配置されている。
 信号伝達用通信体15によれば、上述したように、線状導体540を構成する線状部542及び線状導体543を構成する線状部545それぞれと、信号伝送線路530を構成する線状部532とが、近接して立体交差するように配置されている。ここで、線状導体(共振器)540と線状導体(共振器)543とは離間されて配置されているため、相互間の結合が弱くなる。そのため、共振周波数の分離の程度が小さくなり、近い周波数範囲に2つの減衰極が発生する。
 ここで、信号伝達用通信体15の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図15を参照しつつ、信号伝達用通信体15の通過特性について、シミュレーション結果を示して説明する。
 図15は、信号伝達用通信体15の通過特性(S21)を示すグラフである。図15に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体15の特性を実線で示した。また、図15には、比較として、第1実施形態に係る信号伝達用通信体11(共振器が1つの場合)の通過特性(S21)を破線で併せて示した。
 図15に示されるように、信号伝達用通信体15では、離間して配置された2つの共振器540,543による並列共振によって、5.4GHz付近と5.7GHz付近に2つの減衰極が発生することが確認された。
 本実施形態によれば、同じ長さの2つの線状導体(共振器)540,543が、互いに所定の距離(本実施形態では1.9mm)を隔てて配置されている。そのため、2つの共振器間で結合が生じて減衰極が2つに分離するものの、共振器間の距離が離れているためその結合は弱くなる。その結果、共振周波数の分離の程度が小さくなり、近い周波数範囲に2つの減衰極を発生させることができる。よって、減衰極の幅を拡大することが可能となる。
 なお、本実施形態では、2つの線状導体(共振器)540,543を離間して配置したが、3つ以上の線状導体(共振器)を離間して配置する構成としてもよい。このようにすれば、より多くの減衰極を発生させることができ、減衰極の幅をより拡げることができる。また、本実施形態では、2つの線状導体(共振器)540,543を1.9mm離間させて配置したが、線状導体(共振器)間の距離は、この値に限られることなく、要求される通過特性に応じて任意に設定することができる。さらに、線状導体(共振器)540及び/又は線状導体543に代えて、上述した線状導体440,443(第4実施形態参照)を2個離間して配置する構成としてもよい。
 [第6実施形態]
 次に、図16,図17を併せて用いて、第6実施形態に係る信号伝達用通信体16の構成について説明する。図16は、信号伝達用通信体16の構成を示す斜視図である。また、図17は、図16の白抜き矢印方向から見た信号伝達用通信体16を構成する線状導体(共振器)640,643,646,649の構成を示す図である。
 信号伝達用通信体16は、互いに近接して配置された二対(4つ)の線状導体(共振器)640,643,646,649を備えている点で、上述した信号伝達用通信体11と異なっている。また、信号入出力端子112と結合用電極120とを接続する信号伝送線路130に代えて、信号入出力端子612と線状導体646(請求の範囲に記載の第1の線状導体に相当)を構成する線状部648とを接続する第1の信号伝送線路630、及び、線状導体643(請求の範囲に記載の第2の線状導体に相当)を構成する線状部645と結合用電極620とを接続する第2の信号伝送線路633を備えている点で、上述した信号伝達用通信体11と異なっている。その他の構成は、上述した信号伝達用通信体11と同一または同様であるので、ここでは詳細な説明を省略する。
 配線基板610の主面には、信号入出力端子612を中心として対称な位置に2つのグランド端子613,614が形成されている。すなわち、グランド端子613、信号入出力端子612、及びグランド端子614は直線上に並んで配置されている。
 一方のグランド端子613には、2つの線状導体640,643が接続されている。線状導体640は、一端がグランド端子613の角部に接続され、配線基板610の主面に対して垂直方向に延びる柱状部641と、一端が柱状部641の他端に接続され、配線基板610の主面に対して平行に信号入出力端子612(及び他方のグランド端子614)方向に延びる線状部642とから構成されている。線状部642は、帯状に形成され、その他端(先端)は開放端とされている。
 また、線状導体643は、上述した柱状部641と基端部を共通とし、該柱状部641よりも若干長く延びた柱状部644と、一端が柱状部644の他端に接続され、配線基板610の主面に対して平行に信号入出力端子612(及び他方のグランド端子614)方向に延びる(すなわち上述した線状部642と平行して延びる)線状部645とから構成されている。線状部645は、帯状に形成され、その他端(先端)は開放端とされている。
 他方のグランド端子614には、2つの線状導体646,649が接続されている。線状導体646は、一端がグランド端子614の角部に接続され、配線基板610の主面に対して垂直方向に延びる柱状部647と、一端が柱状部647の他端に接続され、配線基板610の主面に対して平行に信号入出力端子612(及び一方のグランド端子613)方向に延びる線状部648とから構成されている。線状部648は、帯状に形成され、その他端(先端)は開放端とされている。
 また、線状導体649は、上述した柱状部647と基端部を共通とし、該柱状部647よりも若干長く延びた柱状部650と、一端が柱状部650の他端に接続され、配線基板610の主面に対して平行に信号入出力端子612(及び一方のグランド端子613)方向に延びる(すなわち上述した線状部648と平行して延びる)線状部651とから構成されている。線状部651は、帯状に形成され、その他端(先端)は開放端とされている。
 すなわち、線状導体640を構成する線状部642、線状導体643を構成する線状部645、線状導体646を構成する線状部648、及び、線状導体649を構成する線状部651は、近接して(例えば0.05mmずつ間隔を空けて)、配線基板410の主面に対して垂直方向に平行に(平面視した場合に重なり合うように)配置されている。
 第1の信号伝送線路630は、信号入出力端子612と線状導体646を構成する線状部648とを接続する。第1の信号伝送線路630は、一端が信号入出力端子612の中央に接続され、配線基板610の主面に対して垂直方向に延びる柱状部631と、一端が柱状部631の他端に接続され、配線基板610の主面に平行な面内に配置されたL字状の線状部632とから構成されている。線状部632の他端は、線状導体646を構成する線状部648の側面に接続されている。
 第2の信号伝送線路633は、線状導体643を構成する線状部645と結合用電極620とを接続する。第2の信号伝送線路633は、L字状に形成されて、配線基板610の主面に平行な面内に配置され、一端が線状導体643を構成する線状部645の側面に接続された線状部634と、一端が線状部634の他端と接続され、線基板610の主面に対して垂直方向に延び、他端が結合用電極620の中央に接続された柱状部635とから構成されている。
 なお、第1の信号伝送線路630と線状導体646を構成する線状部648との接続箇所、及び、第2の信号伝送線路633と線状導体643を構成する線状部645との接続箇所それぞれは、インピーダンスマッチングを考慮して設定される。
 上述したように、対向して配置された2対(4つ)の線状導体(共振器)640,643,646,649が、近接して、配線基板610の主面に対して垂直な方向に沿って互いに平行に(平面視した場合に重なり合うように)配置されるとともに、第1の信号伝送線路630により信号入出力端子612と線状部648とが接続され、第2の信号伝送線路633により線状部645と結合用電極620とが接続される。すなわち、信号入出力端子612と結合用電極620とが、直列に挿入された共振器を介して接続されている。そのため、信号伝達用通信体16の通過特性は、特定の周波数帯域の信号のみを選択的に通過させるバンドパスフィルタのような特性を有する
 ここで、信号伝達用通信体16の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図18を参照しつつ、信号伝達用通信体16の通過特性について、シミュレーション結果を示して説明する。
 図18は、4つの共振器が直列に挿入された信号伝達用通信体16の通過特性(S21)を示すグラフである。図18に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体16の特性を実線で示した。また、図18には、比較として、線状導体(共振器)640,643,646,649を有していない場合の通過特性(S21)を破線で併せて示した。
 図18に実線で示されるように、信号伝達用通信体16では、約3.8~5.2GHzの周波数帯域において通信信号を通過させ、それ以外の周波数帯域において、通信信号を遮断することが確認された。なお、線状導体(共振器)640,643,646,649を有しない信号伝達用通信体では、広くなだらかな通過特性を示した。
 本実施形態によれば、線状導体(共振器)646に第1の信号伝送線路630が接続され、該線状導体(共振器)646と近接して配置された(すなわち空間的に結合された)線状導体(共振器)643から第2の信号伝送線路633が取り出されて結合用電極620に接続されることで、共振器が直列に挿入された構成となり、共振周波数付近の信号のみを通過させるバンドパスフィルタのような通過特性が得られる。そのため、不要な周波数範囲の結合を抑えることが可能となる。なお、この場合、線状導体(共振器)646と第1の信号伝送線路630との接続点、及び、線状導体(共振器)643と第2の信号伝送線路633との接続点を調節することにより、インピーダンスマッチングを取ることができる。
 なお、本実施形態では、共振器の数を4つ(2対)としたが、共振器の数は4つには限られない。すなわち、共振器の数は、2つ(一対)又は6つ(3対)以上であってもよい。
 [第7実施形態]
 次に、図19を用いて、第7実施形態に係る信号伝達用通信体17の構成について説明する。図19は、信号伝達用通信体17の構成を示す斜視図である。
 信号伝達用通信体17は、互いに近接して配置された二対(4つ)の線状導体(共振器)740,743,746,749に加えて、該線状導体(共振器)740,743,746,749と平行に、さらに二対(4つ)の線状導体(共振器)752,755,758,761を備えている、すなわち、2対(4つ)の共振器が2列、離間して平行に配置されている点で、上述した信号伝達用通信体16と異なっている。また、信号入出力端子712と線状導体746(請求の範囲に記載の第1の線状導体に相当)を構成する線状部748とを接続する第1の信号伝送線路730、及び、線状導体755(請求の範囲に記載の第2の線状導体に相当)を構成する線状部757と結合用電極720とを接続する第2の信号伝送線路733を備えている点で、上述した信号伝達用通信体16と異なっている。その他の構成は、上述した信号伝達用通信体16と同一または同様であるので、ここでは詳細な説明を省略する。
 なお、第1の信号伝送線路730と線状導体746を構成する線状部748との接続箇所、及び、第2の信号伝送線路733と線状導体755を構成する線状部757との接続箇所それぞれは、インピーダンスマッチングを考慮して設定される。
 ここで、信号伝達用通信体17の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図20を参照しつつ、信号伝達用通信体17の通過特性について、シミュレーション結果を示して説明する。
 図20は、4つの共振器が2段直列に挿入された信号伝達用通信体17の通過特性(S21)を示すグラフである。図20に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体17の特性を実線で示した。また、図20には、比較として、上述した信号伝達用通信体16の通過特性(S21)を破線で、共振器を有しない場合の通過特性(S21)を一点鎖線で併せて示した。
 図20に実線で示されるように、信号伝達用通信体17(共振器が2列の場合)では、約2.8~5.6GHzの周波数帯域において通信信号を通過させ、それ以外の周波数帯域において、通信信号を遮断することが確認された。すなわち、上述した信号伝達用通信体16(共振器が1列の場合)と比べて、通過帯域の幅を広くすることができることが確認された。また、通過帯域外の減衰特性を急峻にすることができることが確認された。
 本実施形態によれば、2対(4つ)の共振器が2列、離間して平行に配置されているため、上述した信号伝達用通信体16対して、共振器の段数を増やすことができる。そのため、信号の通過帯域幅を拡張すること、及び、通過帯域外の減衰特性を急峻にすることが可能となる。
 なお、本実施形態では、共振器の段数を2段(2列)としたが、共振器の段数は2段(2列)には限られない。すなわち、共振器の段数は、3段(3列)以上であってもよい。
 [第8実施形態]
 次に、図21,図22,図23を併せて用いて、第8実施形態に係る信号伝達用通信体18の構成について説明する。図21は、信号伝達用通信体18の構成を示す斜視図である。図22は、図21の白抜き矢印A1方向から見た信号伝達用通信体18の側面図である。また、図23は、図21の白抜き矢印A2方向から見た信号伝達用通信体18の側面図である。
 信号伝達用通信体18は、配線基板810の主面に形成されるグランド端子を備えていない点で上述した第6実施形態に係る信号伝達用通信体16と異なっている。また、信号伝達用通信体18では、2対(4つ)の線状導体(共振器)840,841,843,844それぞれがグランド端子と接続される柱状導体を有していない(すなわちグランドに接地されていない)点で信号伝達用通信体16と異なっている。さらに、インピーダンスマッチングを取るために、第1の信号伝送線路830と線状導体843との接続箇所、及び、線状導体841と第2の信号伝送線路833との接続箇所それぞれが異なっている。その他の構成は、上述した信号伝達用通信体16と同一または同様であるので、ここでは詳細な説明を省略する。
 線状導体840と線状導体841は、配線基板810の主面に対して平行に配置されており、端部同士が、柱状部842によって接続されている。一方、線状導体843と線状導体844も、配線基板810の主面に対して平行に配置されており、端部同士が、柱状部845によって接続されている。
 線状導体840,841と、線状導体843,844は、先端部を互いに向け合うように配置されている。また、各線状導体843,840,844,841は、近接して(例えば0.05mmずつ間隔を空けて)、配線基板810の主面に対して垂直方向に交互に層状に配置されている。
 第1の信号伝送線路830は、一端が信号入出力端子812の中央に接続され、配線基板810の主面に対して垂直方向に延びる柱状部831と、一端が柱状部831の他端に接続され、配線基板810の主面に平行な面内に配置されたL字状の線状部832とから構成されている。線状部832の他端は、線状導体843の側面に接続されている。
 第2の信号伝送線路833は、L字状に形成されて、配線基板810の主面に平行な面内に配置され、一端が線状導体841の側面に接続された線状部834と、一端が線状部834の他端と接続され、線基板810の主面に対して垂直方向に延び、他端が結合用電極820の中央に接続された柱状部835とから構成されている。
 なお、第1の信号伝送線路830と線状導体843との接続箇所、及び、第2の信号伝送線路833と線状導体841との接続箇所それぞれは、インピーダンスマッチングを考慮して設定される。
 ここで、信号伝達用通信体18の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図24を参照しつつ、信号伝達用通信体18の通過特性について、シミュレーション結果を示して説明する。
 図24は、両端が開放された4つの共振器840,841,843,844が直列に挿入された信号伝達用通信体18の通過特性(S21)を示すグラフである。図24に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体18の特性を実線で示した。また、図18には、比較として、共振器を有しない場合の通過特性(S21)を破線で併せて示した。
 図24に実線で示されるように、信号伝達用通信体16では、2対(4つ)の共振器840,841,843,844による共振によって、5.6GHz付近に減衰極の発生が確認された。
 信号伝達用通信体18を送受信機の双方または片方に適用し、結合用電極820を相手の通信体に接近させることにより、誘導電界によって結合が生じ、金属接点を持たずに高周波信号を伝えることができる。そこで、次に、図25を参照しつつ、2個の信号伝達用通信体18を用いたカプラ8の構成について説明する。なお、図25は、信号伝達用通信体18を用いたカプラ8の構成を示す斜視図である。
 図25に示されるように、カプラ8は、上述した第8実施形態に係る信号伝達用通信体18が、2個、非接触状態で互いに対向するように配置されて構成されている。より具体的には、2つの信号伝達用通信体18,18を構成する結合用電極820,820同士が対向するように配置されている。このように配置されることにより、互いに対向する2つの結合用電極820,820の間に所定のキャパシタンスが形成され、信号が入力された際に、2つの信号伝達用通信体18,18間に誘導電界による結合が形成される。
 ここで、線状導体(共振器)の接地の有無による通過特性の違いを評価するために、接地されていない共振器840,841,843,844を有する信号伝達用通信体18を用いたカプラ8と、接地されている共振器140を有する第1実施形態に係る信号伝達用通信体11を用いたカプラ1それぞれについて、通信体間の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図26,図27を参照しつつ、共振器の接地の有無による通過特性の違いについて、シミュレーション結果を示して説明する。
 より具体的には、信号伝達用通信体18(11)を構成する配線基板810(110)の主面に平行な方向(XY方向)について、2つの信号伝達用通信体18(11)の相対的な位置ずれ量を変化させてSパラメータのS21(結合度)をシミュレーションし、そのシミュレーション結果から、XY方向のずれ量と結合度(及び結合度の周波数特性)との関係を評価した。図26は、第8実施形態に係る信号伝達用通信体18を用いたカプラ8において、XY方向のずれを変えた場合の通過特性(S21)を示すグラフである。一方、図27は、第1実施形態に係る信号伝達用通信体11を用いたカプラ1において、XY方向のずれを変えた場合の通過特性(S21)を示すグラフである。図26,図27に示されたグラフの横軸は周波数(GHz)であり、縦軸はS21(dB)である。
 ここでは、次の(1)~(4)の4つのケースで示されるように、2つの信号伝達用通信体18,18(11,11)の相対的なずれ量を変化させて、S21をシミュレーションした。
(1)(X,Y,Z)=(-10mm,  0mm,10mm)
(2)(X,Y,Z)=( 10mm,  0mm,10mm)
(3)(X,Y,Z)=(  0mm,-10mm,10mm)
(4)(X,Y,Z)=(  0mm, 10mm,10mm)
また、図26,図27のグラフでは、(1)のケースを実線で、(2)のケースを破線で、(3)のケースを一点鎖線で、(4)のケースを二点鎖線でそれぞれ示した。
 図26に示されるように、2つの信号伝達用通信体18,18がX方向又はY方向に±10mmずれた場合に、共振器840,841,843,844が接地されていないカプラ8では、減衰極の周波数が、5.56~5.62GHzの範囲(幅60MHz)で変動した。一方、2つの信号伝達用通信体11,11がX方向又はY方向に±10mmずれた場合に、共振器140が接地されているカプラ1では、図27に示されるように、減衰極の周波数が、5.46~5.64GHzの範囲(幅180MHz)で変動した。すなわち、共振器840,841,843,844が接地されていないカプラ8では、共振器140が接地されているカプラ1と比較して、減衰極の周波数変動を約1/3に抑えられることが確認された。
 本実施形態によれば、共振器840,841,843,844それぞれがグランド端子に接地されていないため、配線基板810のグランドの電位が安定する。そのため、信号伝達用通信体18を対向配置した場合には、相手の信号伝達用通信体18の相対位置が変化したとしても、相手側から見える電場の変化が小さくなるため、位置ずれによる通過特性の変動を抑制することが可能となる。
 [第9実施形態]
 次に、図28,図29,図30を併せて用いて、第9実施形態に係る信号伝達用通信体19の構成について説明する。ここで、図28は、信号伝達用通信体19の構成を示す斜視図である。図29は、図28の白抜き矢印方向から見た信号伝達用通信体19の側面図である。また、図30は、信号伝達用通信体19の等価回路を示す図である。
 信号伝達用通信体19は、4つの線状導体(共振器)840,841,843,844に代えて、スパイラル状電極932、及び、対向配置された2枚の平行平板電極933を備えている点で、上述した第8実施形態に係る信号伝達用通信体18と異なっている。また、この変更に伴い、信号入出力端子912とスパイラル状電極932とを接続する第1の信号伝送線路930、及び、平行平板電極933と結合用電極920とを接続する第2の信号伝送線路936それぞれの構成が信号伝達用通信体18と異なっている。その他の構成は、上述した信号伝達用通信体18と同一または同様であるので、ここでは詳細な説明を省略する。
 スパイラル状電極932は、巻回軸が配線基板910の主面に対して垂直になるようにスパイラル状に巻回されて形成されている。なお、本実施形態では、スパイラル状電極932を、一辺が0.8mmのコ字状の複数の電極を90度づつ回転させて離間して積層するとともに、上下のコ字状電極の端部間を円柱状の電極を介して接続することにより形成した。スパイラル状電極932の一端(始端)には、信号入出力端子912の中央に一端が接続された第1の信号伝送線路930の他端が接続されている。一方、スパイラル状電極の他端(終端)には、平行平板電極933を構成する第1の平板電極934が接続されている。
 平行平板電極933は、上述した、第1の平板電極934と、該第1の平板電極934と対向するように近接して設けられた第2の平板電極935とを有している。なお、本実施形態では、第1の平板電極934及び第2の平板電極935それぞれは、一辺が1.1mmの正方形状に形成した。第2の平板電極935は、第2の信号伝送線路936を構成する線状部937及び柱状部938を介して結合用電極920と接続されている。
 上述した構成を有することにより、信号伝達用通信体19は、図30の等価回路に示されるように、スパイラル状電極932によるインダクタL911と、平行平板電極933によるキャパシタC911とが、第1の信号伝送線路930及び第2の信号伝送線路936のインダクタ(成分)L912に対して直列に挿入されたものと等価的にみなすことができる。そのため、直列にLCで共振が生じるため、信号伝達用通信体19の通過特性は、バンドパスフィルタの特性を示すこととなる。
 ここで、信号伝達用通信体19の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図31を参照しつつ、信号伝達用通信体19の通過特性について、シミュレーション結果を示して説明する。
 図31は、信号伝達用通信体19の通過特性(S21)を示すグラフである。図31に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体19の特性を実線で示した。また、図31には、比較として、スパイラル状電極932及び平行平板電極933を有しない場合の通過特性(S21)を破線で併せて示した。
 図31に示されるように、信号伝達用通信体19では、スパイラル状電極932及び平行平板電極933による直列共振によって、約4.3~4.9GHzの通信信号を選択的に通過させるバンドパスフィルタのような通過特性を示すことが確認された。
 本実施形態によれば、スパイラル状電極932と平行平板電極933(第1の平板電極934と第2の平板電極935)とで構成されるLC共振器が直列に信号伝送線路(第1の信号伝送線路930と第2の信号伝送線路936の間)に挿入された構成となる。そのため、直列共振が起こり、バンドパスフィルタのような周波数特性を持たせることができる。それにより、不要な結合を抑えて信号が通過する周波数帯域を調整することができ、所望の通過特性を得ることができる。一方、スパイラル状電極932及び第1,第2の平板電極934,935から構成されるLC共振器はグランド端子に接地されていないため、実装基板910のグランドの電位が安定する。そのため、例えば、信号伝達用通信体19を対向配置した場合には、相手の信号伝達用通信体19の相対位置が変化したとしても、相手側から見える電場の変化が小さくなるため、位置ずれによる通過特性の変動を抑制することが可能となる。
 また、本実施形態によれば、スパイラル状電極932及び平行平板電極933を利用することにより、上述した第8実施形態に係る信号伝達用通信体18よりもサイズを小型化することが可能となる。
 なお、本実施形態では、スパイラル状電極932を配線基板910の主面に対して垂直な巻回軸に沿って巻回したが、配線基板910の主面に対して平行な巻回軸に沿って巻回する構成としてもよい。
 [第10実施形態]
 次に、図32,図33を併せて用いて、第10実施形態に係る信号伝達用通信体20の構成について説明する。ここで、図32は、信号伝達用通信体20の構成を示す斜視図である。また、図33は、信号伝達用通信体20の等価回路を示す図である。
 信号伝達用通信体20は、主面に信号入出力端子1012及びグランド端子1013,1014が形成された矩形平板状の配線基板1010を備えている。なお、配線基板1010の裏面は、ベタグランド(層)1011とされている。配線基板1010の主面には、平板状の結合用電極1020、信号伝送線路1030、LC共振器1053,1056、及び線状導体(共振器)1040が形成された直方体形状の積層体200が配置されている。なお、積層体200は、例えば、縦・横約5mm、高さ約1mmの直方体状に形成されている。なお、積層体200は、複数の誘電体層と複数の導体層とが積層されて形成されている。
 結合用電極1020は、正方形に形成され、配線基板1010の主面と平行に設けられた平板状の電極である。信号入出力端子1012と結合用電極1020とは、信号伝送線路1030によって電気的に接続されている。
 信号伝送線路1030は、一端が信号入出力端子1012の中央に接続され、配線基板1010の主面に対して垂直方向に延びる柱状部1031と、一端が柱状部1031の他端に接続され、配線基板1010の主面に対して平行に延びる線状部1032と、一端が線状部1032の他端に接続され、他端が結合用電極1020の中央に接続された4つのスパイラル部1033とから構成されている。4つのスパイラル部1033それぞれは、巻回軸が配線基板1010の主面に対して垂直になるようにスパイラル状に形成されている。より具体的には、スパイラル部1033は、配線基板1010の主面に対して平行な導体層と垂直なビアとによって形成される、配線基板1010の主面に平行な面に沿って旋回する複数のスパイラル状の導体パターンから構成される。なお、各スパイラル部1033の終端が次のスパイラル部1033の始端と接続されることにより、4つのスパイラル部1033がシリーズに接続されている。
 配線基板1010の主面に形成された一対のグランド端子1013,1014それぞれには、一対(2つ)のLC共振器1053,1056が接続されている。LC共振器1053(1056)は、ロ字状に形成され、結合用電極1020と対向するように近接して設けられた平板状の電極(以下「トラップ電極」ともいう)1050と、巻回軸が配線基板1010の主面に対して垂直になるようにスパイラル状に巻回されて形成され、一端がトラップ電極1050に接続されたスパイラル部1052(1055)と、一端がスパイラル部1052(1055)の他端に接続され、他端がグランド端子1013(1014)に接続された柱状部1051(1054)とを含んで構成されている。なお、スパイラル部1052(1055)は、例えば、ビアが形成された誘電体層と、電極パターン層とを交互に積層することによって形成することができる。また、スパイラル部1052(1055)及び柱状部1051(1054)は、請求の範囲に記載のスパイラル状導体に相当する。
 グランド端子1013には、線状導体1040が接続されている。線状導体1040は、一端がグランド端子1013に接続され、配線基板1010の主面に対して垂直方向に延びる柱状部1041と、一端が柱状部1041の他端に接続され、配線基板1010の主面に対して平行に延び、他端が開放端とされた線状部1042とから構成されている。ここで、線状導体1040を構成する線状部1042と、信号伝送線路1030を構成する線状部1032とは、近接して立体交差するように(平面視した場合には直交するように)配置されている。
 信号伝達用通信体20によれば、線状導体1040を構成する線状部1042と信号伝送線路1030を構成する線状部1032とが近接して立体交差するように配置されているため、該立体交差領域において線状導体1040と信号伝送線路1030との間でキャパシタンス(C)成分が形成される。また、該キャパシタンス成分が、線状導体1040が有するインダクタ(L)成分を介してグランドに接地される。よって、図33の等価回路に示されるように、キャパシタンスC201とインダクタL202とが、信号伝送線路に対して並列に挿入されたものと等価的にみなすことができる。そのため、線状導体1040は、共振器LC201として機能する(以下、線状導体1040を共振器と呼ぶこともある)。このように、共振器LC201が並列に挿入されることにより、信号伝送線路1030とグランドとの間に並列共振が生じ、周波数特性に減衰極が発生する。なお、図33中のインダクタL201は、信号伝送線路130(柱状部1031、線状部1032、及びスパイラル部1033)が有するインダクタ成分である。また、図33中のキャパシタC202,C203及びインダクタL203,L204からなる共振器LC202,LC203は、上述したLC共振器1053,1056に相当するものである。
 ここで、線状導体(共振器)1040の有無による通信信号の通過特性の違いを評価するために、共振器1040を有する信号伝達用通信体20と共振器140を有しない信号伝達用通信体それぞれについて、信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図34を参照しつつ、共振器140の有無による通過特性の違いについて、シミュレーション結果を示して説明する。
 図34は、信号伝達用通信体20の通過特性(S21)を示すグラフである。図34に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、共振器140を有する場合(信号伝達用通信体20)を実線で、共振器140を有さない場合を破線で示した。
 図34において実線で示されるように、信号伝達用通信体20では、共振器1040を有さない信号伝達用通信体(破線参照)と比較して、トラップ電極による減衰極(2.8GHz及び5.4GHz付近)に加えて、6.6GHz付近に共振器1040による減衰極が生じることが確認できた。
 本実施形態によれば、結合用電極1020とトラップ電極1050によるキャパシタンス成分、及び、スパイラル部1052,1054のインダクタンス成分によりLC共振器1053,1056が形成される。また、上述したように、信号伝送線路1030と近接して配置された線状導体1040も共振器として機能する。よって、双方を組み合わせて用いることにより、減衰極を増やすことが可能となる。その結果、通過帯域外の減衰特性が改善され、電波干渉への耐性をより向上させることができる。なお、上述したトラップ電極1050とスパイラル部1052,1054のみでは、3つ以上の減衰極を形成することは困難であるが、線状導体1040からなる共振器を併用することによって、効果的に減衰極を増やすことができる。
 なお、本実施形態では、スパイラル部1033、及びスパイラル部1052,1054を配線基板1010の主面に対して垂直な巻回軸に沿って巻回したが、配線基板1010の主面に対して平行な巻回軸に沿って巻回する構成としてもよい。
 [第11実施形態]
 次に、図35,図36を併せて用いて、第11実施形態に係る信号伝達用通信体21の構成について説明する。図35は、信号伝達用通信体21の構成を示す斜視図である。また、図36は、信号伝達用通信体21の等価回路を示す図である。
 信号伝達用通信体21は、線状導体(共振器)1040に代えて、スパイラル状電極1132、及び、対向配置された2枚の平行平板電極1133が、第1の信号伝送線路1130とスパイラル部1134との間に挿入されている点で、上述した第10実施形態に係る信号伝達用通信体20と異なっている。その他の構成は、上述した信号伝達用通信体20と同一または同様であるので、ここでは詳細な説明を省略する。
 スパイラル状電極1132は、巻回軸が配線基板1110の主面に対して垂直になるようにスパイラル状に巻回されて形成されている。なお、本実施形態では、スパイラル状電極1132を、一辺が0.8mmのコ字状の複数の電極を90度づつ回転させて離間して積層するとともに、上下のコ字状電極の端部間を円柱状の電極を介して接続することにより形成した。スパイラル状電極1132の一端(始端)には、信号入出力端子1112の中央に一端が接続された第1の信号伝送線路1130の他端が接続されている。一方、スパイラル状電極の他端(終端)には、平行平板電極1133を構成する第1の平板電極が接続されている。
 平行平板電極1133は、第1の平板電極と、該第1の平板電極と対向するように近接して設けられた第2の平板電極とを有している。なお、本実施形態では、第1の平板電極及び第2の平板電極それぞれは、一辺が1.1mmの正方形状に形成した。第2の平板電極は、4つのスパイラル部(第2の信号伝送線路)1134を介して結合用電極1120と接続されている。なお、スパイラル部1134の構成は、上述したスパイラル部1033の構成と同一であるので、ここでは詳細な説明を省略する。
 上述した構成を有することにより、信号伝達用通信体21は、図36の等価回路に示されるように、スパイラル状電極1131によるインダクタL211と、平行平板電極1133によるキャパシタC211とが、第1の信号伝送線路1130及びスパイラル部1134のインダクタ成分L212に対して直列に挿入されたものと等価的にみなすことができる。なお、図36中のキャパシタC212,C213及びインダクタL213,L214からなる共振器LC211,LC212は、LC共振器1153,1156に相当するものである。
 ここで、信号伝達用通信体21の通過特性を評価するために、通信信号の通過量(SパラメータのS21)についてシミュレーションを行った。続いて、図37を参照しつつ、信号伝達用通信体21の通過特性について、シミュレーション結果を示して説明する。
 図37は、信号伝達用通信体21の通過特性(S21)を示すグラフである。図37に示されたグラフにおいて、横軸は周波数(GHz)、縦軸はS21(dB)であり、信号伝達用通信体21の特性を実線で示した。また、図37には、比較として、スパイラル状電極1132及び平行平板電極1133を有しない場合の通過特性(S21)を破線で併せて示した。
 図37において実線で示されるように、信号伝達用通信体21では、スパイラル状電極1132及び平行平板電極1133を有しない信号伝達用通信体(破線参照)と比較して、信号を通過させる周波数帯域(約4.1~4.8GHz)を変化させることなく、帯域外の通過特性が抑えられることが確認された。
 本実施形態によれば、結合用電極1120とトラップ電極1150によるキャパシタンス成分、及び、スパイラル部1152,1154のインダクタンス成分によりLC共振器1153,1156が形成される。一方、スパイラル状電極1132でインダクタ成分が、平板平行電極1133でキャパシタ成分が発生するため、LC共振器が直列に信号伝送線路(第1の信号伝送線路1130とスパイラル部1134との間)に挿入された構成となる。そのため、並列共振と直列共振とが組み合わされることにより、不要な結合を抑えて信号が通過する周波数帯域を調整することができ、所望の通過特性を得ることができる。また、通過帯域外の減衰特性が改善され、電波干渉への耐性をより向上させることが可能となる。
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、上述した各構成要素の配置、巻回数、形状、サイズ等は上記実施形態に限られることなく、所望される特性に応じて任意に設定される。
 上記実施形態では、信号伝達用通信体11を2個対向させて組合せることによりカプラ1を構成し、信号伝達用通信体18を2個対向させて組み合わせることによりカプラ8を構成した。ここで、カプラ1,8を構成する信号伝達用通信体11,18の数は2個に限られることなく、3個以上であってもよい。また、カプラを構成する信号伝達用通信体は、信号伝達用通信体11又は信号伝達用通信体18に限られることなく、上述した信号伝達用通信体11~21を任意に組み合わせて用いることができる。さらに、信号伝達用通信体11~21を一方(送受信機の片方)に配置し、他方に異なる信号伝達用通信体(例えば従来の信号伝達用通信体)を配置する構成としてもよい。
 1,8 カプラ
 11,12,13,14,15,16,17,18,19,20,21 信号伝達用通信体
 110,210,310,410,510,610,710,810,910,1010,1110 配線基板
 112,212,312,412,512,612,712,812,912,1012,1112 信号入出力端子
 113,213,313,413,414,513,514,613,614,713,714,715,716,1013,1014,1113 グランド端子
 120,220,320,420,520,620,720,820,920,1020,1120 結合用電極
 130,230,330,430,530,936,1030 信号伝送線路
 630,730,830,930,1130 第1の信号伝送線路
 633,733,833,936 第2の信号伝送線路
 140,240,340,440,443,540,543,640,643,646,649,740,743,746,749,752,755,758,761,840,841,843,844,1040 線状導体(共振器)
 932,1132 スパイラル状電極
 933,1133 平行平板電極
 934 第1の平板電極
 935 第2の平板電極
 1033,1134 スパイラル部
 1050,1150 平板状の電極
 1052,1054,1152,1154 スパイラル部
 

Claims (13)

  1.  平板状の結合用電極と、前記結合用電極と信号入出力端子とを接続する信号伝送線路と、を備える信号伝達用通信体において、
     グランド端子と、
     一端が前記グランド端子と接続され、他端が開放端とされた線状導体と、を備え、
     前記線状導体は、少なくとも一部が、前記信号伝送線路と近接するように配置されていることを特徴とする信号伝達用通信体。
  2.  前記線状導体は、前記信号伝送線路と近接して立体交差するように配置されていることを特徴とする請求項1に記載の信号伝達用通信体。
  3.  前記線状導体は、前記信号伝送線路と近接して平行に配置されていることを特徴とする請求項1に記載の信号伝達用通信体。
  4.  前記線状導体、及び前記信号伝送線路それぞれは帯状部を含み、前記線状導体と前記信号伝送線路とは、当該帯状部の平坦面同士が対向するように近接して平行に配置されていることを特徴とする請求項3に記載の信号伝達用通信体。
  5.  複数の前記線状導体を備え、当該複数の線状導体同士が近接して配置されていることを特徴とする請求項1~4のいずれか1項に記載の信号伝達用通信体。
  6.  複数の前記線状導体を備え、当該複数の線状導体が、互いに所定の距離を隔てて配置されていることを特徴とする請求項1~4のいずれか1項に記載の信号伝達用通信体。
  7.  平板状の結合用電極と、
     一端がグランド端子と接続され、他端が開放端とされた第1の線状導体と、
     一端がグランド端子と接続され、他端が開放端とされ、前記第1の線状導体と近接して配置された第2の線状導体と、
     一端が信号入出力端子と接続され、他端が前記第1の線状導体と接続された第1の信号伝送線路と、
     一端が前記第2の線状導体と接続され、他端が前記結合用電極と接続された第2の信号伝送線路と、を備えることを特徴とする信号伝達用通信体。
  8.  平板状の結合用電極と、
     一端がグランド端子と接続され、他端が開放端とされた第1の線状導体と、
     一端がグランド端子と接続され、他端が開放端とされ、前記第1の線状導体と所定の距離を隔てて配置された第2の線状導体と、
     一端が信号入出力端子と接続され、他端が前記第1の線状導体と接続された第1の信号伝送線路と、
     一端が前記第2の線状導体と接続され、他端が前記結合用電極と接続された第2の信号伝送線路と、を備えることを特徴とする信号伝達用通信体。
  9.  平板状の結合用電極と、
     両端が開放端とされた第1の線状導体と、
     両端が開放端とされ、前記第1の線状導体と近接して配置された第2の線状導体と、
     一端が信号入出力端子と接続され、他端が前記第1の線状導体と接続された第1の信号伝送線路と、
     一端が前記第2の線状導体と接続され、他端が前記結合用電極と接続された第2の信号伝送線路と、を備えることを特徴とする信号伝達用通信体。
  10.  平板状の結合用電極と、
     一端が信号入出力端子と接続された第1の信号伝送線路と、
     スパイラル状に形成され、一端が前記第1の信号伝送線路の他端と接続されたスパイラル状電極と、
     前記スパイラル状電極の他端と接続された第1の平板電極と、
     前記第1の平板電極と対向するように近接して設けられた第2の平板電極と、
     一端が前記第2の平板電極と接続され、他端が前記結合用電極と接続された第2の信号伝送線路と、を備えることを特徴とする信号伝達用通信体。
  11.  平板状の結合用電極と、
     少なくとも一部がスパイラル状に形成され、前記結合用電極と信号入出力端子とを接続する信号伝送線路と、
     前記結合用電極と対向するように近接して設けられた平板状の電極と、
     少なくとも一部がスパイラル状に形成され、前記平板状の電極とグランド端子とを接続するスパイラル状導体と、
     グランド端子と、
     一端がグランド端子と接続され、他端が開放端とされた線状導体と、を備え、
     前記線状導体は、少なくとも一部が、前記信号伝送線路と近接するように配置されていることを特徴とする信号伝達用通信体。
  12.  平板状の結合用電極と、
    前記結合用電極と対向するように近接して設けられた平板状の電極と、
     少なくとも一部がスパイラル状に形成され、前記平板電極とグランド端子とを接続するスパイラル状導体と、
     一端が信号入出力端子と接続された第1の信号伝送線路と、
     スパイラル状に形成され、一端が前記第1の信号伝送線路の他端と接続されたスパイラル状電極と、
     前記スパイラル状電極の他端と接続された第1の平板電極と、
     前記第1の平板電極と対向するように近接して設けられた第2の平板電極と、
     少なくとも一部がスパイラル状に形成され、一端が前記第2の平板電極と接続され、他端が前記結合用電極と接続された第2の信号伝送線路と、を備えることを特徴とする信号伝達用通信体。
  13.  1以上の請求項1~12のいずれか1項に記載の信号伝達用通信体を含む複数の信号伝達用通信体が、非接触状態で互いに対向するように配置されていることを特徴とするカプラ。
     
PCT/JP2012/074872 2011-10-17 2012-09-27 信号伝達用通信体及びカプラ WO2013058076A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-228365 2011-10-17
JP2011228365 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013058076A1 true WO2013058076A1 (ja) 2013-04-25

Family

ID=48140730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074872 WO2013058076A1 (ja) 2011-10-17 2012-09-27 信号伝達用通信体及びカプラ

Country Status (1)

Country Link
WO (1) WO2013058076A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154198A (ja) * 2006-11-21 2008-07-03 Sony Corp 通信システム並びに通信装置
JP2008312074A (ja) * 2007-06-18 2008-12-25 Sony Corp 通信装置
JP2009027734A (ja) * 2008-08-26 2009-02-05 Sony Corp 高周波結合器並びに電界信号放射エレメント
WO2010113776A1 (ja) * 2009-03-31 2010-10-07 株式会社村田製作所 信号伝達用通信体及びカプラ
JP2010233129A (ja) * 2009-03-30 2010-10-14 Sony Corp 通信装置並びに高周波結合器
JP2011182376A (ja) * 2010-02-04 2011-09-15 Sony Chemical & Information Device Corp アンテナ装置、及び、通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154198A (ja) * 2006-11-21 2008-07-03 Sony Corp 通信システム並びに通信装置
JP2008312074A (ja) * 2007-06-18 2008-12-25 Sony Corp 通信装置
JP2009027734A (ja) * 2008-08-26 2009-02-05 Sony Corp 高周波結合器並びに電界信号放射エレメント
JP2010233129A (ja) * 2009-03-30 2010-10-14 Sony Corp 通信装置並びに高周波結合器
WO2010113776A1 (ja) * 2009-03-31 2010-10-07 株式会社村田製作所 信号伝達用通信体及びカプラ
JP2011182376A (ja) * 2010-02-04 2011-09-15 Sony Chemical & Information Device Corp アンテナ装置、及び、通信装置

Similar Documents

Publication Publication Date Title
JP5246301B2 (ja) 方向性結合器
JP4579198B2 (ja) 多層帯域通過フィルタ
JP5652542B2 (ja) 方向性結合器
KR20060113539A (ko) 대역통과 필터 및 이것을 사용한 무선통신기기
JP4197032B2 (ja) 2ポート型非可逆回路素子及び通信装置
JP6183462B2 (ja) 高周波モジュール
US7432786B2 (en) High frequency filter
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
US8648667B2 (en) Thin film balun
JP5787108B2 (ja) 誘電体線路および電子部品
JP2006050543A (ja) 非可逆回路素子
JP4345680B2 (ja) 2ポート型非可逆回路素子及び通信装置
JP5578440B2 (ja) 差動伝送線路
WO2013058076A1 (ja) 信号伝達用通信体及びカプラ
JP4600456B2 (ja) フィルタ
JPWO2013147152A1 (ja) 伝送線路共振器並びに伝送線路共振器を用いた帯域通過フィルタ、分波器、合成器、帯域阻止フィルタ、高域通過フィルタ、バランス型フィルタ及び低域通過フィルタ
JP2008294797A (ja) 積層型バンドパスフィルタ
JP2007195126A (ja) 帯域通過フィルタおよびこれを用いた無線通信機器
US9729123B2 (en) Common-mode filter
JP4629617B2 (ja) 高周波結合線路及び高周波フィルタ
KR101310745B1 (ko) 나선형 결합 선로를 가지는 결합기
JP5136322B2 (ja) 非可逆回路素子
JP4195568B2 (ja) 積層型電子部品
JP2023147842A (ja) 積層型フィルタ装置
JP6183624B2 (ja) 電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP